2 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
3 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 * Copyright (C) 2005, Intec Automation Inc.
6 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 * This code is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/err.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/math64.h>
19 #include <linux/sizes.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/of_platform.h>
23 #include <linux/spi/flash.h>
24 #include <linux/mtd/spi-nor.h>
26 /* Define max times to check status register before we give up. */
29 * For everything but full-chip erase; probably could be much smaller, but kept
30 * around for safety for now
32 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
35 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
38 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
40 #define SPI_NOR_MAX_ID_LEN 6
46 * This array stores the ID bytes.
47 * The first three bytes are the JEDIC ID.
48 * JEDEC ID zero means "no ID" (mostly older chips).
50 u8 id
[SPI_NOR_MAX_ID_LEN
];
53 /* The size listed here is what works with SPINOR_OP_SE, which isn't
54 * necessarily called a "sector" by the vendor.
63 #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
64 #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
65 #define SST_WRITE 0x04 /* use SST byte programming */
66 #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
67 #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
68 #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
69 #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
70 #define USE_FSR 0x80 /* use flag status register */
73 #define JEDEC_MFR(info) ((info)->id[0])
75 static const struct flash_info
*spi_nor_match_id(const char *name
);
78 * Read the status register, returning its value in the location
79 * Return the status register value.
80 * Returns negative if error occurred.
82 static int read_sr(struct spi_nor
*nor
)
87 ret
= nor
->read_reg(nor
, SPINOR_OP_RDSR
, &val
, 1);
89 pr_err("error %d reading SR\n", (int) ret
);
97 * Read the flag status register, returning its value in the location
98 * Return the status register value.
99 * Returns negative if error occurred.
101 static int read_fsr(struct spi_nor
*nor
)
106 ret
= nor
->read_reg(nor
, SPINOR_OP_RDFSR
, &val
, 1);
108 pr_err("error %d reading FSR\n", ret
);
116 * Read configuration register, returning its value in the
117 * location. Return the configuration register value.
118 * Returns negative if error occured.
120 static int read_cr(struct spi_nor
*nor
)
125 ret
= nor
->read_reg(nor
, SPINOR_OP_RDCR
, &val
, 1);
127 dev_err(nor
->dev
, "error %d reading CR\n", ret
);
135 * Dummy Cycle calculation for different type of read.
136 * It can be used to support more commands with
137 * different dummy cycle requirements.
139 static inline int spi_nor_read_dummy_cycles(struct spi_nor
*nor
)
141 switch (nor
->flash_read
) {
153 * Write status register 1 byte
154 * Returns negative if error occurred.
156 static inline int write_sr(struct spi_nor
*nor
, u8 val
)
158 nor
->cmd_buf
[0] = val
;
159 return nor
->write_reg(nor
, SPINOR_OP_WRSR
, nor
->cmd_buf
, 1);
163 * Set write enable latch with Write Enable command.
164 * Returns negative if error occurred.
166 static inline int write_enable(struct spi_nor
*nor
)
168 return nor
->write_reg(nor
, SPINOR_OP_WREN
, NULL
, 0);
172 * Send write disble instruction to the chip.
174 static inline int write_disable(struct spi_nor
*nor
)
176 return nor
->write_reg(nor
, SPINOR_OP_WRDI
, NULL
, 0);
179 static inline struct spi_nor
*mtd_to_spi_nor(struct mtd_info
*mtd
)
184 /* Enable/disable 4-byte addressing mode. */
185 static inline int set_4byte(struct spi_nor
*nor
, const struct flash_info
*info
,
189 bool need_wren
= false;
192 switch (JEDEC_MFR(info
)) {
193 case SNOR_MFR_MICRON
:
194 /* Some Micron need WREN command; all will accept it */
196 case SNOR_MFR_MACRONIX
:
197 case SNOR_MFR_WINBOND
:
201 cmd
= enable
? SPINOR_OP_EN4B
: SPINOR_OP_EX4B
;
202 status
= nor
->write_reg(nor
, cmd
, NULL
, 0);
209 nor
->cmd_buf
[0] = enable
<< 7;
210 return nor
->write_reg(nor
, SPINOR_OP_BRWR
, nor
->cmd_buf
, 1);
213 static inline int spi_nor_sr_ready(struct spi_nor
*nor
)
215 int sr
= read_sr(nor
);
219 return !(sr
& SR_WIP
);
222 static inline int spi_nor_fsr_ready(struct spi_nor
*nor
)
224 int fsr
= read_fsr(nor
);
228 return fsr
& FSR_READY
;
231 static int spi_nor_ready(struct spi_nor
*nor
)
234 sr
= spi_nor_sr_ready(nor
);
237 fsr
= nor
->flags
& SNOR_F_USE_FSR
? spi_nor_fsr_ready(nor
) : 1;
244 * Service routine to read status register until ready, or timeout occurs.
245 * Returns non-zero if error.
247 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor
*nor
,
248 unsigned long timeout_jiffies
)
250 unsigned long deadline
;
251 int timeout
= 0, ret
;
253 deadline
= jiffies
+ timeout_jiffies
;
256 if (time_after_eq(jiffies
, deadline
))
259 ret
= spi_nor_ready(nor
);
268 dev_err(nor
->dev
, "flash operation timed out\n");
273 static int spi_nor_wait_till_ready(struct spi_nor
*nor
)
275 return spi_nor_wait_till_ready_with_timeout(nor
,
276 DEFAULT_READY_WAIT_JIFFIES
);
280 * Erase the whole flash memory
282 * Returns 0 if successful, non-zero otherwise.
284 static int erase_chip(struct spi_nor
*nor
)
286 dev_dbg(nor
->dev
, " %lldKiB\n", (long long)(nor
->mtd
.size
>> 10));
288 return nor
->write_reg(nor
, SPINOR_OP_CHIP_ERASE
, NULL
, 0);
291 static int spi_nor_lock_and_prep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
295 mutex_lock(&nor
->lock
);
298 ret
= nor
->prepare(nor
, ops
);
300 dev_err(nor
->dev
, "failed in the preparation.\n");
301 mutex_unlock(&nor
->lock
);
308 static void spi_nor_unlock_and_unprep(struct spi_nor
*nor
, enum spi_nor_ops ops
)
311 nor
->unprepare(nor
, ops
);
312 mutex_unlock(&nor
->lock
);
316 * Erase an address range on the nor chip. The address range may extend
317 * one or more erase sectors. Return an error is there is a problem erasing.
319 static int spi_nor_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
321 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
326 dev_dbg(nor
->dev
, "at 0x%llx, len %lld\n", (long long)instr
->addr
,
327 (long long)instr
->len
);
329 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
336 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_ERASE
);
340 /* whole-chip erase? */
341 if (len
== mtd
->size
) {
342 unsigned long timeout
;
346 if (erase_chip(nor
)) {
352 * Scale the timeout linearly with the size of the flash, with
353 * a minimum calibrated to an old 2MB flash. We could try to
354 * pull these from CFI/SFDP, but these values should be good
357 timeout
= max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES
,
358 CHIP_ERASE_2MB_READY_WAIT_JIFFIES
*
359 (unsigned long)(mtd
->size
/ SZ_2M
));
360 ret
= spi_nor_wait_till_ready_with_timeout(nor
, timeout
);
364 /* REVISIT in some cases we could speed up erasing large regions
365 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
366 * to use "small sector erase", but that's not always optimal.
369 /* "sector"-at-a-time erase */
374 if (nor
->erase(nor
, addr
)) {
379 addr
+= mtd
->erasesize
;
380 len
-= mtd
->erasesize
;
382 ret
= spi_nor_wait_till_ready(nor
);
390 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_ERASE
);
392 instr
->state
= MTD_ERASE_DONE
;
393 mtd_erase_callback(instr
);
398 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_ERASE
);
399 instr
->state
= MTD_ERASE_FAILED
;
403 static void stm_get_locked_range(struct spi_nor
*nor
, u8 sr
, loff_t
*ofs
,
406 struct mtd_info
*mtd
= &nor
->mtd
;
407 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
408 int shift
= ffs(mask
) - 1;
416 pow
= ((sr
& mask
) ^ mask
) >> shift
;
417 *len
= mtd
->size
>> pow
;
418 *ofs
= mtd
->size
- *len
;
423 * Return 1 if the entire region is locked, 0 otherwise
425 static int stm_is_locked_sr(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
,
431 stm_get_locked_range(nor
, sr
, &lock_offs
, &lock_len
);
433 return (ofs
+ len
<= lock_offs
+ lock_len
) && (ofs
>= lock_offs
);
437 * Lock a region of the flash. Compatible with ST Micro and similar flash.
438 * Supports only the block protection bits BP{0,1,2} in the status register
439 * (SR). Does not support these features found in newer SR bitfields:
440 * - TB: top/bottom protect - only handle TB=0 (top protect)
441 * - SEC: sector/block protect - only handle SEC=0 (block protect)
442 * - CMP: complement protect - only support CMP=0 (range is not complemented)
444 * Sample table portion for 8MB flash (Winbond w25q64fw):
446 * SEC | TB | BP2 | BP1 | BP0 | Prot Length | Protected Portion
447 * --------------------------------------------------------------------------
448 * X | X | 0 | 0 | 0 | NONE | NONE
449 * 0 | 0 | 0 | 0 | 1 | 128 KB | Upper 1/64
450 * 0 | 0 | 0 | 1 | 0 | 256 KB | Upper 1/32
451 * 0 | 0 | 0 | 1 | 1 | 512 KB | Upper 1/16
452 * 0 | 0 | 1 | 0 | 0 | 1 MB | Upper 1/8
453 * 0 | 0 | 1 | 0 | 1 | 2 MB | Upper 1/4
454 * 0 | 0 | 1 | 1 | 0 | 4 MB | Upper 1/2
455 * X | X | 1 | 1 | 1 | 8 MB | ALL
457 * Returns negative on errors, 0 on success.
459 static int stm_lock(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
461 struct mtd_info
*mtd
= &nor
->mtd
;
462 u8 status_old
, status_new
;
463 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
464 u8 shift
= ffs(mask
) - 1, pow
, val
;
466 status_old
= read_sr(nor
);
468 /* SPI NOR always locks to the end */
469 if (ofs
+ len
!= mtd
->size
) {
470 /* Does combined region extend to end? */
471 if (!stm_is_locked_sr(nor
, ofs
+ len
, mtd
->size
- ofs
- len
,
474 len
= mtd
->size
- ofs
;
478 * Need smallest pow such that:
480 * 1 / (2^pow) <= (len / size)
482 * so (assuming power-of-2 size) we do:
484 * pow = ceil(log2(size / len)) = log2(size) - floor(log2(len))
486 pow
= ilog2(mtd
->size
) - ilog2(len
);
487 val
= mask
- (pow
<< shift
);
490 /* Don't "lock" with no region! */
494 status_new
= (status_old
& ~mask
) | val
;
496 /* Only modify protection if it will not unlock other areas */
497 if ((status_new
& mask
) <= (status_old
& mask
))
501 return write_sr(nor
, status_new
);
505 * Unlock a region of the flash. See stm_lock() for more info
507 * Returns negative on errors, 0 on success.
509 static int stm_unlock(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
511 struct mtd_info
*mtd
= &nor
->mtd
;
512 uint8_t status_old
, status_new
;
513 u8 mask
= SR_BP2
| SR_BP1
| SR_BP0
;
514 u8 shift
= ffs(mask
) - 1, pow
, val
;
516 status_old
= read_sr(nor
);
518 /* Cannot unlock; would unlock larger region than requested */
519 if (stm_is_locked_sr(nor
, status_old
, ofs
- mtd
->erasesize
,
524 * Need largest pow such that:
526 * 1 / (2^pow) >= (len / size)
528 * so (assuming power-of-2 size) we do:
530 * pow = floor(log2(size / len)) = log2(size) - ceil(log2(len))
532 pow
= ilog2(mtd
->size
) - order_base_2(mtd
->size
- (ofs
+ len
));
533 if (ofs
+ len
== mtd
->size
) {
534 val
= 0; /* fully unlocked */
536 val
= mask
- (pow
<< shift
);
537 /* Some power-of-two sizes are not supported */
542 status_new
= (status_old
& ~mask
) | val
;
544 /* Only modify protection if it will not lock other areas */
545 if ((status_new
& mask
) >= (status_old
& mask
))
549 return write_sr(nor
, status_new
);
553 * Check if a region of the flash is (completely) locked. See stm_lock() for
556 * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
557 * negative on errors.
559 static int stm_is_locked(struct spi_nor
*nor
, loff_t ofs
, uint64_t len
)
563 status
= read_sr(nor
);
567 return stm_is_locked_sr(nor
, ofs
, len
, status
);
570 static int spi_nor_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
572 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
575 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_LOCK
);
579 ret
= nor
->flash_lock(nor
, ofs
, len
);
581 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_UNLOCK
);
585 static int spi_nor_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
587 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
590 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_UNLOCK
);
594 ret
= nor
->flash_unlock(nor
, ofs
, len
);
596 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_LOCK
);
600 static int spi_nor_is_locked(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
602 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
605 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_UNLOCK
);
609 ret
= nor
->flash_is_locked(nor
, ofs
, len
);
611 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_LOCK
);
615 /* Used when the "_ext_id" is two bytes at most */
616 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
618 ((_jedec_id) >> 16) & 0xff, \
619 ((_jedec_id) >> 8) & 0xff, \
620 (_jedec_id) & 0xff, \
621 ((_ext_id) >> 8) & 0xff, \
624 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))), \
625 .sector_size = (_sector_size), \
626 .n_sectors = (_n_sectors), \
630 #define INFO6(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
632 ((_jedec_id) >> 16) & 0xff, \
633 ((_jedec_id) >> 8) & 0xff, \
634 (_jedec_id) & 0xff, \
635 ((_ext_id) >> 16) & 0xff, \
636 ((_ext_id) >> 8) & 0xff, \
640 .sector_size = (_sector_size), \
641 .n_sectors = (_n_sectors), \
645 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
646 .sector_size = (_sector_size), \
647 .n_sectors = (_n_sectors), \
648 .page_size = (_page_size), \
649 .addr_width = (_addr_width), \
652 /* NOTE: double check command sets and memory organization when you add
653 * more nor chips. This current list focusses on newer chips, which
654 * have been converging on command sets which including JEDEC ID.
656 * All newly added entries should describe *hardware* and should use SECT_4K
657 * (or SECT_4K_PMC) if hardware supports erasing 4 KiB sectors. For usage
658 * scenarios excluding small sectors there is config option that can be
659 * disabled: CONFIG_MTD_SPI_NOR_USE_4K_SECTORS.
660 * For historical (and compatibility) reasons (before we got above config) some
661 * old entries may be missing 4K flag.
663 static const struct flash_info spi_nor_ids
[] = {
664 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
665 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
666 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
668 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
669 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K
) },
670 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
672 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
673 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
674 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
675 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
677 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K
) },
680 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
681 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
682 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
683 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
684 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K
) },
685 { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
686 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
687 { "en25s64", INFO(0x1c3817, 0, 64 * 1024, 128, SECT_4K
) },
690 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K
) },
693 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
694 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
697 { "mb85rs1mt", INFO(0x047f27, 0, 128 * 1024, 1, SPI_NOR_NO_ERASE
) },
700 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K
) },
701 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K
) },
702 { "gd25q128", INFO(0xc84018, 0, 64 * 1024, 256, SECT_4K
) },
704 /* Intel/Numonyx -- xxxs33b */
705 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
706 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
707 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
710 { "is25cd512", INFO(0x7f9d20, 0, 32 * 1024, 2, SECT_4K
) },
713 { "mx25l512e", INFO(0xc22010, 0, 64 * 1024, 1, SECT_4K
) },
714 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K
) },
715 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
716 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
717 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
718 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
719 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K
) },
720 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
721 { "mx25u6435f", INFO(0xc22537, 0, 64 * 1024, 128, SECT_4K
) },
722 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
723 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
724 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
725 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
726 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ
) },
727 { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ
) },
730 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ
) },
731 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64, SPI_NOR_QUAD_READ
) },
732 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_QUAD_READ
) },
733 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128, SECT_4K
| SPI_NOR_QUAD_READ
) },
734 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ
) },
735 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, SPI_NOR_QUAD_READ
) },
736 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K
| SPI_NOR_QUAD_READ
) },
737 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
) },
738 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
) },
739 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, SECT_4K
| USE_FSR
| SPI_NOR_QUAD_READ
) },
742 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC
) },
743 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC
) },
744 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K
) },
746 /* Spansion -- single (large) sector size only, at least
747 * for the chips listed here (without boot sectors).
749 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
750 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
751 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
752 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
753 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
754 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
755 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
756 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
757 { "s25fl128s", INFO6(0x012018, 0x4d0180, 64 * 1024, 256, SECT_4K
| SPI_NOR_QUAD_READ
) },
758 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
759 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
760 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
761 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
762 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
763 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
764 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
765 { "s25fl004k", INFO(0xef4013, 0, 64 * 1024, 8, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
766 { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
767 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
768 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
769 { "s25fl132k", INFO(0x014016, 0, 64 * 1024, 64, SECT_4K
) },
770 { "s25fl164k", INFO(0x014017, 0, 64 * 1024, 128, SECT_4K
) },
771 { "s25fl204k", INFO(0x014013, 0, 64 * 1024, 8, SECT_4K
| SPI_NOR_DUAL_READ
) },
773 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
774 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
775 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
776 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
| SST_WRITE
) },
777 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
| SST_WRITE
) },
778 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K
) },
779 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
| SST_WRITE
) },
780 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
| SST_WRITE
) },
781 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
| SST_WRITE
) },
782 { "sst25wf020a", INFO(0x621612, 0, 64 * 1024, 4, SECT_4K
) },
783 { "sst25wf040b", INFO(0x621613, 0, 64 * 1024, 8, SECT_4K
) },
784 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
785 { "sst25wf080", INFO(0xbf2505, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
787 /* ST Microelectronics -- newer production may have feature updates */
788 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
789 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
790 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
791 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
792 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
793 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
794 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
795 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
796 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
798 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
799 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
800 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
801 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
802 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
803 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
804 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
805 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
806 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
808 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
809 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
810 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
812 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
813 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
814 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
816 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K
) },
817 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
818 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
819 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
820 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
821 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16, 0) },
823 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
824 { "w25x05", INFO(0xef3010, 0, 64 * 1024, 1, SECT_4K
) },
825 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
826 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
827 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
828 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
829 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
830 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
831 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
832 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K
) },
833 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
834 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
835 { "w25q64dw", INFO(0xef6017, 0, 64 * 1024, 128, SECT_4K
) },
836 { "w25q128fw", INFO(0xef6018, 0, 64 * 1024, 256, SECT_4K
| SPI_NOR_DUAL_READ
| SPI_NOR_QUAD_READ
) },
837 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K
) },
838 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
) },
839 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
840 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K
) },
842 /* Catalyst / On Semiconductor -- non-JEDEC */
843 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
844 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
845 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
846 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
847 { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE
| SPI_NOR_NO_FR
) },
851 static const struct flash_info
*spi_nor_read_id(struct spi_nor
*nor
)
854 u8 id
[SPI_NOR_MAX_ID_LEN
];
855 const struct flash_info
*info
;
857 tmp
= nor
->read_reg(nor
, SPINOR_OP_RDID
, id
, SPI_NOR_MAX_ID_LEN
);
859 dev_dbg(nor
->dev
, " error %d reading JEDEC ID\n", tmp
);
863 for (tmp
= 0; tmp
< ARRAY_SIZE(spi_nor_ids
) - 1; tmp
++) {
864 info
= &spi_nor_ids
[tmp
];
866 if (!memcmp(info
->id
, id
, info
->id_len
))
867 return &spi_nor_ids
[tmp
];
870 dev_err(nor
->dev
, "unrecognized JEDEC id bytes: %02x, %2x, %2x\n",
871 id
[0], id
[1], id
[2]);
872 return ERR_PTR(-ENODEV
);
875 static int spi_nor_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
876 size_t *retlen
, u_char
*buf
)
878 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
881 dev_dbg(nor
->dev
, "from 0x%08x, len %zd\n", (u32
)from
, len
);
883 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_READ
);
887 ret
= nor
->read(nor
, from
, len
, retlen
, buf
);
889 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_READ
);
893 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
894 size_t *retlen
, const u_char
*buf
)
896 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
900 dev_dbg(nor
->dev
, "to 0x%08x, len %zd\n", (u32
)to
, len
);
902 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_WRITE
);
908 nor
->sst_write_second
= false;
911 /* Start write from odd address. */
913 nor
->program_opcode
= SPINOR_OP_BP
;
915 /* write one byte. */
916 nor
->write(nor
, to
, 1, retlen
, buf
);
917 ret
= spi_nor_wait_till_ready(nor
);
923 /* Write out most of the data here. */
924 for (; actual
< len
- 1; actual
+= 2) {
925 nor
->program_opcode
= SPINOR_OP_AAI_WP
;
927 /* write two bytes. */
928 nor
->write(nor
, to
, 2, retlen
, buf
+ actual
);
929 ret
= spi_nor_wait_till_ready(nor
);
933 nor
->sst_write_second
= true;
935 nor
->sst_write_second
= false;
938 ret
= spi_nor_wait_till_ready(nor
);
942 /* Write out trailing byte if it exists. */
946 nor
->program_opcode
= SPINOR_OP_BP
;
947 nor
->write(nor
, to
, 1, retlen
, buf
+ actual
);
949 ret
= spi_nor_wait_till_ready(nor
);
955 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_WRITE
);
960 * Write an address range to the nor chip. Data must be written in
961 * FLASH_PAGESIZE chunks. The address range may be any size provided
962 * it is within the physical boundaries.
964 static int spi_nor_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
965 size_t *retlen
, const u_char
*buf
)
967 struct spi_nor
*nor
= mtd_to_spi_nor(mtd
);
968 u32 page_offset
, page_size
, i
;
971 dev_dbg(nor
->dev
, "to 0x%08x, len %zd\n", (u32
)to
, len
);
973 ret
= spi_nor_lock_and_prep(nor
, SPI_NOR_OPS_WRITE
);
979 page_offset
= to
& (nor
->page_size
- 1);
981 /* do all the bytes fit onto one page? */
982 if (page_offset
+ len
<= nor
->page_size
) {
983 nor
->write(nor
, to
, len
, retlen
, buf
);
985 /* the size of data remaining on the first page */
986 page_size
= nor
->page_size
- page_offset
;
987 nor
->write(nor
, to
, page_size
, retlen
, buf
);
989 /* write everything in nor->page_size chunks */
990 for (i
= page_size
; i
< len
; i
+= page_size
) {
992 if (page_size
> nor
->page_size
)
993 page_size
= nor
->page_size
;
995 ret
= spi_nor_wait_till_ready(nor
);
1001 nor
->write(nor
, to
+ i
, page_size
, retlen
, buf
+ i
);
1005 ret
= spi_nor_wait_till_ready(nor
);
1007 spi_nor_unlock_and_unprep(nor
, SPI_NOR_OPS_WRITE
);
1011 static int macronix_quad_enable(struct spi_nor
*nor
)
1018 write_sr(nor
, val
| SR_QUAD_EN_MX
);
1020 if (spi_nor_wait_till_ready(nor
))
1024 if (!(ret
> 0 && (ret
& SR_QUAD_EN_MX
))) {
1025 dev_err(nor
->dev
, "Macronix Quad bit not set\n");
1033 * Write status Register and configuration register with 2 bytes
1034 * The first byte will be written to the status register, while the
1035 * second byte will be written to the configuration register.
1036 * Return negative if error occured.
1038 static int write_sr_cr(struct spi_nor
*nor
, u16 val
)
1040 nor
->cmd_buf
[0] = val
& 0xff;
1041 nor
->cmd_buf
[1] = (val
>> 8);
1043 return nor
->write_reg(nor
, SPINOR_OP_WRSR
, nor
->cmd_buf
, 2);
1046 static int spansion_quad_enable(struct spi_nor
*nor
)
1049 int quad_en
= CR_QUAD_EN_SPAN
<< 8;
1053 ret
= write_sr_cr(nor
, quad_en
);
1056 "error while writing configuration register\n");
1060 /* read back and check it */
1062 if (!(ret
> 0 && (ret
& CR_QUAD_EN_SPAN
))) {
1063 dev_err(nor
->dev
, "Spansion Quad bit not set\n");
1070 static int micron_quad_enable(struct spi_nor
*nor
)
1075 ret
= nor
->read_reg(nor
, SPINOR_OP_RD_EVCR
, &val
, 1);
1077 dev_err(nor
->dev
, "error %d reading EVCR\n", ret
);
1083 /* set EVCR, enable quad I/O */
1084 nor
->cmd_buf
[0] = val
& ~EVCR_QUAD_EN_MICRON
;
1085 ret
= nor
->write_reg(nor
, SPINOR_OP_WD_EVCR
, nor
->cmd_buf
, 1);
1087 dev_err(nor
->dev
, "error while writing EVCR register\n");
1091 ret
= spi_nor_wait_till_ready(nor
);
1095 /* read EVCR and check it */
1096 ret
= nor
->read_reg(nor
, SPINOR_OP_RD_EVCR
, &val
, 1);
1098 dev_err(nor
->dev
, "error %d reading EVCR\n", ret
);
1101 if (val
& EVCR_QUAD_EN_MICRON
) {
1102 dev_err(nor
->dev
, "Micron EVCR Quad bit not clear\n");
1109 static int set_quad_mode(struct spi_nor
*nor
, const struct flash_info
*info
)
1113 switch (JEDEC_MFR(info
)) {
1114 case SNOR_MFR_MACRONIX
:
1115 status
= macronix_quad_enable(nor
);
1117 dev_err(nor
->dev
, "Macronix quad-read not enabled\n");
1121 case SNOR_MFR_MICRON
:
1122 status
= micron_quad_enable(nor
);
1124 dev_err(nor
->dev
, "Micron quad-read not enabled\n");
1129 status
= spansion_quad_enable(nor
);
1131 dev_err(nor
->dev
, "Spansion quad-read not enabled\n");
1138 static int spi_nor_check(struct spi_nor
*nor
)
1140 if (!nor
->dev
|| !nor
->read
|| !nor
->write
||
1141 !nor
->read_reg
|| !nor
->write_reg
|| !nor
->erase
) {
1142 pr_err("spi-nor: please fill all the necessary fields!\n");
1149 int spi_nor_scan(struct spi_nor
*nor
, const char *name
, enum read_mode mode
)
1151 const struct flash_info
*info
= NULL
;
1152 struct device
*dev
= nor
->dev
;
1153 struct mtd_info
*mtd
= &nor
->mtd
;
1154 struct device_node
*np
= nor
->flash_node
;
1158 ret
= spi_nor_check(nor
);
1163 info
= spi_nor_match_id(name
);
1164 /* Try to auto-detect if chip name wasn't specified or not found */
1166 info
= spi_nor_read_id(nor
);
1167 if (IS_ERR_OR_NULL(info
))
1171 * If caller has specified name of flash model that can normally be
1172 * detected using JEDEC, let's verify it.
1174 if (name
&& info
->id_len
) {
1175 const struct flash_info
*jinfo
;
1177 jinfo
= spi_nor_read_id(nor
);
1178 if (IS_ERR(jinfo
)) {
1179 return PTR_ERR(jinfo
);
1180 } else if (jinfo
!= info
) {
1182 * JEDEC knows better, so overwrite platform ID. We
1183 * can't trust partitions any longer, but we'll let
1184 * mtd apply them anyway, since some partitions may be
1185 * marked read-only, and we don't want to lose that
1186 * information, even if it's not 100% accurate.
1188 dev_warn(dev
, "found %s, expected %s\n",
1189 jinfo
->name
, info
->name
);
1194 mutex_init(&nor
->lock
);
1197 * Atmel, SST and Intel/Numonyx serial nor tend to power
1198 * up with the software protection bits set
1201 if (JEDEC_MFR(info
) == SNOR_MFR_ATMEL
||
1202 JEDEC_MFR(info
) == SNOR_MFR_INTEL
||
1203 JEDEC_MFR(info
) == SNOR_MFR_SST
) {
1209 mtd
->name
= dev_name(dev
);
1211 mtd
->type
= MTD_NORFLASH
;
1213 mtd
->flags
= MTD_CAP_NORFLASH
;
1214 mtd
->size
= info
->sector_size
* info
->n_sectors
;
1215 mtd
->_erase
= spi_nor_erase
;
1216 mtd
->_read
= spi_nor_read
;
1218 /* NOR protection support for STmicro/Micron chips */
1219 if (JEDEC_MFR(info
) == SNOR_MFR_MICRON
) {
1220 nor
->flash_lock
= stm_lock
;
1221 nor
->flash_unlock
= stm_unlock
;
1222 nor
->flash_is_locked
= stm_is_locked
;
1225 if (nor
->flash_lock
&& nor
->flash_unlock
&& nor
->flash_is_locked
) {
1226 mtd
->_lock
= spi_nor_lock
;
1227 mtd
->_unlock
= spi_nor_unlock
;
1228 mtd
->_is_locked
= spi_nor_is_locked
;
1231 /* sst nor chips use AAI word program */
1232 if (info
->flags
& SST_WRITE
)
1233 mtd
->_write
= sst_write
;
1235 mtd
->_write
= spi_nor_write
;
1237 if (info
->flags
& USE_FSR
)
1238 nor
->flags
|= SNOR_F_USE_FSR
;
1240 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
1241 /* prefer "small sector" erase if possible */
1242 if (info
->flags
& SECT_4K
) {
1243 nor
->erase_opcode
= SPINOR_OP_BE_4K
;
1244 mtd
->erasesize
= 4096;
1245 } else if (info
->flags
& SECT_4K_PMC
) {
1246 nor
->erase_opcode
= SPINOR_OP_BE_4K_PMC
;
1247 mtd
->erasesize
= 4096;
1251 nor
->erase_opcode
= SPINOR_OP_SE
;
1252 mtd
->erasesize
= info
->sector_size
;
1255 if (info
->flags
& SPI_NOR_NO_ERASE
)
1256 mtd
->flags
|= MTD_NO_ERASE
;
1258 mtd
->dev
.parent
= dev
;
1259 nor
->page_size
= info
->page_size
;
1260 mtd
->writebufsize
= nor
->page_size
;
1263 /* If we were instantiated by DT, use it */
1264 if (of_property_read_bool(np
, "m25p,fast-read"))
1265 nor
->flash_read
= SPI_NOR_FAST
;
1267 nor
->flash_read
= SPI_NOR_NORMAL
;
1269 /* If we weren't instantiated by DT, default to fast-read */
1270 nor
->flash_read
= SPI_NOR_FAST
;
1273 /* Some devices cannot do fast-read, no matter what DT tells us */
1274 if (info
->flags
& SPI_NOR_NO_FR
)
1275 nor
->flash_read
= SPI_NOR_NORMAL
;
1277 /* Quad/Dual-read mode takes precedence over fast/normal */
1278 if (mode
== SPI_NOR_QUAD
&& info
->flags
& SPI_NOR_QUAD_READ
) {
1279 ret
= set_quad_mode(nor
, info
);
1281 dev_err(dev
, "quad mode not supported\n");
1284 nor
->flash_read
= SPI_NOR_QUAD
;
1285 } else if (mode
== SPI_NOR_DUAL
&& info
->flags
& SPI_NOR_DUAL_READ
) {
1286 nor
->flash_read
= SPI_NOR_DUAL
;
1289 /* Default commands */
1290 switch (nor
->flash_read
) {
1292 nor
->read_opcode
= SPINOR_OP_READ_1_1_4
;
1295 nor
->read_opcode
= SPINOR_OP_READ_1_1_2
;
1298 nor
->read_opcode
= SPINOR_OP_READ_FAST
;
1300 case SPI_NOR_NORMAL
:
1301 nor
->read_opcode
= SPINOR_OP_READ
;
1304 dev_err(dev
, "No Read opcode defined\n");
1308 nor
->program_opcode
= SPINOR_OP_PP
;
1310 if (info
->addr_width
)
1311 nor
->addr_width
= info
->addr_width
;
1312 else if (mtd
->size
> 0x1000000) {
1313 /* enable 4-byte addressing if the device exceeds 16MiB */
1314 nor
->addr_width
= 4;
1315 if (JEDEC_MFR(info
) == SNOR_MFR_SPANSION
) {
1316 /* Dedicated 4-byte command set */
1317 switch (nor
->flash_read
) {
1319 nor
->read_opcode
= SPINOR_OP_READ4_1_1_4
;
1322 nor
->read_opcode
= SPINOR_OP_READ4_1_1_2
;
1325 nor
->read_opcode
= SPINOR_OP_READ4_FAST
;
1327 case SPI_NOR_NORMAL
:
1328 nor
->read_opcode
= SPINOR_OP_READ4
;
1331 nor
->program_opcode
= SPINOR_OP_PP_4B
;
1332 /* No small sector erase for 4-byte command set */
1333 nor
->erase_opcode
= SPINOR_OP_SE_4B
;
1334 mtd
->erasesize
= info
->sector_size
;
1336 set_4byte(nor
, info
, 1);
1338 nor
->addr_width
= 3;
1341 nor
->read_dummy
= spi_nor_read_dummy_cycles(nor
);
1343 dev_info(dev
, "%s (%lld Kbytes)\n", info
->name
,
1344 (long long)mtd
->size
>> 10);
1347 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
1348 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1349 mtd
->name
, (long long)mtd
->size
, (long long)(mtd
->size
>> 20),
1350 mtd
->erasesize
, mtd
->erasesize
/ 1024, mtd
->numeraseregions
);
1352 if (mtd
->numeraseregions
)
1353 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
1355 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
1356 ".erasesize = 0x%.8x (%uKiB), "
1357 ".numblocks = %d }\n",
1358 i
, (long long)mtd
->eraseregions
[i
].offset
,
1359 mtd
->eraseregions
[i
].erasesize
,
1360 mtd
->eraseregions
[i
].erasesize
/ 1024,
1361 mtd
->eraseregions
[i
].numblocks
);
1364 EXPORT_SYMBOL_GPL(spi_nor_scan
);
1366 static const struct flash_info
*spi_nor_match_id(const char *name
)
1368 const struct flash_info
*id
= spi_nor_ids
;
1371 if (!strcmp(name
, id
->name
))
1378 MODULE_LICENSE("GPL");
1379 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
1380 MODULE_AUTHOR("Mike Lavender");
1381 MODULE_DESCRIPTION("framework for SPI NOR");