2 * Common interrupt code for 32 and 64 bit
5 #include <linux/interrupt.h>
6 #include <linux/kernel_stat.h>
8 #include <linux/seq_file.h>
10 #include <linux/ftrace.h>
11 #include <linux/delay.h>
12 #include <linux/export.h>
15 #include <asm/io_apic.h>
19 #include <asm/hw_irq.h>
22 #define CREATE_TRACE_POINTS
23 #include <asm/trace/irq_vectors.h>
25 DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t
, irq_stat
);
26 EXPORT_PER_CPU_SYMBOL(irq_stat
);
28 DEFINE_PER_CPU(struct pt_regs
*, irq_regs
);
29 EXPORT_PER_CPU_SYMBOL(irq_regs
);
31 atomic_t irq_err_count
;
33 /* Function pointer for generic interrupt vector handling */
34 void (*x86_platform_ipi_callback
)(void) = NULL
;
37 * 'what should we do if we get a hw irq event on an illegal vector'.
38 * each architecture has to answer this themselves.
40 void ack_bad_irq(unsigned int irq
)
42 if (printk_ratelimit())
43 pr_err("unexpected IRQ trap at vector %02x\n", irq
);
46 * Currently unexpected vectors happen only on SMP and APIC.
47 * We _must_ ack these because every local APIC has only N
48 * irq slots per priority level, and a 'hanging, unacked' IRQ
49 * holds up an irq slot - in excessive cases (when multiple
50 * unexpected vectors occur) that might lock up the APIC
52 * But only ack when the APIC is enabled -AK
57 #define irq_stats(x) (&per_cpu(irq_stat, x))
59 * /proc/interrupts printing for arch specific interrupts
61 int arch_show_interrupts(struct seq_file
*p
, int prec
)
65 seq_printf(p
, "%*s: ", prec
, "NMI");
66 for_each_online_cpu(j
)
67 seq_printf(p
, "%10u ", irq_stats(j
)->__nmi_count
);
68 seq_puts(p
, " Non-maskable interrupts\n");
69 #ifdef CONFIG_X86_LOCAL_APIC
70 seq_printf(p
, "%*s: ", prec
, "LOC");
71 for_each_online_cpu(j
)
72 seq_printf(p
, "%10u ", irq_stats(j
)->apic_timer_irqs
);
73 seq_puts(p
, " Local timer interrupts\n");
75 seq_printf(p
, "%*s: ", prec
, "SPU");
76 for_each_online_cpu(j
)
77 seq_printf(p
, "%10u ", irq_stats(j
)->irq_spurious_count
);
78 seq_puts(p
, " Spurious interrupts\n");
79 seq_printf(p
, "%*s: ", prec
, "PMI");
80 for_each_online_cpu(j
)
81 seq_printf(p
, "%10u ", irq_stats(j
)->apic_perf_irqs
);
82 seq_puts(p
, " Performance monitoring interrupts\n");
83 seq_printf(p
, "%*s: ", prec
, "IWI");
84 for_each_online_cpu(j
)
85 seq_printf(p
, "%10u ", irq_stats(j
)->apic_irq_work_irqs
);
86 seq_puts(p
, " IRQ work interrupts\n");
87 seq_printf(p
, "%*s: ", prec
, "RTR");
88 for_each_online_cpu(j
)
89 seq_printf(p
, "%10u ", irq_stats(j
)->icr_read_retry_count
);
90 seq_puts(p
, " APIC ICR read retries\n");
92 if (x86_platform_ipi_callback
) {
93 seq_printf(p
, "%*s: ", prec
, "PLT");
94 for_each_online_cpu(j
)
95 seq_printf(p
, "%10u ", irq_stats(j
)->x86_platform_ipis
);
96 seq_puts(p
, " Platform interrupts\n");
99 seq_printf(p
, "%*s: ", prec
, "RES");
100 for_each_online_cpu(j
)
101 seq_printf(p
, "%10u ", irq_stats(j
)->irq_resched_count
);
102 seq_puts(p
, " Rescheduling interrupts\n");
103 seq_printf(p
, "%*s: ", prec
, "CAL");
104 for_each_online_cpu(j
)
105 seq_printf(p
, "%10u ", irq_stats(j
)->irq_call_count
-
106 irq_stats(j
)->irq_tlb_count
);
107 seq_puts(p
, " Function call interrupts\n");
108 seq_printf(p
, "%*s: ", prec
, "TLB");
109 for_each_online_cpu(j
)
110 seq_printf(p
, "%10u ", irq_stats(j
)->irq_tlb_count
);
111 seq_puts(p
, " TLB shootdowns\n");
113 #ifdef CONFIG_X86_THERMAL_VECTOR
114 seq_printf(p
, "%*s: ", prec
, "TRM");
115 for_each_online_cpu(j
)
116 seq_printf(p
, "%10u ", irq_stats(j
)->irq_thermal_count
);
117 seq_puts(p
, " Thermal event interrupts\n");
119 #ifdef CONFIG_X86_MCE_THRESHOLD
120 seq_printf(p
, "%*s: ", prec
, "THR");
121 for_each_online_cpu(j
)
122 seq_printf(p
, "%10u ", irq_stats(j
)->irq_threshold_count
);
123 seq_puts(p
, " Threshold APIC interrupts\n");
125 #ifdef CONFIG_X86_MCE_AMD
126 seq_printf(p
, "%*s: ", prec
, "DFR");
127 for_each_online_cpu(j
)
128 seq_printf(p
, "%10u ", irq_stats(j
)->irq_deferred_error_count
);
129 seq_puts(p
, " Deferred Error APIC interrupts\n");
131 #ifdef CONFIG_X86_MCE
132 seq_printf(p
, "%*s: ", prec
, "MCE");
133 for_each_online_cpu(j
)
134 seq_printf(p
, "%10u ", per_cpu(mce_exception_count
, j
));
135 seq_puts(p
, " Machine check exceptions\n");
136 seq_printf(p
, "%*s: ", prec
, "MCP");
137 for_each_online_cpu(j
)
138 seq_printf(p
, "%10u ", per_cpu(mce_poll_count
, j
));
139 seq_puts(p
, " Machine check polls\n");
141 #if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN)
142 if (test_bit(HYPERVISOR_CALLBACK_VECTOR
, used_vectors
)) {
143 seq_printf(p
, "%*s: ", prec
, "HYP");
144 for_each_online_cpu(j
)
145 seq_printf(p
, "%10u ",
146 irq_stats(j
)->irq_hv_callback_count
);
147 seq_puts(p
, " Hypervisor callback interrupts\n");
150 seq_printf(p
, "%*s: %10u\n", prec
, "ERR", atomic_read(&irq_err_count
));
151 #if defined(CONFIG_X86_IO_APIC)
152 seq_printf(p
, "%*s: %10u\n", prec
, "MIS", atomic_read(&irq_mis_count
));
154 #ifdef CONFIG_HAVE_KVM
155 seq_printf(p
, "%*s: ", prec
, "PIN");
156 for_each_online_cpu(j
)
157 seq_printf(p
, "%10u ", irq_stats(j
)->kvm_posted_intr_ipis
);
158 seq_puts(p
, " Posted-interrupt notification event\n");
160 seq_printf(p
, "%*s: ", prec
, "PIW");
161 for_each_online_cpu(j
)
162 seq_printf(p
, "%10u ",
163 irq_stats(j
)->kvm_posted_intr_wakeup_ipis
);
164 seq_puts(p
, " Posted-interrupt wakeup event\n");
172 u64
arch_irq_stat_cpu(unsigned int cpu
)
174 u64 sum
= irq_stats(cpu
)->__nmi_count
;
176 #ifdef CONFIG_X86_LOCAL_APIC
177 sum
+= irq_stats(cpu
)->apic_timer_irqs
;
178 sum
+= irq_stats(cpu
)->irq_spurious_count
;
179 sum
+= irq_stats(cpu
)->apic_perf_irqs
;
180 sum
+= irq_stats(cpu
)->apic_irq_work_irqs
;
181 sum
+= irq_stats(cpu
)->icr_read_retry_count
;
183 if (x86_platform_ipi_callback
)
184 sum
+= irq_stats(cpu
)->x86_platform_ipis
;
186 sum
+= irq_stats(cpu
)->irq_resched_count
;
187 sum
+= irq_stats(cpu
)->irq_call_count
;
189 #ifdef CONFIG_X86_THERMAL_VECTOR
190 sum
+= irq_stats(cpu
)->irq_thermal_count
;
192 #ifdef CONFIG_X86_MCE_THRESHOLD
193 sum
+= irq_stats(cpu
)->irq_threshold_count
;
195 #ifdef CONFIG_X86_MCE
196 sum
+= per_cpu(mce_exception_count
, cpu
);
197 sum
+= per_cpu(mce_poll_count
, cpu
);
202 u64
arch_irq_stat(void)
204 u64 sum
= atomic_read(&irq_err_count
);
210 * do_IRQ handles all normal device IRQ's (the special
211 * SMP cross-CPU interrupts have their own specific
214 __visible
unsigned int __irq_entry
do_IRQ(struct pt_regs
*regs
)
216 struct pt_regs
*old_regs
= set_irq_regs(regs
);
217 struct irq_desc
* desc
;
218 /* high bit used in ret_from_ code */
219 unsigned vector
= ~regs
->orig_ax
;
222 * NB: Unlike exception entries, IRQ entries do not reliably
223 * handle context tracking in the low-level entry code. This is
224 * because syscall entries execute briefly with IRQs on before
225 * updating context tracking state, so we can take an IRQ from
226 * kernel mode with CONTEXT_USER. The low-level entry code only
227 * updates the context if we came from user mode, so we won't
228 * switch to CONTEXT_KERNEL. We'll fix that once the syscall
229 * code is cleaned up enough that we can cleanly defer enabling
235 /* entering_irq() tells RCU that we're not quiescent. Check it. */
236 RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
238 desc
= __this_cpu_read(vector_irq
[vector
]);
240 if (!handle_irq(desc
, regs
)) {
243 if (desc
!= VECTOR_RETRIGGERED
) {
244 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n",
245 __func__
, smp_processor_id(),
248 __this_cpu_write(vector_irq
[vector
], VECTOR_UNUSED
);
254 set_irq_regs(old_regs
);
259 * Handler for X86_PLATFORM_IPI_VECTOR.
261 void __smp_x86_platform_ipi(void)
263 inc_irq_stat(x86_platform_ipis
);
265 if (x86_platform_ipi_callback
)
266 x86_platform_ipi_callback();
269 __visible
void smp_x86_platform_ipi(struct pt_regs
*regs
)
271 struct pt_regs
*old_regs
= set_irq_regs(regs
);
274 __smp_x86_platform_ipi();
276 set_irq_regs(old_regs
);
279 #ifdef CONFIG_HAVE_KVM
280 static void dummy_handler(void) {}
281 static void (*kvm_posted_intr_wakeup_handler
)(void) = dummy_handler
;
283 void kvm_set_posted_intr_wakeup_handler(void (*handler
)(void))
286 kvm_posted_intr_wakeup_handler
= handler
;
288 kvm_posted_intr_wakeup_handler
= dummy_handler
;
290 EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler
);
293 * Handler for POSTED_INTERRUPT_VECTOR.
295 __visible
void smp_kvm_posted_intr_ipi(struct pt_regs
*regs
)
297 struct pt_regs
*old_regs
= set_irq_regs(regs
);
300 inc_irq_stat(kvm_posted_intr_ipis
);
302 set_irq_regs(old_regs
);
306 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
308 __visible
void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs
*regs
)
310 struct pt_regs
*old_regs
= set_irq_regs(regs
);
313 inc_irq_stat(kvm_posted_intr_wakeup_ipis
);
314 kvm_posted_intr_wakeup_handler();
316 set_irq_regs(old_regs
);
320 __visible
void smp_trace_x86_platform_ipi(struct pt_regs
*regs
)
322 struct pt_regs
*old_regs
= set_irq_regs(regs
);
325 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR
);
326 __smp_x86_platform_ipi();
327 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR
);
329 set_irq_regs(old_regs
);
332 EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq
);
334 #ifdef CONFIG_HOTPLUG_CPU
336 /* These two declarations are only used in check_irq_vectors_for_cpu_disable()
337 * below, which is protected by stop_machine(). Putting them on the stack
338 * results in a stack frame overflow. Dynamically allocating could result in a
339 * failure so declare these two cpumasks as global.
341 static struct cpumask affinity_new
, online_new
;
344 * This cpu is going to be removed and its vectors migrated to the remaining
345 * online cpus. Check to see if there are enough vectors in the remaining cpus.
346 * This function is protected by stop_machine().
348 int check_irq_vectors_for_cpu_disable(void)
350 unsigned int this_cpu
, vector
, this_count
, count
;
351 struct irq_desc
*desc
;
352 struct irq_data
*data
;
355 this_cpu
= smp_processor_id();
356 cpumask_copy(&online_new
, cpu_online_mask
);
357 cpumask_clear_cpu(this_cpu
, &online_new
);
360 for (vector
= FIRST_EXTERNAL_VECTOR
; vector
< NR_VECTORS
; vector
++) {
361 desc
= __this_cpu_read(vector_irq
[vector
]);
362 if (IS_ERR_OR_NULL(desc
))
365 * Protect against concurrent action removal, affinity
368 raw_spin_lock(&desc
->lock
);
369 data
= irq_desc_get_irq_data(desc
);
370 cpumask_copy(&affinity_new
,
371 irq_data_get_affinity_mask(data
));
372 cpumask_clear_cpu(this_cpu
, &affinity_new
);
374 /* Do not count inactive or per-cpu irqs. */
375 if (!irq_desc_has_action(desc
) || irqd_is_per_cpu(data
)) {
376 raw_spin_unlock(&desc
->lock
);
380 raw_spin_unlock(&desc
->lock
);
382 * A single irq may be mapped to multiple cpu's
383 * vector_irq[] (for example IOAPIC cluster mode). In
384 * this case we have two possibilities:
386 * 1) the resulting affinity mask is empty; that is
387 * this the down'd cpu is the last cpu in the irq's
390 * 2) the resulting affinity mask is no longer a
391 * subset of the online cpus but the affinity mask is
392 * not zero; that is the down'd cpu is the last online
393 * cpu in a user set affinity mask.
395 if (cpumask_empty(&affinity_new
) ||
396 !cpumask_subset(&affinity_new
, &online_new
))
401 for_each_online_cpu(cpu
) {
405 * We scan from FIRST_EXTERNAL_VECTOR to first system
406 * vector. If the vector is marked in the used vectors
407 * bitmap or an irq is assigned to it, we don't count
410 * As this is an inaccurate snapshot anyway, we can do
411 * this w/o holding vector_lock.
413 for (vector
= FIRST_EXTERNAL_VECTOR
;
414 vector
< first_system_vector
; vector
++) {
415 if (!test_bit(vector
, used_vectors
) &&
416 IS_ERR_OR_NULL(per_cpu(vector_irq
, cpu
)[vector
]))
421 if (count
< this_count
) {
422 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n",
423 this_cpu
, this_count
, count
);
429 /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
430 void fixup_irqs(void)
432 unsigned int irq
, vector
;
434 struct irq_desc
*desc
;
435 struct irq_data
*data
;
436 struct irq_chip
*chip
;
439 for_each_irq_desc(irq
, desc
) {
440 int break_affinity
= 0;
441 int set_affinity
= 1;
442 const struct cpumask
*affinity
;
449 /* interrupt's are disabled at this point */
450 raw_spin_lock(&desc
->lock
);
452 data
= irq_desc_get_irq_data(desc
);
453 affinity
= irq_data_get_affinity_mask(data
);
454 if (!irq_has_action(irq
) || irqd_is_per_cpu(data
) ||
455 cpumask_subset(affinity
, cpu_online_mask
)) {
456 raw_spin_unlock(&desc
->lock
);
461 * Complete the irq move. This cpu is going down and for
462 * non intr-remapping case, we can't wait till this interrupt
463 * arrives at this cpu before completing the irq move.
465 irq_force_complete_move(irq
);
467 if (cpumask_any_and(affinity
, cpu_online_mask
) >= nr_cpu_ids
) {
469 affinity
= cpu_online_mask
;
472 chip
= irq_data_get_irq_chip(data
);
473 if (!irqd_can_move_in_process_context(data
) && chip
->irq_mask
)
474 chip
->irq_mask(data
);
476 if (chip
->irq_set_affinity
) {
477 ret
= chip
->irq_set_affinity(data
, affinity
, true);
479 pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq
);
486 * We unmask if the irq was not marked masked by the
487 * core code. That respects the lazy irq disable
490 if (!irqd_can_move_in_process_context(data
) &&
491 !irqd_irq_masked(data
) && chip
->irq_unmask
)
492 chip
->irq_unmask(data
);
494 raw_spin_unlock(&desc
->lock
);
496 if (break_affinity
&& set_affinity
)
497 pr_notice("Broke affinity for irq %i\n", irq
);
498 else if (!set_affinity
)
499 pr_notice("Cannot set affinity for irq %i\n", irq
);
503 * We can remove mdelay() and then send spuriuous interrupts to
504 * new cpu targets for all the irqs that were handled previously by
505 * this cpu. While it works, I have seen spurious interrupt messages
506 * (nothing wrong but still...).
508 * So for now, retain mdelay(1) and check the IRR and then send those
509 * interrupts to new targets as this cpu is already offlined...
514 * We can walk the vector array of this cpu without holding
515 * vector_lock because the cpu is already marked !online, so
516 * nothing else will touch it.
518 for (vector
= FIRST_EXTERNAL_VECTOR
; vector
< NR_VECTORS
; vector
++) {
521 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq
[vector
])))
524 irr
= apic_read(APIC_IRR
+ (vector
/ 32 * 0x10));
525 if (irr
& (1 << (vector
% 32))) {
526 desc
= __this_cpu_read(vector_irq
[vector
]);
528 raw_spin_lock(&desc
->lock
);
529 data
= irq_desc_get_irq_data(desc
);
530 chip
= irq_data_get_irq_chip(data
);
531 if (chip
->irq_retrigger
) {
532 chip
->irq_retrigger(data
);
533 __this_cpu_write(vector_irq
[vector
], VECTOR_RETRIGGERED
);
535 raw_spin_unlock(&desc
->lock
);
537 if (__this_cpu_read(vector_irq
[vector
]) != VECTOR_RETRIGGERED
)
538 __this_cpu_write(vector_irq
[vector
], VECTOR_UNUSED
);