1 /* KVM paravirtual clock driver. A clocksource implementation
2 Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/clocksource.h>
20 #include <linux/kvm_para.h>
21 #include <asm/pvclock.h>
24 #include <linux/percpu.h>
25 #include <linux/hardirq.h>
26 #include <linux/memblock.h>
27 #include <linux/sched.h>
29 #include <asm/x86_init.h>
30 #include <asm/reboot.h>
32 static int kvmclock
= 1;
33 static int msr_kvm_system_time
= MSR_KVM_SYSTEM_TIME
;
34 static int msr_kvm_wall_clock
= MSR_KVM_WALL_CLOCK
;
35 static cycle_t kvm_sched_clock_offset
;
37 static int parse_no_kvmclock(char *arg
)
42 early_param("no-kvmclock", parse_no_kvmclock
);
44 /* The hypervisor will put information about time periodically here */
45 static struct pvclock_vsyscall_time_info
*hv_clock
;
46 static struct pvclock_wall_clock wall_clock
;
49 * The wallclock is the time of day when we booted. Since then, some time may
50 * have elapsed since the hypervisor wrote the data. So we try to account for
51 * that with system time
53 static void kvm_get_wallclock(struct timespec
*now
)
55 struct pvclock_vcpu_time_info
*vcpu_time
;
59 low
= (int)__pa_symbol(&wall_clock
);
60 high
= ((u64
)__pa_symbol(&wall_clock
) >> 32);
62 native_write_msr(msr_kvm_wall_clock
, low
, high
);
66 vcpu_time
= &hv_clock
[cpu
].pvti
;
67 pvclock_read_wallclock(&wall_clock
, vcpu_time
, now
);
72 static int kvm_set_wallclock(const struct timespec
*now
)
77 static cycle_t
kvm_clock_read(void)
79 struct pvclock_vcpu_time_info
*src
;
83 preempt_disable_notrace();
84 cpu
= smp_processor_id();
85 src
= &hv_clock
[cpu
].pvti
;
86 ret
= pvclock_clocksource_read(src
);
87 preempt_enable_notrace();
91 static cycle_t
kvm_clock_get_cycles(struct clocksource
*cs
)
93 return kvm_clock_read();
96 static cycle_t
kvm_sched_clock_read(void)
98 return kvm_clock_read() - kvm_sched_clock_offset
;
101 static inline void kvm_sched_clock_init(bool stable
)
104 pv_time_ops
.sched_clock
= kvm_clock_read
;
108 kvm_sched_clock_offset
= kvm_clock_read();
109 pv_time_ops
.sched_clock
= kvm_sched_clock_read
;
110 set_sched_clock_stable();
112 printk(KERN_INFO
"kvm-clock: using sched offset of %llu cycles\n",
113 kvm_sched_clock_offset
);
115 BUILD_BUG_ON(sizeof(kvm_sched_clock_offset
) >
116 sizeof(((struct pvclock_vcpu_time_info
*)NULL
)->system_time
));
120 * If we don't do that, there is the possibility that the guest
121 * will calibrate under heavy load - thus, getting a lower lpj -
122 * and execute the delays themselves without load. This is wrong,
123 * because no delay loop can finish beforehand.
124 * Any heuristics is subject to fail, because ultimately, a large
125 * poll of guests can be running and trouble each other. So we preset
128 static unsigned long kvm_get_tsc_khz(void)
130 struct pvclock_vcpu_time_info
*src
;
132 unsigned long tsc_khz
;
135 src
= &hv_clock
[cpu
].pvti
;
136 tsc_khz
= pvclock_tsc_khz(src
);
141 static void kvm_get_preset_lpj(void)
146 khz
= kvm_get_tsc_khz();
148 lpj
= ((u64
)khz
* 1000);
153 bool kvm_check_and_clear_guest_paused(void)
156 struct pvclock_vcpu_time_info
*src
;
157 int cpu
= smp_processor_id();
162 src
= &hv_clock
[cpu
].pvti
;
163 if ((src
->flags
& PVCLOCK_GUEST_STOPPED
) != 0) {
164 src
->flags
&= ~PVCLOCK_GUEST_STOPPED
;
165 pvclock_touch_watchdogs();
172 static struct clocksource kvm_clock
= {
174 .read
= kvm_clock_get_cycles
,
176 .mask
= CLOCKSOURCE_MASK(64),
177 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
180 int kvm_register_clock(char *txt
)
182 int cpu
= smp_processor_id();
184 struct pvclock_vcpu_time_info
*src
;
189 src
= &hv_clock
[cpu
].pvti
;
190 low
= (int)slow_virt_to_phys(src
) | 1;
191 high
= ((u64
)slow_virt_to_phys(src
) >> 32);
192 ret
= native_write_msr_safe(msr_kvm_system_time
, low
, high
);
193 printk(KERN_INFO
"kvm-clock: cpu %d, msr %x:%x, %s\n",
194 cpu
, high
, low
, txt
);
199 static void kvm_save_sched_clock_state(void)
203 static void kvm_restore_sched_clock_state(void)
205 kvm_register_clock("primary cpu clock, resume");
208 #ifdef CONFIG_X86_LOCAL_APIC
209 static void kvm_setup_secondary_clock(void)
212 * Now that the first cpu already had this clocksource initialized,
215 WARN_ON(kvm_register_clock("secondary cpu clock"));
220 * After the clock is registered, the host will keep writing to the
221 * registered memory location. If the guest happens to shutdown, this memory
222 * won't be valid. In cases like kexec, in which you install a new kernel, this
223 * means a random memory location will be kept being written. So before any
224 * kind of shutdown from our side, we unregister the clock by writting anything
225 * that does not have the 'enable' bit set in the msr
227 #ifdef CONFIG_KEXEC_CORE
228 static void kvm_crash_shutdown(struct pt_regs
*regs
)
230 native_write_msr(msr_kvm_system_time
, 0, 0);
231 kvm_disable_steal_time();
232 native_machine_crash_shutdown(regs
);
236 static void kvm_shutdown(void)
238 native_write_msr(msr_kvm_system_time
, 0, 0);
239 kvm_disable_steal_time();
240 native_machine_shutdown();
243 void __init
kvmclock_init(void)
245 struct pvclock_vcpu_time_info
*vcpu_time
;
250 size
= PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info
)*NR_CPUS
);
252 if (!kvm_para_available())
255 if (kvmclock
&& kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2
)) {
256 msr_kvm_system_time
= MSR_KVM_SYSTEM_TIME_NEW
;
257 msr_kvm_wall_clock
= MSR_KVM_WALL_CLOCK_NEW
;
258 } else if (!(kvmclock
&& kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE
)))
261 printk(KERN_INFO
"kvm-clock: Using msrs %x and %x",
262 msr_kvm_system_time
, msr_kvm_wall_clock
);
264 mem
= memblock_alloc(size
, PAGE_SIZE
);
267 hv_clock
= __va(mem
);
268 memset(hv_clock
, 0, size
);
270 if (kvm_register_clock("primary cpu clock")) {
272 memblock_free(mem
, size
);
276 if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT
))
277 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT
);
280 vcpu_time
= &hv_clock
[cpu
].pvti
;
281 flags
= pvclock_read_flags(vcpu_time
);
283 kvm_sched_clock_init(flags
& PVCLOCK_TSC_STABLE_BIT
);
286 x86_platform
.calibrate_tsc
= kvm_get_tsc_khz
;
287 x86_platform
.get_wallclock
= kvm_get_wallclock
;
288 x86_platform
.set_wallclock
= kvm_set_wallclock
;
289 #ifdef CONFIG_X86_LOCAL_APIC
290 x86_cpuinit
.early_percpu_clock_init
=
291 kvm_setup_secondary_clock
;
293 x86_platform
.save_sched_clock_state
= kvm_save_sched_clock_state
;
294 x86_platform
.restore_sched_clock_state
= kvm_restore_sched_clock_state
;
295 machine_ops
.shutdown
= kvm_shutdown
;
296 #ifdef CONFIG_KEXEC_CORE
297 machine_ops
.crash_shutdown
= kvm_crash_shutdown
;
299 kvm_get_preset_lpj();
300 clocksource_register_hz(&kvm_clock
, NSEC_PER_SEC
);
301 pv_info
.name
= "KVM";
304 int __init
kvm_setup_vsyscall_timeinfo(void)
310 struct pvclock_vcpu_time_info
*vcpu_time
;
316 size
= PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info
)*NR_CPUS
);
320 vcpu_time
= &hv_clock
[cpu
].pvti
;
321 flags
= pvclock_read_flags(vcpu_time
);
323 if (!(flags
& PVCLOCK_TSC_STABLE_BIT
)) {
328 if ((ret
= pvclock_init_vsyscall(hv_clock
, size
))) {
335 kvm_clock
.archdata
.vclock_mode
= VCLOCK_PVCLOCK
;