crypto: hisilicon: no need to check return value of debugfs_create functions
[linux/fpc-iii.git] / fs / io_uring.c
bloba30c4f622cb3691d4b40f62154dfa3f057e08f8a
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
50 #include <linux/sched/signal.h>
51 #include <linux/fs.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/mmu_context.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/workqueue.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
74 #include <uapi/linux/io_uring.h>
76 #include "internal.h"
78 #define IORING_MAX_ENTRIES 32768
79 #define IORING_MAX_FIXED_FILES 1024
81 struct io_uring {
82 u32 head ____cacheline_aligned_in_smp;
83 u32 tail ____cacheline_aligned_in_smp;
87 * This data is shared with the application through the mmap at offsets
88 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
90 * The offsets to the member fields are published through struct
91 * io_sqring_offsets when calling io_uring_setup.
93 struct io_rings {
95 * Head and tail offsets into the ring; the offsets need to be
96 * masked to get valid indices.
98 * The kernel controls head of the sq ring and the tail of the cq ring,
99 * and the application controls tail of the sq ring and the head of the
100 * cq ring.
102 struct io_uring sq, cq;
104 * Bitmasks to apply to head and tail offsets (constant, equals
105 * ring_entries - 1)
107 u32 sq_ring_mask, cq_ring_mask;
108 /* Ring sizes (constant, power of 2) */
109 u32 sq_ring_entries, cq_ring_entries;
111 * Number of invalid entries dropped by the kernel due to
112 * invalid index stored in array
114 * Written by the kernel, shouldn't be modified by the
115 * application (i.e. get number of "new events" by comparing to
116 * cached value).
118 * After a new SQ head value was read by the application this
119 * counter includes all submissions that were dropped reaching
120 * the new SQ head (and possibly more).
122 u32 sq_dropped;
124 * Runtime flags
126 * Written by the kernel, shouldn't be modified by the
127 * application.
129 * The application needs a full memory barrier before checking
130 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
132 u32 sq_flags;
134 * Number of completion events lost because the queue was full;
135 * this should be avoided by the application by making sure
136 * there are not more requests pending thatn there is space in
137 * the completion queue.
139 * Written by the kernel, shouldn't be modified by the
140 * application (i.e. get number of "new events" by comparing to
141 * cached value).
143 * As completion events come in out of order this counter is not
144 * ordered with any other data.
146 u32 cq_overflow;
148 * Ring buffer of completion events.
150 * The kernel writes completion events fresh every time they are
151 * produced, so the application is allowed to modify pending
152 * entries.
154 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
157 struct io_mapped_ubuf {
158 u64 ubuf;
159 size_t len;
160 struct bio_vec *bvec;
161 unsigned int nr_bvecs;
164 struct async_list {
165 spinlock_t lock;
166 atomic_t cnt;
167 struct list_head list;
169 struct file *file;
170 off_t io_start;
171 size_t io_len;
174 struct io_ring_ctx {
175 struct {
176 struct percpu_ref refs;
177 } ____cacheline_aligned_in_smp;
179 struct {
180 unsigned int flags;
181 bool compat;
182 bool account_mem;
185 * Ring buffer of indices into array of io_uring_sqe, which is
186 * mmapped by the application using the IORING_OFF_SQES offset.
188 * This indirection could e.g. be used to assign fixed
189 * io_uring_sqe entries to operations and only submit them to
190 * the queue when needed.
192 * The kernel modifies neither the indices array nor the entries
193 * array.
195 u32 *sq_array;
196 unsigned cached_sq_head;
197 unsigned sq_entries;
198 unsigned sq_mask;
199 unsigned sq_thread_idle;
200 unsigned cached_sq_dropped;
201 struct io_uring_sqe *sq_sqes;
203 struct list_head defer_list;
204 struct list_head timeout_list;
205 } ____cacheline_aligned_in_smp;
207 /* IO offload */
208 struct workqueue_struct *sqo_wq[2];
209 struct task_struct *sqo_thread; /* if using sq thread polling */
210 struct mm_struct *sqo_mm;
211 wait_queue_head_t sqo_wait;
212 struct completion sqo_thread_started;
214 struct {
215 unsigned cached_cq_tail;
216 atomic_t cached_cq_overflow;
217 unsigned cq_entries;
218 unsigned cq_mask;
219 struct wait_queue_head cq_wait;
220 struct fasync_struct *cq_fasync;
221 struct eventfd_ctx *cq_ev_fd;
222 atomic_t cq_timeouts;
223 } ____cacheline_aligned_in_smp;
225 struct io_rings *rings;
228 * If used, fixed file set. Writers must ensure that ->refs is dead,
229 * readers must ensure that ->refs is alive as long as the file* is
230 * used. Only updated through io_uring_register(2).
232 struct file **user_files;
233 unsigned nr_user_files;
235 /* if used, fixed mapped user buffers */
236 unsigned nr_user_bufs;
237 struct io_mapped_ubuf *user_bufs;
239 struct user_struct *user;
241 struct completion ctx_done;
243 struct {
244 struct mutex uring_lock;
245 wait_queue_head_t wait;
246 } ____cacheline_aligned_in_smp;
248 struct {
249 spinlock_t completion_lock;
250 bool poll_multi_file;
252 * ->poll_list is protected by the ctx->uring_lock for
253 * io_uring instances that don't use IORING_SETUP_SQPOLL.
254 * For SQPOLL, only the single threaded io_sq_thread() will
255 * manipulate the list, hence no extra locking is needed there.
257 struct list_head poll_list;
258 struct list_head cancel_list;
259 } ____cacheline_aligned_in_smp;
261 struct async_list pending_async[2];
263 #if defined(CONFIG_UNIX)
264 struct socket *ring_sock;
265 #endif
268 struct sqe_submit {
269 const struct io_uring_sqe *sqe;
270 unsigned short index;
271 u32 sequence;
272 bool has_user;
273 bool needs_lock;
274 bool needs_fixed_file;
278 * First field must be the file pointer in all the
279 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
281 struct io_poll_iocb {
282 struct file *file;
283 struct wait_queue_head *head;
284 __poll_t events;
285 bool done;
286 bool canceled;
287 struct wait_queue_entry wait;
290 struct io_timeout {
291 struct file *file;
292 struct hrtimer timer;
296 * NOTE! Each of the iocb union members has the file pointer
297 * as the first entry in their struct definition. So you can
298 * access the file pointer through any of the sub-structs,
299 * or directly as just 'ki_filp' in this struct.
301 struct io_kiocb {
302 union {
303 struct file *file;
304 struct kiocb rw;
305 struct io_poll_iocb poll;
306 struct io_timeout timeout;
309 struct sqe_submit submit;
311 struct io_ring_ctx *ctx;
312 struct list_head list;
313 struct list_head link_list;
314 unsigned int flags;
315 refcount_t refs;
316 #define REQ_F_NOWAIT 1 /* must not punt to workers */
317 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
318 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
319 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
320 #define REQ_F_IO_DRAIN 16 /* drain existing IO first */
321 #define REQ_F_IO_DRAINED 32 /* drain done */
322 #define REQ_F_LINK 64 /* linked sqes */
323 #define REQ_F_LINK_DONE 128 /* linked sqes done */
324 #define REQ_F_FAIL_LINK 256 /* fail rest of links */
325 #define REQ_F_SHADOW_DRAIN 512 /* link-drain shadow req */
326 #define REQ_F_TIMEOUT 1024 /* timeout request */
327 #define REQ_F_ISREG 2048 /* regular file */
328 #define REQ_F_MUST_PUNT 4096 /* must be punted even for NONBLOCK */
329 u64 user_data;
330 u32 result;
331 u32 sequence;
333 struct work_struct work;
336 #define IO_PLUG_THRESHOLD 2
337 #define IO_IOPOLL_BATCH 8
339 struct io_submit_state {
340 struct blk_plug plug;
343 * io_kiocb alloc cache
345 void *reqs[IO_IOPOLL_BATCH];
346 unsigned int free_reqs;
347 unsigned int cur_req;
350 * File reference cache
352 struct file *file;
353 unsigned int fd;
354 unsigned int has_refs;
355 unsigned int used_refs;
356 unsigned int ios_left;
359 static void io_sq_wq_submit_work(struct work_struct *work);
360 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
361 long res);
362 static void __io_free_req(struct io_kiocb *req);
364 static struct kmem_cache *req_cachep;
366 static const struct file_operations io_uring_fops;
368 struct sock *io_uring_get_socket(struct file *file)
370 #if defined(CONFIG_UNIX)
371 if (file->f_op == &io_uring_fops) {
372 struct io_ring_ctx *ctx = file->private_data;
374 return ctx->ring_sock->sk;
376 #endif
377 return NULL;
379 EXPORT_SYMBOL(io_uring_get_socket);
381 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
383 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
385 complete(&ctx->ctx_done);
388 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
390 struct io_ring_ctx *ctx;
391 int i;
393 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
394 if (!ctx)
395 return NULL;
397 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
398 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
399 kfree(ctx);
400 return NULL;
403 ctx->flags = p->flags;
404 init_waitqueue_head(&ctx->cq_wait);
405 init_completion(&ctx->ctx_done);
406 init_completion(&ctx->sqo_thread_started);
407 mutex_init(&ctx->uring_lock);
408 init_waitqueue_head(&ctx->wait);
409 for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
410 spin_lock_init(&ctx->pending_async[i].lock);
411 INIT_LIST_HEAD(&ctx->pending_async[i].list);
412 atomic_set(&ctx->pending_async[i].cnt, 0);
414 spin_lock_init(&ctx->completion_lock);
415 INIT_LIST_HEAD(&ctx->poll_list);
416 INIT_LIST_HEAD(&ctx->cancel_list);
417 INIT_LIST_HEAD(&ctx->defer_list);
418 INIT_LIST_HEAD(&ctx->timeout_list);
419 return ctx;
422 static inline bool __io_sequence_defer(struct io_ring_ctx *ctx,
423 struct io_kiocb *req)
425 return req->sequence != ctx->cached_cq_tail + ctx->cached_sq_dropped
426 + atomic_read(&ctx->cached_cq_overflow);
429 static inline bool io_sequence_defer(struct io_ring_ctx *ctx,
430 struct io_kiocb *req)
432 if ((req->flags & (REQ_F_IO_DRAIN|REQ_F_IO_DRAINED)) != REQ_F_IO_DRAIN)
433 return false;
435 return __io_sequence_defer(ctx, req);
438 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
440 struct io_kiocb *req;
442 req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
443 if (req && !io_sequence_defer(ctx, req)) {
444 list_del_init(&req->list);
445 return req;
448 return NULL;
451 static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
453 struct io_kiocb *req;
455 req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
456 if (req && !__io_sequence_defer(ctx, req)) {
457 list_del_init(&req->list);
458 return req;
461 return NULL;
464 static void __io_commit_cqring(struct io_ring_ctx *ctx)
466 struct io_rings *rings = ctx->rings;
468 if (ctx->cached_cq_tail != READ_ONCE(rings->cq.tail)) {
469 /* order cqe stores with ring update */
470 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
472 if (wq_has_sleeper(&ctx->cq_wait)) {
473 wake_up_interruptible(&ctx->cq_wait);
474 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
479 static inline void io_queue_async_work(struct io_ring_ctx *ctx,
480 struct io_kiocb *req)
482 int rw = 0;
484 if (req->submit.sqe) {
485 switch (req->submit.sqe->opcode) {
486 case IORING_OP_WRITEV:
487 case IORING_OP_WRITE_FIXED:
488 rw = !(req->rw.ki_flags & IOCB_DIRECT);
489 break;
493 queue_work(ctx->sqo_wq[rw], &req->work);
496 static void io_kill_timeout(struct io_kiocb *req)
498 int ret;
500 ret = hrtimer_try_to_cancel(&req->timeout.timer);
501 if (ret != -1) {
502 atomic_inc(&req->ctx->cq_timeouts);
503 list_del(&req->list);
504 io_cqring_fill_event(req->ctx, req->user_data, 0);
505 __io_free_req(req);
509 static void io_kill_timeouts(struct io_ring_ctx *ctx)
511 struct io_kiocb *req, *tmp;
513 spin_lock_irq(&ctx->completion_lock);
514 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
515 io_kill_timeout(req);
516 spin_unlock_irq(&ctx->completion_lock);
519 static void io_commit_cqring(struct io_ring_ctx *ctx)
521 struct io_kiocb *req;
523 while ((req = io_get_timeout_req(ctx)) != NULL)
524 io_kill_timeout(req);
526 __io_commit_cqring(ctx);
528 while ((req = io_get_deferred_req(ctx)) != NULL) {
529 if (req->flags & REQ_F_SHADOW_DRAIN) {
530 /* Just for drain, free it. */
531 __io_free_req(req);
532 continue;
534 req->flags |= REQ_F_IO_DRAINED;
535 io_queue_async_work(ctx, req);
539 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
541 struct io_rings *rings = ctx->rings;
542 unsigned tail;
544 tail = ctx->cached_cq_tail;
546 * writes to the cq entry need to come after reading head; the
547 * control dependency is enough as we're using WRITE_ONCE to
548 * fill the cq entry
550 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
551 return NULL;
553 ctx->cached_cq_tail++;
554 return &rings->cqes[tail & ctx->cq_mask];
557 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
558 long res)
560 struct io_uring_cqe *cqe;
563 * If we can't get a cq entry, userspace overflowed the
564 * submission (by quite a lot). Increment the overflow count in
565 * the ring.
567 cqe = io_get_cqring(ctx);
568 if (cqe) {
569 WRITE_ONCE(cqe->user_data, ki_user_data);
570 WRITE_ONCE(cqe->res, res);
571 WRITE_ONCE(cqe->flags, 0);
572 } else {
573 WRITE_ONCE(ctx->rings->cq_overflow,
574 atomic_inc_return(&ctx->cached_cq_overflow));
578 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
580 if (waitqueue_active(&ctx->wait))
581 wake_up(&ctx->wait);
582 if (waitqueue_active(&ctx->sqo_wait))
583 wake_up(&ctx->sqo_wait);
584 if (ctx->cq_ev_fd)
585 eventfd_signal(ctx->cq_ev_fd, 1);
588 static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 user_data,
589 long res)
591 unsigned long flags;
593 spin_lock_irqsave(&ctx->completion_lock, flags);
594 io_cqring_fill_event(ctx, user_data, res);
595 io_commit_cqring(ctx);
596 spin_unlock_irqrestore(&ctx->completion_lock, flags);
598 io_cqring_ev_posted(ctx);
601 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
602 struct io_submit_state *state)
604 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
605 struct io_kiocb *req;
607 if (!percpu_ref_tryget(&ctx->refs))
608 return NULL;
610 if (!state) {
611 req = kmem_cache_alloc(req_cachep, gfp);
612 if (unlikely(!req))
613 goto out;
614 } else if (!state->free_reqs) {
615 size_t sz;
616 int ret;
618 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
619 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
622 * Bulk alloc is all-or-nothing. If we fail to get a batch,
623 * retry single alloc to be on the safe side.
625 if (unlikely(ret <= 0)) {
626 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
627 if (!state->reqs[0])
628 goto out;
629 ret = 1;
631 state->free_reqs = ret - 1;
632 state->cur_req = 1;
633 req = state->reqs[0];
634 } else {
635 req = state->reqs[state->cur_req];
636 state->free_reqs--;
637 state->cur_req++;
640 req->file = NULL;
641 req->ctx = ctx;
642 req->flags = 0;
643 /* one is dropped after submission, the other at completion */
644 refcount_set(&req->refs, 2);
645 req->result = 0;
646 return req;
647 out:
648 percpu_ref_put(&ctx->refs);
649 return NULL;
652 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
654 if (*nr) {
655 kmem_cache_free_bulk(req_cachep, *nr, reqs);
656 percpu_ref_put_many(&ctx->refs, *nr);
657 *nr = 0;
661 static void __io_free_req(struct io_kiocb *req)
663 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
664 fput(req->file);
665 percpu_ref_put(&req->ctx->refs);
666 kmem_cache_free(req_cachep, req);
669 static void io_req_link_next(struct io_kiocb *req)
671 struct io_kiocb *nxt;
674 * The list should never be empty when we are called here. But could
675 * potentially happen if the chain is messed up, check to be on the
676 * safe side.
678 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb, list);
679 if (nxt) {
680 list_del(&nxt->list);
681 if (!list_empty(&req->link_list)) {
682 INIT_LIST_HEAD(&nxt->link_list);
683 list_splice(&req->link_list, &nxt->link_list);
684 nxt->flags |= REQ_F_LINK;
687 nxt->flags |= REQ_F_LINK_DONE;
688 INIT_WORK(&nxt->work, io_sq_wq_submit_work);
689 io_queue_async_work(req->ctx, nxt);
694 * Called if REQ_F_LINK is set, and we fail the head request
696 static void io_fail_links(struct io_kiocb *req)
698 struct io_kiocb *link;
700 while (!list_empty(&req->link_list)) {
701 link = list_first_entry(&req->link_list, struct io_kiocb, list);
702 list_del(&link->list);
704 io_cqring_add_event(req->ctx, link->user_data, -ECANCELED);
705 __io_free_req(link);
709 static void io_free_req(struct io_kiocb *req)
712 * If LINK is set, we have dependent requests in this chain. If we
713 * didn't fail this request, queue the first one up, moving any other
714 * dependencies to the next request. In case of failure, fail the rest
715 * of the chain.
717 if (req->flags & REQ_F_LINK) {
718 if (req->flags & REQ_F_FAIL_LINK)
719 io_fail_links(req);
720 else
721 io_req_link_next(req);
724 __io_free_req(req);
727 static void io_put_req(struct io_kiocb *req)
729 if (refcount_dec_and_test(&req->refs))
730 io_free_req(req);
733 static unsigned io_cqring_events(struct io_rings *rings)
735 /* See comment at the top of this file */
736 smp_rmb();
737 return READ_ONCE(rings->cq.tail) - READ_ONCE(rings->cq.head);
740 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
742 struct io_rings *rings = ctx->rings;
744 /* make sure SQ entry isn't read before tail */
745 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
749 * Find and free completed poll iocbs
751 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
752 struct list_head *done)
754 void *reqs[IO_IOPOLL_BATCH];
755 struct io_kiocb *req;
756 int to_free;
758 to_free = 0;
759 while (!list_empty(done)) {
760 req = list_first_entry(done, struct io_kiocb, list);
761 list_del(&req->list);
763 io_cqring_fill_event(ctx, req->user_data, req->result);
764 (*nr_events)++;
766 if (refcount_dec_and_test(&req->refs)) {
767 /* If we're not using fixed files, we have to pair the
768 * completion part with the file put. Use regular
769 * completions for those, only batch free for fixed
770 * file and non-linked commands.
772 if ((req->flags & (REQ_F_FIXED_FILE|REQ_F_LINK)) ==
773 REQ_F_FIXED_FILE) {
774 reqs[to_free++] = req;
775 if (to_free == ARRAY_SIZE(reqs))
776 io_free_req_many(ctx, reqs, &to_free);
777 } else {
778 io_free_req(req);
783 io_commit_cqring(ctx);
784 io_free_req_many(ctx, reqs, &to_free);
787 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
788 long min)
790 struct io_kiocb *req, *tmp;
791 LIST_HEAD(done);
792 bool spin;
793 int ret;
796 * Only spin for completions if we don't have multiple devices hanging
797 * off our complete list, and we're under the requested amount.
799 spin = !ctx->poll_multi_file && *nr_events < min;
801 ret = 0;
802 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
803 struct kiocb *kiocb = &req->rw;
806 * Move completed entries to our local list. If we find a
807 * request that requires polling, break out and complete
808 * the done list first, if we have entries there.
810 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
811 list_move_tail(&req->list, &done);
812 continue;
814 if (!list_empty(&done))
815 break;
817 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
818 if (ret < 0)
819 break;
821 if (ret && spin)
822 spin = false;
823 ret = 0;
826 if (!list_empty(&done))
827 io_iopoll_complete(ctx, nr_events, &done);
829 return ret;
833 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
834 * non-spinning poll check - we'll still enter the driver poll loop, but only
835 * as a non-spinning completion check.
837 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
838 long min)
840 while (!list_empty(&ctx->poll_list) && !need_resched()) {
841 int ret;
843 ret = io_do_iopoll(ctx, nr_events, min);
844 if (ret < 0)
845 return ret;
846 if (!min || *nr_events >= min)
847 return 0;
850 return 1;
854 * We can't just wait for polled events to come to us, we have to actively
855 * find and complete them.
857 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
859 if (!(ctx->flags & IORING_SETUP_IOPOLL))
860 return;
862 mutex_lock(&ctx->uring_lock);
863 while (!list_empty(&ctx->poll_list)) {
864 unsigned int nr_events = 0;
866 io_iopoll_getevents(ctx, &nr_events, 1);
869 * Ensure we allow local-to-the-cpu processing to take place,
870 * in this case we need to ensure that we reap all events.
872 cond_resched();
874 mutex_unlock(&ctx->uring_lock);
877 static int __io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
878 long min)
880 int iters = 0, ret = 0;
882 do {
883 int tmin = 0;
886 * Don't enter poll loop if we already have events pending.
887 * If we do, we can potentially be spinning for commands that
888 * already triggered a CQE (eg in error).
890 if (io_cqring_events(ctx->rings))
891 break;
894 * If a submit got punted to a workqueue, we can have the
895 * application entering polling for a command before it gets
896 * issued. That app will hold the uring_lock for the duration
897 * of the poll right here, so we need to take a breather every
898 * now and then to ensure that the issue has a chance to add
899 * the poll to the issued list. Otherwise we can spin here
900 * forever, while the workqueue is stuck trying to acquire the
901 * very same mutex.
903 if (!(++iters & 7)) {
904 mutex_unlock(&ctx->uring_lock);
905 mutex_lock(&ctx->uring_lock);
908 if (*nr_events < min)
909 tmin = min - *nr_events;
911 ret = io_iopoll_getevents(ctx, nr_events, tmin);
912 if (ret <= 0)
913 break;
914 ret = 0;
915 } while (min && !*nr_events && !need_resched());
917 return ret;
920 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
921 long min)
923 int ret;
926 * We disallow the app entering submit/complete with polling, but we
927 * still need to lock the ring to prevent racing with polled issue
928 * that got punted to a workqueue.
930 mutex_lock(&ctx->uring_lock);
931 ret = __io_iopoll_check(ctx, nr_events, min);
932 mutex_unlock(&ctx->uring_lock);
933 return ret;
936 static void kiocb_end_write(struct io_kiocb *req)
939 * Tell lockdep we inherited freeze protection from submission
940 * thread.
942 if (req->flags & REQ_F_ISREG) {
943 struct inode *inode = file_inode(req->file);
945 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
947 file_end_write(req->file);
950 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
952 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
954 if (kiocb->ki_flags & IOCB_WRITE)
955 kiocb_end_write(req);
957 if ((req->flags & REQ_F_LINK) && res != req->result)
958 req->flags |= REQ_F_FAIL_LINK;
959 io_cqring_add_event(req->ctx, req->user_data, res);
960 io_put_req(req);
963 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
965 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
967 if (kiocb->ki_flags & IOCB_WRITE)
968 kiocb_end_write(req);
970 if ((req->flags & REQ_F_LINK) && res != req->result)
971 req->flags |= REQ_F_FAIL_LINK;
972 req->result = res;
973 if (res != -EAGAIN)
974 req->flags |= REQ_F_IOPOLL_COMPLETED;
978 * After the iocb has been issued, it's safe to be found on the poll list.
979 * Adding the kiocb to the list AFTER submission ensures that we don't
980 * find it from a io_iopoll_getevents() thread before the issuer is done
981 * accessing the kiocb cookie.
983 static void io_iopoll_req_issued(struct io_kiocb *req)
985 struct io_ring_ctx *ctx = req->ctx;
988 * Track whether we have multiple files in our lists. This will impact
989 * how we do polling eventually, not spinning if we're on potentially
990 * different devices.
992 if (list_empty(&ctx->poll_list)) {
993 ctx->poll_multi_file = false;
994 } else if (!ctx->poll_multi_file) {
995 struct io_kiocb *list_req;
997 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
998 list);
999 if (list_req->rw.ki_filp != req->rw.ki_filp)
1000 ctx->poll_multi_file = true;
1004 * For fast devices, IO may have already completed. If it has, add
1005 * it to the front so we find it first.
1007 if (req->flags & REQ_F_IOPOLL_COMPLETED)
1008 list_add(&req->list, &ctx->poll_list);
1009 else
1010 list_add_tail(&req->list, &ctx->poll_list);
1013 static void io_file_put(struct io_submit_state *state)
1015 if (state->file) {
1016 int diff = state->has_refs - state->used_refs;
1018 if (diff)
1019 fput_many(state->file, diff);
1020 state->file = NULL;
1025 * Get as many references to a file as we have IOs left in this submission,
1026 * assuming most submissions are for one file, or at least that each file
1027 * has more than one submission.
1029 static struct file *io_file_get(struct io_submit_state *state, int fd)
1031 if (!state)
1032 return fget(fd);
1034 if (state->file) {
1035 if (state->fd == fd) {
1036 state->used_refs++;
1037 state->ios_left--;
1038 return state->file;
1040 io_file_put(state);
1042 state->file = fget_many(fd, state->ios_left);
1043 if (!state->file)
1044 return NULL;
1046 state->fd = fd;
1047 state->has_refs = state->ios_left;
1048 state->used_refs = 1;
1049 state->ios_left--;
1050 return state->file;
1054 * If we tracked the file through the SCM inflight mechanism, we could support
1055 * any file. For now, just ensure that anything potentially problematic is done
1056 * inline.
1058 static bool io_file_supports_async(struct file *file)
1060 umode_t mode = file_inode(file)->i_mode;
1062 if (S_ISBLK(mode) || S_ISCHR(mode))
1063 return true;
1064 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
1065 return true;
1067 return false;
1070 static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
1071 bool force_nonblock)
1073 const struct io_uring_sqe *sqe = s->sqe;
1074 struct io_ring_ctx *ctx = req->ctx;
1075 struct kiocb *kiocb = &req->rw;
1076 unsigned ioprio;
1077 int ret;
1079 if (!req->file)
1080 return -EBADF;
1082 if (S_ISREG(file_inode(req->file)->i_mode))
1083 req->flags |= REQ_F_ISREG;
1086 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
1087 * we know to async punt it even if it was opened O_NONBLOCK
1089 if (force_nonblock && !io_file_supports_async(req->file)) {
1090 req->flags |= REQ_F_MUST_PUNT;
1091 return -EAGAIN;
1094 kiocb->ki_pos = READ_ONCE(sqe->off);
1095 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
1096 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
1098 ioprio = READ_ONCE(sqe->ioprio);
1099 if (ioprio) {
1100 ret = ioprio_check_cap(ioprio);
1101 if (ret)
1102 return ret;
1104 kiocb->ki_ioprio = ioprio;
1105 } else
1106 kiocb->ki_ioprio = get_current_ioprio();
1108 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
1109 if (unlikely(ret))
1110 return ret;
1112 /* don't allow async punt if RWF_NOWAIT was requested */
1113 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
1114 (req->file->f_flags & O_NONBLOCK))
1115 req->flags |= REQ_F_NOWAIT;
1117 if (force_nonblock)
1118 kiocb->ki_flags |= IOCB_NOWAIT;
1120 if (ctx->flags & IORING_SETUP_IOPOLL) {
1121 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
1122 !kiocb->ki_filp->f_op->iopoll)
1123 return -EOPNOTSUPP;
1125 kiocb->ki_flags |= IOCB_HIPRI;
1126 kiocb->ki_complete = io_complete_rw_iopoll;
1127 } else {
1128 if (kiocb->ki_flags & IOCB_HIPRI)
1129 return -EINVAL;
1130 kiocb->ki_complete = io_complete_rw;
1132 return 0;
1135 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
1137 switch (ret) {
1138 case -EIOCBQUEUED:
1139 break;
1140 case -ERESTARTSYS:
1141 case -ERESTARTNOINTR:
1142 case -ERESTARTNOHAND:
1143 case -ERESTART_RESTARTBLOCK:
1145 * We can't just restart the syscall, since previously
1146 * submitted sqes may already be in progress. Just fail this
1147 * IO with EINTR.
1149 ret = -EINTR;
1150 /* fall through */
1151 default:
1152 kiocb->ki_complete(kiocb, ret, 0);
1156 static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
1157 const struct io_uring_sqe *sqe,
1158 struct iov_iter *iter)
1160 size_t len = READ_ONCE(sqe->len);
1161 struct io_mapped_ubuf *imu;
1162 unsigned index, buf_index;
1163 size_t offset;
1164 u64 buf_addr;
1166 /* attempt to use fixed buffers without having provided iovecs */
1167 if (unlikely(!ctx->user_bufs))
1168 return -EFAULT;
1170 buf_index = READ_ONCE(sqe->buf_index);
1171 if (unlikely(buf_index >= ctx->nr_user_bufs))
1172 return -EFAULT;
1174 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
1175 imu = &ctx->user_bufs[index];
1176 buf_addr = READ_ONCE(sqe->addr);
1178 /* overflow */
1179 if (buf_addr + len < buf_addr)
1180 return -EFAULT;
1181 /* not inside the mapped region */
1182 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
1183 return -EFAULT;
1186 * May not be a start of buffer, set size appropriately
1187 * and advance us to the beginning.
1189 offset = buf_addr - imu->ubuf;
1190 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
1192 if (offset) {
1194 * Don't use iov_iter_advance() here, as it's really slow for
1195 * using the latter parts of a big fixed buffer - it iterates
1196 * over each segment manually. We can cheat a bit here, because
1197 * we know that:
1199 * 1) it's a BVEC iter, we set it up
1200 * 2) all bvecs are PAGE_SIZE in size, except potentially the
1201 * first and last bvec
1203 * So just find our index, and adjust the iterator afterwards.
1204 * If the offset is within the first bvec (or the whole first
1205 * bvec, just use iov_iter_advance(). This makes it easier
1206 * since we can just skip the first segment, which may not
1207 * be PAGE_SIZE aligned.
1209 const struct bio_vec *bvec = imu->bvec;
1211 if (offset <= bvec->bv_len) {
1212 iov_iter_advance(iter, offset);
1213 } else {
1214 unsigned long seg_skip;
1216 /* skip first vec */
1217 offset -= bvec->bv_len;
1218 seg_skip = 1 + (offset >> PAGE_SHIFT);
1220 iter->bvec = bvec + seg_skip;
1221 iter->nr_segs -= seg_skip;
1222 iter->count -= bvec->bv_len + offset;
1223 iter->iov_offset = offset & ~PAGE_MASK;
1227 return 0;
1230 static ssize_t io_import_iovec(struct io_ring_ctx *ctx, int rw,
1231 const struct sqe_submit *s, struct iovec **iovec,
1232 struct iov_iter *iter)
1234 const struct io_uring_sqe *sqe = s->sqe;
1235 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
1236 size_t sqe_len = READ_ONCE(sqe->len);
1237 u8 opcode;
1240 * We're reading ->opcode for the second time, but the first read
1241 * doesn't care whether it's _FIXED or not, so it doesn't matter
1242 * whether ->opcode changes concurrently. The first read does care
1243 * about whether it is a READ or a WRITE, so we don't trust this read
1244 * for that purpose and instead let the caller pass in the read/write
1245 * flag.
1247 opcode = READ_ONCE(sqe->opcode);
1248 if (opcode == IORING_OP_READ_FIXED ||
1249 opcode == IORING_OP_WRITE_FIXED) {
1250 ssize_t ret = io_import_fixed(ctx, rw, sqe, iter);
1251 *iovec = NULL;
1252 return ret;
1255 if (!s->has_user)
1256 return -EFAULT;
1258 #ifdef CONFIG_COMPAT
1259 if (ctx->compat)
1260 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
1261 iovec, iter);
1262 #endif
1264 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
1267 static inline bool io_should_merge(struct async_list *al, struct kiocb *kiocb)
1269 if (al->file == kiocb->ki_filp) {
1270 off_t start, end;
1273 * Allow merging if we're anywhere in the range of the same
1274 * page. Generally this happens for sub-page reads or writes,
1275 * and it's beneficial to allow the first worker to bring the
1276 * page in and the piggy backed work can then work on the
1277 * cached page.
1279 start = al->io_start & PAGE_MASK;
1280 end = (al->io_start + al->io_len + PAGE_SIZE - 1) & PAGE_MASK;
1281 if (kiocb->ki_pos >= start && kiocb->ki_pos <= end)
1282 return true;
1285 al->file = NULL;
1286 return false;
1290 * Make a note of the last file/offset/direction we punted to async
1291 * context. We'll use this information to see if we can piggy back a
1292 * sequential request onto the previous one, if it's still hasn't been
1293 * completed by the async worker.
1295 static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
1297 struct async_list *async_list = &req->ctx->pending_async[rw];
1298 struct kiocb *kiocb = &req->rw;
1299 struct file *filp = kiocb->ki_filp;
1301 if (io_should_merge(async_list, kiocb)) {
1302 unsigned long max_bytes;
1304 /* Use 8x RA size as a decent limiter for both reads/writes */
1305 max_bytes = filp->f_ra.ra_pages << (PAGE_SHIFT + 3);
1306 if (!max_bytes)
1307 max_bytes = VM_READAHEAD_PAGES << (PAGE_SHIFT + 3);
1309 /* If max len are exceeded, reset the state */
1310 if (async_list->io_len + len <= max_bytes) {
1311 req->flags |= REQ_F_SEQ_PREV;
1312 async_list->io_len += len;
1313 } else {
1314 async_list->file = NULL;
1318 /* New file? Reset state. */
1319 if (async_list->file != filp) {
1320 async_list->io_start = kiocb->ki_pos;
1321 async_list->io_len = len;
1322 async_list->file = filp;
1327 * For files that don't have ->read_iter() and ->write_iter(), handle them
1328 * by looping over ->read() or ->write() manually.
1330 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
1331 struct iov_iter *iter)
1333 ssize_t ret = 0;
1336 * Don't support polled IO through this interface, and we can't
1337 * support non-blocking either. For the latter, this just causes
1338 * the kiocb to be handled from an async context.
1340 if (kiocb->ki_flags & IOCB_HIPRI)
1341 return -EOPNOTSUPP;
1342 if (kiocb->ki_flags & IOCB_NOWAIT)
1343 return -EAGAIN;
1345 while (iov_iter_count(iter)) {
1346 struct iovec iovec = iov_iter_iovec(iter);
1347 ssize_t nr;
1349 if (rw == READ) {
1350 nr = file->f_op->read(file, iovec.iov_base,
1351 iovec.iov_len, &kiocb->ki_pos);
1352 } else {
1353 nr = file->f_op->write(file, iovec.iov_base,
1354 iovec.iov_len, &kiocb->ki_pos);
1357 if (nr < 0) {
1358 if (!ret)
1359 ret = nr;
1360 break;
1362 ret += nr;
1363 if (nr != iovec.iov_len)
1364 break;
1365 iov_iter_advance(iter, nr);
1368 return ret;
1371 static int io_read(struct io_kiocb *req, const struct sqe_submit *s,
1372 bool force_nonblock)
1374 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1375 struct kiocb *kiocb = &req->rw;
1376 struct iov_iter iter;
1377 struct file *file;
1378 size_t iov_count;
1379 ssize_t read_size, ret;
1381 ret = io_prep_rw(req, s, force_nonblock);
1382 if (ret)
1383 return ret;
1384 file = kiocb->ki_filp;
1386 if (unlikely(!(file->f_mode & FMODE_READ)))
1387 return -EBADF;
1389 ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
1390 if (ret < 0)
1391 return ret;
1393 read_size = ret;
1394 if (req->flags & REQ_F_LINK)
1395 req->result = read_size;
1397 iov_count = iov_iter_count(&iter);
1398 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
1399 if (!ret) {
1400 ssize_t ret2;
1402 if (file->f_op->read_iter)
1403 ret2 = call_read_iter(file, kiocb, &iter);
1404 else
1405 ret2 = loop_rw_iter(READ, file, kiocb, &iter);
1408 * In case of a short read, punt to async. This can happen
1409 * if we have data partially cached. Alternatively we can
1410 * return the short read, in which case the application will
1411 * need to issue another SQE and wait for it. That SQE will
1412 * need async punt anyway, so it's more efficient to do it
1413 * here.
1415 if (force_nonblock && !(req->flags & REQ_F_NOWAIT) &&
1416 (req->flags & REQ_F_ISREG) &&
1417 ret2 > 0 && ret2 < read_size)
1418 ret2 = -EAGAIN;
1419 /* Catch -EAGAIN return for forced non-blocking submission */
1420 if (!force_nonblock || ret2 != -EAGAIN) {
1421 io_rw_done(kiocb, ret2);
1422 } else {
1424 * If ->needs_lock is true, we're already in async
1425 * context.
1427 if (!s->needs_lock)
1428 io_async_list_note(READ, req, iov_count);
1429 ret = -EAGAIN;
1432 kfree(iovec);
1433 return ret;
1436 static int io_write(struct io_kiocb *req, const struct sqe_submit *s,
1437 bool force_nonblock)
1439 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1440 struct kiocb *kiocb = &req->rw;
1441 struct iov_iter iter;
1442 struct file *file;
1443 size_t iov_count;
1444 ssize_t ret;
1446 ret = io_prep_rw(req, s, force_nonblock);
1447 if (ret)
1448 return ret;
1450 file = kiocb->ki_filp;
1451 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1452 return -EBADF;
1454 ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1455 if (ret < 0)
1456 return ret;
1458 if (req->flags & REQ_F_LINK)
1459 req->result = ret;
1461 iov_count = iov_iter_count(&iter);
1463 ret = -EAGAIN;
1464 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1465 /* If ->needs_lock is true, we're already in async context. */
1466 if (!s->needs_lock)
1467 io_async_list_note(WRITE, req, iov_count);
1468 goto out_free;
1471 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1472 if (!ret) {
1473 ssize_t ret2;
1476 * Open-code file_start_write here to grab freeze protection,
1477 * which will be released by another thread in
1478 * io_complete_rw(). Fool lockdep by telling it the lock got
1479 * released so that it doesn't complain about the held lock when
1480 * we return to userspace.
1482 if (req->flags & REQ_F_ISREG) {
1483 __sb_start_write(file_inode(file)->i_sb,
1484 SB_FREEZE_WRITE, true);
1485 __sb_writers_release(file_inode(file)->i_sb,
1486 SB_FREEZE_WRITE);
1488 kiocb->ki_flags |= IOCB_WRITE;
1490 if (file->f_op->write_iter)
1491 ret2 = call_write_iter(file, kiocb, &iter);
1492 else
1493 ret2 = loop_rw_iter(WRITE, file, kiocb, &iter);
1494 if (!force_nonblock || ret2 != -EAGAIN) {
1495 io_rw_done(kiocb, ret2);
1496 } else {
1498 * If ->needs_lock is true, we're already in async
1499 * context.
1501 if (!s->needs_lock)
1502 io_async_list_note(WRITE, req, iov_count);
1503 ret = -EAGAIN;
1506 out_free:
1507 kfree(iovec);
1508 return ret;
1512 * IORING_OP_NOP just posts a completion event, nothing else.
1514 static int io_nop(struct io_kiocb *req, u64 user_data)
1516 struct io_ring_ctx *ctx = req->ctx;
1517 long err = 0;
1519 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1520 return -EINVAL;
1522 io_cqring_add_event(ctx, user_data, err);
1523 io_put_req(req);
1524 return 0;
1527 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1529 struct io_ring_ctx *ctx = req->ctx;
1531 if (!req->file)
1532 return -EBADF;
1534 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1535 return -EINVAL;
1536 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1537 return -EINVAL;
1539 return 0;
1542 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1543 bool force_nonblock)
1545 loff_t sqe_off = READ_ONCE(sqe->off);
1546 loff_t sqe_len = READ_ONCE(sqe->len);
1547 loff_t end = sqe_off + sqe_len;
1548 unsigned fsync_flags;
1549 int ret;
1551 fsync_flags = READ_ONCE(sqe->fsync_flags);
1552 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1553 return -EINVAL;
1555 ret = io_prep_fsync(req, sqe);
1556 if (ret)
1557 return ret;
1559 /* fsync always requires a blocking context */
1560 if (force_nonblock)
1561 return -EAGAIN;
1563 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1564 end > 0 ? end : LLONG_MAX,
1565 fsync_flags & IORING_FSYNC_DATASYNC);
1567 if (ret < 0 && (req->flags & REQ_F_LINK))
1568 req->flags |= REQ_F_FAIL_LINK;
1569 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1570 io_put_req(req);
1571 return 0;
1574 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1576 struct io_ring_ctx *ctx = req->ctx;
1577 int ret = 0;
1579 if (!req->file)
1580 return -EBADF;
1582 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1583 return -EINVAL;
1584 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1585 return -EINVAL;
1587 return ret;
1590 static int io_sync_file_range(struct io_kiocb *req,
1591 const struct io_uring_sqe *sqe,
1592 bool force_nonblock)
1594 loff_t sqe_off;
1595 loff_t sqe_len;
1596 unsigned flags;
1597 int ret;
1599 ret = io_prep_sfr(req, sqe);
1600 if (ret)
1601 return ret;
1603 /* sync_file_range always requires a blocking context */
1604 if (force_nonblock)
1605 return -EAGAIN;
1607 sqe_off = READ_ONCE(sqe->off);
1608 sqe_len = READ_ONCE(sqe->len);
1609 flags = READ_ONCE(sqe->sync_range_flags);
1611 ret = sync_file_range(req->rw.ki_filp, sqe_off, sqe_len, flags);
1613 if (ret < 0 && (req->flags & REQ_F_LINK))
1614 req->flags |= REQ_F_FAIL_LINK;
1615 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1616 io_put_req(req);
1617 return 0;
1620 #if defined(CONFIG_NET)
1621 static int io_send_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1622 bool force_nonblock,
1623 long (*fn)(struct socket *, struct user_msghdr __user *,
1624 unsigned int))
1626 struct socket *sock;
1627 int ret;
1629 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1630 return -EINVAL;
1632 sock = sock_from_file(req->file, &ret);
1633 if (sock) {
1634 struct user_msghdr __user *msg;
1635 unsigned flags;
1637 flags = READ_ONCE(sqe->msg_flags);
1638 if (flags & MSG_DONTWAIT)
1639 req->flags |= REQ_F_NOWAIT;
1640 else if (force_nonblock)
1641 flags |= MSG_DONTWAIT;
1643 msg = (struct user_msghdr __user *) (unsigned long)
1644 READ_ONCE(sqe->addr);
1646 ret = fn(sock, msg, flags);
1647 if (force_nonblock && ret == -EAGAIN)
1648 return ret;
1651 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1652 io_put_req(req);
1653 return 0;
1655 #endif
1657 static int io_sendmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1658 bool force_nonblock)
1660 #if defined(CONFIG_NET)
1661 return io_send_recvmsg(req, sqe, force_nonblock, __sys_sendmsg_sock);
1662 #else
1663 return -EOPNOTSUPP;
1664 #endif
1667 static int io_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1668 bool force_nonblock)
1670 #if defined(CONFIG_NET)
1671 return io_send_recvmsg(req, sqe, force_nonblock, __sys_recvmsg_sock);
1672 #else
1673 return -EOPNOTSUPP;
1674 #endif
1677 static void io_poll_remove_one(struct io_kiocb *req)
1679 struct io_poll_iocb *poll = &req->poll;
1681 spin_lock(&poll->head->lock);
1682 WRITE_ONCE(poll->canceled, true);
1683 if (!list_empty(&poll->wait.entry)) {
1684 list_del_init(&poll->wait.entry);
1685 io_queue_async_work(req->ctx, req);
1687 spin_unlock(&poll->head->lock);
1689 list_del_init(&req->list);
1692 static void io_poll_remove_all(struct io_ring_ctx *ctx)
1694 struct io_kiocb *req;
1696 spin_lock_irq(&ctx->completion_lock);
1697 while (!list_empty(&ctx->cancel_list)) {
1698 req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1699 io_poll_remove_one(req);
1701 spin_unlock_irq(&ctx->completion_lock);
1705 * Find a running poll command that matches one specified in sqe->addr,
1706 * and remove it if found.
1708 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1710 struct io_ring_ctx *ctx = req->ctx;
1711 struct io_kiocb *poll_req, *next;
1712 int ret = -ENOENT;
1714 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1715 return -EINVAL;
1716 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1717 sqe->poll_events)
1718 return -EINVAL;
1720 spin_lock_irq(&ctx->completion_lock);
1721 list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1722 if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1723 io_poll_remove_one(poll_req);
1724 ret = 0;
1725 break;
1728 spin_unlock_irq(&ctx->completion_lock);
1730 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1731 io_put_req(req);
1732 return 0;
1735 static void io_poll_complete(struct io_ring_ctx *ctx, struct io_kiocb *req,
1736 __poll_t mask)
1738 req->poll.done = true;
1739 io_cqring_fill_event(ctx, req->user_data, mangle_poll(mask));
1740 io_commit_cqring(ctx);
1743 static void io_poll_complete_work(struct work_struct *work)
1745 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1746 struct io_poll_iocb *poll = &req->poll;
1747 struct poll_table_struct pt = { ._key = poll->events };
1748 struct io_ring_ctx *ctx = req->ctx;
1749 __poll_t mask = 0;
1751 if (!READ_ONCE(poll->canceled))
1752 mask = vfs_poll(poll->file, &pt) & poll->events;
1755 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1756 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1757 * synchronize with them. In the cancellation case the list_del_init
1758 * itself is not actually needed, but harmless so we keep it in to
1759 * avoid further branches in the fast path.
1761 spin_lock_irq(&ctx->completion_lock);
1762 if (!mask && !READ_ONCE(poll->canceled)) {
1763 add_wait_queue(poll->head, &poll->wait);
1764 spin_unlock_irq(&ctx->completion_lock);
1765 return;
1767 list_del_init(&req->list);
1768 io_poll_complete(ctx, req, mask);
1769 spin_unlock_irq(&ctx->completion_lock);
1771 io_cqring_ev_posted(ctx);
1772 io_put_req(req);
1775 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1776 void *key)
1778 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1779 wait);
1780 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1781 struct io_ring_ctx *ctx = req->ctx;
1782 __poll_t mask = key_to_poll(key);
1783 unsigned long flags;
1785 /* for instances that support it check for an event match first: */
1786 if (mask && !(mask & poll->events))
1787 return 0;
1789 list_del_init(&poll->wait.entry);
1791 if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1792 list_del(&req->list);
1793 io_poll_complete(ctx, req, mask);
1794 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1796 io_cqring_ev_posted(ctx);
1797 io_put_req(req);
1798 } else {
1799 io_queue_async_work(ctx, req);
1802 return 1;
1805 struct io_poll_table {
1806 struct poll_table_struct pt;
1807 struct io_kiocb *req;
1808 int error;
1811 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1812 struct poll_table_struct *p)
1814 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1816 if (unlikely(pt->req->poll.head)) {
1817 pt->error = -EINVAL;
1818 return;
1821 pt->error = 0;
1822 pt->req->poll.head = head;
1823 add_wait_queue(head, &pt->req->poll.wait);
1826 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1828 struct io_poll_iocb *poll = &req->poll;
1829 struct io_ring_ctx *ctx = req->ctx;
1830 struct io_poll_table ipt;
1831 bool cancel = false;
1832 __poll_t mask;
1833 u16 events;
1835 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1836 return -EINVAL;
1837 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1838 return -EINVAL;
1839 if (!poll->file)
1840 return -EBADF;
1842 req->submit.sqe = NULL;
1843 INIT_WORK(&req->work, io_poll_complete_work);
1844 events = READ_ONCE(sqe->poll_events);
1845 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1847 poll->head = NULL;
1848 poll->done = false;
1849 poll->canceled = false;
1851 ipt.pt._qproc = io_poll_queue_proc;
1852 ipt.pt._key = poll->events;
1853 ipt.req = req;
1854 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1856 /* initialized the list so that we can do list_empty checks */
1857 INIT_LIST_HEAD(&poll->wait.entry);
1858 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1860 INIT_LIST_HEAD(&req->list);
1862 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1864 spin_lock_irq(&ctx->completion_lock);
1865 if (likely(poll->head)) {
1866 spin_lock(&poll->head->lock);
1867 if (unlikely(list_empty(&poll->wait.entry))) {
1868 if (ipt.error)
1869 cancel = true;
1870 ipt.error = 0;
1871 mask = 0;
1873 if (mask || ipt.error)
1874 list_del_init(&poll->wait.entry);
1875 else if (cancel)
1876 WRITE_ONCE(poll->canceled, true);
1877 else if (!poll->done) /* actually waiting for an event */
1878 list_add_tail(&req->list, &ctx->cancel_list);
1879 spin_unlock(&poll->head->lock);
1881 if (mask) { /* no async, we'd stolen it */
1882 ipt.error = 0;
1883 io_poll_complete(ctx, req, mask);
1885 spin_unlock_irq(&ctx->completion_lock);
1887 if (mask) {
1888 io_cqring_ev_posted(ctx);
1889 io_put_req(req);
1891 return ipt.error;
1894 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
1896 struct io_ring_ctx *ctx;
1897 struct io_kiocb *req, *prev;
1898 unsigned long flags;
1900 req = container_of(timer, struct io_kiocb, timeout.timer);
1901 ctx = req->ctx;
1902 atomic_inc(&ctx->cq_timeouts);
1904 spin_lock_irqsave(&ctx->completion_lock, flags);
1906 * Adjust the reqs sequence before the current one because it
1907 * will consume a slot in the cq_ring and the the cq_tail pointer
1908 * will be increased, otherwise other timeout reqs may return in
1909 * advance without waiting for enough wait_nr.
1911 prev = req;
1912 list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
1913 prev->sequence++;
1914 list_del(&req->list);
1916 io_cqring_fill_event(ctx, req->user_data, -ETIME);
1917 io_commit_cqring(ctx);
1918 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1920 io_cqring_ev_posted(ctx);
1922 io_put_req(req);
1923 return HRTIMER_NORESTART;
1926 static int io_timeout(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1928 unsigned count;
1929 struct io_ring_ctx *ctx = req->ctx;
1930 struct list_head *entry;
1931 struct timespec64 ts;
1932 unsigned span = 0;
1934 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1935 return -EINVAL;
1936 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->timeout_flags ||
1937 sqe->len != 1)
1938 return -EINVAL;
1940 if (get_timespec64(&ts, u64_to_user_ptr(sqe->addr)))
1941 return -EFAULT;
1944 * sqe->off holds how many events that need to occur for this
1945 * timeout event to be satisfied.
1947 count = READ_ONCE(sqe->off);
1948 if (!count)
1949 count = 1;
1951 req->sequence = ctx->cached_sq_head + count - 1;
1952 /* reuse it to store the count */
1953 req->submit.sequence = count;
1954 req->flags |= REQ_F_TIMEOUT;
1957 * Insertion sort, ensuring the first entry in the list is always
1958 * the one we need first.
1960 spin_lock_irq(&ctx->completion_lock);
1961 list_for_each_prev(entry, &ctx->timeout_list) {
1962 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
1963 unsigned nxt_sq_head;
1964 long long tmp, tmp_nxt;
1967 * Since cached_sq_head + count - 1 can overflow, use type long
1968 * long to store it.
1970 tmp = (long long)ctx->cached_sq_head + count - 1;
1971 nxt_sq_head = nxt->sequence - nxt->submit.sequence + 1;
1972 tmp_nxt = (long long)nxt_sq_head + nxt->submit.sequence - 1;
1975 * cached_sq_head may overflow, and it will never overflow twice
1976 * once there is some timeout req still be valid.
1978 if (ctx->cached_sq_head < nxt_sq_head)
1979 tmp += UINT_MAX;
1981 if (tmp > tmp_nxt)
1982 break;
1985 * Sequence of reqs after the insert one and itself should
1986 * be adjusted because each timeout req consumes a slot.
1988 span++;
1989 nxt->sequence++;
1991 req->sequence -= span;
1992 list_add(&req->list, entry);
1993 spin_unlock_irq(&ctx->completion_lock);
1995 hrtimer_init(&req->timeout.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1996 req->timeout.timer.function = io_timeout_fn;
1997 hrtimer_start(&req->timeout.timer, timespec64_to_ktime(ts),
1998 HRTIMER_MODE_REL);
1999 return 0;
2002 static int io_req_defer(struct io_ring_ctx *ctx, struct io_kiocb *req,
2003 const struct io_uring_sqe *sqe)
2005 struct io_uring_sqe *sqe_copy;
2007 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list))
2008 return 0;
2010 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
2011 if (!sqe_copy)
2012 return -EAGAIN;
2014 spin_lock_irq(&ctx->completion_lock);
2015 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list)) {
2016 spin_unlock_irq(&ctx->completion_lock);
2017 kfree(sqe_copy);
2018 return 0;
2021 memcpy(sqe_copy, sqe, sizeof(*sqe_copy));
2022 req->submit.sqe = sqe_copy;
2024 INIT_WORK(&req->work, io_sq_wq_submit_work);
2025 list_add_tail(&req->list, &ctx->defer_list);
2026 spin_unlock_irq(&ctx->completion_lock);
2027 return -EIOCBQUEUED;
2030 static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2031 const struct sqe_submit *s, bool force_nonblock)
2033 int ret, opcode;
2035 req->user_data = READ_ONCE(s->sqe->user_data);
2037 if (unlikely(s->index >= ctx->sq_entries))
2038 return -EINVAL;
2040 opcode = READ_ONCE(s->sqe->opcode);
2041 switch (opcode) {
2042 case IORING_OP_NOP:
2043 ret = io_nop(req, req->user_data);
2044 break;
2045 case IORING_OP_READV:
2046 if (unlikely(s->sqe->buf_index))
2047 return -EINVAL;
2048 ret = io_read(req, s, force_nonblock);
2049 break;
2050 case IORING_OP_WRITEV:
2051 if (unlikely(s->sqe->buf_index))
2052 return -EINVAL;
2053 ret = io_write(req, s, force_nonblock);
2054 break;
2055 case IORING_OP_READ_FIXED:
2056 ret = io_read(req, s, force_nonblock);
2057 break;
2058 case IORING_OP_WRITE_FIXED:
2059 ret = io_write(req, s, force_nonblock);
2060 break;
2061 case IORING_OP_FSYNC:
2062 ret = io_fsync(req, s->sqe, force_nonblock);
2063 break;
2064 case IORING_OP_POLL_ADD:
2065 ret = io_poll_add(req, s->sqe);
2066 break;
2067 case IORING_OP_POLL_REMOVE:
2068 ret = io_poll_remove(req, s->sqe);
2069 break;
2070 case IORING_OP_SYNC_FILE_RANGE:
2071 ret = io_sync_file_range(req, s->sqe, force_nonblock);
2072 break;
2073 case IORING_OP_SENDMSG:
2074 ret = io_sendmsg(req, s->sqe, force_nonblock);
2075 break;
2076 case IORING_OP_RECVMSG:
2077 ret = io_recvmsg(req, s->sqe, force_nonblock);
2078 break;
2079 case IORING_OP_TIMEOUT:
2080 ret = io_timeout(req, s->sqe);
2081 break;
2082 default:
2083 ret = -EINVAL;
2084 break;
2087 if (ret)
2088 return ret;
2090 if (ctx->flags & IORING_SETUP_IOPOLL) {
2091 if (req->result == -EAGAIN)
2092 return -EAGAIN;
2094 /* workqueue context doesn't hold uring_lock, grab it now */
2095 if (s->needs_lock)
2096 mutex_lock(&ctx->uring_lock);
2097 io_iopoll_req_issued(req);
2098 if (s->needs_lock)
2099 mutex_unlock(&ctx->uring_lock);
2102 return 0;
2105 static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
2106 const struct io_uring_sqe *sqe)
2108 switch (sqe->opcode) {
2109 case IORING_OP_READV:
2110 case IORING_OP_READ_FIXED:
2111 return &ctx->pending_async[READ];
2112 case IORING_OP_WRITEV:
2113 case IORING_OP_WRITE_FIXED:
2114 return &ctx->pending_async[WRITE];
2115 default:
2116 return NULL;
2120 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
2122 u8 opcode = READ_ONCE(sqe->opcode);
2124 return !(opcode == IORING_OP_READ_FIXED ||
2125 opcode == IORING_OP_WRITE_FIXED);
2128 static void io_sq_wq_submit_work(struct work_struct *work)
2130 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2131 struct io_ring_ctx *ctx = req->ctx;
2132 struct mm_struct *cur_mm = NULL;
2133 struct async_list *async_list;
2134 LIST_HEAD(req_list);
2135 mm_segment_t old_fs;
2136 int ret;
2138 async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
2139 restart:
2140 do {
2141 struct sqe_submit *s = &req->submit;
2142 const struct io_uring_sqe *sqe = s->sqe;
2143 unsigned int flags = req->flags;
2145 /* Ensure we clear previously set non-block flag */
2146 req->rw.ki_flags &= ~IOCB_NOWAIT;
2148 ret = 0;
2149 if (io_sqe_needs_user(sqe) && !cur_mm) {
2150 if (!mmget_not_zero(ctx->sqo_mm)) {
2151 ret = -EFAULT;
2152 } else {
2153 cur_mm = ctx->sqo_mm;
2154 use_mm(cur_mm);
2155 old_fs = get_fs();
2156 set_fs(USER_DS);
2160 if (!ret) {
2161 s->has_user = cur_mm != NULL;
2162 s->needs_lock = true;
2163 do {
2164 ret = __io_submit_sqe(ctx, req, s, false);
2166 * We can get EAGAIN for polled IO even though
2167 * we're forcing a sync submission from here,
2168 * since we can't wait for request slots on the
2169 * block side.
2171 if (ret != -EAGAIN)
2172 break;
2173 cond_resched();
2174 } while (1);
2177 /* drop submission reference */
2178 io_put_req(req);
2180 if (ret) {
2181 io_cqring_add_event(ctx, sqe->user_data, ret);
2182 io_put_req(req);
2185 /* async context always use a copy of the sqe */
2186 kfree(sqe);
2188 /* req from defer and link list needn't decrease async cnt */
2189 if (flags & (REQ_F_IO_DRAINED | REQ_F_LINK_DONE))
2190 goto out;
2192 if (!async_list)
2193 break;
2194 if (!list_empty(&req_list)) {
2195 req = list_first_entry(&req_list, struct io_kiocb,
2196 list);
2197 list_del(&req->list);
2198 continue;
2200 if (list_empty(&async_list->list))
2201 break;
2203 req = NULL;
2204 spin_lock(&async_list->lock);
2205 if (list_empty(&async_list->list)) {
2206 spin_unlock(&async_list->lock);
2207 break;
2209 list_splice_init(&async_list->list, &req_list);
2210 spin_unlock(&async_list->lock);
2212 req = list_first_entry(&req_list, struct io_kiocb, list);
2213 list_del(&req->list);
2214 } while (req);
2217 * Rare case of racing with a submitter. If we find the count has
2218 * dropped to zero AND we have pending work items, then restart
2219 * the processing. This is a tiny race window.
2221 if (async_list) {
2222 ret = atomic_dec_return(&async_list->cnt);
2223 while (!ret && !list_empty(&async_list->list)) {
2224 spin_lock(&async_list->lock);
2225 atomic_inc(&async_list->cnt);
2226 list_splice_init(&async_list->list, &req_list);
2227 spin_unlock(&async_list->lock);
2229 if (!list_empty(&req_list)) {
2230 req = list_first_entry(&req_list,
2231 struct io_kiocb, list);
2232 list_del(&req->list);
2233 goto restart;
2235 ret = atomic_dec_return(&async_list->cnt);
2239 out:
2240 if (cur_mm) {
2241 set_fs(old_fs);
2242 unuse_mm(cur_mm);
2243 mmput(cur_mm);
2248 * See if we can piggy back onto previously submitted work, that is still
2249 * running. We currently only allow this if the new request is sequential
2250 * to the previous one we punted.
2252 static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
2254 bool ret;
2256 if (!list)
2257 return false;
2258 if (!(req->flags & REQ_F_SEQ_PREV))
2259 return false;
2260 if (!atomic_read(&list->cnt))
2261 return false;
2263 ret = true;
2264 spin_lock(&list->lock);
2265 list_add_tail(&req->list, &list->list);
2267 * Ensure we see a simultaneous modification from io_sq_wq_submit_work()
2269 smp_mb();
2270 if (!atomic_read(&list->cnt)) {
2271 list_del_init(&req->list);
2272 ret = false;
2274 spin_unlock(&list->lock);
2275 return ret;
2278 static bool io_op_needs_file(const struct io_uring_sqe *sqe)
2280 int op = READ_ONCE(sqe->opcode);
2282 switch (op) {
2283 case IORING_OP_NOP:
2284 case IORING_OP_POLL_REMOVE:
2285 return false;
2286 default:
2287 return true;
2291 static int io_req_set_file(struct io_ring_ctx *ctx, const struct sqe_submit *s,
2292 struct io_submit_state *state, struct io_kiocb *req)
2294 unsigned flags;
2295 int fd;
2297 flags = READ_ONCE(s->sqe->flags);
2298 fd = READ_ONCE(s->sqe->fd);
2300 if (flags & IOSQE_IO_DRAIN)
2301 req->flags |= REQ_F_IO_DRAIN;
2303 * All io need record the previous position, if LINK vs DARIN,
2304 * it can be used to mark the position of the first IO in the
2305 * link list.
2307 req->sequence = s->sequence;
2309 if (!io_op_needs_file(s->sqe))
2310 return 0;
2312 if (flags & IOSQE_FIXED_FILE) {
2313 if (unlikely(!ctx->user_files ||
2314 (unsigned) fd >= ctx->nr_user_files))
2315 return -EBADF;
2316 req->file = ctx->user_files[fd];
2317 req->flags |= REQ_F_FIXED_FILE;
2318 } else {
2319 if (s->needs_fixed_file)
2320 return -EBADF;
2321 req->file = io_file_get(state, fd);
2322 if (unlikely(!req->file))
2323 return -EBADF;
2326 return 0;
2329 static int __io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2330 struct sqe_submit *s)
2332 int ret;
2334 ret = __io_submit_sqe(ctx, req, s, true);
2337 * We async punt it if the file wasn't marked NOWAIT, or if the file
2338 * doesn't support non-blocking read/write attempts
2340 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
2341 (req->flags & REQ_F_MUST_PUNT))) {
2342 struct io_uring_sqe *sqe_copy;
2344 sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
2345 if (sqe_copy) {
2346 struct async_list *list;
2348 s->sqe = sqe_copy;
2349 memcpy(&req->submit, s, sizeof(*s));
2350 list = io_async_list_from_sqe(ctx, s->sqe);
2351 if (!io_add_to_prev_work(list, req)) {
2352 if (list)
2353 atomic_inc(&list->cnt);
2354 INIT_WORK(&req->work, io_sq_wq_submit_work);
2355 io_queue_async_work(ctx, req);
2359 * Queued up for async execution, worker will release
2360 * submit reference when the iocb is actually submitted.
2362 return 0;
2366 /* drop submission reference */
2367 io_put_req(req);
2369 /* and drop final reference, if we failed */
2370 if (ret) {
2371 io_cqring_add_event(ctx, req->user_data, ret);
2372 if (req->flags & REQ_F_LINK)
2373 req->flags |= REQ_F_FAIL_LINK;
2374 io_put_req(req);
2377 return ret;
2380 static int io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2381 struct sqe_submit *s)
2383 int ret;
2385 ret = io_req_defer(ctx, req, s->sqe);
2386 if (ret) {
2387 if (ret != -EIOCBQUEUED) {
2388 io_free_req(req);
2389 io_cqring_add_event(ctx, s->sqe->user_data, ret);
2391 return 0;
2394 return __io_queue_sqe(ctx, req, s);
2397 static int io_queue_link_head(struct io_ring_ctx *ctx, struct io_kiocb *req,
2398 struct sqe_submit *s, struct io_kiocb *shadow)
2400 int ret;
2401 int need_submit = false;
2403 if (!shadow)
2404 return io_queue_sqe(ctx, req, s);
2407 * Mark the first IO in link list as DRAIN, let all the following
2408 * IOs enter the defer list. all IO needs to be completed before link
2409 * list.
2411 req->flags |= REQ_F_IO_DRAIN;
2412 ret = io_req_defer(ctx, req, s->sqe);
2413 if (ret) {
2414 if (ret != -EIOCBQUEUED) {
2415 io_free_req(req);
2416 io_cqring_add_event(ctx, s->sqe->user_data, ret);
2417 return 0;
2419 } else {
2421 * If ret == 0 means that all IOs in front of link io are
2422 * running done. let's queue link head.
2424 need_submit = true;
2427 /* Insert shadow req to defer_list, blocking next IOs */
2428 spin_lock_irq(&ctx->completion_lock);
2429 list_add_tail(&shadow->list, &ctx->defer_list);
2430 spin_unlock_irq(&ctx->completion_lock);
2432 if (need_submit)
2433 return __io_queue_sqe(ctx, req, s);
2435 return 0;
2438 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK)
2440 static void io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
2441 struct io_submit_state *state, struct io_kiocb **link)
2443 struct io_uring_sqe *sqe_copy;
2444 struct io_kiocb *req;
2445 int ret;
2447 /* enforce forwards compatibility on users */
2448 if (unlikely(s->sqe->flags & ~SQE_VALID_FLAGS)) {
2449 ret = -EINVAL;
2450 goto err;
2453 req = io_get_req(ctx, state);
2454 if (unlikely(!req)) {
2455 ret = -EAGAIN;
2456 goto err;
2459 ret = io_req_set_file(ctx, s, state, req);
2460 if (unlikely(ret)) {
2461 err_req:
2462 io_free_req(req);
2463 err:
2464 io_cqring_add_event(ctx, s->sqe->user_data, ret);
2465 return;
2468 req->user_data = s->sqe->user_data;
2471 * If we already have a head request, queue this one for async
2472 * submittal once the head completes. If we don't have a head but
2473 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2474 * submitted sync once the chain is complete. If none of those
2475 * conditions are true (normal request), then just queue it.
2477 if (*link) {
2478 struct io_kiocb *prev = *link;
2480 sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
2481 if (!sqe_copy) {
2482 ret = -EAGAIN;
2483 goto err_req;
2486 s->sqe = sqe_copy;
2487 memcpy(&req->submit, s, sizeof(*s));
2488 list_add_tail(&req->list, &prev->link_list);
2489 } else if (s->sqe->flags & IOSQE_IO_LINK) {
2490 req->flags |= REQ_F_LINK;
2492 memcpy(&req->submit, s, sizeof(*s));
2493 INIT_LIST_HEAD(&req->link_list);
2494 *link = req;
2495 } else {
2496 io_queue_sqe(ctx, req, s);
2501 * Batched submission is done, ensure local IO is flushed out.
2503 static void io_submit_state_end(struct io_submit_state *state)
2505 blk_finish_plug(&state->plug);
2506 io_file_put(state);
2507 if (state->free_reqs)
2508 kmem_cache_free_bulk(req_cachep, state->free_reqs,
2509 &state->reqs[state->cur_req]);
2513 * Start submission side cache.
2515 static void io_submit_state_start(struct io_submit_state *state,
2516 struct io_ring_ctx *ctx, unsigned max_ios)
2518 blk_start_plug(&state->plug);
2519 state->free_reqs = 0;
2520 state->file = NULL;
2521 state->ios_left = max_ios;
2524 static void io_commit_sqring(struct io_ring_ctx *ctx)
2526 struct io_rings *rings = ctx->rings;
2528 if (ctx->cached_sq_head != READ_ONCE(rings->sq.head)) {
2530 * Ensure any loads from the SQEs are done at this point,
2531 * since once we write the new head, the application could
2532 * write new data to them.
2534 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2539 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
2540 * that is mapped by userspace. This means that care needs to be taken to
2541 * ensure that reads are stable, as we cannot rely on userspace always
2542 * being a good citizen. If members of the sqe are validated and then later
2543 * used, it's important that those reads are done through READ_ONCE() to
2544 * prevent a re-load down the line.
2546 static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
2548 struct io_rings *rings = ctx->rings;
2549 u32 *sq_array = ctx->sq_array;
2550 unsigned head;
2553 * The cached sq head (or cq tail) serves two purposes:
2555 * 1) allows us to batch the cost of updating the user visible
2556 * head updates.
2557 * 2) allows the kernel side to track the head on its own, even
2558 * though the application is the one updating it.
2560 head = ctx->cached_sq_head;
2561 /* make sure SQ entry isn't read before tail */
2562 if (head == smp_load_acquire(&rings->sq.tail))
2563 return false;
2565 head = READ_ONCE(sq_array[head & ctx->sq_mask]);
2566 if (head < ctx->sq_entries) {
2567 s->index = head;
2568 s->sqe = &ctx->sq_sqes[head];
2569 s->sequence = ctx->cached_sq_head;
2570 ctx->cached_sq_head++;
2571 return true;
2574 /* drop invalid entries */
2575 ctx->cached_sq_head++;
2576 ctx->cached_sq_dropped++;
2577 WRITE_ONCE(rings->sq_dropped, ctx->cached_sq_dropped);
2578 return false;
2581 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
2582 bool has_user, bool mm_fault)
2584 struct io_submit_state state, *statep = NULL;
2585 struct io_kiocb *link = NULL;
2586 struct io_kiocb *shadow_req = NULL;
2587 bool prev_was_link = false;
2588 int i, submitted = 0;
2590 if (nr > IO_PLUG_THRESHOLD) {
2591 io_submit_state_start(&state, ctx, nr);
2592 statep = &state;
2595 for (i = 0; i < nr; i++) {
2596 struct sqe_submit s;
2598 if (!io_get_sqring(ctx, &s))
2599 break;
2602 * If previous wasn't linked and we have a linked command,
2603 * that's the end of the chain. Submit the previous link.
2605 if (!prev_was_link && link) {
2606 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2607 link = NULL;
2608 shadow_req = NULL;
2610 prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0;
2612 if (link && (s.sqe->flags & IOSQE_IO_DRAIN)) {
2613 if (!shadow_req) {
2614 shadow_req = io_get_req(ctx, NULL);
2615 if (unlikely(!shadow_req))
2616 goto out;
2617 shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN);
2618 refcount_dec(&shadow_req->refs);
2620 shadow_req->sequence = s.sequence;
2623 out:
2624 if (unlikely(mm_fault)) {
2625 io_cqring_add_event(ctx, s.sqe->user_data,
2626 -EFAULT);
2627 } else {
2628 s.has_user = has_user;
2629 s.needs_lock = true;
2630 s.needs_fixed_file = true;
2631 io_submit_sqe(ctx, &s, statep, &link);
2632 submitted++;
2636 if (link)
2637 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2638 if (statep)
2639 io_submit_state_end(&state);
2641 return submitted;
2644 static int io_sq_thread(void *data)
2646 struct io_ring_ctx *ctx = data;
2647 struct mm_struct *cur_mm = NULL;
2648 mm_segment_t old_fs;
2649 DEFINE_WAIT(wait);
2650 unsigned inflight;
2651 unsigned long timeout;
2653 complete(&ctx->sqo_thread_started);
2655 old_fs = get_fs();
2656 set_fs(USER_DS);
2658 timeout = inflight = 0;
2659 while (!kthread_should_park()) {
2660 bool mm_fault = false;
2661 unsigned int to_submit;
2663 if (inflight) {
2664 unsigned nr_events = 0;
2666 if (ctx->flags & IORING_SETUP_IOPOLL) {
2668 * inflight is the count of the maximum possible
2669 * entries we submitted, but it can be smaller
2670 * if we dropped some of them. If we don't have
2671 * poll entries available, then we know that we
2672 * have nothing left to poll for. Reset the
2673 * inflight count to zero in that case.
2675 mutex_lock(&ctx->uring_lock);
2676 if (!list_empty(&ctx->poll_list))
2677 __io_iopoll_check(ctx, &nr_events, 0);
2678 else
2679 inflight = 0;
2680 mutex_unlock(&ctx->uring_lock);
2681 } else {
2683 * Normal IO, just pretend everything completed.
2684 * We don't have to poll completions for that.
2686 nr_events = inflight;
2689 inflight -= nr_events;
2690 if (!inflight)
2691 timeout = jiffies + ctx->sq_thread_idle;
2694 to_submit = io_sqring_entries(ctx);
2695 if (!to_submit) {
2697 * We're polling. If we're within the defined idle
2698 * period, then let us spin without work before going
2699 * to sleep.
2701 if (inflight || !time_after(jiffies, timeout)) {
2702 cond_resched();
2703 continue;
2707 * Drop cur_mm before scheduling, we can't hold it for
2708 * long periods (or over schedule()). Do this before
2709 * adding ourselves to the waitqueue, as the unuse/drop
2710 * may sleep.
2712 if (cur_mm) {
2713 unuse_mm(cur_mm);
2714 mmput(cur_mm);
2715 cur_mm = NULL;
2718 prepare_to_wait(&ctx->sqo_wait, &wait,
2719 TASK_INTERRUPTIBLE);
2721 /* Tell userspace we may need a wakeup call */
2722 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
2723 /* make sure to read SQ tail after writing flags */
2724 smp_mb();
2726 to_submit = io_sqring_entries(ctx);
2727 if (!to_submit) {
2728 if (kthread_should_park()) {
2729 finish_wait(&ctx->sqo_wait, &wait);
2730 break;
2732 if (signal_pending(current))
2733 flush_signals(current);
2734 schedule();
2735 finish_wait(&ctx->sqo_wait, &wait);
2737 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
2738 continue;
2740 finish_wait(&ctx->sqo_wait, &wait);
2742 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
2745 /* Unless all new commands are FIXED regions, grab mm */
2746 if (!cur_mm) {
2747 mm_fault = !mmget_not_zero(ctx->sqo_mm);
2748 if (!mm_fault) {
2749 use_mm(ctx->sqo_mm);
2750 cur_mm = ctx->sqo_mm;
2754 to_submit = min(to_submit, ctx->sq_entries);
2755 inflight += io_submit_sqes(ctx, to_submit, cur_mm != NULL,
2756 mm_fault);
2758 /* Commit SQ ring head once we've consumed all SQEs */
2759 io_commit_sqring(ctx);
2762 set_fs(old_fs);
2763 if (cur_mm) {
2764 unuse_mm(cur_mm);
2765 mmput(cur_mm);
2768 kthread_parkme();
2770 return 0;
2773 static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
2775 struct io_submit_state state, *statep = NULL;
2776 struct io_kiocb *link = NULL;
2777 struct io_kiocb *shadow_req = NULL;
2778 bool prev_was_link = false;
2779 int i, submit = 0;
2781 if (to_submit > IO_PLUG_THRESHOLD) {
2782 io_submit_state_start(&state, ctx, to_submit);
2783 statep = &state;
2786 for (i = 0; i < to_submit; i++) {
2787 struct sqe_submit s;
2789 if (!io_get_sqring(ctx, &s))
2790 break;
2793 * If previous wasn't linked and we have a linked command,
2794 * that's the end of the chain. Submit the previous link.
2796 if (!prev_was_link && link) {
2797 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2798 link = NULL;
2799 shadow_req = NULL;
2801 prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0;
2803 if (link && (s.sqe->flags & IOSQE_IO_DRAIN)) {
2804 if (!shadow_req) {
2805 shadow_req = io_get_req(ctx, NULL);
2806 if (unlikely(!shadow_req))
2807 goto out;
2808 shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN);
2809 refcount_dec(&shadow_req->refs);
2811 shadow_req->sequence = s.sequence;
2814 out:
2815 s.has_user = true;
2816 s.needs_lock = false;
2817 s.needs_fixed_file = false;
2818 submit++;
2819 io_submit_sqe(ctx, &s, statep, &link);
2822 if (link)
2823 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2824 if (statep)
2825 io_submit_state_end(statep);
2827 io_commit_sqring(ctx);
2829 return submit;
2832 struct io_wait_queue {
2833 struct wait_queue_entry wq;
2834 struct io_ring_ctx *ctx;
2835 unsigned to_wait;
2836 unsigned nr_timeouts;
2839 static inline bool io_should_wake(struct io_wait_queue *iowq)
2841 struct io_ring_ctx *ctx = iowq->ctx;
2844 * Wake up if we have enough events, or if a timeout occured since we
2845 * started waiting. For timeouts, we always want to return to userspace,
2846 * regardless of event count.
2848 return io_cqring_events(ctx->rings) >= iowq->to_wait ||
2849 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2852 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2853 int wake_flags, void *key)
2855 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2856 wq);
2858 if (!io_should_wake(iowq))
2859 return -1;
2861 return autoremove_wake_function(curr, mode, wake_flags, key);
2865 * Wait until events become available, if we don't already have some. The
2866 * application must reap them itself, as they reside on the shared cq ring.
2868 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2869 const sigset_t __user *sig, size_t sigsz)
2871 struct io_wait_queue iowq = {
2872 .wq = {
2873 .private = current,
2874 .func = io_wake_function,
2875 .entry = LIST_HEAD_INIT(iowq.wq.entry),
2877 .ctx = ctx,
2878 .to_wait = min_events,
2880 struct io_rings *rings = ctx->rings;
2881 int ret;
2883 if (io_cqring_events(rings) >= min_events)
2884 return 0;
2886 if (sig) {
2887 #ifdef CONFIG_COMPAT
2888 if (in_compat_syscall())
2889 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2890 sigsz);
2891 else
2892 #endif
2893 ret = set_user_sigmask(sig, sigsz);
2895 if (ret)
2896 return ret;
2899 ret = 0;
2900 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2901 do {
2902 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
2903 TASK_INTERRUPTIBLE);
2904 if (io_should_wake(&iowq))
2905 break;
2906 schedule();
2907 if (signal_pending(current)) {
2908 ret = -ERESTARTSYS;
2909 break;
2911 } while (1);
2912 finish_wait(&ctx->wait, &iowq.wq);
2914 restore_saved_sigmask_unless(ret == -ERESTARTSYS);
2915 if (ret == -ERESTARTSYS)
2916 ret = -EINTR;
2918 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2921 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2923 #if defined(CONFIG_UNIX)
2924 if (ctx->ring_sock) {
2925 struct sock *sock = ctx->ring_sock->sk;
2926 struct sk_buff *skb;
2928 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2929 kfree_skb(skb);
2931 #else
2932 int i;
2934 for (i = 0; i < ctx->nr_user_files; i++)
2935 fput(ctx->user_files[i]);
2936 #endif
2939 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2941 if (!ctx->user_files)
2942 return -ENXIO;
2944 __io_sqe_files_unregister(ctx);
2945 kfree(ctx->user_files);
2946 ctx->user_files = NULL;
2947 ctx->nr_user_files = 0;
2948 return 0;
2951 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2953 if (ctx->sqo_thread) {
2954 wait_for_completion(&ctx->sqo_thread_started);
2956 * The park is a bit of a work-around, without it we get
2957 * warning spews on shutdown with SQPOLL set and affinity
2958 * set to a single CPU.
2960 kthread_park(ctx->sqo_thread);
2961 kthread_stop(ctx->sqo_thread);
2962 ctx->sqo_thread = NULL;
2966 static void io_finish_async(struct io_ring_ctx *ctx)
2968 int i;
2970 io_sq_thread_stop(ctx);
2972 for (i = 0; i < ARRAY_SIZE(ctx->sqo_wq); i++) {
2973 if (ctx->sqo_wq[i]) {
2974 destroy_workqueue(ctx->sqo_wq[i]);
2975 ctx->sqo_wq[i] = NULL;
2980 #if defined(CONFIG_UNIX)
2981 static void io_destruct_skb(struct sk_buff *skb)
2983 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
2984 int i;
2986 for (i = 0; i < ARRAY_SIZE(ctx->sqo_wq); i++)
2987 if (ctx->sqo_wq[i])
2988 flush_workqueue(ctx->sqo_wq[i]);
2990 unix_destruct_scm(skb);
2994 * Ensure the UNIX gc is aware of our file set, so we are certain that
2995 * the io_uring can be safely unregistered on process exit, even if we have
2996 * loops in the file referencing.
2998 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
3000 struct sock *sk = ctx->ring_sock->sk;
3001 struct scm_fp_list *fpl;
3002 struct sk_buff *skb;
3003 int i;
3005 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
3006 unsigned long inflight = ctx->user->unix_inflight + nr;
3008 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
3009 return -EMFILE;
3012 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
3013 if (!fpl)
3014 return -ENOMEM;
3016 skb = alloc_skb(0, GFP_KERNEL);
3017 if (!skb) {
3018 kfree(fpl);
3019 return -ENOMEM;
3022 skb->sk = sk;
3023 skb->destructor = io_destruct_skb;
3025 fpl->user = get_uid(ctx->user);
3026 for (i = 0; i < nr; i++) {
3027 fpl->fp[i] = get_file(ctx->user_files[i + offset]);
3028 unix_inflight(fpl->user, fpl->fp[i]);
3031 fpl->max = fpl->count = nr;
3032 UNIXCB(skb).fp = fpl;
3033 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
3034 skb_queue_head(&sk->sk_receive_queue, skb);
3036 for (i = 0; i < nr; i++)
3037 fput(fpl->fp[i]);
3039 return 0;
3043 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
3044 * causes regular reference counting to break down. We rely on the UNIX
3045 * garbage collection to take care of this problem for us.
3047 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3049 unsigned left, total;
3050 int ret = 0;
3052 total = 0;
3053 left = ctx->nr_user_files;
3054 while (left) {
3055 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
3057 ret = __io_sqe_files_scm(ctx, this_files, total);
3058 if (ret)
3059 break;
3060 left -= this_files;
3061 total += this_files;
3064 if (!ret)
3065 return 0;
3067 while (total < ctx->nr_user_files) {
3068 fput(ctx->user_files[total]);
3069 total++;
3072 return ret;
3074 #else
3075 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3077 return 0;
3079 #endif
3081 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
3082 unsigned nr_args)
3084 __s32 __user *fds = (__s32 __user *) arg;
3085 int fd, ret = 0;
3086 unsigned i;
3088 if (ctx->user_files)
3089 return -EBUSY;
3090 if (!nr_args)
3091 return -EINVAL;
3092 if (nr_args > IORING_MAX_FIXED_FILES)
3093 return -EMFILE;
3095 ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
3096 if (!ctx->user_files)
3097 return -ENOMEM;
3099 for (i = 0; i < nr_args; i++) {
3100 ret = -EFAULT;
3101 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
3102 break;
3104 ctx->user_files[i] = fget(fd);
3106 ret = -EBADF;
3107 if (!ctx->user_files[i])
3108 break;
3110 * Don't allow io_uring instances to be registered. If UNIX
3111 * isn't enabled, then this causes a reference cycle and this
3112 * instance can never get freed. If UNIX is enabled we'll
3113 * handle it just fine, but there's still no point in allowing
3114 * a ring fd as it doesn't support regular read/write anyway.
3116 if (ctx->user_files[i]->f_op == &io_uring_fops) {
3117 fput(ctx->user_files[i]);
3118 break;
3120 ctx->nr_user_files++;
3121 ret = 0;
3124 if (ret) {
3125 for (i = 0; i < ctx->nr_user_files; i++)
3126 fput(ctx->user_files[i]);
3128 kfree(ctx->user_files);
3129 ctx->user_files = NULL;
3130 ctx->nr_user_files = 0;
3131 return ret;
3134 ret = io_sqe_files_scm(ctx);
3135 if (ret)
3136 io_sqe_files_unregister(ctx);
3138 return ret;
3141 static int io_sq_offload_start(struct io_ring_ctx *ctx,
3142 struct io_uring_params *p)
3144 int ret;
3146 init_waitqueue_head(&ctx->sqo_wait);
3147 mmgrab(current->mm);
3148 ctx->sqo_mm = current->mm;
3150 if (ctx->flags & IORING_SETUP_SQPOLL) {
3151 ret = -EPERM;
3152 if (!capable(CAP_SYS_ADMIN))
3153 goto err;
3155 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
3156 if (!ctx->sq_thread_idle)
3157 ctx->sq_thread_idle = HZ;
3159 if (p->flags & IORING_SETUP_SQ_AFF) {
3160 int cpu = p->sq_thread_cpu;
3162 ret = -EINVAL;
3163 if (cpu >= nr_cpu_ids)
3164 goto err;
3165 if (!cpu_online(cpu))
3166 goto err;
3168 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
3169 ctx, cpu,
3170 "io_uring-sq");
3171 } else {
3172 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
3173 "io_uring-sq");
3175 if (IS_ERR(ctx->sqo_thread)) {
3176 ret = PTR_ERR(ctx->sqo_thread);
3177 ctx->sqo_thread = NULL;
3178 goto err;
3180 wake_up_process(ctx->sqo_thread);
3181 } else if (p->flags & IORING_SETUP_SQ_AFF) {
3182 /* Can't have SQ_AFF without SQPOLL */
3183 ret = -EINVAL;
3184 goto err;
3187 /* Do QD, or 2 * CPUS, whatever is smallest */
3188 ctx->sqo_wq[0] = alloc_workqueue("io_ring-wq",
3189 WQ_UNBOUND | WQ_FREEZABLE,
3190 min(ctx->sq_entries - 1, 2 * num_online_cpus()));
3191 if (!ctx->sqo_wq[0]) {
3192 ret = -ENOMEM;
3193 goto err;
3197 * This is for buffered writes, where we want to limit the parallelism
3198 * due to file locking in file systems. As "normal" buffered writes
3199 * should parellelize on writeout quite nicely, limit us to having 2
3200 * pending. This avoids massive contention on the inode when doing
3201 * buffered async writes.
3203 ctx->sqo_wq[1] = alloc_workqueue("io_ring-write-wq",
3204 WQ_UNBOUND | WQ_FREEZABLE, 2);
3205 if (!ctx->sqo_wq[1]) {
3206 ret = -ENOMEM;
3207 goto err;
3210 return 0;
3211 err:
3212 io_finish_async(ctx);
3213 mmdrop(ctx->sqo_mm);
3214 ctx->sqo_mm = NULL;
3215 return ret;
3218 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
3220 atomic_long_sub(nr_pages, &user->locked_vm);
3223 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
3225 unsigned long page_limit, cur_pages, new_pages;
3227 /* Don't allow more pages than we can safely lock */
3228 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
3230 do {
3231 cur_pages = atomic_long_read(&user->locked_vm);
3232 new_pages = cur_pages + nr_pages;
3233 if (new_pages > page_limit)
3234 return -ENOMEM;
3235 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
3236 new_pages) != cur_pages);
3238 return 0;
3241 static void io_mem_free(void *ptr)
3243 struct page *page;
3245 if (!ptr)
3246 return;
3248 page = virt_to_head_page(ptr);
3249 if (put_page_testzero(page))
3250 free_compound_page(page);
3253 static void *io_mem_alloc(size_t size)
3255 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
3256 __GFP_NORETRY;
3258 return (void *) __get_free_pages(gfp_flags, get_order(size));
3261 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
3262 size_t *sq_offset)
3264 struct io_rings *rings;
3265 size_t off, sq_array_size;
3267 off = struct_size(rings, cqes, cq_entries);
3268 if (off == SIZE_MAX)
3269 return SIZE_MAX;
3271 #ifdef CONFIG_SMP
3272 off = ALIGN(off, SMP_CACHE_BYTES);
3273 if (off == 0)
3274 return SIZE_MAX;
3275 #endif
3277 sq_array_size = array_size(sizeof(u32), sq_entries);
3278 if (sq_array_size == SIZE_MAX)
3279 return SIZE_MAX;
3281 if (check_add_overflow(off, sq_array_size, &off))
3282 return SIZE_MAX;
3284 if (sq_offset)
3285 *sq_offset = off;
3287 return off;
3290 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
3292 size_t pages;
3294 pages = (size_t)1 << get_order(
3295 rings_size(sq_entries, cq_entries, NULL));
3296 pages += (size_t)1 << get_order(
3297 array_size(sizeof(struct io_uring_sqe), sq_entries));
3299 return pages;
3302 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
3304 int i, j;
3306 if (!ctx->user_bufs)
3307 return -ENXIO;
3309 for (i = 0; i < ctx->nr_user_bufs; i++) {
3310 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
3312 for (j = 0; j < imu->nr_bvecs; j++)
3313 put_user_page(imu->bvec[j].bv_page);
3315 if (ctx->account_mem)
3316 io_unaccount_mem(ctx->user, imu->nr_bvecs);
3317 kvfree(imu->bvec);
3318 imu->nr_bvecs = 0;
3321 kfree(ctx->user_bufs);
3322 ctx->user_bufs = NULL;
3323 ctx->nr_user_bufs = 0;
3324 return 0;
3327 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
3328 void __user *arg, unsigned index)
3330 struct iovec __user *src;
3332 #ifdef CONFIG_COMPAT
3333 if (ctx->compat) {
3334 struct compat_iovec __user *ciovs;
3335 struct compat_iovec ciov;
3337 ciovs = (struct compat_iovec __user *) arg;
3338 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
3339 return -EFAULT;
3341 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
3342 dst->iov_len = ciov.iov_len;
3343 return 0;
3345 #endif
3346 src = (struct iovec __user *) arg;
3347 if (copy_from_user(dst, &src[index], sizeof(*dst)))
3348 return -EFAULT;
3349 return 0;
3352 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
3353 unsigned nr_args)
3355 struct vm_area_struct **vmas = NULL;
3356 struct page **pages = NULL;
3357 int i, j, got_pages = 0;
3358 int ret = -EINVAL;
3360 if (ctx->user_bufs)
3361 return -EBUSY;
3362 if (!nr_args || nr_args > UIO_MAXIOV)
3363 return -EINVAL;
3365 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
3366 GFP_KERNEL);
3367 if (!ctx->user_bufs)
3368 return -ENOMEM;
3370 for (i = 0; i < nr_args; i++) {
3371 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
3372 unsigned long off, start, end, ubuf;
3373 int pret, nr_pages;
3374 struct iovec iov;
3375 size_t size;
3377 ret = io_copy_iov(ctx, &iov, arg, i);
3378 if (ret)
3379 goto err;
3382 * Don't impose further limits on the size and buffer
3383 * constraints here, we'll -EINVAL later when IO is
3384 * submitted if they are wrong.
3386 ret = -EFAULT;
3387 if (!iov.iov_base || !iov.iov_len)
3388 goto err;
3390 /* arbitrary limit, but we need something */
3391 if (iov.iov_len > SZ_1G)
3392 goto err;
3394 ubuf = (unsigned long) iov.iov_base;
3395 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3396 start = ubuf >> PAGE_SHIFT;
3397 nr_pages = end - start;
3399 if (ctx->account_mem) {
3400 ret = io_account_mem(ctx->user, nr_pages);
3401 if (ret)
3402 goto err;
3405 ret = 0;
3406 if (!pages || nr_pages > got_pages) {
3407 kfree(vmas);
3408 kfree(pages);
3409 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
3410 GFP_KERNEL);
3411 vmas = kvmalloc_array(nr_pages,
3412 sizeof(struct vm_area_struct *),
3413 GFP_KERNEL);
3414 if (!pages || !vmas) {
3415 ret = -ENOMEM;
3416 if (ctx->account_mem)
3417 io_unaccount_mem(ctx->user, nr_pages);
3418 goto err;
3420 got_pages = nr_pages;
3423 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
3424 GFP_KERNEL);
3425 ret = -ENOMEM;
3426 if (!imu->bvec) {
3427 if (ctx->account_mem)
3428 io_unaccount_mem(ctx->user, nr_pages);
3429 goto err;
3432 ret = 0;
3433 down_read(&current->mm->mmap_sem);
3434 pret = get_user_pages(ubuf, nr_pages,
3435 FOLL_WRITE | FOLL_LONGTERM,
3436 pages, vmas);
3437 if (pret == nr_pages) {
3438 /* don't support file backed memory */
3439 for (j = 0; j < nr_pages; j++) {
3440 struct vm_area_struct *vma = vmas[j];
3442 if (vma->vm_file &&
3443 !is_file_hugepages(vma->vm_file)) {
3444 ret = -EOPNOTSUPP;
3445 break;
3448 } else {
3449 ret = pret < 0 ? pret : -EFAULT;
3451 up_read(&current->mm->mmap_sem);
3452 if (ret) {
3454 * if we did partial map, or found file backed vmas,
3455 * release any pages we did get
3457 if (pret > 0)
3458 put_user_pages(pages, pret);
3459 if (ctx->account_mem)
3460 io_unaccount_mem(ctx->user, nr_pages);
3461 kvfree(imu->bvec);
3462 goto err;
3465 off = ubuf & ~PAGE_MASK;
3466 size = iov.iov_len;
3467 for (j = 0; j < nr_pages; j++) {
3468 size_t vec_len;
3470 vec_len = min_t(size_t, size, PAGE_SIZE - off);
3471 imu->bvec[j].bv_page = pages[j];
3472 imu->bvec[j].bv_len = vec_len;
3473 imu->bvec[j].bv_offset = off;
3474 off = 0;
3475 size -= vec_len;
3477 /* store original address for later verification */
3478 imu->ubuf = ubuf;
3479 imu->len = iov.iov_len;
3480 imu->nr_bvecs = nr_pages;
3482 ctx->nr_user_bufs++;
3484 kvfree(pages);
3485 kvfree(vmas);
3486 return 0;
3487 err:
3488 kvfree(pages);
3489 kvfree(vmas);
3490 io_sqe_buffer_unregister(ctx);
3491 return ret;
3494 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
3496 __s32 __user *fds = arg;
3497 int fd;
3499 if (ctx->cq_ev_fd)
3500 return -EBUSY;
3502 if (copy_from_user(&fd, fds, sizeof(*fds)))
3503 return -EFAULT;
3505 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
3506 if (IS_ERR(ctx->cq_ev_fd)) {
3507 int ret = PTR_ERR(ctx->cq_ev_fd);
3508 ctx->cq_ev_fd = NULL;
3509 return ret;
3512 return 0;
3515 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
3517 if (ctx->cq_ev_fd) {
3518 eventfd_ctx_put(ctx->cq_ev_fd);
3519 ctx->cq_ev_fd = NULL;
3520 return 0;
3523 return -ENXIO;
3526 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
3528 io_finish_async(ctx);
3529 if (ctx->sqo_mm)
3530 mmdrop(ctx->sqo_mm);
3532 io_iopoll_reap_events(ctx);
3533 io_sqe_buffer_unregister(ctx);
3534 io_sqe_files_unregister(ctx);
3535 io_eventfd_unregister(ctx);
3537 #if defined(CONFIG_UNIX)
3538 if (ctx->ring_sock) {
3539 ctx->ring_sock->file = NULL; /* so that iput() is called */
3540 sock_release(ctx->ring_sock);
3542 #endif
3544 io_mem_free(ctx->rings);
3545 io_mem_free(ctx->sq_sqes);
3547 percpu_ref_exit(&ctx->refs);
3548 if (ctx->account_mem)
3549 io_unaccount_mem(ctx->user,
3550 ring_pages(ctx->sq_entries, ctx->cq_entries));
3551 free_uid(ctx->user);
3552 kfree(ctx);
3555 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3557 struct io_ring_ctx *ctx = file->private_data;
3558 __poll_t mask = 0;
3560 poll_wait(file, &ctx->cq_wait, wait);
3562 * synchronizes with barrier from wq_has_sleeper call in
3563 * io_commit_cqring
3565 smp_rmb();
3566 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
3567 ctx->rings->sq_ring_entries)
3568 mask |= EPOLLOUT | EPOLLWRNORM;
3569 if (READ_ONCE(ctx->rings->cq.head) != ctx->cached_cq_tail)
3570 mask |= EPOLLIN | EPOLLRDNORM;
3572 return mask;
3575 static int io_uring_fasync(int fd, struct file *file, int on)
3577 struct io_ring_ctx *ctx = file->private_data;
3579 return fasync_helper(fd, file, on, &ctx->cq_fasync);
3582 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3584 mutex_lock(&ctx->uring_lock);
3585 percpu_ref_kill(&ctx->refs);
3586 mutex_unlock(&ctx->uring_lock);
3588 io_kill_timeouts(ctx);
3589 io_poll_remove_all(ctx);
3590 io_iopoll_reap_events(ctx);
3591 wait_for_completion(&ctx->ctx_done);
3592 io_ring_ctx_free(ctx);
3595 static int io_uring_release(struct inode *inode, struct file *file)
3597 struct io_ring_ctx *ctx = file->private_data;
3599 file->private_data = NULL;
3600 io_ring_ctx_wait_and_kill(ctx);
3601 return 0;
3604 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3606 loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
3607 unsigned long sz = vma->vm_end - vma->vm_start;
3608 struct io_ring_ctx *ctx = file->private_data;
3609 unsigned long pfn;
3610 struct page *page;
3611 void *ptr;
3613 switch (offset) {
3614 case IORING_OFF_SQ_RING:
3615 case IORING_OFF_CQ_RING:
3616 ptr = ctx->rings;
3617 break;
3618 case IORING_OFF_SQES:
3619 ptr = ctx->sq_sqes;
3620 break;
3621 default:
3622 return -EINVAL;
3625 page = virt_to_head_page(ptr);
3626 if (sz > page_size(page))
3627 return -EINVAL;
3629 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3630 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3633 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3634 u32, min_complete, u32, flags, const sigset_t __user *, sig,
3635 size_t, sigsz)
3637 struct io_ring_ctx *ctx;
3638 long ret = -EBADF;
3639 int submitted = 0;
3640 struct fd f;
3642 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
3643 return -EINVAL;
3645 f = fdget(fd);
3646 if (!f.file)
3647 return -EBADF;
3649 ret = -EOPNOTSUPP;
3650 if (f.file->f_op != &io_uring_fops)
3651 goto out_fput;
3653 ret = -ENXIO;
3654 ctx = f.file->private_data;
3655 if (!percpu_ref_tryget(&ctx->refs))
3656 goto out_fput;
3659 * For SQ polling, the thread will do all submissions and completions.
3660 * Just return the requested submit count, and wake the thread if
3661 * we were asked to.
3663 ret = 0;
3664 if (ctx->flags & IORING_SETUP_SQPOLL) {
3665 if (flags & IORING_ENTER_SQ_WAKEUP)
3666 wake_up(&ctx->sqo_wait);
3667 submitted = to_submit;
3668 } else if (to_submit) {
3669 to_submit = min(to_submit, ctx->sq_entries);
3671 mutex_lock(&ctx->uring_lock);
3672 submitted = io_ring_submit(ctx, to_submit);
3673 mutex_unlock(&ctx->uring_lock);
3675 if (flags & IORING_ENTER_GETEVENTS) {
3676 unsigned nr_events = 0;
3678 min_complete = min(min_complete, ctx->cq_entries);
3680 if (ctx->flags & IORING_SETUP_IOPOLL) {
3681 ret = io_iopoll_check(ctx, &nr_events, min_complete);
3682 } else {
3683 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
3687 percpu_ref_put(&ctx->refs);
3688 out_fput:
3689 fdput(f);
3690 return submitted ? submitted : ret;
3693 static const struct file_operations io_uring_fops = {
3694 .release = io_uring_release,
3695 .mmap = io_uring_mmap,
3696 .poll = io_uring_poll,
3697 .fasync = io_uring_fasync,
3700 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3701 struct io_uring_params *p)
3703 struct io_rings *rings;
3704 size_t size, sq_array_offset;
3706 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
3707 if (size == SIZE_MAX)
3708 return -EOVERFLOW;
3710 rings = io_mem_alloc(size);
3711 if (!rings)
3712 return -ENOMEM;
3714 ctx->rings = rings;
3715 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3716 rings->sq_ring_mask = p->sq_entries - 1;
3717 rings->cq_ring_mask = p->cq_entries - 1;
3718 rings->sq_ring_entries = p->sq_entries;
3719 rings->cq_ring_entries = p->cq_entries;
3720 ctx->sq_mask = rings->sq_ring_mask;
3721 ctx->cq_mask = rings->cq_ring_mask;
3722 ctx->sq_entries = rings->sq_ring_entries;
3723 ctx->cq_entries = rings->cq_ring_entries;
3725 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3726 if (size == SIZE_MAX)
3727 return -EOVERFLOW;
3729 ctx->sq_sqes = io_mem_alloc(size);
3730 if (!ctx->sq_sqes)
3731 return -ENOMEM;
3733 return 0;
3737 * Allocate an anonymous fd, this is what constitutes the application
3738 * visible backing of an io_uring instance. The application mmaps this
3739 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3740 * we have to tie this fd to a socket for file garbage collection purposes.
3742 static int io_uring_get_fd(struct io_ring_ctx *ctx)
3744 struct file *file;
3745 int ret;
3747 #if defined(CONFIG_UNIX)
3748 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3749 &ctx->ring_sock);
3750 if (ret)
3751 return ret;
3752 #endif
3754 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3755 if (ret < 0)
3756 goto err;
3758 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
3759 O_RDWR | O_CLOEXEC);
3760 if (IS_ERR(file)) {
3761 put_unused_fd(ret);
3762 ret = PTR_ERR(file);
3763 goto err;
3766 #if defined(CONFIG_UNIX)
3767 ctx->ring_sock->file = file;
3768 ctx->ring_sock->sk->sk_user_data = ctx;
3769 #endif
3770 fd_install(ret, file);
3771 return ret;
3772 err:
3773 #if defined(CONFIG_UNIX)
3774 sock_release(ctx->ring_sock);
3775 ctx->ring_sock = NULL;
3776 #endif
3777 return ret;
3780 static int io_uring_create(unsigned entries, struct io_uring_params *p)
3782 struct user_struct *user = NULL;
3783 struct io_ring_ctx *ctx;
3784 bool account_mem;
3785 int ret;
3787 if (!entries || entries > IORING_MAX_ENTRIES)
3788 return -EINVAL;
3791 * Use twice as many entries for the CQ ring. It's possible for the
3792 * application to drive a higher depth than the size of the SQ ring,
3793 * since the sqes are only used at submission time. This allows for
3794 * some flexibility in overcommitting a bit.
3796 p->sq_entries = roundup_pow_of_two(entries);
3797 p->cq_entries = 2 * p->sq_entries;
3799 user = get_uid(current_user());
3800 account_mem = !capable(CAP_IPC_LOCK);
3802 if (account_mem) {
3803 ret = io_account_mem(user,
3804 ring_pages(p->sq_entries, p->cq_entries));
3805 if (ret) {
3806 free_uid(user);
3807 return ret;
3811 ctx = io_ring_ctx_alloc(p);
3812 if (!ctx) {
3813 if (account_mem)
3814 io_unaccount_mem(user, ring_pages(p->sq_entries,
3815 p->cq_entries));
3816 free_uid(user);
3817 return -ENOMEM;
3819 ctx->compat = in_compat_syscall();
3820 ctx->account_mem = account_mem;
3821 ctx->user = user;
3823 ret = io_allocate_scq_urings(ctx, p);
3824 if (ret)
3825 goto err;
3827 ret = io_sq_offload_start(ctx, p);
3828 if (ret)
3829 goto err;
3831 ret = io_uring_get_fd(ctx);
3832 if (ret < 0)
3833 goto err;
3835 memset(&p->sq_off, 0, sizeof(p->sq_off));
3836 p->sq_off.head = offsetof(struct io_rings, sq.head);
3837 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3838 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3839 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3840 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3841 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3842 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3844 memset(&p->cq_off, 0, sizeof(p->cq_off));
3845 p->cq_off.head = offsetof(struct io_rings, cq.head);
3846 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3847 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3848 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3849 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3850 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3852 p->features = IORING_FEAT_SINGLE_MMAP;
3853 return ret;
3854 err:
3855 io_ring_ctx_wait_and_kill(ctx);
3856 return ret;
3860 * Sets up an aio uring context, and returns the fd. Applications asks for a
3861 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3862 * params structure passed in.
3864 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3866 struct io_uring_params p;
3867 long ret;
3868 int i;
3870 if (copy_from_user(&p, params, sizeof(p)))
3871 return -EFAULT;
3872 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3873 if (p.resv[i])
3874 return -EINVAL;
3877 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3878 IORING_SETUP_SQ_AFF))
3879 return -EINVAL;
3881 ret = io_uring_create(entries, &p);
3882 if (ret < 0)
3883 return ret;
3885 if (copy_to_user(params, &p, sizeof(p)))
3886 return -EFAULT;
3888 return ret;
3891 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3892 struct io_uring_params __user *, params)
3894 return io_uring_setup(entries, params);
3897 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3898 void __user *arg, unsigned nr_args)
3899 __releases(ctx->uring_lock)
3900 __acquires(ctx->uring_lock)
3902 int ret;
3905 * We're inside the ring mutex, if the ref is already dying, then
3906 * someone else killed the ctx or is already going through
3907 * io_uring_register().
3909 if (percpu_ref_is_dying(&ctx->refs))
3910 return -ENXIO;
3912 percpu_ref_kill(&ctx->refs);
3915 * Drop uring mutex before waiting for references to exit. If another
3916 * thread is currently inside io_uring_enter() it might need to grab
3917 * the uring_lock to make progress. If we hold it here across the drain
3918 * wait, then we can deadlock. It's safe to drop the mutex here, since
3919 * no new references will come in after we've killed the percpu ref.
3921 mutex_unlock(&ctx->uring_lock);
3922 wait_for_completion(&ctx->ctx_done);
3923 mutex_lock(&ctx->uring_lock);
3925 switch (opcode) {
3926 case IORING_REGISTER_BUFFERS:
3927 ret = io_sqe_buffer_register(ctx, arg, nr_args);
3928 break;
3929 case IORING_UNREGISTER_BUFFERS:
3930 ret = -EINVAL;
3931 if (arg || nr_args)
3932 break;
3933 ret = io_sqe_buffer_unregister(ctx);
3934 break;
3935 case IORING_REGISTER_FILES:
3936 ret = io_sqe_files_register(ctx, arg, nr_args);
3937 break;
3938 case IORING_UNREGISTER_FILES:
3939 ret = -EINVAL;
3940 if (arg || nr_args)
3941 break;
3942 ret = io_sqe_files_unregister(ctx);
3943 break;
3944 case IORING_REGISTER_EVENTFD:
3945 ret = -EINVAL;
3946 if (nr_args != 1)
3947 break;
3948 ret = io_eventfd_register(ctx, arg);
3949 break;
3950 case IORING_UNREGISTER_EVENTFD:
3951 ret = -EINVAL;
3952 if (arg || nr_args)
3953 break;
3954 ret = io_eventfd_unregister(ctx);
3955 break;
3956 default:
3957 ret = -EINVAL;
3958 break;
3961 /* bring the ctx back to life */
3962 reinit_completion(&ctx->ctx_done);
3963 percpu_ref_reinit(&ctx->refs);
3964 return ret;
3967 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
3968 void __user *, arg, unsigned int, nr_args)
3970 struct io_ring_ctx *ctx;
3971 long ret = -EBADF;
3972 struct fd f;
3974 f = fdget(fd);
3975 if (!f.file)
3976 return -EBADF;
3978 ret = -EOPNOTSUPP;
3979 if (f.file->f_op != &io_uring_fops)
3980 goto out_fput;
3982 ctx = f.file->private_data;
3984 mutex_lock(&ctx->uring_lock);
3985 ret = __io_uring_register(ctx, opcode, arg, nr_args);
3986 mutex_unlock(&ctx->uring_lock);
3987 out_fput:
3988 fdput(f);
3989 return ret;
3992 static int __init io_uring_init(void)
3994 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3995 return 0;
3997 __initcall(io_uring_init);