1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Red Hat. All rights reserved.
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
15 #include "free-space-cache.h"
16 #include "transaction.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
21 #include "space-info.h"
22 #include "delalloc-space.h"
23 #include "block-group.h"
25 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
26 #define MAX_CACHE_BYTES_PER_GIG SZ_32K
28 struct btrfs_trim_range
{
31 struct list_head list
;
34 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
35 struct btrfs_free_space
*info
);
36 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
37 struct btrfs_free_space
*info
);
38 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
39 struct btrfs_trans_handle
*trans
,
40 struct btrfs_io_ctl
*io_ctl
,
41 struct btrfs_path
*path
);
43 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
44 struct btrfs_path
*path
,
47 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
49 struct btrfs_key location
;
50 struct btrfs_disk_key disk_key
;
51 struct btrfs_free_space_header
*header
;
52 struct extent_buffer
*leaf
;
53 struct inode
*inode
= NULL
;
57 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
61 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
65 btrfs_release_path(path
);
66 return ERR_PTR(-ENOENT
);
69 leaf
= path
->nodes
[0];
70 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
71 struct btrfs_free_space_header
);
72 btrfs_free_space_key(leaf
, header
, &disk_key
);
73 btrfs_disk_key_to_cpu(&location
, &disk_key
);
74 btrfs_release_path(path
);
77 * We are often under a trans handle at this point, so we need to make
78 * sure NOFS is set to keep us from deadlocking.
80 nofs_flag
= memalloc_nofs_save();
81 inode
= btrfs_iget_path(fs_info
->sb
, &location
, root
, NULL
, path
);
82 btrfs_release_path(path
);
83 memalloc_nofs_restore(nofs_flag
);
87 mapping_set_gfp_mask(inode
->i_mapping
,
88 mapping_gfp_constraint(inode
->i_mapping
,
89 ~(__GFP_FS
| __GFP_HIGHMEM
)));
94 struct inode
*lookup_free_space_inode(
95 struct btrfs_block_group_cache
*block_group
,
96 struct btrfs_path
*path
)
98 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
99 struct inode
*inode
= NULL
;
100 u32 flags
= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
102 spin_lock(&block_group
->lock
);
103 if (block_group
->inode
)
104 inode
= igrab(block_group
->inode
);
105 spin_unlock(&block_group
->lock
);
109 inode
= __lookup_free_space_inode(fs_info
->tree_root
, path
,
110 block_group
->key
.objectid
);
114 spin_lock(&block_group
->lock
);
115 if (!((BTRFS_I(inode
)->flags
& flags
) == flags
)) {
116 btrfs_info(fs_info
, "Old style space inode found, converting.");
117 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
|
118 BTRFS_INODE_NODATACOW
;
119 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
122 if (!block_group
->iref
) {
123 block_group
->inode
= igrab(inode
);
124 block_group
->iref
= 1;
126 spin_unlock(&block_group
->lock
);
131 static int __create_free_space_inode(struct btrfs_root
*root
,
132 struct btrfs_trans_handle
*trans
,
133 struct btrfs_path
*path
,
136 struct btrfs_key key
;
137 struct btrfs_disk_key disk_key
;
138 struct btrfs_free_space_header
*header
;
139 struct btrfs_inode_item
*inode_item
;
140 struct extent_buffer
*leaf
;
141 u64 flags
= BTRFS_INODE_NOCOMPRESS
| BTRFS_INODE_PREALLOC
;
144 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
148 /* We inline crc's for the free disk space cache */
149 if (ino
!= BTRFS_FREE_INO_OBJECTID
)
150 flags
|= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
152 leaf
= path
->nodes
[0];
153 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
154 struct btrfs_inode_item
);
155 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
156 memzero_extent_buffer(leaf
, (unsigned long)inode_item
,
157 sizeof(*inode_item
));
158 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
159 btrfs_set_inode_size(leaf
, inode_item
, 0);
160 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
161 btrfs_set_inode_uid(leaf
, inode_item
, 0);
162 btrfs_set_inode_gid(leaf
, inode_item
, 0);
163 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
164 btrfs_set_inode_flags(leaf
, inode_item
, flags
);
165 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
166 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
167 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
168 btrfs_mark_buffer_dirty(leaf
);
169 btrfs_release_path(path
);
171 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
174 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
175 sizeof(struct btrfs_free_space_header
));
177 btrfs_release_path(path
);
181 leaf
= path
->nodes
[0];
182 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
183 struct btrfs_free_space_header
);
184 memzero_extent_buffer(leaf
, (unsigned long)header
, sizeof(*header
));
185 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
186 btrfs_mark_buffer_dirty(leaf
);
187 btrfs_release_path(path
);
192 int create_free_space_inode(struct btrfs_trans_handle
*trans
,
193 struct btrfs_block_group_cache
*block_group
,
194 struct btrfs_path
*path
)
199 ret
= btrfs_find_free_objectid(trans
->fs_info
->tree_root
, &ino
);
203 return __create_free_space_inode(trans
->fs_info
->tree_root
, trans
, path
,
204 ino
, block_group
->key
.objectid
);
207 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info
*fs_info
,
208 struct btrfs_block_rsv
*rsv
)
213 /* 1 for slack space, 1 for updating the inode */
214 needed_bytes
= btrfs_calc_insert_metadata_size(fs_info
, 1) +
215 btrfs_calc_metadata_size(fs_info
, 1);
217 spin_lock(&rsv
->lock
);
218 if (rsv
->reserved
< needed_bytes
)
222 spin_unlock(&rsv
->lock
);
226 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle
*trans
,
227 struct btrfs_block_group_cache
*block_group
,
230 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
235 struct btrfs_path
*path
= btrfs_alloc_path();
242 mutex_lock(&trans
->transaction
->cache_write_mutex
);
243 if (!list_empty(&block_group
->io_list
)) {
244 list_del_init(&block_group
->io_list
);
246 btrfs_wait_cache_io(trans
, block_group
, path
);
247 btrfs_put_block_group(block_group
);
251 * now that we've truncated the cache away, its no longer
254 spin_lock(&block_group
->lock
);
255 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
256 spin_unlock(&block_group
->lock
);
257 btrfs_free_path(path
);
260 btrfs_i_size_write(BTRFS_I(inode
), 0);
261 truncate_pagecache(inode
, 0);
264 * We skip the throttling logic for free space cache inodes, so we don't
265 * need to check for -EAGAIN.
267 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
268 0, BTRFS_EXTENT_DATA_KEY
);
272 ret
= btrfs_update_inode(trans
, root
, inode
);
276 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
278 btrfs_abort_transaction(trans
, ret
);
283 static void readahead_cache(struct inode
*inode
)
285 struct file_ra_state
*ra
;
286 unsigned long last_index
;
288 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
292 file_ra_state_init(ra
, inode
->i_mapping
);
293 last_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
295 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
300 static int io_ctl_init(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
306 num_pages
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
308 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FREE_INO_OBJECTID
)
311 /* Make sure we can fit our crcs and generation into the first page */
312 if (write
&& check_crcs
&&
313 (num_pages
* sizeof(u32
) + sizeof(u64
)) > PAGE_SIZE
)
316 memset(io_ctl
, 0, sizeof(struct btrfs_io_ctl
));
318 io_ctl
->pages
= kcalloc(num_pages
, sizeof(struct page
*), GFP_NOFS
);
322 io_ctl
->num_pages
= num_pages
;
323 io_ctl
->fs_info
= btrfs_sb(inode
->i_sb
);
324 io_ctl
->check_crcs
= check_crcs
;
325 io_ctl
->inode
= inode
;
329 ALLOW_ERROR_INJECTION(io_ctl_init
, ERRNO
);
331 static void io_ctl_free(struct btrfs_io_ctl
*io_ctl
)
333 kfree(io_ctl
->pages
);
334 io_ctl
->pages
= NULL
;
337 static void io_ctl_unmap_page(struct btrfs_io_ctl
*io_ctl
)
345 static void io_ctl_map_page(struct btrfs_io_ctl
*io_ctl
, int clear
)
347 ASSERT(io_ctl
->index
< io_ctl
->num_pages
);
348 io_ctl
->page
= io_ctl
->pages
[io_ctl
->index
++];
349 io_ctl
->cur
= page_address(io_ctl
->page
);
350 io_ctl
->orig
= io_ctl
->cur
;
351 io_ctl
->size
= PAGE_SIZE
;
353 clear_page(io_ctl
->cur
);
356 static void io_ctl_drop_pages(struct btrfs_io_ctl
*io_ctl
)
360 io_ctl_unmap_page(io_ctl
);
362 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
363 if (io_ctl
->pages
[i
]) {
364 ClearPageChecked(io_ctl
->pages
[i
]);
365 unlock_page(io_ctl
->pages
[i
]);
366 put_page(io_ctl
->pages
[i
]);
371 static int io_ctl_prepare_pages(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
375 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
378 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
379 page
= find_or_create_page(inode
->i_mapping
, i
, mask
);
381 io_ctl_drop_pages(io_ctl
);
384 io_ctl
->pages
[i
] = page
;
385 if (uptodate
&& !PageUptodate(page
)) {
386 btrfs_readpage(NULL
, page
);
388 if (!PageUptodate(page
)) {
389 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
390 "error reading free space cache");
391 io_ctl_drop_pages(io_ctl
);
397 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
398 clear_page_dirty_for_io(io_ctl
->pages
[i
]);
399 set_page_extent_mapped(io_ctl
->pages
[i
]);
405 static void io_ctl_set_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
409 io_ctl_map_page(io_ctl
, 1);
412 * Skip the csum areas. If we don't check crcs then we just have a
413 * 64bit chunk at the front of the first page.
415 if (io_ctl
->check_crcs
) {
416 io_ctl
->cur
+= (sizeof(u32
) * io_ctl
->num_pages
);
417 io_ctl
->size
-= sizeof(u64
) + (sizeof(u32
) * io_ctl
->num_pages
);
419 io_ctl
->cur
+= sizeof(u64
);
420 io_ctl
->size
-= sizeof(u64
) * 2;
424 *val
= cpu_to_le64(generation
);
425 io_ctl
->cur
+= sizeof(u64
);
428 static int io_ctl_check_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
433 * Skip the crc area. If we don't check crcs then we just have a 64bit
434 * chunk at the front of the first page.
436 if (io_ctl
->check_crcs
) {
437 io_ctl
->cur
+= sizeof(u32
) * io_ctl
->num_pages
;
438 io_ctl
->size
-= sizeof(u64
) +
439 (sizeof(u32
) * io_ctl
->num_pages
);
441 io_ctl
->cur
+= sizeof(u64
);
442 io_ctl
->size
-= sizeof(u64
) * 2;
446 if (le64_to_cpu(*gen
) != generation
) {
447 btrfs_err_rl(io_ctl
->fs_info
,
448 "space cache generation (%llu) does not match inode (%llu)",
450 io_ctl_unmap_page(io_ctl
);
453 io_ctl
->cur
+= sizeof(u64
);
457 static void io_ctl_set_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
463 if (!io_ctl
->check_crcs
) {
464 io_ctl_unmap_page(io_ctl
);
469 offset
= sizeof(u32
) * io_ctl
->num_pages
;
471 crc
= btrfs_crc32c(crc
, io_ctl
->orig
+ offset
, PAGE_SIZE
- offset
);
472 btrfs_crc32c_final(crc
, (u8
*)&crc
);
473 io_ctl_unmap_page(io_ctl
);
474 tmp
= page_address(io_ctl
->pages
[0]);
479 static int io_ctl_check_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
485 if (!io_ctl
->check_crcs
) {
486 io_ctl_map_page(io_ctl
, 0);
491 offset
= sizeof(u32
) * io_ctl
->num_pages
;
493 tmp
= page_address(io_ctl
->pages
[0]);
497 io_ctl_map_page(io_ctl
, 0);
498 crc
= btrfs_crc32c(crc
, io_ctl
->orig
+ offset
, PAGE_SIZE
- offset
);
499 btrfs_crc32c_final(crc
, (u8
*)&crc
);
501 btrfs_err_rl(io_ctl
->fs_info
,
502 "csum mismatch on free space cache");
503 io_ctl_unmap_page(io_ctl
);
510 static int io_ctl_add_entry(struct btrfs_io_ctl
*io_ctl
, u64 offset
, u64 bytes
,
513 struct btrfs_free_space_entry
*entry
;
519 entry
->offset
= cpu_to_le64(offset
);
520 entry
->bytes
= cpu_to_le64(bytes
);
521 entry
->type
= (bitmap
) ? BTRFS_FREE_SPACE_BITMAP
:
522 BTRFS_FREE_SPACE_EXTENT
;
523 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
524 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
526 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
529 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
531 /* No more pages to map */
532 if (io_ctl
->index
>= io_ctl
->num_pages
)
535 /* map the next page */
536 io_ctl_map_page(io_ctl
, 1);
540 static int io_ctl_add_bitmap(struct btrfs_io_ctl
*io_ctl
, void *bitmap
)
546 * If we aren't at the start of the current page, unmap this one and
547 * map the next one if there is any left.
549 if (io_ctl
->cur
!= io_ctl
->orig
) {
550 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
551 if (io_ctl
->index
>= io_ctl
->num_pages
)
553 io_ctl_map_page(io_ctl
, 0);
556 copy_page(io_ctl
->cur
, bitmap
);
557 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
558 if (io_ctl
->index
< io_ctl
->num_pages
)
559 io_ctl_map_page(io_ctl
, 0);
563 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl
*io_ctl
)
566 * If we're not on the boundary we know we've modified the page and we
567 * need to crc the page.
569 if (io_ctl
->cur
!= io_ctl
->orig
)
570 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
572 io_ctl_unmap_page(io_ctl
);
574 while (io_ctl
->index
< io_ctl
->num_pages
) {
575 io_ctl_map_page(io_ctl
, 1);
576 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
580 static int io_ctl_read_entry(struct btrfs_io_ctl
*io_ctl
,
581 struct btrfs_free_space
*entry
, u8
*type
)
583 struct btrfs_free_space_entry
*e
;
587 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
593 entry
->offset
= le64_to_cpu(e
->offset
);
594 entry
->bytes
= le64_to_cpu(e
->bytes
);
596 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
597 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
599 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
602 io_ctl_unmap_page(io_ctl
);
607 static int io_ctl_read_bitmap(struct btrfs_io_ctl
*io_ctl
,
608 struct btrfs_free_space
*entry
)
612 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
616 copy_page(entry
->bitmap
, io_ctl
->cur
);
617 io_ctl_unmap_page(io_ctl
);
623 * Since we attach pinned extents after the fact we can have contiguous sections
624 * of free space that are split up in entries. This poses a problem with the
625 * tree logging stuff since it could have allocated across what appears to be 2
626 * entries since we would have merged the entries when adding the pinned extents
627 * back to the free space cache. So run through the space cache that we just
628 * loaded and merge contiguous entries. This will make the log replay stuff not
629 * blow up and it will make for nicer allocator behavior.
631 static void merge_space_tree(struct btrfs_free_space_ctl
*ctl
)
633 struct btrfs_free_space
*e
, *prev
= NULL
;
637 spin_lock(&ctl
->tree_lock
);
638 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
639 e
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
642 if (e
->bitmap
|| prev
->bitmap
)
644 if (prev
->offset
+ prev
->bytes
== e
->offset
) {
645 unlink_free_space(ctl
, prev
);
646 unlink_free_space(ctl
, e
);
647 prev
->bytes
+= e
->bytes
;
648 kmem_cache_free(btrfs_free_space_cachep
, e
);
649 link_free_space(ctl
, prev
);
651 spin_unlock(&ctl
->tree_lock
);
657 spin_unlock(&ctl
->tree_lock
);
660 static int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
661 struct btrfs_free_space_ctl
*ctl
,
662 struct btrfs_path
*path
, u64 offset
)
664 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
665 struct btrfs_free_space_header
*header
;
666 struct extent_buffer
*leaf
;
667 struct btrfs_io_ctl io_ctl
;
668 struct btrfs_key key
;
669 struct btrfs_free_space
*e
, *n
;
677 /* Nothing in the space cache, goodbye */
678 if (!i_size_read(inode
))
681 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
685 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
689 btrfs_release_path(path
);
695 leaf
= path
->nodes
[0];
696 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
697 struct btrfs_free_space_header
);
698 num_entries
= btrfs_free_space_entries(leaf
, header
);
699 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
700 generation
= btrfs_free_space_generation(leaf
, header
);
701 btrfs_release_path(path
);
703 if (!BTRFS_I(inode
)->generation
) {
705 "the free space cache file (%llu) is invalid, skip it",
710 if (BTRFS_I(inode
)->generation
!= generation
) {
712 "free space inode generation (%llu) did not match free space cache generation (%llu)",
713 BTRFS_I(inode
)->generation
, generation
);
720 ret
= io_ctl_init(&io_ctl
, inode
, 0);
724 readahead_cache(inode
);
726 ret
= io_ctl_prepare_pages(&io_ctl
, inode
, 1);
730 ret
= io_ctl_check_crc(&io_ctl
, 0);
734 ret
= io_ctl_check_generation(&io_ctl
, generation
);
738 while (num_entries
) {
739 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
744 ret
= io_ctl_read_entry(&io_ctl
, e
, &type
);
746 kmem_cache_free(btrfs_free_space_cachep
, e
);
751 kmem_cache_free(btrfs_free_space_cachep
, e
);
755 if (type
== BTRFS_FREE_SPACE_EXTENT
) {
756 spin_lock(&ctl
->tree_lock
);
757 ret
= link_free_space(ctl
, e
);
758 spin_unlock(&ctl
->tree_lock
);
761 "Duplicate entries in free space cache, dumping");
762 kmem_cache_free(btrfs_free_space_cachep
, e
);
768 e
->bitmap
= kmem_cache_zalloc(
769 btrfs_free_space_bitmap_cachep
, GFP_NOFS
);
772 btrfs_free_space_cachep
, e
);
775 spin_lock(&ctl
->tree_lock
);
776 ret
= link_free_space(ctl
, e
);
777 ctl
->total_bitmaps
++;
778 ctl
->op
->recalc_thresholds(ctl
);
779 spin_unlock(&ctl
->tree_lock
);
782 "Duplicate entries in free space cache, dumping");
783 kmem_cache_free(btrfs_free_space_cachep
, e
);
786 list_add_tail(&e
->list
, &bitmaps
);
792 io_ctl_unmap_page(&io_ctl
);
795 * We add the bitmaps at the end of the entries in order that
796 * the bitmap entries are added to the cache.
798 list_for_each_entry_safe(e
, n
, &bitmaps
, list
) {
799 list_del_init(&e
->list
);
800 ret
= io_ctl_read_bitmap(&io_ctl
, e
);
805 io_ctl_drop_pages(&io_ctl
);
806 merge_space_tree(ctl
);
809 io_ctl_free(&io_ctl
);
812 io_ctl_drop_pages(&io_ctl
);
813 __btrfs_remove_free_space_cache(ctl
);
817 int load_free_space_cache(struct btrfs_block_group_cache
*block_group
)
819 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
820 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
822 struct btrfs_path
*path
;
825 u64 used
= btrfs_block_group_used(&block_group
->item
);
828 * If this block group has been marked to be cleared for one reason or
829 * another then we can't trust the on disk cache, so just return.
831 spin_lock(&block_group
->lock
);
832 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
833 spin_unlock(&block_group
->lock
);
836 spin_unlock(&block_group
->lock
);
838 path
= btrfs_alloc_path();
841 path
->search_commit_root
= 1;
842 path
->skip_locking
= 1;
845 * We must pass a path with search_commit_root set to btrfs_iget in
846 * order to avoid a deadlock when allocating extents for the tree root.
848 * When we are COWing an extent buffer from the tree root, when looking
849 * for a free extent, at extent-tree.c:find_free_extent(), we can find
850 * block group without its free space cache loaded. When we find one
851 * we must load its space cache which requires reading its free space
852 * cache's inode item from the root tree. If this inode item is located
853 * in the same leaf that we started COWing before, then we end up in
854 * deadlock on the extent buffer (trying to read lock it when we
855 * previously write locked it).
857 * It's safe to read the inode item using the commit root because
858 * block groups, once loaded, stay in memory forever (until they are
859 * removed) as well as their space caches once loaded. New block groups
860 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
861 * we will never try to read their inode item while the fs is mounted.
863 inode
= lookup_free_space_inode(block_group
, path
);
865 btrfs_free_path(path
);
869 /* We may have converted the inode and made the cache invalid. */
870 spin_lock(&block_group
->lock
);
871 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
872 spin_unlock(&block_group
->lock
);
873 btrfs_free_path(path
);
876 spin_unlock(&block_group
->lock
);
878 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
879 path
, block_group
->key
.objectid
);
880 btrfs_free_path(path
);
884 spin_lock(&ctl
->tree_lock
);
885 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
886 block_group
->bytes_super
));
887 spin_unlock(&ctl
->tree_lock
);
890 __btrfs_remove_free_space_cache(ctl
);
892 "block group %llu has wrong amount of free space",
893 block_group
->key
.objectid
);
898 /* This cache is bogus, make sure it gets cleared */
899 spin_lock(&block_group
->lock
);
900 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
901 spin_unlock(&block_group
->lock
);
905 "failed to load free space cache for block group %llu, rebuilding it now",
906 block_group
->key
.objectid
);
913 static noinline_for_stack
914 int write_cache_extent_entries(struct btrfs_io_ctl
*io_ctl
,
915 struct btrfs_free_space_ctl
*ctl
,
916 struct btrfs_block_group_cache
*block_group
,
917 int *entries
, int *bitmaps
,
918 struct list_head
*bitmap_list
)
921 struct btrfs_free_cluster
*cluster
= NULL
;
922 struct btrfs_free_cluster
*cluster_locked
= NULL
;
923 struct rb_node
*node
= rb_first(&ctl
->free_space_offset
);
924 struct btrfs_trim_range
*trim_entry
;
926 /* Get the cluster for this block_group if it exists */
927 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
928 cluster
= list_entry(block_group
->cluster_list
.next
,
929 struct btrfs_free_cluster
,
933 if (!node
&& cluster
) {
934 cluster_locked
= cluster
;
935 spin_lock(&cluster_locked
->lock
);
936 node
= rb_first(&cluster
->root
);
940 /* Write out the extent entries */
942 struct btrfs_free_space
*e
;
944 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
947 ret
= io_ctl_add_entry(io_ctl
, e
->offset
, e
->bytes
,
953 list_add_tail(&e
->list
, bitmap_list
);
956 node
= rb_next(node
);
957 if (!node
&& cluster
) {
958 node
= rb_first(&cluster
->root
);
959 cluster_locked
= cluster
;
960 spin_lock(&cluster_locked
->lock
);
964 if (cluster_locked
) {
965 spin_unlock(&cluster_locked
->lock
);
966 cluster_locked
= NULL
;
970 * Make sure we don't miss any range that was removed from our rbtree
971 * because trimming is running. Otherwise after a umount+mount (or crash
972 * after committing the transaction) we would leak free space and get
973 * an inconsistent free space cache report from fsck.
975 list_for_each_entry(trim_entry
, &ctl
->trimming_ranges
, list
) {
976 ret
= io_ctl_add_entry(io_ctl
, trim_entry
->start
,
977 trim_entry
->bytes
, NULL
);
986 spin_unlock(&cluster_locked
->lock
);
990 static noinline_for_stack
int
991 update_cache_item(struct btrfs_trans_handle
*trans
,
992 struct btrfs_root
*root
,
994 struct btrfs_path
*path
, u64 offset
,
995 int entries
, int bitmaps
)
997 struct btrfs_key key
;
998 struct btrfs_free_space_header
*header
;
999 struct extent_buffer
*leaf
;
1002 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
1003 key
.offset
= offset
;
1006 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1008 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1009 EXTENT_DELALLOC
, 0, 0, NULL
);
1012 leaf
= path
->nodes
[0];
1014 struct btrfs_key found_key
;
1015 ASSERT(path
->slots
[0]);
1017 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1018 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
1019 found_key
.offset
!= offset
) {
1020 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0,
1021 inode
->i_size
- 1, EXTENT_DELALLOC
, 0,
1023 btrfs_release_path(path
);
1028 BTRFS_I(inode
)->generation
= trans
->transid
;
1029 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
1030 struct btrfs_free_space_header
);
1031 btrfs_set_free_space_entries(leaf
, header
, entries
);
1032 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
1033 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
1034 btrfs_mark_buffer_dirty(leaf
);
1035 btrfs_release_path(path
);
1043 static noinline_for_stack
int write_pinned_extent_entries(
1044 struct btrfs_block_group_cache
*block_group
,
1045 struct btrfs_io_ctl
*io_ctl
,
1048 u64 start
, extent_start
, extent_end
, len
;
1049 struct extent_io_tree
*unpin
= NULL
;
1056 * We want to add any pinned extents to our free space cache
1057 * so we don't leak the space
1059 * We shouldn't have switched the pinned extents yet so this is the
1062 unpin
= block_group
->fs_info
->pinned_extents
;
1064 start
= block_group
->key
.objectid
;
1066 while (start
< block_group
->key
.objectid
+ block_group
->key
.offset
) {
1067 ret
= find_first_extent_bit(unpin
, start
,
1068 &extent_start
, &extent_end
,
1069 EXTENT_DIRTY
, NULL
);
1073 /* This pinned extent is out of our range */
1074 if (extent_start
>= block_group
->key
.objectid
+
1075 block_group
->key
.offset
)
1078 extent_start
= max(extent_start
, start
);
1079 extent_end
= min(block_group
->key
.objectid
+
1080 block_group
->key
.offset
, extent_end
+ 1);
1081 len
= extent_end
- extent_start
;
1084 ret
= io_ctl_add_entry(io_ctl
, extent_start
, len
, NULL
);
1094 static noinline_for_stack
int
1095 write_bitmap_entries(struct btrfs_io_ctl
*io_ctl
, struct list_head
*bitmap_list
)
1097 struct btrfs_free_space
*entry
, *next
;
1100 /* Write out the bitmaps */
1101 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
) {
1102 ret
= io_ctl_add_bitmap(io_ctl
, entry
->bitmap
);
1105 list_del_init(&entry
->list
);
1111 static int flush_dirty_cache(struct inode
*inode
)
1115 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1117 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1118 EXTENT_DELALLOC
, 0, 0, NULL
);
1123 static void noinline_for_stack
1124 cleanup_bitmap_list(struct list_head
*bitmap_list
)
1126 struct btrfs_free_space
*entry
, *next
;
1128 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
)
1129 list_del_init(&entry
->list
);
1132 static void noinline_for_stack
1133 cleanup_write_cache_enospc(struct inode
*inode
,
1134 struct btrfs_io_ctl
*io_ctl
,
1135 struct extent_state
**cached_state
)
1137 io_ctl_drop_pages(io_ctl
);
1138 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1139 i_size_read(inode
) - 1, cached_state
);
1142 static int __btrfs_wait_cache_io(struct btrfs_root
*root
,
1143 struct btrfs_trans_handle
*trans
,
1144 struct btrfs_block_group_cache
*block_group
,
1145 struct btrfs_io_ctl
*io_ctl
,
1146 struct btrfs_path
*path
, u64 offset
)
1149 struct inode
*inode
= io_ctl
->inode
;
1154 /* Flush the dirty pages in the cache file. */
1155 ret
= flush_dirty_cache(inode
);
1159 /* Update the cache item to tell everyone this cache file is valid. */
1160 ret
= update_cache_item(trans
, root
, inode
, path
, offset
,
1161 io_ctl
->entries
, io_ctl
->bitmaps
);
1163 io_ctl_free(io_ctl
);
1165 invalidate_inode_pages2(inode
->i_mapping
);
1166 BTRFS_I(inode
)->generation
= 0;
1169 btrfs_err(root
->fs_info
,
1170 "failed to write free space cache for block group %llu",
1171 block_group
->key
.objectid
);
1175 btrfs_update_inode(trans
, root
, inode
);
1178 /* the dirty list is protected by the dirty_bgs_lock */
1179 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1181 /* the disk_cache_state is protected by the block group lock */
1182 spin_lock(&block_group
->lock
);
1185 * only mark this as written if we didn't get put back on
1186 * the dirty list while waiting for IO. Otherwise our
1187 * cache state won't be right, and we won't get written again
1189 if (!ret
&& list_empty(&block_group
->dirty_list
))
1190 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1192 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1194 spin_unlock(&block_group
->lock
);
1195 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1196 io_ctl
->inode
= NULL
;
1204 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
1205 struct btrfs_trans_handle
*trans
,
1206 struct btrfs_io_ctl
*io_ctl
,
1207 struct btrfs_path
*path
)
1209 return __btrfs_wait_cache_io(root
, trans
, NULL
, io_ctl
, path
, 0);
1212 int btrfs_wait_cache_io(struct btrfs_trans_handle
*trans
,
1213 struct btrfs_block_group_cache
*block_group
,
1214 struct btrfs_path
*path
)
1216 return __btrfs_wait_cache_io(block_group
->fs_info
->tree_root
, trans
,
1217 block_group
, &block_group
->io_ctl
,
1218 path
, block_group
->key
.objectid
);
1222 * __btrfs_write_out_cache - write out cached info to an inode
1223 * @root - the root the inode belongs to
1224 * @ctl - the free space cache we are going to write out
1225 * @block_group - the block_group for this cache if it belongs to a block_group
1226 * @trans - the trans handle
1228 * This function writes out a free space cache struct to disk for quick recovery
1229 * on mount. This will return 0 if it was successful in writing the cache out,
1230 * or an errno if it was not.
1232 static int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
1233 struct btrfs_free_space_ctl
*ctl
,
1234 struct btrfs_block_group_cache
*block_group
,
1235 struct btrfs_io_ctl
*io_ctl
,
1236 struct btrfs_trans_handle
*trans
)
1238 struct extent_state
*cached_state
= NULL
;
1239 LIST_HEAD(bitmap_list
);
1245 if (!i_size_read(inode
))
1248 WARN_ON(io_ctl
->pages
);
1249 ret
= io_ctl_init(io_ctl
, inode
, 1);
1253 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
)) {
1254 down_write(&block_group
->data_rwsem
);
1255 spin_lock(&block_group
->lock
);
1256 if (block_group
->delalloc_bytes
) {
1257 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1258 spin_unlock(&block_group
->lock
);
1259 up_write(&block_group
->data_rwsem
);
1260 BTRFS_I(inode
)->generation
= 0;
1265 spin_unlock(&block_group
->lock
);
1268 /* Lock all pages first so we can lock the extent safely. */
1269 ret
= io_ctl_prepare_pages(io_ctl
, inode
, 0);
1273 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
1276 io_ctl_set_generation(io_ctl
, trans
->transid
);
1278 mutex_lock(&ctl
->cache_writeout_mutex
);
1279 /* Write out the extent entries in the free space cache */
1280 spin_lock(&ctl
->tree_lock
);
1281 ret
= write_cache_extent_entries(io_ctl
, ctl
,
1282 block_group
, &entries
, &bitmaps
,
1285 goto out_nospc_locked
;
1288 * Some spaces that are freed in the current transaction are pinned,
1289 * they will be added into free space cache after the transaction is
1290 * committed, we shouldn't lose them.
1292 * If this changes while we are working we'll get added back to
1293 * the dirty list and redo it. No locking needed
1295 ret
= write_pinned_extent_entries(block_group
, io_ctl
, &entries
);
1297 goto out_nospc_locked
;
1300 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1301 * locked while doing it because a concurrent trim can be manipulating
1302 * or freeing the bitmap.
1304 ret
= write_bitmap_entries(io_ctl
, &bitmap_list
);
1305 spin_unlock(&ctl
->tree_lock
);
1306 mutex_unlock(&ctl
->cache_writeout_mutex
);
1310 /* Zero out the rest of the pages just to make sure */
1311 io_ctl_zero_remaining_pages(io_ctl
);
1313 /* Everything is written out, now we dirty the pages in the file. */
1314 ret
= btrfs_dirty_pages(inode
, io_ctl
->pages
, io_ctl
->num_pages
, 0,
1315 i_size_read(inode
), &cached_state
);
1319 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1320 up_write(&block_group
->data_rwsem
);
1322 * Release the pages and unlock the extent, we will flush
1325 io_ctl_drop_pages(io_ctl
);
1327 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1328 i_size_read(inode
) - 1, &cached_state
);
1331 * at this point the pages are under IO and we're happy,
1332 * The caller is responsible for waiting on them and updating the
1333 * the cache and the inode
1335 io_ctl
->entries
= entries
;
1336 io_ctl
->bitmaps
= bitmaps
;
1338 ret
= btrfs_fdatawrite_range(inode
, 0, (u64
)-1);
1345 io_ctl
->inode
= NULL
;
1346 io_ctl_free(io_ctl
);
1348 invalidate_inode_pages2(inode
->i_mapping
);
1349 BTRFS_I(inode
)->generation
= 0;
1351 btrfs_update_inode(trans
, root
, inode
);
1357 cleanup_bitmap_list(&bitmap_list
);
1358 spin_unlock(&ctl
->tree_lock
);
1359 mutex_unlock(&ctl
->cache_writeout_mutex
);
1362 cleanup_write_cache_enospc(inode
, io_ctl
, &cached_state
);
1365 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1366 up_write(&block_group
->data_rwsem
);
1371 int btrfs_write_out_cache(struct btrfs_trans_handle
*trans
,
1372 struct btrfs_block_group_cache
*block_group
,
1373 struct btrfs_path
*path
)
1375 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1376 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1377 struct inode
*inode
;
1380 spin_lock(&block_group
->lock
);
1381 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
1382 spin_unlock(&block_group
->lock
);
1385 spin_unlock(&block_group
->lock
);
1387 inode
= lookup_free_space_inode(block_group
, path
);
1391 ret
= __btrfs_write_out_cache(fs_info
->tree_root
, inode
, ctl
,
1392 block_group
, &block_group
->io_ctl
, trans
);
1396 "failed to write free space cache for block group %llu",
1397 block_group
->key
.objectid
);
1399 spin_lock(&block_group
->lock
);
1400 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1401 spin_unlock(&block_group
->lock
);
1403 block_group
->io_ctl
.inode
= NULL
;
1408 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1409 * to wait for IO and put the inode
1415 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
1418 ASSERT(offset
>= bitmap_start
);
1419 offset
-= bitmap_start
;
1420 return (unsigned long)(div_u64(offset
, unit
));
1423 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
1425 return (unsigned long)(div_u64(bytes
, unit
));
1428 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1432 u64 bytes_per_bitmap
;
1434 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
1435 bitmap_start
= offset
- ctl
->start
;
1436 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
1437 bitmap_start
*= bytes_per_bitmap
;
1438 bitmap_start
+= ctl
->start
;
1440 return bitmap_start
;
1443 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
1444 struct rb_node
*node
, int bitmap
)
1446 struct rb_node
**p
= &root
->rb_node
;
1447 struct rb_node
*parent
= NULL
;
1448 struct btrfs_free_space
*info
;
1452 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
1454 if (offset
< info
->offset
) {
1456 } else if (offset
> info
->offset
) {
1457 p
= &(*p
)->rb_right
;
1460 * we could have a bitmap entry and an extent entry
1461 * share the same offset. If this is the case, we want
1462 * the extent entry to always be found first if we do a
1463 * linear search through the tree, since we want to have
1464 * the quickest allocation time, and allocating from an
1465 * extent is faster than allocating from a bitmap. So
1466 * if we're inserting a bitmap and we find an entry at
1467 * this offset, we want to go right, or after this entry
1468 * logically. If we are inserting an extent and we've
1469 * found a bitmap, we want to go left, or before
1477 p
= &(*p
)->rb_right
;
1479 if (!info
->bitmap
) {
1488 rb_link_node(node
, parent
, p
);
1489 rb_insert_color(node
, root
);
1495 * searches the tree for the given offset.
1497 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1498 * want a section that has at least bytes size and comes at or after the given
1501 static struct btrfs_free_space
*
1502 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1503 u64 offset
, int bitmap_only
, int fuzzy
)
1505 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1506 struct btrfs_free_space
*entry
, *prev
= NULL
;
1508 /* find entry that is closest to the 'offset' */
1515 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1518 if (offset
< entry
->offset
)
1520 else if (offset
> entry
->offset
)
1533 * bitmap entry and extent entry may share same offset,
1534 * in that case, bitmap entry comes after extent entry.
1539 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1540 if (entry
->offset
!= offset
)
1543 WARN_ON(!entry
->bitmap
);
1546 if (entry
->bitmap
) {
1548 * if previous extent entry covers the offset,
1549 * we should return it instead of the bitmap entry
1551 n
= rb_prev(&entry
->offset_index
);
1553 prev
= rb_entry(n
, struct btrfs_free_space
,
1555 if (!prev
->bitmap
&&
1556 prev
->offset
+ prev
->bytes
> offset
)
1566 /* find last entry before the 'offset' */
1568 if (entry
->offset
> offset
) {
1569 n
= rb_prev(&entry
->offset_index
);
1571 entry
= rb_entry(n
, struct btrfs_free_space
,
1573 ASSERT(entry
->offset
<= offset
);
1582 if (entry
->bitmap
) {
1583 n
= rb_prev(&entry
->offset_index
);
1585 prev
= rb_entry(n
, struct btrfs_free_space
,
1587 if (!prev
->bitmap
&&
1588 prev
->offset
+ prev
->bytes
> offset
)
1591 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1593 } else if (entry
->offset
+ entry
->bytes
> offset
)
1600 if (entry
->bitmap
) {
1601 if (entry
->offset
+ BITS_PER_BITMAP
*
1605 if (entry
->offset
+ entry
->bytes
> offset
)
1609 n
= rb_next(&entry
->offset_index
);
1612 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1618 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1619 struct btrfs_free_space
*info
)
1621 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1622 ctl
->free_extents
--;
1625 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1626 struct btrfs_free_space
*info
)
1628 __unlink_free_space(ctl
, info
);
1629 ctl
->free_space
-= info
->bytes
;
1632 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1633 struct btrfs_free_space
*info
)
1637 ASSERT(info
->bytes
|| info
->bitmap
);
1638 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1639 &info
->offset_index
, (info
->bitmap
!= NULL
));
1643 ctl
->free_space
+= info
->bytes
;
1644 ctl
->free_extents
++;
1648 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1650 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1654 u64 size
= block_group
->key
.offset
;
1655 u64 bytes_per_bg
= BITS_PER_BITMAP
* ctl
->unit
;
1656 u64 max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1658 max_bitmaps
= max_t(u64
, max_bitmaps
, 1);
1660 ASSERT(ctl
->total_bitmaps
<= max_bitmaps
);
1663 * The goal is to keep the total amount of memory used per 1gb of space
1664 * at or below 32k, so we need to adjust how much memory we allow to be
1665 * used by extent based free space tracking
1668 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1670 max_bytes
= MAX_CACHE_BYTES_PER_GIG
* div_u64(size
, SZ_1G
);
1673 * we want to account for 1 more bitmap than what we have so we can make
1674 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1675 * we add more bitmaps.
1677 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * ctl
->unit
;
1679 if (bitmap_bytes
>= max_bytes
) {
1680 ctl
->extents_thresh
= 0;
1685 * we want the extent entry threshold to always be at most 1/2 the max
1686 * bytes we can have, or whatever is less than that.
1688 extent_bytes
= max_bytes
- bitmap_bytes
;
1689 extent_bytes
= min_t(u64
, extent_bytes
, max_bytes
>> 1);
1691 ctl
->extents_thresh
=
1692 div_u64(extent_bytes
, sizeof(struct btrfs_free_space
));
1695 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1696 struct btrfs_free_space
*info
,
1697 u64 offset
, u64 bytes
)
1699 unsigned long start
, count
;
1701 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1702 count
= bytes_to_bits(bytes
, ctl
->unit
);
1703 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1705 bitmap_clear(info
->bitmap
, start
, count
);
1707 info
->bytes
-= bytes
;
1708 if (info
->max_extent_size
> ctl
->unit
)
1709 info
->max_extent_size
= 0;
1712 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1713 struct btrfs_free_space
*info
, u64 offset
,
1716 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1717 ctl
->free_space
-= bytes
;
1720 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1721 struct btrfs_free_space
*info
, u64 offset
,
1724 unsigned long start
, count
;
1726 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1727 count
= bytes_to_bits(bytes
, ctl
->unit
);
1728 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1730 bitmap_set(info
->bitmap
, start
, count
);
1732 info
->bytes
+= bytes
;
1733 ctl
->free_space
+= bytes
;
1737 * If we can not find suitable extent, we will use bytes to record
1738 * the size of the max extent.
1740 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1741 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1742 u64
*bytes
, bool for_alloc
)
1744 unsigned long found_bits
= 0;
1745 unsigned long max_bits
= 0;
1746 unsigned long bits
, i
;
1747 unsigned long next_zero
;
1748 unsigned long extent_bits
;
1751 * Skip searching the bitmap if we don't have a contiguous section that
1752 * is large enough for this allocation.
1755 bitmap_info
->max_extent_size
&&
1756 bitmap_info
->max_extent_size
< *bytes
) {
1757 *bytes
= bitmap_info
->max_extent_size
;
1761 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1762 max_t(u64
, *offset
, bitmap_info
->offset
));
1763 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1765 for_each_set_bit_from(i
, bitmap_info
->bitmap
, BITS_PER_BITMAP
) {
1766 if (for_alloc
&& bits
== 1) {
1770 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1771 BITS_PER_BITMAP
, i
);
1772 extent_bits
= next_zero
- i
;
1773 if (extent_bits
>= bits
) {
1774 found_bits
= extent_bits
;
1776 } else if (extent_bits
> max_bits
) {
1777 max_bits
= extent_bits
;
1783 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1784 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1788 *bytes
= (u64
)(max_bits
) * ctl
->unit
;
1789 bitmap_info
->max_extent_size
= *bytes
;
1793 static inline u64
get_max_extent_size(struct btrfs_free_space
*entry
)
1796 return entry
->max_extent_size
;
1797 return entry
->bytes
;
1800 /* Cache the size of the max extent in bytes */
1801 static struct btrfs_free_space
*
1802 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
,
1803 unsigned long align
, u64
*max_extent_size
)
1805 struct btrfs_free_space
*entry
;
1806 struct rb_node
*node
;
1811 if (!ctl
->free_space_offset
.rb_node
)
1814 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1818 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1819 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1820 if (entry
->bytes
< *bytes
) {
1821 *max_extent_size
= max(get_max_extent_size(entry
),
1826 /* make sure the space returned is big enough
1827 * to match our requested alignment
1829 if (*bytes
>= align
) {
1830 tmp
= entry
->offset
- ctl
->start
+ align
- 1;
1831 tmp
= div64_u64(tmp
, align
);
1832 tmp
= tmp
* align
+ ctl
->start
;
1833 align_off
= tmp
- entry
->offset
;
1836 tmp
= entry
->offset
;
1839 if (entry
->bytes
< *bytes
+ align_off
) {
1840 *max_extent_size
= max(get_max_extent_size(entry
),
1845 if (entry
->bitmap
) {
1848 ret
= search_bitmap(ctl
, entry
, &tmp
, &size
, true);
1855 max(get_max_extent_size(entry
),
1862 *bytes
= entry
->bytes
- align_off
;
1869 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1870 struct btrfs_free_space
*info
, u64 offset
)
1872 info
->offset
= offset_to_bitmap(ctl
, offset
);
1874 INIT_LIST_HEAD(&info
->list
);
1875 link_free_space(ctl
, info
);
1876 ctl
->total_bitmaps
++;
1878 ctl
->op
->recalc_thresholds(ctl
);
1881 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1882 struct btrfs_free_space
*bitmap_info
)
1884 unlink_free_space(ctl
, bitmap_info
);
1885 kmem_cache_free(btrfs_free_space_bitmap_cachep
, bitmap_info
->bitmap
);
1886 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1887 ctl
->total_bitmaps
--;
1888 ctl
->op
->recalc_thresholds(ctl
);
1891 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1892 struct btrfs_free_space
*bitmap_info
,
1893 u64
*offset
, u64
*bytes
)
1896 u64 search_start
, search_bytes
;
1900 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1903 * We need to search for bits in this bitmap. We could only cover some
1904 * of the extent in this bitmap thanks to how we add space, so we need
1905 * to search for as much as it as we can and clear that amount, and then
1906 * go searching for the next bit.
1908 search_start
= *offset
;
1909 search_bytes
= ctl
->unit
;
1910 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1911 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
,
1913 if (ret
< 0 || search_start
!= *offset
)
1916 /* We may have found more bits than what we need */
1917 search_bytes
= min(search_bytes
, *bytes
);
1919 /* Cannot clear past the end of the bitmap */
1920 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1922 bitmap_clear_bits(ctl
, bitmap_info
, search_start
, search_bytes
);
1923 *offset
+= search_bytes
;
1924 *bytes
-= search_bytes
;
1927 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1928 if (!bitmap_info
->bytes
)
1929 free_bitmap(ctl
, bitmap_info
);
1932 * no entry after this bitmap, but we still have bytes to
1933 * remove, so something has gone wrong.
1938 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1942 * if the next entry isn't a bitmap we need to return to let the
1943 * extent stuff do its work.
1945 if (!bitmap_info
->bitmap
)
1949 * Ok the next item is a bitmap, but it may not actually hold
1950 * the information for the rest of this free space stuff, so
1951 * look for it, and if we don't find it return so we can try
1952 * everything over again.
1954 search_start
= *offset
;
1955 search_bytes
= ctl
->unit
;
1956 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1957 &search_bytes
, false);
1958 if (ret
< 0 || search_start
!= *offset
)
1962 } else if (!bitmap_info
->bytes
)
1963 free_bitmap(ctl
, bitmap_info
);
1968 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1969 struct btrfs_free_space
*info
, u64 offset
,
1972 u64 bytes_to_set
= 0;
1975 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1977 bytes_to_set
= min(end
- offset
, bytes
);
1979 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1982 * We set some bytes, we have no idea what the max extent size is
1985 info
->max_extent_size
= 0;
1987 return bytes_to_set
;
1991 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1992 struct btrfs_free_space
*info
)
1994 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1995 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
1996 bool forced
= false;
1998 #ifdef CONFIG_BTRFS_DEBUG
1999 if (btrfs_should_fragment_free_space(block_group
))
2004 * If we are below the extents threshold then we can add this as an
2005 * extent, and don't have to deal with the bitmap
2007 if (!forced
&& ctl
->free_extents
< ctl
->extents_thresh
) {
2009 * If this block group has some small extents we don't want to
2010 * use up all of our free slots in the cache with them, we want
2011 * to reserve them to larger extents, however if we have plenty
2012 * of cache left then go ahead an dadd them, no sense in adding
2013 * the overhead of a bitmap if we don't have to.
2015 if (info
->bytes
<= fs_info
->sectorsize
* 4) {
2016 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
2024 * The original block groups from mkfs can be really small, like 8
2025 * megabytes, so don't bother with a bitmap for those entries. However
2026 * some block groups can be smaller than what a bitmap would cover but
2027 * are still large enough that they could overflow the 32k memory limit,
2028 * so allow those block groups to still be allowed to have a bitmap
2031 if (((BITS_PER_BITMAP
* ctl
->unit
) >> 1) > block_group
->key
.offset
)
2037 static const struct btrfs_free_space_op free_space_op
= {
2038 .recalc_thresholds
= recalculate_thresholds
,
2039 .use_bitmap
= use_bitmap
,
2042 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
2043 struct btrfs_free_space
*info
)
2045 struct btrfs_free_space
*bitmap_info
;
2046 struct btrfs_block_group_cache
*block_group
= NULL
;
2048 u64 bytes
, offset
, bytes_added
;
2051 bytes
= info
->bytes
;
2052 offset
= info
->offset
;
2054 if (!ctl
->op
->use_bitmap(ctl
, info
))
2057 if (ctl
->op
== &free_space_op
)
2058 block_group
= ctl
->private;
2061 * Since we link bitmaps right into the cluster we need to see if we
2062 * have a cluster here, and if so and it has our bitmap we need to add
2063 * the free space to that bitmap.
2065 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
2066 struct btrfs_free_cluster
*cluster
;
2067 struct rb_node
*node
;
2068 struct btrfs_free_space
*entry
;
2070 cluster
= list_entry(block_group
->cluster_list
.next
,
2071 struct btrfs_free_cluster
,
2073 spin_lock(&cluster
->lock
);
2074 node
= rb_first(&cluster
->root
);
2076 spin_unlock(&cluster
->lock
);
2077 goto no_cluster_bitmap
;
2080 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2081 if (!entry
->bitmap
) {
2082 spin_unlock(&cluster
->lock
);
2083 goto no_cluster_bitmap
;
2086 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
2087 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
2089 bytes
-= bytes_added
;
2090 offset
+= bytes_added
;
2092 spin_unlock(&cluster
->lock
);
2100 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2107 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
2108 bytes
-= bytes_added
;
2109 offset
+= bytes_added
;
2119 if (info
&& info
->bitmap
) {
2120 add_new_bitmap(ctl
, info
, offset
);
2125 spin_unlock(&ctl
->tree_lock
);
2127 /* no pre-allocated info, allocate a new one */
2129 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
2132 spin_lock(&ctl
->tree_lock
);
2138 /* allocate the bitmap */
2139 info
->bitmap
= kmem_cache_zalloc(btrfs_free_space_bitmap_cachep
,
2141 spin_lock(&ctl
->tree_lock
);
2142 if (!info
->bitmap
) {
2152 kmem_cache_free(btrfs_free_space_bitmap_cachep
,
2154 kmem_cache_free(btrfs_free_space_cachep
, info
);
2160 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
2161 struct btrfs_free_space
*info
, bool update_stat
)
2163 struct btrfs_free_space
*left_info
;
2164 struct btrfs_free_space
*right_info
;
2165 bool merged
= false;
2166 u64 offset
= info
->offset
;
2167 u64 bytes
= info
->bytes
;
2170 * first we want to see if there is free space adjacent to the range we
2171 * are adding, if there is remove that struct and add a new one to
2172 * cover the entire range
2174 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
2175 if (right_info
&& rb_prev(&right_info
->offset_index
))
2176 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
2177 struct btrfs_free_space
, offset_index
);
2179 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
2181 if (right_info
&& !right_info
->bitmap
) {
2183 unlink_free_space(ctl
, right_info
);
2185 __unlink_free_space(ctl
, right_info
);
2186 info
->bytes
+= right_info
->bytes
;
2187 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
2191 if (left_info
&& !left_info
->bitmap
&&
2192 left_info
->offset
+ left_info
->bytes
== offset
) {
2194 unlink_free_space(ctl
, left_info
);
2196 __unlink_free_space(ctl
, left_info
);
2197 info
->offset
= left_info
->offset
;
2198 info
->bytes
+= left_info
->bytes
;
2199 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
2206 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl
*ctl
,
2207 struct btrfs_free_space
*info
,
2210 struct btrfs_free_space
*bitmap
;
2213 const u64 end
= info
->offset
+ info
->bytes
;
2214 const u64 bitmap_offset
= offset_to_bitmap(ctl
, end
);
2217 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2221 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, end
);
2222 j
= find_next_zero_bit(bitmap
->bitmap
, BITS_PER_BITMAP
, i
);
2225 bytes
= (j
- i
) * ctl
->unit
;
2226 info
->bytes
+= bytes
;
2229 bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2231 __bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2234 free_bitmap(ctl
, bitmap
);
2239 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl
*ctl
,
2240 struct btrfs_free_space
*info
,
2243 struct btrfs_free_space
*bitmap
;
2247 unsigned long prev_j
;
2250 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
);
2251 /* If we're on a boundary, try the previous logical bitmap. */
2252 if (bitmap_offset
== info
->offset
) {
2253 if (info
->offset
== 0)
2255 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
- 1);
2258 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2262 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, info
->offset
) - 1;
2264 prev_j
= (unsigned long)-1;
2265 for_each_clear_bit_from(j
, bitmap
->bitmap
, BITS_PER_BITMAP
) {
2273 if (prev_j
== (unsigned long)-1)
2274 bytes
= (i
+ 1) * ctl
->unit
;
2276 bytes
= (i
- prev_j
) * ctl
->unit
;
2278 info
->offset
-= bytes
;
2279 info
->bytes
+= bytes
;
2282 bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2284 __bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2287 free_bitmap(ctl
, bitmap
);
2293 * We prefer always to allocate from extent entries, both for clustered and
2294 * non-clustered allocation requests. So when attempting to add a new extent
2295 * entry, try to see if there's adjacent free space in bitmap entries, and if
2296 * there is, migrate that space from the bitmaps to the extent.
2297 * Like this we get better chances of satisfying space allocation requests
2298 * because we attempt to satisfy them based on a single cache entry, and never
2299 * on 2 or more entries - even if the entries represent a contiguous free space
2300 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2303 static void steal_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
2304 struct btrfs_free_space
*info
,
2308 * Only work with disconnected entries, as we can change their offset,
2309 * and must be extent entries.
2311 ASSERT(!info
->bitmap
);
2312 ASSERT(RB_EMPTY_NODE(&info
->offset_index
));
2314 if (ctl
->total_bitmaps
> 0) {
2316 bool stole_front
= false;
2318 stole_end
= steal_from_bitmap_to_end(ctl
, info
, update_stat
);
2319 if (ctl
->total_bitmaps
> 0)
2320 stole_front
= steal_from_bitmap_to_front(ctl
, info
,
2323 if (stole_end
|| stole_front
)
2324 try_merge_free_space(ctl
, info
, update_stat
);
2328 int __btrfs_add_free_space(struct btrfs_fs_info
*fs_info
,
2329 struct btrfs_free_space_ctl
*ctl
,
2330 u64 offset
, u64 bytes
)
2332 struct btrfs_free_space
*info
;
2335 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
2339 info
->offset
= offset
;
2340 info
->bytes
= bytes
;
2341 RB_CLEAR_NODE(&info
->offset_index
);
2343 spin_lock(&ctl
->tree_lock
);
2345 if (try_merge_free_space(ctl
, info
, true))
2349 * There was no extent directly to the left or right of this new
2350 * extent then we know we're going to have to allocate a new extent, so
2351 * before we do that see if we need to drop this into a bitmap
2353 ret
= insert_into_bitmap(ctl
, info
);
2362 * Only steal free space from adjacent bitmaps if we're sure we're not
2363 * going to add the new free space to existing bitmap entries - because
2364 * that would mean unnecessary work that would be reverted. Therefore
2365 * attempt to steal space from bitmaps if we're adding an extent entry.
2367 steal_from_bitmap(ctl
, info
, true);
2369 ret
= link_free_space(ctl
, info
);
2371 kmem_cache_free(btrfs_free_space_cachep
, info
);
2373 spin_unlock(&ctl
->tree_lock
);
2376 btrfs_crit(fs_info
, "unable to add free space :%d", ret
);
2377 ASSERT(ret
!= -EEXIST
);
2383 int btrfs_add_free_space(struct btrfs_block_group_cache
*block_group
,
2384 u64 bytenr
, u64 size
)
2386 return __btrfs_add_free_space(block_group
->fs_info
,
2387 block_group
->free_space_ctl
,
2391 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
2392 u64 offset
, u64 bytes
)
2394 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2395 struct btrfs_free_space
*info
;
2397 bool re_search
= false;
2399 spin_lock(&ctl
->tree_lock
);
2406 info
= tree_search_offset(ctl
, offset
, 0, 0);
2409 * oops didn't find an extent that matched the space we wanted
2410 * to remove, look for a bitmap instead
2412 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2416 * If we found a partial bit of our free space in a
2417 * bitmap but then couldn't find the other part this may
2418 * be a problem, so WARN about it.
2426 if (!info
->bitmap
) {
2427 unlink_free_space(ctl
, info
);
2428 if (offset
== info
->offset
) {
2429 u64 to_free
= min(bytes
, info
->bytes
);
2431 info
->bytes
-= to_free
;
2432 info
->offset
+= to_free
;
2434 ret
= link_free_space(ctl
, info
);
2437 kmem_cache_free(btrfs_free_space_cachep
, info
);
2444 u64 old_end
= info
->bytes
+ info
->offset
;
2446 info
->bytes
= offset
- info
->offset
;
2447 ret
= link_free_space(ctl
, info
);
2452 /* Not enough bytes in this entry to satisfy us */
2453 if (old_end
< offset
+ bytes
) {
2454 bytes
-= old_end
- offset
;
2457 } else if (old_end
== offset
+ bytes
) {
2461 spin_unlock(&ctl
->tree_lock
);
2463 ret
= btrfs_add_free_space(block_group
, offset
+ bytes
,
2464 old_end
- (offset
+ bytes
));
2470 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
2471 if (ret
== -EAGAIN
) {
2476 spin_unlock(&ctl
->tree_lock
);
2481 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
2484 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2485 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2486 struct btrfs_free_space
*info
;
2490 spin_lock(&ctl
->tree_lock
);
2491 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
2492 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
2493 if (info
->bytes
>= bytes
&& !block_group
->ro
)
2495 btrfs_crit(fs_info
, "entry offset %llu, bytes %llu, bitmap %s",
2496 info
->offset
, info
->bytes
,
2497 (info
->bitmap
) ? "yes" : "no");
2499 spin_unlock(&ctl
->tree_lock
);
2500 btrfs_info(fs_info
, "block group has cluster?: %s",
2501 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
2503 "%d blocks of free space at or bigger than bytes is", count
);
2506 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
2508 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2509 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2511 spin_lock_init(&ctl
->tree_lock
);
2512 ctl
->unit
= fs_info
->sectorsize
;
2513 ctl
->start
= block_group
->key
.objectid
;
2514 ctl
->private = block_group
;
2515 ctl
->op
= &free_space_op
;
2516 INIT_LIST_HEAD(&ctl
->trimming_ranges
);
2517 mutex_init(&ctl
->cache_writeout_mutex
);
2520 * we only want to have 32k of ram per block group for keeping
2521 * track of free space, and if we pass 1/2 of that we want to
2522 * start converting things over to using bitmaps
2524 ctl
->extents_thresh
= (SZ_32K
/ 2) / sizeof(struct btrfs_free_space
);
2528 * for a given cluster, put all of its extents back into the free
2529 * space cache. If the block group passed doesn't match the block group
2530 * pointed to by the cluster, someone else raced in and freed the
2531 * cluster already. In that case, we just return without changing anything
2534 __btrfs_return_cluster_to_free_space(
2535 struct btrfs_block_group_cache
*block_group
,
2536 struct btrfs_free_cluster
*cluster
)
2538 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2539 struct btrfs_free_space
*entry
;
2540 struct rb_node
*node
;
2542 spin_lock(&cluster
->lock
);
2543 if (cluster
->block_group
!= block_group
)
2546 cluster
->block_group
= NULL
;
2547 cluster
->window_start
= 0;
2548 list_del_init(&cluster
->block_group_list
);
2550 node
= rb_first(&cluster
->root
);
2554 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2555 node
= rb_next(&entry
->offset_index
);
2556 rb_erase(&entry
->offset_index
, &cluster
->root
);
2557 RB_CLEAR_NODE(&entry
->offset_index
);
2559 bitmap
= (entry
->bitmap
!= NULL
);
2561 try_merge_free_space(ctl
, entry
, false);
2562 steal_from_bitmap(ctl
, entry
, false);
2564 tree_insert_offset(&ctl
->free_space_offset
,
2565 entry
->offset
, &entry
->offset_index
, bitmap
);
2567 cluster
->root
= RB_ROOT
;
2570 spin_unlock(&cluster
->lock
);
2571 btrfs_put_block_group(block_group
);
2575 static void __btrfs_remove_free_space_cache_locked(
2576 struct btrfs_free_space_ctl
*ctl
)
2578 struct btrfs_free_space
*info
;
2579 struct rb_node
*node
;
2581 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
2582 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2583 if (!info
->bitmap
) {
2584 unlink_free_space(ctl
, info
);
2585 kmem_cache_free(btrfs_free_space_cachep
, info
);
2587 free_bitmap(ctl
, info
);
2590 cond_resched_lock(&ctl
->tree_lock
);
2594 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
2596 spin_lock(&ctl
->tree_lock
);
2597 __btrfs_remove_free_space_cache_locked(ctl
);
2598 spin_unlock(&ctl
->tree_lock
);
2601 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
2603 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2604 struct btrfs_free_cluster
*cluster
;
2605 struct list_head
*head
;
2607 spin_lock(&ctl
->tree_lock
);
2608 while ((head
= block_group
->cluster_list
.next
) !=
2609 &block_group
->cluster_list
) {
2610 cluster
= list_entry(head
, struct btrfs_free_cluster
,
2613 WARN_ON(cluster
->block_group
!= block_group
);
2614 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2616 cond_resched_lock(&ctl
->tree_lock
);
2618 __btrfs_remove_free_space_cache_locked(ctl
);
2619 spin_unlock(&ctl
->tree_lock
);
2623 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
2624 u64 offset
, u64 bytes
, u64 empty_size
,
2625 u64
*max_extent_size
)
2627 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2628 struct btrfs_free_space
*entry
= NULL
;
2629 u64 bytes_search
= bytes
+ empty_size
;
2632 u64 align_gap_len
= 0;
2634 spin_lock(&ctl
->tree_lock
);
2635 entry
= find_free_space(ctl
, &offset
, &bytes_search
,
2636 block_group
->full_stripe_len
, max_extent_size
);
2641 if (entry
->bitmap
) {
2642 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
2644 free_bitmap(ctl
, entry
);
2646 unlink_free_space(ctl
, entry
);
2647 align_gap_len
= offset
- entry
->offset
;
2648 align_gap
= entry
->offset
;
2650 entry
->offset
= offset
+ bytes
;
2651 WARN_ON(entry
->bytes
< bytes
+ align_gap_len
);
2653 entry
->bytes
-= bytes
+ align_gap_len
;
2655 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2657 link_free_space(ctl
, entry
);
2660 spin_unlock(&ctl
->tree_lock
);
2663 __btrfs_add_free_space(block_group
->fs_info
, ctl
,
2664 align_gap
, align_gap_len
);
2669 * given a cluster, put all of its extents back into the free space
2670 * cache. If a block group is passed, this function will only free
2671 * a cluster that belongs to the passed block group.
2673 * Otherwise, it'll get a reference on the block group pointed to by the
2674 * cluster and remove the cluster from it.
2676 int btrfs_return_cluster_to_free_space(
2677 struct btrfs_block_group_cache
*block_group
,
2678 struct btrfs_free_cluster
*cluster
)
2680 struct btrfs_free_space_ctl
*ctl
;
2683 /* first, get a safe pointer to the block group */
2684 spin_lock(&cluster
->lock
);
2686 block_group
= cluster
->block_group
;
2688 spin_unlock(&cluster
->lock
);
2691 } else if (cluster
->block_group
!= block_group
) {
2692 /* someone else has already freed it don't redo their work */
2693 spin_unlock(&cluster
->lock
);
2696 atomic_inc(&block_group
->count
);
2697 spin_unlock(&cluster
->lock
);
2699 ctl
= block_group
->free_space_ctl
;
2701 /* now return any extents the cluster had on it */
2702 spin_lock(&ctl
->tree_lock
);
2703 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2704 spin_unlock(&ctl
->tree_lock
);
2706 /* finally drop our ref */
2707 btrfs_put_block_group(block_group
);
2711 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
2712 struct btrfs_free_cluster
*cluster
,
2713 struct btrfs_free_space
*entry
,
2714 u64 bytes
, u64 min_start
,
2715 u64
*max_extent_size
)
2717 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2719 u64 search_start
= cluster
->window_start
;
2720 u64 search_bytes
= bytes
;
2723 search_start
= min_start
;
2724 search_bytes
= bytes
;
2726 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
, true);
2728 *max_extent_size
= max(get_max_extent_size(entry
),
2734 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2740 * given a cluster, try to allocate 'bytes' from it, returns 0
2741 * if it couldn't find anything suitably large, or a logical disk offset
2742 * if things worked out
2744 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2745 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2746 u64 min_start
, u64
*max_extent_size
)
2748 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2749 struct btrfs_free_space
*entry
= NULL
;
2750 struct rb_node
*node
;
2753 spin_lock(&cluster
->lock
);
2754 if (bytes
> cluster
->max_size
)
2757 if (cluster
->block_group
!= block_group
)
2760 node
= rb_first(&cluster
->root
);
2764 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2766 if (entry
->bytes
< bytes
)
2767 *max_extent_size
= max(get_max_extent_size(entry
),
2770 if (entry
->bytes
< bytes
||
2771 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2772 node
= rb_next(&entry
->offset_index
);
2775 entry
= rb_entry(node
, struct btrfs_free_space
,
2780 if (entry
->bitmap
) {
2781 ret
= btrfs_alloc_from_bitmap(block_group
,
2782 cluster
, entry
, bytes
,
2783 cluster
->window_start
,
2786 node
= rb_next(&entry
->offset_index
);
2789 entry
= rb_entry(node
, struct btrfs_free_space
,
2793 cluster
->window_start
+= bytes
;
2795 ret
= entry
->offset
;
2797 entry
->offset
+= bytes
;
2798 entry
->bytes
-= bytes
;
2801 if (entry
->bytes
== 0)
2802 rb_erase(&entry
->offset_index
, &cluster
->root
);
2806 spin_unlock(&cluster
->lock
);
2811 spin_lock(&ctl
->tree_lock
);
2813 ctl
->free_space
-= bytes
;
2814 if (entry
->bytes
== 0) {
2815 ctl
->free_extents
--;
2816 if (entry
->bitmap
) {
2817 kmem_cache_free(btrfs_free_space_bitmap_cachep
,
2819 ctl
->total_bitmaps
--;
2820 ctl
->op
->recalc_thresholds(ctl
);
2822 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2825 spin_unlock(&ctl
->tree_lock
);
2830 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2831 struct btrfs_free_space
*entry
,
2832 struct btrfs_free_cluster
*cluster
,
2833 u64 offset
, u64 bytes
,
2834 u64 cont1_bytes
, u64 min_bytes
)
2836 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2837 unsigned long next_zero
;
2839 unsigned long want_bits
;
2840 unsigned long min_bits
;
2841 unsigned long found_bits
;
2842 unsigned long max_bits
= 0;
2843 unsigned long start
= 0;
2844 unsigned long total_found
= 0;
2847 i
= offset_to_bit(entry
->offset
, ctl
->unit
,
2848 max_t(u64
, offset
, entry
->offset
));
2849 want_bits
= bytes_to_bits(bytes
, ctl
->unit
);
2850 min_bits
= bytes_to_bits(min_bytes
, ctl
->unit
);
2853 * Don't bother looking for a cluster in this bitmap if it's heavily
2856 if (entry
->max_extent_size
&&
2857 entry
->max_extent_size
< cont1_bytes
)
2861 for_each_set_bit_from(i
, entry
->bitmap
, BITS_PER_BITMAP
) {
2862 next_zero
= find_next_zero_bit(entry
->bitmap
,
2863 BITS_PER_BITMAP
, i
);
2864 if (next_zero
- i
>= min_bits
) {
2865 found_bits
= next_zero
- i
;
2866 if (found_bits
> max_bits
)
2867 max_bits
= found_bits
;
2870 if (next_zero
- i
> max_bits
)
2871 max_bits
= next_zero
- i
;
2876 entry
->max_extent_size
= (u64
)max_bits
* ctl
->unit
;
2882 cluster
->max_size
= 0;
2885 total_found
+= found_bits
;
2887 if (cluster
->max_size
< found_bits
* ctl
->unit
)
2888 cluster
->max_size
= found_bits
* ctl
->unit
;
2890 if (total_found
< want_bits
|| cluster
->max_size
< cont1_bytes
) {
2895 cluster
->window_start
= start
* ctl
->unit
+ entry
->offset
;
2896 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2897 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2898 &entry
->offset_index
, 1);
2899 ASSERT(!ret
); /* -EEXIST; Logic error */
2901 trace_btrfs_setup_cluster(block_group
, cluster
,
2902 total_found
* ctl
->unit
, 1);
2907 * This searches the block group for just extents to fill the cluster with.
2908 * Try to find a cluster with at least bytes total bytes, at least one
2909 * extent of cont1_bytes, and other clusters of at least min_bytes.
2912 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2913 struct btrfs_free_cluster
*cluster
,
2914 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2915 u64 cont1_bytes
, u64 min_bytes
)
2917 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2918 struct btrfs_free_space
*first
= NULL
;
2919 struct btrfs_free_space
*entry
= NULL
;
2920 struct btrfs_free_space
*last
;
2921 struct rb_node
*node
;
2926 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2931 * We don't want bitmaps, so just move along until we find a normal
2934 while (entry
->bitmap
|| entry
->bytes
< min_bytes
) {
2935 if (entry
->bitmap
&& list_empty(&entry
->list
))
2936 list_add_tail(&entry
->list
, bitmaps
);
2937 node
= rb_next(&entry
->offset_index
);
2940 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2943 window_free
= entry
->bytes
;
2944 max_extent
= entry
->bytes
;
2948 for (node
= rb_next(&entry
->offset_index
); node
;
2949 node
= rb_next(&entry
->offset_index
)) {
2950 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2952 if (entry
->bitmap
) {
2953 if (list_empty(&entry
->list
))
2954 list_add_tail(&entry
->list
, bitmaps
);
2958 if (entry
->bytes
< min_bytes
)
2962 window_free
+= entry
->bytes
;
2963 if (entry
->bytes
> max_extent
)
2964 max_extent
= entry
->bytes
;
2967 if (window_free
< bytes
|| max_extent
< cont1_bytes
)
2970 cluster
->window_start
= first
->offset
;
2972 node
= &first
->offset_index
;
2975 * now we've found our entries, pull them out of the free space
2976 * cache and put them into the cluster rbtree
2981 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2982 node
= rb_next(&entry
->offset_index
);
2983 if (entry
->bitmap
|| entry
->bytes
< min_bytes
)
2986 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2987 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2988 &entry
->offset_index
, 0);
2989 total_size
+= entry
->bytes
;
2990 ASSERT(!ret
); /* -EEXIST; Logic error */
2991 } while (node
&& entry
!= last
);
2993 cluster
->max_size
= max_extent
;
2994 trace_btrfs_setup_cluster(block_group
, cluster
, total_size
, 0);
2999 * This specifically looks for bitmaps that may work in the cluster, we assume
3000 * that we have already failed to find extents that will work.
3003 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
3004 struct btrfs_free_cluster
*cluster
,
3005 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
3006 u64 cont1_bytes
, u64 min_bytes
)
3008 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3009 struct btrfs_free_space
*entry
= NULL
;
3011 u64 bitmap_offset
= offset_to_bitmap(ctl
, offset
);
3013 if (ctl
->total_bitmaps
== 0)
3017 * The bitmap that covers offset won't be in the list unless offset
3018 * is just its start offset.
3020 if (!list_empty(bitmaps
))
3021 entry
= list_first_entry(bitmaps
, struct btrfs_free_space
, list
);
3023 if (!entry
|| entry
->offset
!= bitmap_offset
) {
3024 entry
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
3025 if (entry
&& list_empty(&entry
->list
))
3026 list_add(&entry
->list
, bitmaps
);
3029 list_for_each_entry(entry
, bitmaps
, list
) {
3030 if (entry
->bytes
< bytes
)
3032 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
3033 bytes
, cont1_bytes
, min_bytes
);
3039 * The bitmaps list has all the bitmaps that record free space
3040 * starting after offset, so no more search is required.
3046 * here we try to find a cluster of blocks in a block group. The goal
3047 * is to find at least bytes+empty_size.
3048 * We might not find them all in one contiguous area.
3050 * returns zero and sets up cluster if things worked out, otherwise
3051 * it returns -enospc
3053 int btrfs_find_space_cluster(struct btrfs_block_group_cache
*block_group
,
3054 struct btrfs_free_cluster
*cluster
,
3055 u64 offset
, u64 bytes
, u64 empty_size
)
3057 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3058 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3059 struct btrfs_free_space
*entry
, *tmp
;
3066 * Choose the minimum extent size we'll require for this
3067 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3068 * For metadata, allow allocates with smaller extents. For
3069 * data, keep it dense.
3071 if (btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
3072 cont1_bytes
= min_bytes
= bytes
+ empty_size
;
3073 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
3074 cont1_bytes
= bytes
;
3075 min_bytes
= fs_info
->sectorsize
;
3077 cont1_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
3078 min_bytes
= fs_info
->sectorsize
;
3081 spin_lock(&ctl
->tree_lock
);
3084 * If we know we don't have enough space to make a cluster don't even
3085 * bother doing all the work to try and find one.
3087 if (ctl
->free_space
< bytes
) {
3088 spin_unlock(&ctl
->tree_lock
);
3092 spin_lock(&cluster
->lock
);
3094 /* someone already found a cluster, hooray */
3095 if (cluster
->block_group
) {
3100 trace_btrfs_find_cluster(block_group
, offset
, bytes
, empty_size
,
3103 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
3105 cont1_bytes
, min_bytes
);
3107 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
3108 offset
, bytes
+ empty_size
,
3109 cont1_bytes
, min_bytes
);
3111 /* Clear our temporary list */
3112 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
3113 list_del_init(&entry
->list
);
3116 atomic_inc(&block_group
->count
);
3117 list_add_tail(&cluster
->block_group_list
,
3118 &block_group
->cluster_list
);
3119 cluster
->block_group
= block_group
;
3121 trace_btrfs_failed_cluster_setup(block_group
);
3124 spin_unlock(&cluster
->lock
);
3125 spin_unlock(&ctl
->tree_lock
);
3131 * simple code to zero out a cluster
3133 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
3135 spin_lock_init(&cluster
->lock
);
3136 spin_lock_init(&cluster
->refill_lock
);
3137 cluster
->root
= RB_ROOT
;
3138 cluster
->max_size
= 0;
3139 cluster
->fragmented
= false;
3140 INIT_LIST_HEAD(&cluster
->block_group_list
);
3141 cluster
->block_group
= NULL
;
3144 static int do_trimming(struct btrfs_block_group_cache
*block_group
,
3145 u64
*total_trimmed
, u64 start
, u64 bytes
,
3146 u64 reserved_start
, u64 reserved_bytes
,
3147 struct btrfs_trim_range
*trim_entry
)
3149 struct btrfs_space_info
*space_info
= block_group
->space_info
;
3150 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3151 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3156 spin_lock(&space_info
->lock
);
3157 spin_lock(&block_group
->lock
);
3158 if (!block_group
->ro
) {
3159 block_group
->reserved
+= reserved_bytes
;
3160 space_info
->bytes_reserved
+= reserved_bytes
;
3163 spin_unlock(&block_group
->lock
);
3164 spin_unlock(&space_info
->lock
);
3166 ret
= btrfs_discard_extent(fs_info
, start
, bytes
, &trimmed
);
3168 *total_trimmed
+= trimmed
;
3170 mutex_lock(&ctl
->cache_writeout_mutex
);
3171 btrfs_add_free_space(block_group
, reserved_start
, reserved_bytes
);
3172 list_del(&trim_entry
->list
);
3173 mutex_unlock(&ctl
->cache_writeout_mutex
);
3176 spin_lock(&space_info
->lock
);
3177 spin_lock(&block_group
->lock
);
3178 if (block_group
->ro
)
3179 space_info
->bytes_readonly
+= reserved_bytes
;
3180 block_group
->reserved
-= reserved_bytes
;
3181 space_info
->bytes_reserved
-= reserved_bytes
;
3182 spin_unlock(&block_group
->lock
);
3183 spin_unlock(&space_info
->lock
);
3189 static int trim_no_bitmap(struct btrfs_block_group_cache
*block_group
,
3190 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
3192 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3193 struct btrfs_free_space
*entry
;
3194 struct rb_node
*node
;
3200 while (start
< end
) {
3201 struct btrfs_trim_range trim_entry
;
3203 mutex_lock(&ctl
->cache_writeout_mutex
);
3204 spin_lock(&ctl
->tree_lock
);
3206 if (ctl
->free_space
< minlen
) {
3207 spin_unlock(&ctl
->tree_lock
);
3208 mutex_unlock(&ctl
->cache_writeout_mutex
);
3212 entry
= tree_search_offset(ctl
, start
, 0, 1);
3214 spin_unlock(&ctl
->tree_lock
);
3215 mutex_unlock(&ctl
->cache_writeout_mutex
);
3220 while (entry
->bitmap
) {
3221 node
= rb_next(&entry
->offset_index
);
3223 spin_unlock(&ctl
->tree_lock
);
3224 mutex_unlock(&ctl
->cache_writeout_mutex
);
3227 entry
= rb_entry(node
, struct btrfs_free_space
,
3231 if (entry
->offset
>= end
) {
3232 spin_unlock(&ctl
->tree_lock
);
3233 mutex_unlock(&ctl
->cache_writeout_mutex
);
3237 extent_start
= entry
->offset
;
3238 extent_bytes
= entry
->bytes
;
3239 start
= max(start
, extent_start
);
3240 bytes
= min(extent_start
+ extent_bytes
, end
) - start
;
3241 if (bytes
< minlen
) {
3242 spin_unlock(&ctl
->tree_lock
);
3243 mutex_unlock(&ctl
->cache_writeout_mutex
);
3247 unlink_free_space(ctl
, entry
);
3248 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3250 spin_unlock(&ctl
->tree_lock
);
3251 trim_entry
.start
= extent_start
;
3252 trim_entry
.bytes
= extent_bytes
;
3253 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3254 mutex_unlock(&ctl
->cache_writeout_mutex
);
3256 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3257 extent_start
, extent_bytes
, &trim_entry
);
3263 if (fatal_signal_pending(current
)) {
3274 static int trim_bitmaps(struct btrfs_block_group_cache
*block_group
,
3275 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
3277 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3278 struct btrfs_free_space
*entry
;
3282 u64 offset
= offset_to_bitmap(ctl
, start
);
3284 while (offset
< end
) {
3285 bool next_bitmap
= false;
3286 struct btrfs_trim_range trim_entry
;
3288 mutex_lock(&ctl
->cache_writeout_mutex
);
3289 spin_lock(&ctl
->tree_lock
);
3291 if (ctl
->free_space
< minlen
) {
3292 spin_unlock(&ctl
->tree_lock
);
3293 mutex_unlock(&ctl
->cache_writeout_mutex
);
3297 entry
= tree_search_offset(ctl
, offset
, 1, 0);
3299 spin_unlock(&ctl
->tree_lock
);
3300 mutex_unlock(&ctl
->cache_writeout_mutex
);
3306 ret2
= search_bitmap(ctl
, entry
, &start
, &bytes
, false);
3307 if (ret2
|| start
>= end
) {
3308 spin_unlock(&ctl
->tree_lock
);
3309 mutex_unlock(&ctl
->cache_writeout_mutex
);
3314 bytes
= min(bytes
, end
- start
);
3315 if (bytes
< minlen
) {
3316 spin_unlock(&ctl
->tree_lock
);
3317 mutex_unlock(&ctl
->cache_writeout_mutex
);
3321 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
3322 if (entry
->bytes
== 0)
3323 free_bitmap(ctl
, entry
);
3325 spin_unlock(&ctl
->tree_lock
);
3326 trim_entry
.start
= start
;
3327 trim_entry
.bytes
= bytes
;
3328 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3329 mutex_unlock(&ctl
->cache_writeout_mutex
);
3331 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3332 start
, bytes
, &trim_entry
);
3337 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3340 if (start
>= offset
+ BITS_PER_BITMAP
* ctl
->unit
)
3341 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3344 if (fatal_signal_pending(current
)) {
3355 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache
*cache
)
3357 atomic_inc(&cache
->trimming
);
3360 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache
*block_group
)
3362 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3363 struct extent_map_tree
*em_tree
;
3364 struct extent_map
*em
;
3367 spin_lock(&block_group
->lock
);
3368 cleanup
= (atomic_dec_and_test(&block_group
->trimming
) &&
3369 block_group
->removed
);
3370 spin_unlock(&block_group
->lock
);
3373 mutex_lock(&fs_info
->chunk_mutex
);
3374 em_tree
= &fs_info
->mapping_tree
;
3375 write_lock(&em_tree
->lock
);
3376 em
= lookup_extent_mapping(em_tree
, block_group
->key
.objectid
,
3378 BUG_ON(!em
); /* logic error, can't happen */
3379 remove_extent_mapping(em_tree
, em
);
3380 write_unlock(&em_tree
->lock
);
3381 mutex_unlock(&fs_info
->chunk_mutex
);
3383 /* once for us and once for the tree */
3384 free_extent_map(em
);
3385 free_extent_map(em
);
3388 * We've left one free space entry and other tasks trimming
3389 * this block group have left 1 entry each one. Free them.
3391 __btrfs_remove_free_space_cache(block_group
->free_space_ctl
);
3395 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
3396 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
3402 spin_lock(&block_group
->lock
);
3403 if (block_group
->removed
) {
3404 spin_unlock(&block_group
->lock
);
3407 btrfs_get_block_group_trimming(block_group
);
3408 spin_unlock(&block_group
->lock
);
3410 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
);
3414 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
);
3416 btrfs_put_block_group_trimming(block_group
);
3421 * Find the left-most item in the cache tree, and then return the
3422 * smallest inode number in the item.
3424 * Note: the returned inode number may not be the smallest one in
3425 * the tree, if the left-most item is a bitmap.
3427 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
3429 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
3430 struct btrfs_free_space
*entry
= NULL
;
3433 spin_lock(&ctl
->tree_lock
);
3435 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
3438 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
3439 struct btrfs_free_space
, offset_index
);
3441 if (!entry
->bitmap
) {
3442 ino
= entry
->offset
;
3444 unlink_free_space(ctl
, entry
);
3448 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3450 link_free_space(ctl
, entry
);
3456 ret
= search_bitmap(ctl
, entry
, &offset
, &count
, true);
3457 /* Logic error; Should be empty if it can't find anything */
3461 bitmap_clear_bits(ctl
, entry
, offset
, 1);
3462 if (entry
->bytes
== 0)
3463 free_bitmap(ctl
, entry
);
3466 spin_unlock(&ctl
->tree_lock
);
3471 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
3472 struct btrfs_path
*path
)
3474 struct inode
*inode
= NULL
;
3476 spin_lock(&root
->ino_cache_lock
);
3477 if (root
->ino_cache_inode
)
3478 inode
= igrab(root
->ino_cache_inode
);
3479 spin_unlock(&root
->ino_cache_lock
);
3483 inode
= __lookup_free_space_inode(root
, path
, 0);
3487 spin_lock(&root
->ino_cache_lock
);
3488 if (!btrfs_fs_closing(root
->fs_info
))
3489 root
->ino_cache_inode
= igrab(inode
);
3490 spin_unlock(&root
->ino_cache_lock
);
3495 int create_free_ino_inode(struct btrfs_root
*root
,
3496 struct btrfs_trans_handle
*trans
,
3497 struct btrfs_path
*path
)
3499 return __create_free_space_inode(root
, trans
, path
,
3500 BTRFS_FREE_INO_OBJECTID
, 0);
3503 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
3505 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3506 struct btrfs_path
*path
;
3507 struct inode
*inode
;
3509 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
3511 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3515 * If we're unmounting then just return, since this does a search on the
3516 * normal root and not the commit root and we could deadlock.
3518 if (btrfs_fs_closing(fs_info
))
3521 path
= btrfs_alloc_path();
3525 inode
= lookup_free_ino_inode(root
, path
);
3529 if (root_gen
!= BTRFS_I(inode
)->generation
)
3532 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
3536 "failed to load free ino cache for root %llu",
3537 root
->root_key
.objectid
);
3541 btrfs_free_path(path
);
3545 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
3546 struct btrfs_trans_handle
*trans
,
3547 struct btrfs_path
*path
,
3548 struct inode
*inode
)
3550 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3551 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3553 struct btrfs_io_ctl io_ctl
;
3554 bool release_metadata
= true;
3556 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3559 memset(&io_ctl
, 0, sizeof(io_ctl
));
3560 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, &io_ctl
, trans
);
3563 * At this point writepages() didn't error out, so our metadata
3564 * reservation is released when the writeback finishes, at
3565 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3566 * with or without an error.
3568 release_metadata
= false;
3569 ret
= btrfs_wait_cache_io_root(root
, trans
, &io_ctl
, path
);
3573 if (release_metadata
)
3574 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
3575 inode
->i_size
, true);
3578 "failed to write free ino cache for root %llu",
3579 root
->root_key
.objectid
);
3586 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3588 * Use this if you need to make a bitmap or extent entry specifically, it
3589 * doesn't do any of the merging that add_free_space does, this acts a lot like
3590 * how the free space cache loading stuff works, so you can get really weird
3593 int test_add_free_space_entry(struct btrfs_block_group_cache
*cache
,
3594 u64 offset
, u64 bytes
, bool bitmap
)
3596 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3597 struct btrfs_free_space
*info
= NULL
, *bitmap_info
;
3604 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
3610 spin_lock(&ctl
->tree_lock
);
3611 info
->offset
= offset
;
3612 info
->bytes
= bytes
;
3613 info
->max_extent_size
= 0;
3614 ret
= link_free_space(ctl
, info
);
3615 spin_unlock(&ctl
->tree_lock
);
3617 kmem_cache_free(btrfs_free_space_cachep
, info
);
3622 map
= kmem_cache_zalloc(btrfs_free_space_bitmap_cachep
, GFP_NOFS
);
3624 kmem_cache_free(btrfs_free_space_cachep
, info
);
3629 spin_lock(&ctl
->tree_lock
);
3630 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3635 add_new_bitmap(ctl
, info
, offset
);
3640 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
3642 bytes
-= bytes_added
;
3643 offset
+= bytes_added
;
3644 spin_unlock(&ctl
->tree_lock
);
3650 kmem_cache_free(btrfs_free_space_cachep
, info
);
3652 kmem_cache_free(btrfs_free_space_bitmap_cachep
, map
);
3657 * Checks to see if the given range is in the free space cache. This is really
3658 * just used to check the absence of space, so if there is free space in the
3659 * range at all we will return 1.
3661 int test_check_exists(struct btrfs_block_group_cache
*cache
,
3662 u64 offset
, u64 bytes
)
3664 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3665 struct btrfs_free_space
*info
;
3668 spin_lock(&ctl
->tree_lock
);
3669 info
= tree_search_offset(ctl
, offset
, 0, 0);
3671 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3679 u64 bit_off
, bit_bytes
;
3681 struct btrfs_free_space
*tmp
;
3684 bit_bytes
= ctl
->unit
;
3685 ret
= search_bitmap(ctl
, info
, &bit_off
, &bit_bytes
, false);
3687 if (bit_off
== offset
) {
3690 } else if (bit_off
> offset
&&
3691 offset
+ bytes
> bit_off
) {
3697 n
= rb_prev(&info
->offset_index
);
3699 tmp
= rb_entry(n
, struct btrfs_free_space
,
3701 if (tmp
->offset
+ tmp
->bytes
< offset
)
3703 if (offset
+ bytes
< tmp
->offset
) {
3704 n
= rb_prev(&tmp
->offset_index
);
3711 n
= rb_next(&info
->offset_index
);
3713 tmp
= rb_entry(n
, struct btrfs_free_space
,
3715 if (offset
+ bytes
< tmp
->offset
)
3717 if (tmp
->offset
+ tmp
->bytes
< offset
) {
3718 n
= rb_next(&tmp
->offset_index
);
3729 if (info
->offset
== offset
) {
3734 if (offset
> info
->offset
&& offset
< info
->offset
+ info
->bytes
)
3737 spin_unlock(&ctl
->tree_lock
);
3740 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */