2 * Copyright (C) 1995 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
9 * This file handles the architecture-dependent parts of process handling..
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
16 #include <linux/kernel.h>
18 #include <linux/elfcore.h>
19 #include <linux/smp.h>
20 #include <linux/stddef.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/user.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/mc146818rtc.h>
28 #include <linux/module.h>
29 #include <linux/kallsyms.h>
30 #include <linux/ptrace.h>
31 #include <linux/personality.h>
32 #include <linux/percpu.h>
33 #include <linux/prctl.h>
34 #include <linux/ftrace.h>
35 #include <linux/uaccess.h>
37 #include <linux/kdebug.h>
39 #include <asm/pgtable.h>
41 #include <asm/processor.h>
42 #include <asm/fpu/internal.h>
44 #ifdef CONFIG_MATH_EMULATION
45 #include <asm/math_emu.h>
48 #include <linux/err.h>
50 #include <asm/tlbflush.h>
53 #include <asm/syscalls.h>
54 #include <asm/debugreg.h>
55 #include <asm/switch_to.h>
58 asmlinkage
void ret_from_fork(void) __asm__("ret_from_fork");
59 asmlinkage
void ret_from_kernel_thread(void) __asm__("ret_from_kernel_thread");
62 * Return saved PC of a blocked thread.
64 unsigned long thread_saved_pc(struct task_struct
*tsk
)
66 return ((unsigned long *)tsk
->thread
.sp
)[3];
69 void __show_regs(struct pt_regs
*regs
, int all
)
71 unsigned long cr0
= 0L, cr2
= 0L, cr3
= 0L, cr4
= 0L;
72 unsigned long d0
, d1
, d2
, d3
, d6
, d7
;
74 unsigned short ss
, gs
;
76 if (user_mode(regs
)) {
78 ss
= regs
->ss
& 0xffff;
79 gs
= get_user_gs(regs
);
81 sp
= kernel_stack_pointer(regs
);
86 printk(KERN_DEFAULT
"EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
87 (u16
)regs
->cs
, regs
->ip
, regs
->flags
,
89 print_symbol("EIP is at %s\n", regs
->ip
);
91 printk(KERN_DEFAULT
"EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
92 regs
->ax
, regs
->bx
, regs
->cx
, regs
->dx
);
93 printk(KERN_DEFAULT
"ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
94 regs
->si
, regs
->di
, regs
->bp
, sp
);
95 printk(KERN_DEFAULT
" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
96 (u16
)regs
->ds
, (u16
)regs
->es
, (u16
)regs
->fs
, gs
, ss
);
104 cr4
= __read_cr4_safe();
105 printk(KERN_DEFAULT
"CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
115 /* Only print out debug registers if they are in their non-default state. */
116 if ((d0
== 0) && (d1
== 0) && (d2
== 0) && (d3
== 0) &&
117 (d6
== DR6_RESERVED
) && (d7
== 0x400))
120 printk(KERN_DEFAULT
"DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
122 printk(KERN_DEFAULT
"DR6: %08lx DR7: %08lx\n",
126 void release_thread(struct task_struct
*dead_task
)
128 BUG_ON(dead_task
->mm
);
129 release_vm86_irqs(dead_task
);
132 int copy_thread_tls(unsigned long clone_flags
, unsigned long sp
,
133 unsigned long arg
, struct task_struct
*p
, unsigned long tls
)
135 struct pt_regs
*childregs
= task_pt_regs(p
);
136 struct task_struct
*tsk
;
139 p
->thread
.sp
= (unsigned long) childregs
;
140 p
->thread
.sp0
= (unsigned long) (childregs
+1);
141 memset(p
->thread
.ptrace_bps
, 0, sizeof(p
->thread
.ptrace_bps
));
143 if (unlikely(p
->flags
& PF_KTHREAD
)) {
145 memset(childregs
, 0, sizeof(struct pt_regs
));
146 p
->thread
.ip
= (unsigned long) ret_from_kernel_thread
;
147 task_user_gs(p
) = __KERNEL_STACK_CANARY
;
148 childregs
->ds
= __USER_DS
;
149 childregs
->es
= __USER_DS
;
150 childregs
->fs
= __KERNEL_PERCPU
;
151 childregs
->bx
= sp
; /* function */
153 childregs
->orig_ax
= -1;
154 childregs
->cs
= __KERNEL_CS
| get_kernel_rpl();
155 childregs
->flags
= X86_EFLAGS_IF
| X86_EFLAGS_FIXED
;
156 p
->thread
.io_bitmap_ptr
= NULL
;
159 *childregs
= *current_pt_regs();
164 p
->thread
.ip
= (unsigned long) ret_from_fork
;
165 task_user_gs(p
) = get_user_gs(current_pt_regs());
167 p
->thread
.io_bitmap_ptr
= NULL
;
171 if (unlikely(test_tsk_thread_flag(tsk
, TIF_IO_BITMAP
))) {
172 p
->thread
.io_bitmap_ptr
= kmemdup(tsk
->thread
.io_bitmap_ptr
,
173 IO_BITMAP_BYTES
, GFP_KERNEL
);
174 if (!p
->thread
.io_bitmap_ptr
) {
175 p
->thread
.io_bitmap_max
= 0;
178 set_tsk_thread_flag(p
, TIF_IO_BITMAP
);
184 * Set a new TLS for the child thread?
186 if (clone_flags
& CLONE_SETTLS
)
187 err
= do_set_thread_area(p
, -1,
188 (struct user_desc __user
*)tls
, 0);
190 if (err
&& p
->thread
.io_bitmap_ptr
) {
191 kfree(p
->thread
.io_bitmap_ptr
);
192 p
->thread
.io_bitmap_max
= 0;
198 start_thread(struct pt_regs
*regs
, unsigned long new_ip
, unsigned long new_sp
)
200 set_user_gs(regs
, 0);
202 regs
->ds
= __USER_DS
;
203 regs
->es
= __USER_DS
;
204 regs
->ss
= __USER_DS
;
205 regs
->cs
= __USER_CS
;
208 regs
->flags
= X86_EFLAGS_IF
;
211 EXPORT_SYMBOL_GPL(start_thread
);
215 * switch_to(x,y) should switch tasks from x to y.
217 * We fsave/fwait so that an exception goes off at the right time
218 * (as a call from the fsave or fwait in effect) rather than to
219 * the wrong process. Lazy FP saving no longer makes any sense
220 * with modern CPU's, and this simplifies a lot of things (SMP
221 * and UP become the same).
223 * NOTE! We used to use the x86 hardware context switching. The
224 * reason for not using it any more becomes apparent when you
225 * try to recover gracefully from saved state that is no longer
226 * valid (stale segment register values in particular). With the
227 * hardware task-switch, there is no way to fix up bad state in
228 * a reasonable manner.
230 * The fact that Intel documents the hardware task-switching to
231 * be slow is a fairly red herring - this code is not noticeably
232 * faster. However, there _is_ some room for improvement here,
233 * so the performance issues may eventually be a valid point.
234 * More important, however, is the fact that this allows us much
237 * The return value (in %ax) will be the "prev" task after
238 * the task-switch, and shows up in ret_from_fork in entry.S,
241 __visible __notrace_funcgraph
struct task_struct
*
242 __switch_to(struct task_struct
*prev_p
, struct task_struct
*next_p
)
244 struct thread_struct
*prev
= &prev_p
->thread
,
245 *next
= &next_p
->thread
;
246 struct fpu
*prev_fpu
= &prev
->fpu
;
247 struct fpu
*next_fpu
= &next
->fpu
;
248 int cpu
= smp_processor_id();
249 struct tss_struct
*tss
= &per_cpu(cpu_tss
, cpu
);
250 fpu_switch_t fpu_switch
;
252 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
254 fpu_switch
= switch_fpu_prepare(prev_fpu
, next_fpu
, cpu
);
257 * Save away %gs. No need to save %fs, as it was saved on the
258 * stack on entry. No need to save %es and %ds, as those are
259 * always kernel segments while inside the kernel. Doing this
260 * before setting the new TLS descriptors avoids the situation
261 * where we temporarily have non-reloadable segments in %fs
262 * and %gs. This could be an issue if the NMI handler ever
263 * used %fs or %gs (it does not today), or if the kernel is
264 * running inside of a hypervisor layer.
266 lazy_save_gs(prev
->gs
);
269 * Load the per-thread Thread-Local Storage descriptor.
274 * Restore IOPL if needed. In normal use, the flags restore
275 * in the switch assembly will handle this. But if the kernel
276 * is running virtualized at a non-zero CPL, the popf will
277 * not restore flags, so it must be done in a separate step.
279 if (get_kernel_rpl() && unlikely(prev
->iopl
!= next
->iopl
))
280 set_iopl_mask(next
->iopl
);
283 * Now maybe handle debug registers and/or IO bitmaps
285 if (unlikely(task_thread_info(prev_p
)->flags
& _TIF_WORK_CTXSW_PREV
||
286 task_thread_info(next_p
)->flags
& _TIF_WORK_CTXSW_NEXT
))
287 __switch_to_xtra(prev_p
, next_p
, tss
);
290 * Leave lazy mode, flushing any hypercalls made here.
291 * This must be done before restoring TLS segments so
292 * the GDT and LDT are properly updated, and must be
293 * done before fpu__restore(), so the TS bit is up
296 arch_end_context_switch(next_p
);
299 * Reload esp0 and cpu_current_top_of_stack. This changes
300 * current_thread_info().
303 this_cpu_write(cpu_current_top_of_stack
,
304 (unsigned long)task_stack_page(next_p
) +
308 * Restore %gs if needed (which is common)
310 if (prev
->gs
| next
->gs
)
311 lazy_load_gs(next
->gs
);
313 switch_fpu_finish(next_fpu
, fpu_switch
);
315 this_cpu_write(current_task
, next_p
);