5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/cred.h>
16 #include <linux/err.h>
17 #include <linux/acct.h>
18 #include <linux/slab.h>
19 #include <linux/proc_ns.h>
20 #include <linux/reboot.h>
21 #include <linux/export.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/signal.h>
24 #include <linux/idr.h>
29 struct kmem_cache
*cachep
;
30 struct list_head list
;
33 static LIST_HEAD(pid_caches_lh
);
34 static DEFINE_MUTEX(pid_caches_mutex
);
35 static struct kmem_cache
*pid_ns_cachep
;
38 * creates the kmem cache to allocate pids from.
39 * @nr_ids: the number of numerical ids this pid will have to carry
42 static struct kmem_cache
*create_pid_cachep(int nr_ids
)
44 struct pid_cache
*pcache
;
45 struct kmem_cache
*cachep
;
47 mutex_lock(&pid_caches_mutex
);
48 list_for_each_entry(pcache
, &pid_caches_lh
, list
)
49 if (pcache
->nr_ids
== nr_ids
)
52 pcache
= kmalloc(sizeof(struct pid_cache
), GFP_KERNEL
);
56 snprintf(pcache
->name
, sizeof(pcache
->name
), "pid_%d", nr_ids
);
57 cachep
= kmem_cache_create(pcache
->name
,
58 sizeof(struct pid
) + (nr_ids
- 1) * sizeof(struct upid
),
59 0, SLAB_HWCACHE_ALIGN
, NULL
);
63 pcache
->nr_ids
= nr_ids
;
64 pcache
->cachep
= cachep
;
65 list_add(&pcache
->list
, &pid_caches_lh
);
67 mutex_unlock(&pid_caches_mutex
);
68 return pcache
->cachep
;
73 mutex_unlock(&pid_caches_mutex
);
77 static void proc_cleanup_work(struct work_struct
*work
)
79 struct pid_namespace
*ns
= container_of(work
, struct pid_namespace
, proc_work
);
80 pid_ns_release_proc(ns
);
83 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
84 #define MAX_PID_NS_LEVEL 32
86 static struct ucounts
*inc_pid_namespaces(struct user_namespace
*ns
)
88 return inc_ucount(ns
, current_euid(), UCOUNT_PID_NAMESPACES
);
91 static void dec_pid_namespaces(struct ucounts
*ucounts
)
93 dec_ucount(ucounts
, UCOUNT_PID_NAMESPACES
);
96 static struct pid_namespace
*create_pid_namespace(struct user_namespace
*user_ns
,
97 struct pid_namespace
*parent_pid_ns
)
99 struct pid_namespace
*ns
;
100 unsigned int level
= parent_pid_ns
->level
+ 1;
101 struct ucounts
*ucounts
;
105 if (!in_userns(parent_pid_ns
->user_ns
, user_ns
))
109 if (level
> MAX_PID_NS_LEVEL
)
111 ucounts
= inc_pid_namespaces(user_ns
);
116 ns
= kmem_cache_zalloc(pid_ns_cachep
, GFP_KERNEL
);
122 ns
->pid_cachep
= create_pid_cachep(level
+ 1);
123 if (ns
->pid_cachep
== NULL
)
126 err
= ns_alloc_inum(&ns
->ns
);
129 ns
->ns
.ops
= &pidns_operations
;
131 kref_init(&ns
->kref
);
133 ns
->parent
= get_pid_ns(parent_pid_ns
);
134 ns
->user_ns
= get_user_ns(user_ns
);
135 ns
->ucounts
= ucounts
;
136 ns
->pid_allocated
= PIDNS_ADDING
;
137 INIT_WORK(&ns
->proc_work
, proc_cleanup_work
);
142 idr_destroy(&ns
->idr
);
143 kmem_cache_free(pid_ns_cachep
, ns
);
145 dec_pid_namespaces(ucounts
);
150 static void delayed_free_pidns(struct rcu_head
*p
)
152 struct pid_namespace
*ns
= container_of(p
, struct pid_namespace
, rcu
);
154 dec_pid_namespaces(ns
->ucounts
);
155 put_user_ns(ns
->user_ns
);
157 kmem_cache_free(pid_ns_cachep
, ns
);
160 static void destroy_pid_namespace(struct pid_namespace
*ns
)
162 ns_free_inum(&ns
->ns
);
164 idr_destroy(&ns
->idr
);
165 call_rcu(&ns
->rcu
, delayed_free_pidns
);
168 struct pid_namespace
*copy_pid_ns(unsigned long flags
,
169 struct user_namespace
*user_ns
, struct pid_namespace
*old_ns
)
171 if (!(flags
& CLONE_NEWPID
))
172 return get_pid_ns(old_ns
);
173 if (task_active_pid_ns(current
) != old_ns
)
174 return ERR_PTR(-EINVAL
);
175 return create_pid_namespace(user_ns
, old_ns
);
178 static void free_pid_ns(struct kref
*kref
)
180 struct pid_namespace
*ns
;
182 ns
= container_of(kref
, struct pid_namespace
, kref
);
183 destroy_pid_namespace(ns
);
186 void put_pid_ns(struct pid_namespace
*ns
)
188 struct pid_namespace
*parent
;
190 while (ns
!= &init_pid_ns
) {
192 if (!kref_put(&ns
->kref
, free_pid_ns
))
197 EXPORT_SYMBOL_GPL(put_pid_ns
);
199 void zap_pid_ns_processes(struct pid_namespace
*pid_ns
)
203 struct task_struct
*task
, *me
= current
;
204 int init_pids
= thread_group_leader(me
) ? 1 : 2;
207 /* Don't allow any more processes into the pid namespace */
208 disable_pid_allocation(pid_ns
);
211 * Ignore SIGCHLD causing any terminated children to autoreap.
212 * This speeds up the namespace shutdown, plus see the comment
215 spin_lock_irq(&me
->sighand
->siglock
);
216 me
->sighand
->action
[SIGCHLD
- 1].sa
.sa_handler
= SIG_IGN
;
217 spin_unlock_irq(&me
->sighand
->siglock
);
220 * The last thread in the cgroup-init thread group is terminating.
221 * Find remaining pid_ts in the namespace, signal and wait for them
224 * Note: This signals each threads in the namespace - even those that
225 * belong to the same thread group, To avoid this, we would have
226 * to walk the entire tasklist looking a processes in this
227 * namespace, but that could be unnecessarily expensive if the
228 * pid namespace has just a few processes. Or we need to
229 * maintain a tasklist for each pid namespace.
233 read_lock(&tasklist_lock
);
235 idr_for_each_entry_continue(&pid_ns
->idr
, pid
, nr
) {
236 task
= pid_task(pid
, PIDTYPE_PID
);
237 if (task
&& !__fatal_signal_pending(task
))
238 send_sig_info(SIGKILL
, SEND_SIG_FORCED
, task
);
240 read_unlock(&tasklist_lock
);
244 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
245 * sys_wait4() will also block until our children traced from the
246 * parent namespace are detached and become EXIT_DEAD.
249 clear_thread_flag(TIF_SIGPENDING
);
250 rc
= sys_wait4(-1, NULL
, __WALL
, NULL
);
251 } while (rc
!= -ECHILD
);
254 * sys_wait4() above can't reap the EXIT_DEAD children but we do not
255 * really care, we could reparent them to the global init. We could
256 * exit and reap ->child_reaper even if it is not the last thread in
257 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
258 * pid_ns can not go away until proc_kill_sb() drops the reference.
260 * But this ns can also have other tasks injected by setns()+fork().
261 * Again, ignoring the user visible semantics we do not really need
262 * to wait until they are all reaped, but they can be reparented to
263 * us and thus we need to ensure that pid->child_reaper stays valid
264 * until they all go away. See free_pid()->wake_up_process().
266 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
270 set_current_state(TASK_INTERRUPTIBLE
);
271 if (pid_ns
->pid_allocated
== init_pids
)
275 __set_current_state(TASK_RUNNING
);
278 current
->signal
->group_exit_code
= pid_ns
->reboot
;
280 acct_exit_ns(pid_ns
);
284 #ifdef CONFIG_CHECKPOINT_RESTORE
285 static int pid_ns_ctl_handler(struct ctl_table
*table
, int write
,
286 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
288 struct pid_namespace
*pid_ns
= task_active_pid_ns(current
);
289 struct ctl_table tmp
= *table
;
292 if (write
&& !ns_capable(pid_ns
->user_ns
, CAP_SYS_ADMIN
))
296 * Writing directly to ns' last_pid field is OK, since this field
297 * is volatile in a living namespace anyway and a code writing to
298 * it should synchronize its usage with external means.
301 next
= idr_get_cursor(&pid_ns
->idr
) - 1;
304 ret
= proc_dointvec_minmax(&tmp
, write
, buffer
, lenp
, ppos
);
306 idr_set_cursor(&pid_ns
->idr
, next
+ 1);
313 static struct ctl_table pid_ns_ctl_table
[] = {
315 .procname
= "ns_last_pid",
316 .maxlen
= sizeof(int),
317 .mode
= 0666, /* permissions are checked in the handler */
318 .proc_handler
= pid_ns_ctl_handler
,
324 static struct ctl_path kern_path
[] = { { .procname
= "kernel", }, { } };
325 #endif /* CONFIG_CHECKPOINT_RESTORE */
327 int reboot_pid_ns(struct pid_namespace
*pid_ns
, int cmd
)
329 if (pid_ns
== &init_pid_ns
)
333 case LINUX_REBOOT_CMD_RESTART2
:
334 case LINUX_REBOOT_CMD_RESTART
:
335 pid_ns
->reboot
= SIGHUP
;
338 case LINUX_REBOOT_CMD_POWER_OFF
:
339 case LINUX_REBOOT_CMD_HALT
:
340 pid_ns
->reboot
= SIGINT
;
346 read_lock(&tasklist_lock
);
347 force_sig(SIGKILL
, pid_ns
->child_reaper
);
348 read_unlock(&tasklist_lock
);
356 static inline struct pid_namespace
*to_pid_ns(struct ns_common
*ns
)
358 return container_of(ns
, struct pid_namespace
, ns
);
361 static struct ns_common
*pidns_get(struct task_struct
*task
)
363 struct pid_namespace
*ns
;
366 ns
= task_active_pid_ns(task
);
371 return ns
? &ns
->ns
: NULL
;
374 static struct ns_common
*pidns_for_children_get(struct task_struct
*task
)
376 struct pid_namespace
*ns
= NULL
;
380 ns
= task
->nsproxy
->pid_ns_for_children
;
386 read_lock(&tasklist_lock
);
387 if (!ns
->child_reaper
) {
391 read_unlock(&tasklist_lock
);
394 return ns
? &ns
->ns
: NULL
;
397 static void pidns_put(struct ns_common
*ns
)
399 put_pid_ns(to_pid_ns(ns
));
402 static int pidns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
404 struct pid_namespace
*active
= task_active_pid_ns(current
);
405 struct pid_namespace
*ancestor
, *new = to_pid_ns(ns
);
407 if (!ns_capable(new->user_ns
, CAP_SYS_ADMIN
) ||
408 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
412 * Only allow entering the current active pid namespace
413 * or a child of the current active pid namespace.
415 * This is required for fork to return a usable pid value and
416 * this maintains the property that processes and their
417 * children can not escape their current pid namespace.
419 if (new->level
< active
->level
)
423 while (ancestor
->level
> active
->level
)
424 ancestor
= ancestor
->parent
;
425 if (ancestor
!= active
)
428 put_pid_ns(nsproxy
->pid_ns_for_children
);
429 nsproxy
->pid_ns_for_children
= get_pid_ns(new);
433 static struct ns_common
*pidns_get_parent(struct ns_common
*ns
)
435 struct pid_namespace
*active
= task_active_pid_ns(current
);
436 struct pid_namespace
*pid_ns
, *p
;
438 /* See if the parent is in the current namespace */
439 pid_ns
= p
= to_pid_ns(ns
)->parent
;
442 return ERR_PTR(-EPERM
);
448 return &get_pid_ns(pid_ns
)->ns
;
451 static struct user_namespace
*pidns_owner(struct ns_common
*ns
)
453 return to_pid_ns(ns
)->user_ns
;
456 const struct proc_ns_operations pidns_operations
= {
458 .type
= CLONE_NEWPID
,
461 .install
= pidns_install
,
462 .owner
= pidns_owner
,
463 .get_parent
= pidns_get_parent
,
466 const struct proc_ns_operations pidns_for_children_operations
= {
467 .name
= "pid_for_children",
468 .real_ns_name
= "pid",
469 .type
= CLONE_NEWPID
,
470 .get
= pidns_for_children_get
,
472 .install
= pidns_install
,
473 .owner
= pidns_owner
,
474 .get_parent
= pidns_get_parent
,
477 static __init
int pid_namespaces_init(void)
479 pid_ns_cachep
= KMEM_CACHE(pid_namespace
, SLAB_PANIC
);
481 #ifdef CONFIG_CHECKPOINT_RESTORE
482 register_sysctl_paths(kern_path
, pid_ns_ctl_table
);
487 __initcall(pid_namespaces_init
);