2 * EDMA3 support for DaVinci
4 * Copyright (C) 2006-2009 Texas Instruments.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/err.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
27 #include <linux/slab.h>
28 #include <linux/edma.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/of_dma.h>
33 #include <linux/of_irq.h>
34 #include <linux/pm_runtime.h>
36 #include <linux/platform_data/edma.h>
38 /* Offsets matching "struct edmacc_param" */
41 #define PARM_A_B_CNT 0x08
43 #define PARM_SRC_DST_BIDX 0x10
44 #define PARM_LINK_BCNTRLD 0x14
45 #define PARM_SRC_DST_CIDX 0x18
46 #define PARM_CCNT 0x1c
48 #define PARM_SIZE 0x20
50 /* Offsets for EDMA CC global channel registers and their shadows */
51 #define SH_ER 0x00 /* 64 bits */
52 #define SH_ECR 0x08 /* 64 bits */
53 #define SH_ESR 0x10 /* 64 bits */
54 #define SH_CER 0x18 /* 64 bits */
55 #define SH_EER 0x20 /* 64 bits */
56 #define SH_EECR 0x28 /* 64 bits */
57 #define SH_EESR 0x30 /* 64 bits */
58 #define SH_SER 0x38 /* 64 bits */
59 #define SH_SECR 0x40 /* 64 bits */
60 #define SH_IER 0x50 /* 64 bits */
61 #define SH_IECR 0x58 /* 64 bits */
62 #define SH_IESR 0x60 /* 64 bits */
63 #define SH_IPR 0x68 /* 64 bits */
64 #define SH_ICR 0x70 /* 64 bits */
74 /* Offsets for EDMA CC global registers */
75 #define EDMA_REV 0x0000
76 #define EDMA_CCCFG 0x0004
77 #define EDMA_QCHMAP 0x0200 /* 8 registers */
78 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
79 #define EDMA_QDMAQNUM 0x0260
80 #define EDMA_QUETCMAP 0x0280
81 #define EDMA_QUEPRI 0x0284
82 #define EDMA_EMR 0x0300 /* 64 bits */
83 #define EDMA_EMCR 0x0308 /* 64 bits */
84 #define EDMA_QEMR 0x0310
85 #define EDMA_QEMCR 0x0314
86 #define EDMA_CCERR 0x0318
87 #define EDMA_CCERRCLR 0x031c
88 #define EDMA_EEVAL 0x0320
89 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
90 #define EDMA_QRAE 0x0380 /* 4 registers */
91 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
92 #define EDMA_QSTAT 0x0600 /* 2 registers */
93 #define EDMA_QWMTHRA 0x0620
94 #define EDMA_QWMTHRB 0x0624
95 #define EDMA_CCSTAT 0x0640
97 #define EDMA_M 0x1000 /* global channel registers */
98 #define EDMA_ECR 0x1008
99 #define EDMA_ECRH 0x100C
100 #define EDMA_SHADOW0 0x2000 /* 4 regions shadowing global channels */
101 #define EDMA_PARM 0x4000 /* 128 param entries */
103 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
105 #define EDMA_DCHMAP 0x0100 /* 64 registers */
108 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
109 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
110 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
111 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
112 #define CHMAP_EXIST BIT(24)
114 #define EDMA_MAX_DMACH 64
115 #define EDMA_MAX_PARAMENTRY 512
117 /*****************************************************************************/
119 static void __iomem
*edmacc_regs_base
[EDMA_MAX_CC
];
121 static inline unsigned int edma_read(unsigned ctlr
, int offset
)
123 return (unsigned int)__raw_readl(edmacc_regs_base
[ctlr
] + offset
);
126 static inline void edma_write(unsigned ctlr
, int offset
, int val
)
128 __raw_writel(val
, edmacc_regs_base
[ctlr
] + offset
);
130 static inline void edma_modify(unsigned ctlr
, int offset
, unsigned and,
133 unsigned val
= edma_read(ctlr
, offset
);
136 edma_write(ctlr
, offset
, val
);
138 static inline void edma_and(unsigned ctlr
, int offset
, unsigned and)
140 unsigned val
= edma_read(ctlr
, offset
);
142 edma_write(ctlr
, offset
, val
);
144 static inline void edma_or(unsigned ctlr
, int offset
, unsigned or)
146 unsigned val
= edma_read(ctlr
, offset
);
148 edma_write(ctlr
, offset
, val
);
150 static inline unsigned int edma_read_array(unsigned ctlr
, int offset
, int i
)
152 return edma_read(ctlr
, offset
+ (i
<< 2));
154 static inline void edma_write_array(unsigned ctlr
, int offset
, int i
,
157 edma_write(ctlr
, offset
+ (i
<< 2), val
);
159 static inline void edma_modify_array(unsigned ctlr
, int offset
, int i
,
160 unsigned and, unsigned or)
162 edma_modify(ctlr
, offset
+ (i
<< 2), and, or);
164 static inline void edma_or_array(unsigned ctlr
, int offset
, int i
, unsigned or)
166 edma_or(ctlr
, offset
+ (i
<< 2), or);
168 static inline void edma_or_array2(unsigned ctlr
, int offset
, int i
, int j
,
171 edma_or(ctlr
, offset
+ ((i
*2 + j
) << 2), or);
173 static inline void edma_write_array2(unsigned ctlr
, int offset
, int i
, int j
,
176 edma_write(ctlr
, offset
+ ((i
*2 + j
) << 2), val
);
178 static inline unsigned int edma_shadow0_read(unsigned ctlr
, int offset
)
180 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
);
182 static inline unsigned int edma_shadow0_read_array(unsigned ctlr
, int offset
,
185 return edma_read(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2));
187 static inline void edma_shadow0_write(unsigned ctlr
, int offset
, unsigned val
)
189 edma_write(ctlr
, EDMA_SHADOW0
+ offset
, val
);
191 static inline void edma_shadow0_write_array(unsigned ctlr
, int offset
, int i
,
194 edma_write(ctlr
, EDMA_SHADOW0
+ offset
+ (i
<< 2), val
);
196 static inline unsigned int edma_parm_read(unsigned ctlr
, int offset
,
199 return edma_read(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5));
201 static inline void edma_parm_write(unsigned ctlr
, int offset
, int param_no
,
204 edma_write(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), val
);
206 static inline void edma_parm_modify(unsigned ctlr
, int offset
, int param_no
,
207 unsigned and, unsigned or)
209 edma_modify(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and, or);
211 static inline void edma_parm_and(unsigned ctlr
, int offset
, int param_no
,
214 edma_and(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), and);
216 static inline void edma_parm_or(unsigned ctlr
, int offset
, int param_no
,
219 edma_or(ctlr
, EDMA_PARM
+ offset
+ (param_no
<< 5), or);
222 static inline void set_bits(int offset
, int len
, unsigned long *p
)
224 for (; len
> 0; len
--)
225 set_bit(offset
+ (len
- 1), p
);
228 static inline void clear_bits(int offset
, int len
, unsigned long *p
)
230 for (; len
> 0; len
--)
231 clear_bit(offset
+ (len
- 1), p
);
234 /*****************************************************************************/
236 /* actual number of DMA channels and slots on this silicon */
238 /* how many dma resources of each type */
239 unsigned num_channels
;
243 enum dma_event_q default_queue
;
245 /* list of channels with no even trigger; terminated by "-1" */
248 struct edma_soc_info
*info
;
250 /* The edma_inuse bit for each PaRAM slot is clear unless the
251 * channel is in use ... by ARM or DSP, for QDMA, or whatever.
253 DECLARE_BITMAP(edma_inuse
, EDMA_MAX_PARAMENTRY
);
255 /* The edma_unused bit for each channel is clear unless
256 * it is not being used on this platform. It uses a bit
257 * of SOC-specific initialization code.
259 DECLARE_BITMAP(edma_unused
, EDMA_MAX_DMACH
);
261 unsigned irq_res_start
;
262 unsigned irq_res_end
;
264 struct dma_interrupt_data
{
265 void (*callback
)(unsigned channel
, unsigned short ch_status
,
268 } intr_data
[EDMA_MAX_DMACH
];
271 static struct edma
*edma_cc
[EDMA_MAX_CC
];
272 static int arch_num_cc
;
274 /* dummy param set used to (re)initialize parameter RAM slots */
275 static const struct edmacc_param dummy_paramset
= {
276 .link_bcntrld
= 0xffff,
280 static const struct of_device_id edma_of_ids
[] = {
281 { .compatible
= "ti,edma3", },
285 /*****************************************************************************/
287 static void map_dmach_queue(unsigned ctlr
, unsigned ch_no
,
288 enum dma_event_q queue_no
)
290 int bit
= (ch_no
& 0x7) * 4;
292 /* default to low priority queue */
293 if (queue_no
== EVENTQ_DEFAULT
)
294 queue_no
= edma_cc
[ctlr
]->default_queue
;
297 edma_modify_array(ctlr
, EDMA_DMAQNUM
, (ch_no
>> 3),
298 ~(0x7 << bit
), queue_no
<< bit
);
301 static void assign_priority_to_queue(unsigned ctlr
, int queue_no
,
304 int bit
= queue_no
* 4;
305 edma_modify(ctlr
, EDMA_QUEPRI
, ~(0x7 << bit
),
306 ((priority
& 0x7) << bit
));
310 * map_dmach_param - Maps channel number to param entry number
312 * This maps the dma channel number to param entry numberter. In
313 * other words using the DMA channel mapping registers a param entry
314 * can be mapped to any channel
316 * Callers are responsible for ensuring the channel mapping logic is
317 * included in that particular EDMA variant (Eg : dm646x)
320 static void map_dmach_param(unsigned ctlr
)
323 for (i
= 0; i
< EDMA_MAX_DMACH
; i
++)
324 edma_write_array(ctlr
, EDMA_DCHMAP
, i
, (i
<< 5));
328 setup_dma_interrupt(unsigned lch
,
329 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
334 ctlr
= EDMA_CTLR(lch
);
335 lch
= EDMA_CHAN_SLOT(lch
);
338 edma_shadow0_write_array(ctlr
, SH_IECR
, lch
>> 5,
341 edma_cc
[ctlr
]->intr_data
[lch
].callback
= callback
;
342 edma_cc
[ctlr
]->intr_data
[lch
].data
= data
;
345 edma_shadow0_write_array(ctlr
, SH_ICR
, lch
>> 5,
347 edma_shadow0_write_array(ctlr
, SH_IESR
, lch
>> 5,
352 static int irq2ctlr(int irq
)
354 if (irq
>= edma_cc
[0]->irq_res_start
&& irq
<= edma_cc
[0]->irq_res_end
)
356 else if (irq
>= edma_cc
[1]->irq_res_start
&&
357 irq
<= edma_cc
[1]->irq_res_end
)
363 /******************************************************************************
365 * DMA interrupt handler
367 *****************************************************************************/
368 static irqreturn_t
dma_irq_handler(int irq
, void *data
)
375 ctlr
= irq2ctlr(irq
);
379 dev_dbg(data
, "dma_irq_handler\n");
381 sh_ipr
= edma_shadow0_read_array(ctlr
, SH_IPR
, 0);
383 sh_ipr
= edma_shadow0_read_array(ctlr
, SH_IPR
, 1);
386 sh_ier
= edma_shadow0_read_array(ctlr
, SH_IER
, 1);
389 sh_ier
= edma_shadow0_read_array(ctlr
, SH_IER
, 0);
397 dev_dbg(data
, "IPR%d %08x\n", bank
, sh_ipr
);
399 slot
= __ffs(sh_ipr
);
400 sh_ipr
&= ~(BIT(slot
));
402 if (sh_ier
& BIT(slot
)) {
403 channel
= (bank
<< 5) | slot
;
404 /* Clear the corresponding IPR bits */
405 edma_shadow0_write_array(ctlr
, SH_ICR
, bank
,
407 if (edma_cc
[ctlr
]->intr_data
[channel
].callback
)
408 edma_cc
[ctlr
]->intr_data
[channel
].callback(
409 channel
, EDMA_DMA_COMPLETE
,
410 edma_cc
[ctlr
]->intr_data
[channel
].data
);
414 edma_shadow0_write(ctlr
, SH_IEVAL
, 1);
418 /******************************************************************************
420 * DMA error interrupt handler
422 *****************************************************************************/
423 static irqreturn_t
dma_ccerr_handler(int irq
, void *data
)
427 unsigned int cnt
= 0;
429 ctlr
= irq2ctlr(irq
);
433 dev_dbg(data
, "dma_ccerr_handler\n");
435 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
436 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
437 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
438 (edma_read(ctlr
, EDMA_CCERR
) == 0))
443 if (edma_read_array(ctlr
, EDMA_EMR
, 0))
445 else if (edma_read_array(ctlr
, EDMA_EMR
, 1))
448 dev_dbg(data
, "EMR%d %08x\n", j
,
449 edma_read_array(ctlr
, EDMA_EMR
, j
));
450 for (i
= 0; i
< 32; i
++) {
451 int k
= (j
<< 5) + i
;
452 if (edma_read_array(ctlr
, EDMA_EMR
, j
) &
454 /* Clear the corresponding EMR bits */
455 edma_write_array(ctlr
, EDMA_EMCR
, j
,
458 edma_shadow0_write_array(ctlr
, SH_SECR
,
460 if (edma_cc
[ctlr
]->intr_data
[k
].
462 edma_cc
[ctlr
]->intr_data
[k
].
465 edma_cc
[ctlr
]->intr_data
470 } else if (edma_read(ctlr
, EDMA_QEMR
)) {
471 dev_dbg(data
, "QEMR %02x\n",
472 edma_read(ctlr
, EDMA_QEMR
));
473 for (i
= 0; i
< 8; i
++) {
474 if (edma_read(ctlr
, EDMA_QEMR
) & BIT(i
)) {
475 /* Clear the corresponding IPR bits */
476 edma_write(ctlr
, EDMA_QEMCR
, BIT(i
));
477 edma_shadow0_write(ctlr
, SH_QSECR
,
480 /* NOTE: not reported!! */
483 } else if (edma_read(ctlr
, EDMA_CCERR
)) {
484 dev_dbg(data
, "CCERR %08x\n",
485 edma_read(ctlr
, EDMA_CCERR
));
486 /* FIXME: CCERR.BIT(16) ignored! much better
487 * to just write CCERRCLR with CCERR value...
489 for (i
= 0; i
< 8; i
++) {
490 if (edma_read(ctlr
, EDMA_CCERR
) & BIT(i
)) {
491 /* Clear the corresponding IPR bits */
492 edma_write(ctlr
, EDMA_CCERRCLR
, BIT(i
));
494 /* NOTE: not reported!! */
498 if ((edma_read_array(ctlr
, EDMA_EMR
, 0) == 0) &&
499 (edma_read_array(ctlr
, EDMA_EMR
, 1) == 0) &&
500 (edma_read(ctlr
, EDMA_QEMR
) == 0) &&
501 (edma_read(ctlr
, EDMA_CCERR
) == 0))
507 edma_write(ctlr
, EDMA_EEVAL
, 1);
511 static int reserve_contiguous_slots(int ctlr
, unsigned int id
,
512 unsigned int num_slots
,
513 unsigned int start_slot
)
516 unsigned int count
= num_slots
;
517 int stop_slot
= start_slot
;
518 DECLARE_BITMAP(tmp_inuse
, EDMA_MAX_PARAMENTRY
);
520 for (i
= start_slot
; i
< edma_cc
[ctlr
]->num_slots
; ++i
) {
521 j
= EDMA_CHAN_SLOT(i
);
522 if (!test_and_set_bit(j
, edma_cc
[ctlr
]->edma_inuse
)) {
523 /* Record our current beginning slot */
524 if (count
== num_slots
)
528 set_bit(j
, tmp_inuse
);
533 clear_bit(j
, tmp_inuse
);
535 if (id
== EDMA_CONT_PARAMS_FIXED_EXACT
) {
545 * We have to clear any bits that we set
546 * if we run out parameter RAM slots, i.e we do find a set
547 * of contiguous parameter RAM slots but do not find the exact number
548 * requested as we may reach the total number of parameter RAM slots
550 if (i
== edma_cc
[ctlr
]->num_slots
)
554 for_each_set_bit_from(j
, tmp_inuse
, stop_slot
)
555 clear_bit(j
, edma_cc
[ctlr
]->edma_inuse
);
560 for (j
= i
- num_slots
+ 1; j
<= i
; ++j
)
561 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(j
),
562 &dummy_paramset
, PARM_SIZE
);
564 return EDMA_CTLR_CHAN(ctlr
, i
- num_slots
+ 1);
567 static int prepare_unused_channel_list(struct device
*dev
, void *data
)
569 struct platform_device
*pdev
= to_platform_device(dev
);
571 struct of_phandle_args dma_spec
;
574 count
= of_property_count_strings(dev
->of_node
, "dma-names");
577 for (i
= 0; i
< count
; i
++) {
578 if (of_parse_phandle_with_args(dev
->of_node
, "dmas",
583 if (!of_match_node(edma_of_ids
, dma_spec
.np
)) {
584 of_node_put(dma_spec
.np
);
588 clear_bit(EDMA_CHAN_SLOT(dma_spec
.args
[0]),
589 edma_cc
[0]->edma_unused
);
590 of_node_put(dma_spec
.np
);
595 /* For non-OF case */
596 for (i
= 0; i
< pdev
->num_resources
; i
++) {
597 if ((pdev
->resource
[i
].flags
& IORESOURCE_DMA
) &&
598 (int)pdev
->resource
[i
].start
>= 0) {
599 ctlr
= EDMA_CTLR(pdev
->resource
[i
].start
);
600 clear_bit(EDMA_CHAN_SLOT(pdev
->resource
[i
].start
),
601 edma_cc
[ctlr
]->edma_unused
);
608 /*-----------------------------------------------------------------------*/
610 static bool unused_chan_list_done
;
612 /* Resource alloc/free: dma channels, parameter RAM slots */
615 * edma_alloc_channel - allocate DMA channel and paired parameter RAM
616 * @channel: specific channel to allocate; negative for "any unmapped channel"
617 * @callback: optional; to be issued on DMA completion or errors
618 * @data: passed to callback
619 * @eventq_no: an EVENTQ_* constant, used to choose which Transfer
620 * Controller (TC) executes requests using this channel. Use
621 * EVENTQ_DEFAULT unless you really need a high priority queue.
623 * This allocates a DMA channel and its associated parameter RAM slot.
624 * The parameter RAM is initialized to hold a dummy transfer.
626 * Normal use is to pass a specific channel number as @channel, to make
627 * use of hardware events mapped to that channel. When the channel will
628 * be used only for software triggering or event chaining, channels not
629 * mapped to hardware events (or mapped to unused events) are preferable.
631 * DMA transfers start from a channel using edma_start(), or by
632 * chaining. When the transfer described in that channel's parameter RAM
633 * slot completes, that slot's data may be reloaded through a link.
635 * DMA errors are only reported to the @callback associated with the
636 * channel driving that transfer, but transfer completion callbacks can
637 * be sent to another channel under control of the TCC field in
638 * the option word of the transfer's parameter RAM set. Drivers must not
639 * use DMA transfer completion callbacks for channels they did not allocate.
640 * (The same applies to TCC codes used in transfer chaining.)
642 * Returns the number of the channel, else negative errno.
644 int edma_alloc_channel(int channel
,
645 void (*callback
)(unsigned channel
, u16 ch_status
, void *data
),
647 enum dma_event_q eventq_no
)
649 unsigned i
, done
= 0, ctlr
= 0;
652 if (!unused_chan_list_done
) {
654 * Scan all the platform devices to find out the EDMA channels
655 * used and clear them in the unused list, making the rest
656 * available for ARM usage.
658 ret
= bus_for_each_dev(&platform_bus_type
, NULL
, NULL
,
659 prepare_unused_channel_list
);
663 unused_chan_list_done
= true;
667 ctlr
= EDMA_CTLR(channel
);
668 channel
= EDMA_CHAN_SLOT(channel
);
672 for (i
= 0; i
< arch_num_cc
; i
++) {
675 channel
= find_next_bit(edma_cc
[i
]->edma_unused
,
676 edma_cc
[i
]->num_channels
,
678 if (channel
== edma_cc
[i
]->num_channels
)
680 if (!test_and_set_bit(channel
,
681 edma_cc
[i
]->edma_inuse
)) {
693 } else if (channel
>= edma_cc
[ctlr
]->num_channels
) {
695 } else if (test_and_set_bit(channel
, edma_cc
[ctlr
]->edma_inuse
)) {
699 /* ensure access through shadow region 0 */
700 edma_or_array2(ctlr
, EDMA_DRAE
, 0, channel
>> 5, BIT(channel
& 0x1f));
702 /* ensure no events are pending */
703 edma_stop(EDMA_CTLR_CHAN(ctlr
, channel
));
704 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
705 &dummy_paramset
, PARM_SIZE
);
708 setup_dma_interrupt(EDMA_CTLR_CHAN(ctlr
, channel
),
711 map_dmach_queue(ctlr
, channel
, eventq_no
);
713 return EDMA_CTLR_CHAN(ctlr
, channel
);
715 EXPORT_SYMBOL(edma_alloc_channel
);
719 * edma_free_channel - deallocate DMA channel
720 * @channel: dma channel returned from edma_alloc_channel()
722 * This deallocates the DMA channel and associated parameter RAM slot
723 * allocated by edma_alloc_channel().
725 * Callers are responsible for ensuring the channel is inactive, and
726 * will not be reactivated by linking, chaining, or software calls to
729 void edma_free_channel(unsigned channel
)
733 ctlr
= EDMA_CTLR(channel
);
734 channel
= EDMA_CHAN_SLOT(channel
);
736 if (channel
>= edma_cc
[ctlr
]->num_channels
)
739 setup_dma_interrupt(channel
, NULL
, NULL
);
740 /* REVISIT should probably take out of shadow region 0 */
742 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(channel
),
743 &dummy_paramset
, PARM_SIZE
);
744 clear_bit(channel
, edma_cc
[ctlr
]->edma_inuse
);
746 EXPORT_SYMBOL(edma_free_channel
);
749 * edma_alloc_slot - allocate DMA parameter RAM
750 * @slot: specific slot to allocate; negative for "any unused slot"
752 * This allocates a parameter RAM slot, initializing it to hold a
753 * dummy transfer. Slots allocated using this routine have not been
754 * mapped to a hardware DMA channel, and will normally be used by
755 * linking to them from a slot associated with a DMA channel.
757 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
758 * slots may be allocated on behalf of DSP firmware.
760 * Returns the number of the slot, else negative errno.
762 int edma_alloc_slot(unsigned ctlr
, int slot
)
768 slot
= EDMA_CHAN_SLOT(slot
);
771 slot
= edma_cc
[ctlr
]->num_channels
;
773 slot
= find_next_zero_bit(edma_cc
[ctlr
]->edma_inuse
,
774 edma_cc
[ctlr
]->num_slots
, slot
);
775 if (slot
== edma_cc
[ctlr
]->num_slots
)
777 if (!test_and_set_bit(slot
, edma_cc
[ctlr
]->edma_inuse
))
780 } else if (slot
< edma_cc
[ctlr
]->num_channels
||
781 slot
>= edma_cc
[ctlr
]->num_slots
) {
783 } else if (test_and_set_bit(slot
, edma_cc
[ctlr
]->edma_inuse
)) {
787 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
788 &dummy_paramset
, PARM_SIZE
);
790 return EDMA_CTLR_CHAN(ctlr
, slot
);
792 EXPORT_SYMBOL(edma_alloc_slot
);
795 * edma_free_slot - deallocate DMA parameter RAM
796 * @slot: parameter RAM slot returned from edma_alloc_slot()
798 * This deallocates the parameter RAM slot allocated by edma_alloc_slot().
799 * Callers are responsible for ensuring the slot is inactive, and will
802 void edma_free_slot(unsigned slot
)
806 ctlr
= EDMA_CTLR(slot
);
807 slot
= EDMA_CHAN_SLOT(slot
);
809 if (slot
< edma_cc
[ctlr
]->num_channels
||
810 slot
>= edma_cc
[ctlr
]->num_slots
)
813 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
814 &dummy_paramset
, PARM_SIZE
);
815 clear_bit(slot
, edma_cc
[ctlr
]->edma_inuse
);
817 EXPORT_SYMBOL(edma_free_slot
);
821 * edma_alloc_cont_slots- alloc contiguous parameter RAM slots
822 * The API will return the starting point of a set of
823 * contiguous parameter RAM slots that have been requested
825 * @id: can only be EDMA_CONT_PARAMS_ANY or EDMA_CONT_PARAMS_FIXED_EXACT
826 * or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
827 * @count: number of contiguous Paramter RAM slots
828 * @slot - the start value of Parameter RAM slot that should be passed if id
829 * is EDMA_CONT_PARAMS_FIXED_EXACT or EDMA_CONT_PARAMS_FIXED_NOT_EXACT
831 * If id is EDMA_CONT_PARAMS_ANY then the API starts looking for a set of
832 * contiguous Parameter RAM slots from parameter RAM 64 in the case of
833 * DaVinci SOCs and 32 in the case of DA8xx SOCs.
835 * If id is EDMA_CONT_PARAMS_FIXED_EXACT then the API starts looking for a
836 * set of contiguous parameter RAM slots from the "slot" that is passed as an
837 * argument to the API.
839 * If id is EDMA_CONT_PARAMS_FIXED_NOT_EXACT then the API initially tries
840 * starts looking for a set of contiguous parameter RAMs from the "slot"
841 * that is passed as an argument to the API. On failure the API will try to
842 * find a set of contiguous Parameter RAM slots from the remaining Parameter
845 int edma_alloc_cont_slots(unsigned ctlr
, unsigned int id
, int slot
, int count
)
848 * The start slot requested should be greater than
849 * the number of channels and lesser than the total number
852 if ((id
!= EDMA_CONT_PARAMS_ANY
) &&
853 (slot
< edma_cc
[ctlr
]->num_channels
||
854 slot
>= edma_cc
[ctlr
]->num_slots
))
858 * The number of parameter RAM slots requested cannot be less than 1
859 * and cannot be more than the number of slots minus the number of
862 if (count
< 1 || count
>
863 (edma_cc
[ctlr
]->num_slots
- edma_cc
[ctlr
]->num_channels
))
867 case EDMA_CONT_PARAMS_ANY
:
868 return reserve_contiguous_slots(ctlr
, id
, count
,
869 edma_cc
[ctlr
]->num_channels
);
870 case EDMA_CONT_PARAMS_FIXED_EXACT
:
871 case EDMA_CONT_PARAMS_FIXED_NOT_EXACT
:
872 return reserve_contiguous_slots(ctlr
, id
, count
, slot
);
878 EXPORT_SYMBOL(edma_alloc_cont_slots
);
881 * edma_free_cont_slots - deallocate DMA parameter RAM slots
882 * @slot: first parameter RAM of a set of parameter RAM slots to be freed
883 * @count: the number of contiguous parameter RAM slots to be freed
885 * This deallocates the parameter RAM slots allocated by
886 * edma_alloc_cont_slots.
887 * Callers/applications need to keep track of sets of contiguous
888 * parameter RAM slots that have been allocated using the edma_alloc_cont_slots
890 * Callers are responsible for ensuring the slots are inactive, and will
893 int edma_free_cont_slots(unsigned slot
, int count
)
895 unsigned ctlr
, slot_to_free
;
898 ctlr
= EDMA_CTLR(slot
);
899 slot
= EDMA_CHAN_SLOT(slot
);
901 if (slot
< edma_cc
[ctlr
]->num_channels
||
902 slot
>= edma_cc
[ctlr
]->num_slots
||
906 for (i
= slot
; i
< slot
+ count
; ++i
) {
908 slot_to_free
= EDMA_CHAN_SLOT(i
);
910 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot_to_free
),
911 &dummy_paramset
, PARM_SIZE
);
912 clear_bit(slot_to_free
, edma_cc
[ctlr
]->edma_inuse
);
917 EXPORT_SYMBOL(edma_free_cont_slots
);
919 /*-----------------------------------------------------------------------*/
921 /* Parameter RAM operations (i) -- read/write partial slots */
924 * edma_set_src - set initial DMA source address in parameter RAM slot
925 * @slot: parameter RAM slot being configured
926 * @src_port: physical address of source (memory, controller FIFO, etc)
927 * @addressMode: INCR, except in very rare cases
928 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
929 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
931 * Note that the source address is modified during the DMA transfer
932 * according to edma_set_src_index().
934 void edma_set_src(unsigned slot
, dma_addr_t src_port
,
935 enum address_mode mode
, enum fifo_width width
)
939 ctlr
= EDMA_CTLR(slot
);
940 slot
= EDMA_CHAN_SLOT(slot
);
942 if (slot
< edma_cc
[ctlr
]->num_slots
) {
943 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
946 /* set SAM and program FWID */
947 i
= (i
& ~(EDMA_FWID
)) | (SAM
| ((width
& 0x7) << 8));
952 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
954 /* set the source port address
955 in source register of param structure */
956 edma_parm_write(ctlr
, PARM_SRC
, slot
, src_port
);
959 EXPORT_SYMBOL(edma_set_src
);
962 * edma_set_dest - set initial DMA destination address in parameter RAM slot
963 * @slot: parameter RAM slot being configured
964 * @dest_port: physical address of destination (memory, controller FIFO, etc)
965 * @addressMode: INCR, except in very rare cases
966 * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the
967 * width to use when addressing the fifo (e.g. W8BIT, W32BIT)
969 * Note that the destination address is modified during the DMA transfer
970 * according to edma_set_dest_index().
972 void edma_set_dest(unsigned slot
, dma_addr_t dest_port
,
973 enum address_mode mode
, enum fifo_width width
)
977 ctlr
= EDMA_CTLR(slot
);
978 slot
= EDMA_CHAN_SLOT(slot
);
980 if (slot
< edma_cc
[ctlr
]->num_slots
) {
981 unsigned int i
= edma_parm_read(ctlr
, PARM_OPT
, slot
);
984 /* set DAM and program FWID */
985 i
= (i
& ~(EDMA_FWID
)) | (DAM
| ((width
& 0x7) << 8));
990 edma_parm_write(ctlr
, PARM_OPT
, slot
, i
);
991 /* set the destination port address
992 in dest register of param structure */
993 edma_parm_write(ctlr
, PARM_DST
, slot
, dest_port
);
996 EXPORT_SYMBOL(edma_set_dest
);
999 * edma_get_position - returns the current transfer point
1000 * @slot: parameter RAM slot being examined
1001 * @dst: true selects the dest position, false the source
1003 * Returns the position of the current active slot
1005 dma_addr_t
edma_get_position(unsigned slot
, bool dst
)
1007 u32 offs
, ctlr
= EDMA_CTLR(slot
);
1009 slot
= EDMA_CHAN_SLOT(slot
);
1011 offs
= PARM_OFFSET(slot
);
1012 offs
+= dst
? PARM_DST
: PARM_SRC
;
1014 return edma_read(ctlr
, offs
);
1018 * edma_set_src_index - configure DMA source address indexing
1019 * @slot: parameter RAM slot being configured
1020 * @src_bidx: byte offset between source arrays in a frame
1021 * @src_cidx: byte offset between source frames in a block
1023 * Offsets are specified to support either contiguous or discontiguous
1024 * memory transfers, or repeated access to a hardware register, as needed.
1025 * When accessing hardware registers, both offsets are normally zero.
1027 void edma_set_src_index(unsigned slot
, s16 src_bidx
, s16 src_cidx
)
1031 ctlr
= EDMA_CTLR(slot
);
1032 slot
= EDMA_CHAN_SLOT(slot
);
1034 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1035 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
1036 0xffff0000, src_bidx
);
1037 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1038 0xffff0000, src_cidx
);
1041 EXPORT_SYMBOL(edma_set_src_index
);
1044 * edma_set_dest_index - configure DMA destination address indexing
1045 * @slot: parameter RAM slot being configured
1046 * @dest_bidx: byte offset between destination arrays in a frame
1047 * @dest_cidx: byte offset between destination frames in a block
1049 * Offsets are specified to support either contiguous or discontiguous
1050 * memory transfers, or repeated access to a hardware register, as needed.
1051 * When accessing hardware registers, both offsets are normally zero.
1053 void edma_set_dest_index(unsigned slot
, s16 dest_bidx
, s16 dest_cidx
)
1057 ctlr
= EDMA_CTLR(slot
);
1058 slot
= EDMA_CHAN_SLOT(slot
);
1060 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1061 edma_parm_modify(ctlr
, PARM_SRC_DST_BIDX
, slot
,
1062 0x0000ffff, dest_bidx
<< 16);
1063 edma_parm_modify(ctlr
, PARM_SRC_DST_CIDX
, slot
,
1064 0x0000ffff, dest_cidx
<< 16);
1067 EXPORT_SYMBOL(edma_set_dest_index
);
1070 * edma_set_transfer_params - configure DMA transfer parameters
1071 * @slot: parameter RAM slot being configured
1072 * @acnt: how many bytes per array (at least one)
1073 * @bcnt: how many arrays per frame (at least one)
1074 * @ccnt: how many frames per block (at least one)
1075 * @bcnt_rld: used only for A-Synchronized transfers; this specifies
1076 * the value to reload into bcnt when it decrements to zero
1077 * @sync_mode: ASYNC or ABSYNC
1079 * See the EDMA3 documentation to understand how to configure and link
1080 * transfers using the fields in PaRAM slots. If you are not doing it
1081 * all at once with edma_write_slot(), you will use this routine
1082 * plus two calls each for source and destination, setting the initial
1083 * address and saying how to index that address.
1085 * An example of an A-Synchronized transfer is a serial link using a
1086 * single word shift register. In that case, @acnt would be equal to
1087 * that word size; the serial controller issues a DMA synchronization
1088 * event to transfer each word, and memory access by the DMA transfer
1089 * controller will be word-at-a-time.
1091 * An example of an AB-Synchronized transfer is a device using a FIFO.
1092 * In that case, @acnt equals the FIFO width and @bcnt equals its depth.
1093 * The controller with the FIFO issues DMA synchronization events when
1094 * the FIFO threshold is reached, and the DMA transfer controller will
1095 * transfer one frame to (or from) the FIFO. It will probably use
1096 * efficient burst modes to access memory.
1098 void edma_set_transfer_params(unsigned slot
,
1099 u16 acnt
, u16 bcnt
, u16 ccnt
,
1100 u16 bcnt_rld
, enum sync_dimension sync_mode
)
1104 ctlr
= EDMA_CTLR(slot
);
1105 slot
= EDMA_CHAN_SLOT(slot
);
1107 if (slot
< edma_cc
[ctlr
]->num_slots
) {
1108 edma_parm_modify(ctlr
, PARM_LINK_BCNTRLD
, slot
,
1109 0x0000ffff, bcnt_rld
<< 16);
1110 if (sync_mode
== ASYNC
)
1111 edma_parm_and(ctlr
, PARM_OPT
, slot
, ~SYNCDIM
);
1113 edma_parm_or(ctlr
, PARM_OPT
, slot
, SYNCDIM
);
1114 /* Set the acount, bcount, ccount registers */
1115 edma_parm_write(ctlr
, PARM_A_B_CNT
, slot
, (bcnt
<< 16) | acnt
);
1116 edma_parm_write(ctlr
, PARM_CCNT
, slot
, ccnt
);
1119 EXPORT_SYMBOL(edma_set_transfer_params
);
1122 * edma_link - link one parameter RAM slot to another
1123 * @from: parameter RAM slot originating the link
1124 * @to: parameter RAM slot which is the link target
1126 * The originating slot should not be part of any active DMA transfer.
1128 void edma_link(unsigned from
, unsigned to
)
1130 unsigned ctlr_from
, ctlr_to
;
1132 ctlr_from
= EDMA_CTLR(from
);
1133 from
= EDMA_CHAN_SLOT(from
);
1134 ctlr_to
= EDMA_CTLR(to
);
1135 to
= EDMA_CHAN_SLOT(to
);
1137 if (from
>= edma_cc
[ctlr_from
]->num_slots
)
1139 if (to
>= edma_cc
[ctlr_to
]->num_slots
)
1141 edma_parm_modify(ctlr_from
, PARM_LINK_BCNTRLD
, from
, 0xffff0000,
1144 EXPORT_SYMBOL(edma_link
);
1147 * edma_unlink - cut link from one parameter RAM slot
1148 * @from: parameter RAM slot originating the link
1150 * The originating slot should not be part of any active DMA transfer.
1151 * Its link is set to 0xffff.
1153 void edma_unlink(unsigned from
)
1157 ctlr
= EDMA_CTLR(from
);
1158 from
= EDMA_CHAN_SLOT(from
);
1160 if (from
>= edma_cc
[ctlr
]->num_slots
)
1162 edma_parm_or(ctlr
, PARM_LINK_BCNTRLD
, from
, 0xffff);
1164 EXPORT_SYMBOL(edma_unlink
);
1166 /*-----------------------------------------------------------------------*/
1168 /* Parameter RAM operations (ii) -- read/write whole parameter sets */
1171 * edma_write_slot - write parameter RAM data for slot
1172 * @slot: number of parameter RAM slot being modified
1173 * @param: data to be written into parameter RAM slot
1175 * Use this to assign all parameters of a transfer at once. This
1176 * allows more efficient setup of transfers than issuing multiple
1177 * calls to set up those parameters in small pieces, and provides
1178 * complete control over all transfer options.
1180 void edma_write_slot(unsigned slot
, const struct edmacc_param
*param
)
1184 ctlr
= EDMA_CTLR(slot
);
1185 slot
= EDMA_CHAN_SLOT(slot
);
1187 if (slot
>= edma_cc
[ctlr
]->num_slots
)
1189 memcpy_toio(edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
), param
,
1192 EXPORT_SYMBOL(edma_write_slot
);
1195 * edma_read_slot - read parameter RAM data from slot
1196 * @slot: number of parameter RAM slot being copied
1197 * @param: where to store copy of parameter RAM data
1199 * Use this to read data from a parameter RAM slot, perhaps to
1200 * save them as a template for later reuse.
1202 void edma_read_slot(unsigned slot
, struct edmacc_param
*param
)
1206 ctlr
= EDMA_CTLR(slot
);
1207 slot
= EDMA_CHAN_SLOT(slot
);
1209 if (slot
>= edma_cc
[ctlr
]->num_slots
)
1211 memcpy_fromio(param
, edmacc_regs_base
[ctlr
] + PARM_OFFSET(slot
),
1214 EXPORT_SYMBOL(edma_read_slot
);
1216 /*-----------------------------------------------------------------------*/
1218 /* Various EDMA channel control operations */
1221 * edma_pause - pause dma on a channel
1222 * @channel: on which edma_start() has been called
1224 * This temporarily disables EDMA hardware events on the specified channel,
1225 * preventing them from triggering new transfers on its behalf
1227 void edma_pause(unsigned channel
)
1231 ctlr
= EDMA_CTLR(channel
);
1232 channel
= EDMA_CHAN_SLOT(channel
);
1234 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1235 unsigned int mask
= BIT(channel
& 0x1f);
1237 edma_shadow0_write_array(ctlr
, SH_EECR
, channel
>> 5, mask
);
1240 EXPORT_SYMBOL(edma_pause
);
1243 * edma_resume - resumes dma on a paused channel
1244 * @channel: on which edma_pause() has been called
1246 * This re-enables EDMA hardware events on the specified channel.
1248 void edma_resume(unsigned channel
)
1252 ctlr
= EDMA_CTLR(channel
);
1253 channel
= EDMA_CHAN_SLOT(channel
);
1255 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1256 unsigned int mask
= BIT(channel
& 0x1f);
1258 edma_shadow0_write_array(ctlr
, SH_EESR
, channel
>> 5, mask
);
1261 EXPORT_SYMBOL(edma_resume
);
1263 int edma_trigger_channel(unsigned channel
)
1268 ctlr
= EDMA_CTLR(channel
);
1269 channel
= EDMA_CHAN_SLOT(channel
);
1270 mask
= BIT(channel
& 0x1f);
1272 edma_shadow0_write_array(ctlr
, SH_ESR
, (channel
>> 5), mask
);
1274 pr_debug("EDMA: ESR%d %08x\n", (channel
>> 5),
1275 edma_shadow0_read_array(ctlr
, SH_ESR
, (channel
>> 5)));
1278 EXPORT_SYMBOL(edma_trigger_channel
);
1281 * edma_start - start dma on a channel
1282 * @channel: channel being activated
1284 * Channels with event associations will be triggered by their hardware
1285 * events, and channels without such associations will be triggered by
1286 * software. (At this writing there is no interface for using software
1287 * triggers except with channels that don't support hardware triggers.)
1289 * Returns zero on success, else negative errno.
1291 int edma_start(unsigned channel
)
1295 ctlr
= EDMA_CTLR(channel
);
1296 channel
= EDMA_CHAN_SLOT(channel
);
1298 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1299 int j
= channel
>> 5;
1300 unsigned int mask
= BIT(channel
& 0x1f);
1302 /* EDMA channels without event association */
1303 if (test_bit(channel
, edma_cc
[ctlr
]->edma_unused
)) {
1304 pr_debug("EDMA: ESR%d %08x\n", j
,
1305 edma_shadow0_read_array(ctlr
, SH_ESR
, j
));
1306 edma_shadow0_write_array(ctlr
, SH_ESR
, j
, mask
);
1310 /* EDMA channel with event association */
1311 pr_debug("EDMA: ER%d %08x\n", j
,
1312 edma_shadow0_read_array(ctlr
, SH_ER
, j
));
1313 /* Clear any pending event or error */
1314 edma_write_array(ctlr
, EDMA_ECR
, j
, mask
);
1315 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1317 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1318 edma_shadow0_write_array(ctlr
, SH_EESR
, j
, mask
);
1319 pr_debug("EDMA: EER%d %08x\n", j
,
1320 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1326 EXPORT_SYMBOL(edma_start
);
1329 * edma_stop - stops dma on the channel passed
1330 * @channel: channel being deactivated
1332 * When @lch is a channel, any active transfer is paused and
1333 * all pending hardware events are cleared. The current transfer
1334 * may not be resumed, and the channel's Parameter RAM should be
1335 * reinitialized before being reused.
1337 void edma_stop(unsigned channel
)
1341 ctlr
= EDMA_CTLR(channel
);
1342 channel
= EDMA_CHAN_SLOT(channel
);
1344 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1345 int j
= channel
>> 5;
1346 unsigned int mask
= BIT(channel
& 0x1f);
1348 edma_shadow0_write_array(ctlr
, SH_EECR
, j
, mask
);
1349 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1350 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1351 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1353 /* clear possibly pending completion interrupt */
1354 edma_shadow0_write_array(ctlr
, SH_ICR
, j
, mask
);
1356 pr_debug("EDMA: EER%d %08x\n", j
,
1357 edma_shadow0_read_array(ctlr
, SH_EER
, j
));
1359 /* REVISIT: consider guarding against inappropriate event
1360 * chaining by overwriting with dummy_paramset.
1364 EXPORT_SYMBOL(edma_stop
);
1366 /******************************************************************************
1368 * It cleans ParamEntry qand bring back EDMA to initial state if media has
1369 * been removed before EDMA has finished.It is usedful for removable media.
1371 * ch_no - channel no
1373 * Return: zero on success, or corresponding error no on failure
1375 * FIXME this should not be needed ... edma_stop() should suffice.
1377 *****************************************************************************/
1379 void edma_clean_channel(unsigned channel
)
1383 ctlr
= EDMA_CTLR(channel
);
1384 channel
= EDMA_CHAN_SLOT(channel
);
1386 if (channel
< edma_cc
[ctlr
]->num_channels
) {
1387 int j
= (channel
>> 5);
1388 unsigned int mask
= BIT(channel
& 0x1f);
1390 pr_debug("EDMA: EMR%d %08x\n", j
,
1391 edma_read_array(ctlr
, EDMA_EMR
, j
));
1392 edma_shadow0_write_array(ctlr
, SH_ECR
, j
, mask
);
1393 /* Clear the corresponding EMR bits */
1394 edma_write_array(ctlr
, EDMA_EMCR
, j
, mask
);
1396 edma_shadow0_write_array(ctlr
, SH_SECR
, j
, mask
);
1397 edma_write(ctlr
, EDMA_CCERRCLR
, BIT(16) | BIT(1) | BIT(0));
1400 EXPORT_SYMBOL(edma_clean_channel
);
1403 * edma_clear_event - clear an outstanding event on the DMA channel
1405 * channel - channel number
1407 void edma_clear_event(unsigned channel
)
1411 ctlr
= EDMA_CTLR(channel
);
1412 channel
= EDMA_CHAN_SLOT(channel
);
1414 if (channel
>= edma_cc
[ctlr
]->num_channels
)
1417 edma_write(ctlr
, EDMA_ECR
, BIT(channel
));
1419 edma_write(ctlr
, EDMA_ECRH
, BIT(channel
- 32));
1421 EXPORT_SYMBOL(edma_clear_event
);
1424 * edma_assign_channel_eventq - move given channel to desired eventq
1426 * channel - channel number
1427 * eventq_no - queue to move the channel
1429 * Can be used to move a channel to a selected event queue.
1431 void edma_assign_channel_eventq(unsigned channel
, enum dma_event_q eventq_no
)
1435 ctlr
= EDMA_CTLR(channel
);
1436 channel
= EDMA_CHAN_SLOT(channel
);
1438 if (channel
>= edma_cc
[ctlr
]->num_channels
)
1441 /* default to low priority queue */
1442 if (eventq_no
== EVENTQ_DEFAULT
)
1443 eventq_no
= edma_cc
[ctlr
]->default_queue
;
1444 if (eventq_no
>= edma_cc
[ctlr
]->num_tc
)
1447 map_dmach_queue(ctlr
, channel
, eventq_no
);
1449 EXPORT_SYMBOL(edma_assign_channel_eventq
);
1451 static int edma_setup_from_hw(struct device
*dev
, struct edma_soc_info
*pdata
,
1452 struct edma
*edma_cc
, int cc_id
)
1456 s8 (*queue_priority_map
)[2];
1458 /* Decode the eDMA3 configuration from CCCFG register */
1459 cccfg
= edma_read(cc_id
, EDMA_CCCFG
);
1461 value
= GET_NUM_REGN(cccfg
);
1462 edma_cc
->num_region
= BIT(value
);
1464 value
= GET_NUM_DMACH(cccfg
);
1465 edma_cc
->num_channels
= BIT(value
+ 1);
1467 value
= GET_NUM_PAENTRY(cccfg
);
1468 edma_cc
->num_slots
= BIT(value
+ 4);
1470 value
= GET_NUM_EVQUE(cccfg
);
1471 edma_cc
->num_tc
= value
+ 1;
1473 dev_dbg(dev
, "eDMA3 CC%d HW configuration (cccfg: 0x%08x):\n", cc_id
,
1475 dev_dbg(dev
, "num_region: %u\n", edma_cc
->num_region
);
1476 dev_dbg(dev
, "num_channel: %u\n", edma_cc
->num_channels
);
1477 dev_dbg(dev
, "num_slot: %u\n", edma_cc
->num_slots
);
1478 dev_dbg(dev
, "num_tc: %u\n", edma_cc
->num_tc
);
1480 /* Nothing need to be done if queue priority is provided */
1481 if (pdata
->queue_priority_mapping
)
1485 * Configure TC/queue priority as follows:
1490 * The meaning of priority numbers: 0 highest priority, 7 lowest
1491 * priority. So Q0 is the highest priority queue and the last queue has
1492 * the lowest priority.
1494 queue_priority_map
= devm_kzalloc(dev
,
1495 (edma_cc
->num_tc
+ 1) * sizeof(s8
),
1497 if (!queue_priority_map
)
1500 for (i
= 0; i
< edma_cc
->num_tc
; i
++) {
1501 queue_priority_map
[i
][0] = i
;
1502 queue_priority_map
[i
][1] = i
;
1504 queue_priority_map
[i
][0] = -1;
1505 queue_priority_map
[i
][1] = -1;
1507 pdata
->queue_priority_mapping
= queue_priority_map
;
1508 /* Default queue has the lowest priority */
1509 pdata
->default_queue
= i
- 1;
1514 #if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DMADEVICES)
1516 static int edma_xbar_event_map(struct device
*dev
, struct device_node
*node
,
1517 struct edma_soc_info
*pdata
, size_t sz
)
1519 const char pname
[] = "ti,edma-xbar-event-map";
1520 struct resource res
;
1522 s16 (*xbar_chans
)[2];
1523 size_t nelm
= sz
/ sizeof(s16
);
1524 u32 shift
, offset
, mux
;
1527 xbar_chans
= devm_kzalloc(dev
, (nelm
+ 2) * sizeof(s16
), GFP_KERNEL
);
1531 ret
= of_address_to_resource(node
, 1, &res
);
1535 xbar
= devm_ioremap(dev
, res
.start
, resource_size(&res
));
1539 ret
= of_property_read_u16_array(node
, pname
, (u16
*)xbar_chans
, nelm
);
1543 /* Invalidate last entry for the other user of this mess */
1545 xbar_chans
[nelm
][0] = xbar_chans
[nelm
][1] = -1;
1547 for (i
= 0; i
< nelm
; i
++) {
1548 shift
= (xbar_chans
[i
][1] & 0x03) << 3;
1549 offset
= xbar_chans
[i
][1] & 0xfffffffc;
1550 mux
= readl(xbar
+ offset
);
1551 mux
&= ~(0xff << shift
);
1552 mux
|= xbar_chans
[i
][0] << shift
;
1553 writel(mux
, (xbar
+ offset
));
1556 pdata
->xbar_chans
= (const s16 (*)[2]) xbar_chans
;
1560 static int edma_of_parse_dt(struct device
*dev
,
1561 struct device_node
*node
,
1562 struct edma_soc_info
*pdata
)
1565 struct property
*prop
;
1567 struct edma_rsv_info
*rsv_info
;
1569 rsv_info
= devm_kzalloc(dev
, sizeof(struct edma_rsv_info
), GFP_KERNEL
);
1572 pdata
->rsv
= rsv_info
;
1574 prop
= of_find_property(node
, "ti,edma-xbar-event-map", &sz
);
1576 ret
= edma_xbar_event_map(dev
, node
, pdata
, sz
);
1581 static struct of_dma_filter_info edma_filter_info
= {
1582 .filter_fn
= edma_filter_fn
,
1585 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
1586 struct device_node
*node
)
1588 struct edma_soc_info
*info
;
1591 info
= devm_kzalloc(dev
, sizeof(struct edma_soc_info
), GFP_KERNEL
);
1593 return ERR_PTR(-ENOMEM
);
1595 ret
= edma_of_parse_dt(dev
, node
, info
);
1597 return ERR_PTR(ret
);
1599 dma_cap_set(DMA_SLAVE
, edma_filter_info
.dma_cap
);
1600 dma_cap_set(DMA_CYCLIC
, edma_filter_info
.dma_cap
);
1601 of_dma_controller_register(dev
->of_node
, of_dma_simple_xlate
,
1607 static struct edma_soc_info
*edma_setup_info_from_dt(struct device
*dev
,
1608 struct device_node
*node
)
1610 return ERR_PTR(-ENOSYS
);
1614 static int edma_probe(struct platform_device
*pdev
)
1616 struct edma_soc_info
**info
= pdev
->dev
.platform_data
;
1617 struct edma_soc_info
*ninfo
[EDMA_MAX_CC
] = {NULL
};
1618 s8 (*queue_priority_mapping
)[2];
1619 int i
, j
, off
, ln
, found
= 0;
1621 const s16 (*rsv_chans
)[2];
1622 const s16 (*rsv_slots
)[2];
1623 const s16 (*xbar_chans
)[2];
1624 int irq
[EDMA_MAX_CC
] = {0, 0};
1625 int err_irq
[EDMA_MAX_CC
] = {0, 0};
1626 struct resource
*r
[EDMA_MAX_CC
] = {NULL
};
1627 struct resource res
[EDMA_MAX_CC
];
1629 struct device_node
*node
= pdev
->dev
.of_node
;
1630 struct device
*dev
= &pdev
->dev
;
1632 struct platform_device_info edma_dev_info
= {
1633 .name
= "edma-dma-engine",
1634 .dma_mask
= DMA_BIT_MASK(32),
1635 .parent
= &pdev
->dev
,
1639 /* Check if this is a second instance registered */
1641 dev_err(dev
, "only one EDMA instance is supported via DT\n");
1645 ninfo
[0] = edma_setup_info_from_dt(dev
, node
);
1646 if (IS_ERR(ninfo
[0])) {
1647 dev_err(dev
, "failed to get DT data\n");
1648 return PTR_ERR(ninfo
[0]);
1657 pm_runtime_enable(dev
);
1658 ret
= pm_runtime_get_sync(dev
);
1660 dev_err(dev
, "pm_runtime_get_sync() failed\n");
1664 for (j
= 0; j
< EDMA_MAX_CC
; j
++) {
1671 ret
= of_address_to_resource(node
, j
, &res
[j
]);
1675 sprintf(res_name
, "edma_cc%d", j
);
1676 r
[j
] = platform_get_resource_byname(pdev
,
1689 edmacc_regs_base
[j
] = devm_ioremap_resource(&pdev
->dev
, r
[j
]);
1690 if (IS_ERR(edmacc_regs_base
[j
]))
1691 return PTR_ERR(edmacc_regs_base
[j
]);
1693 edma_cc
[j
] = devm_kzalloc(&pdev
->dev
, sizeof(struct edma
),
1698 /* Get eDMA3 configuration from IP */
1699 ret
= edma_setup_from_hw(dev
, info
[j
], edma_cc
[j
], j
);
1703 edma_cc
[j
]->default_queue
= info
[j
]->default_queue
;
1705 dev_dbg(&pdev
->dev
, "DMA REG BASE ADDR=%p\n",
1706 edmacc_regs_base
[j
]);
1708 for (i
= 0; i
< edma_cc
[j
]->num_slots
; i
++)
1709 memcpy_toio(edmacc_regs_base
[j
] + PARM_OFFSET(i
),
1710 &dummy_paramset
, PARM_SIZE
);
1712 /* Mark all channels as unused */
1713 memset(edma_cc
[j
]->edma_unused
, 0xff,
1714 sizeof(edma_cc
[j
]->edma_unused
));
1718 /* Clear the reserved channels in unused list */
1719 rsv_chans
= info
[j
]->rsv
->rsv_chans
;
1721 for (i
= 0; rsv_chans
[i
][0] != -1; i
++) {
1722 off
= rsv_chans
[i
][0];
1723 ln
= rsv_chans
[i
][1];
1725 edma_cc
[j
]->edma_unused
);
1729 /* Set the reserved slots in inuse list */
1730 rsv_slots
= info
[j
]->rsv
->rsv_slots
;
1732 for (i
= 0; rsv_slots
[i
][0] != -1; i
++) {
1733 off
= rsv_slots
[i
][0];
1734 ln
= rsv_slots
[i
][1];
1736 edma_cc
[j
]->edma_inuse
);
1741 /* Clear the xbar mapped channels in unused list */
1742 xbar_chans
= info
[j
]->xbar_chans
;
1744 for (i
= 0; xbar_chans
[i
][1] != -1; i
++) {
1745 off
= xbar_chans
[i
][1];
1747 edma_cc
[j
]->edma_unused
);
1752 irq
[j
] = irq_of_parse_and_map(node
, 0);
1753 err_irq
[j
] = irq_of_parse_and_map(node
, 2);
1757 sprintf(irq_name
, "edma%d", j
);
1758 irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1760 sprintf(irq_name
, "edma%d_err", j
);
1761 err_irq
[j
] = platform_get_irq_byname(pdev
, irq_name
);
1763 edma_cc
[j
]->irq_res_start
= irq
[j
];
1764 edma_cc
[j
]->irq_res_end
= err_irq
[j
];
1766 status
= devm_request_irq(dev
, irq
[j
], dma_irq_handler
, 0,
1770 "devm_request_irq %d failed --> %d\n",
1775 status
= devm_request_irq(dev
, err_irq
[j
], dma_ccerr_handler
, 0,
1779 "devm_request_irq %d failed --> %d\n",
1780 err_irq
[j
], status
);
1784 for (i
= 0; i
< edma_cc
[j
]->num_channels
; i
++)
1785 map_dmach_queue(j
, i
, info
[j
]->default_queue
);
1787 queue_priority_mapping
= info
[j
]->queue_priority_mapping
;
1789 /* Event queue priority mapping */
1790 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
1791 assign_priority_to_queue(j
,
1792 queue_priority_mapping
[i
][0],
1793 queue_priority_mapping
[i
][1]);
1795 /* Map the channel to param entry if channel mapping logic
1798 if (edma_read(j
, EDMA_CCCFG
) & CHMAP_EXIST
)
1801 for (i
= 0; i
< edma_cc
[j
]->num_region
; i
++) {
1802 edma_write_array2(j
, EDMA_DRAE
, i
, 0, 0x0);
1803 edma_write_array2(j
, EDMA_DRAE
, i
, 1, 0x0);
1804 edma_write_array(j
, EDMA_QRAE
, i
, 0x0);
1806 edma_cc
[j
]->info
= info
[j
];
1809 edma_dev_info
.id
= j
;
1810 platform_device_register_full(&edma_dev_info
);
1816 #ifdef CONFIG_PM_SLEEP
1817 static int edma_pm_resume(struct device
*dev
)
1821 for (j
= 0; j
< arch_num_cc
; j
++) {
1822 struct edma
*cc
= edma_cc
[j
];
1824 s8 (*queue_priority_mapping
)[2];
1826 queue_priority_mapping
= cc
->info
->queue_priority_mapping
;
1828 /* Event queue priority mapping */
1829 for (i
= 0; queue_priority_mapping
[i
][0] != -1; i
++)
1830 assign_priority_to_queue(j
,
1831 queue_priority_mapping
[i
][0],
1832 queue_priority_mapping
[i
][1]);
1835 * Map the channel to param entry if channel mapping logic
1838 if (edma_read(j
, EDMA_CCCFG
) & CHMAP_EXIST
)
1841 for (i
= 0; i
< cc
->num_channels
; i
++) {
1842 if (test_bit(i
, cc
->edma_inuse
)) {
1843 /* ensure access through shadow region 0 */
1844 edma_or_array2(j
, EDMA_DRAE
, 0, i
>> 5,
1847 setup_dma_interrupt(i
,
1848 cc
->intr_data
[i
].callback
,
1849 cc
->intr_data
[i
].data
);
1858 static const struct dev_pm_ops edma_pm_ops
= {
1859 SET_LATE_SYSTEM_SLEEP_PM_OPS(NULL
, edma_pm_resume
)
1862 static struct platform_driver edma_driver
= {
1866 .of_match_table
= edma_of_ids
,
1868 .probe
= edma_probe
,
1871 static int __init
edma_init(void)
1873 return platform_driver_probe(&edma_driver
, edma_probe
);
1875 arch_initcall(edma_init
);