vfs: remove unused wrapper block_page_mkwrite()
[linux/fpc-iii.git] / arch / x86 / kernel / tsc.c
blobc7c4d9c51e99fe582b71ab1f2e3ca9ffaae2226c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/timer.h>
8 #include <linux/acpi_pmtmr.h>
9 #include <linux/cpufreq.h>
10 #include <linux/delay.h>
11 #include <linux/clocksource.h>
12 #include <linux/percpu.h>
13 #include <linux/timex.h>
14 #include <linux/static_key.h>
16 #include <asm/hpet.h>
17 #include <asm/timer.h>
18 #include <asm/vgtod.h>
19 #include <asm/time.h>
20 #include <asm/delay.h>
21 #include <asm/hypervisor.h>
22 #include <asm/nmi.h>
23 #include <asm/x86_init.h>
24 #include <asm/geode.h>
26 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
27 EXPORT_SYMBOL(cpu_khz);
29 unsigned int __read_mostly tsc_khz;
30 EXPORT_SYMBOL(tsc_khz);
33 * TSC can be unstable due to cpufreq or due to unsynced TSCs
35 static int __read_mostly tsc_unstable;
37 /* native_sched_clock() is called before tsc_init(), so
38 we must start with the TSC soft disabled to prevent
39 erroneous rdtsc usage on !cpu_has_tsc processors */
40 static int __read_mostly tsc_disabled = -1;
42 static DEFINE_STATIC_KEY_FALSE(__use_tsc);
44 int tsc_clocksource_reliable;
47 * Use a ring-buffer like data structure, where a writer advances the head by
48 * writing a new data entry and a reader advances the tail when it observes a
49 * new entry.
51 * Writers are made to wait on readers until there's space to write a new
52 * entry.
54 * This means that we can always use an {offset, mul} pair to compute a ns
55 * value that is 'roughly' in the right direction, even if we're writing a new
56 * {offset, mul} pair during the clock read.
58 * The down-side is that we can no longer guarantee strict monotonicity anymore
59 * (assuming the TSC was that to begin with), because while we compute the
60 * intersection point of the two clock slopes and make sure the time is
61 * continuous at the point of switching; we can no longer guarantee a reader is
62 * strictly before or after the switch point.
64 * It does mean a reader no longer needs to disable IRQs in order to avoid
65 * CPU-Freq updates messing with his times, and similarly an NMI reader will
66 * no longer run the risk of hitting half-written state.
69 struct cyc2ns {
70 struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
71 struct cyc2ns_data *head; /* 48 + 8 = 56 */
72 struct cyc2ns_data *tail; /* 56 + 8 = 64 */
73 }; /* exactly fits one cacheline */
75 static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
77 struct cyc2ns_data *cyc2ns_read_begin(void)
79 struct cyc2ns_data *head;
81 preempt_disable();
83 head = this_cpu_read(cyc2ns.head);
85 * Ensure we observe the entry when we observe the pointer to it.
86 * matches the wmb from cyc2ns_write_end().
88 smp_read_barrier_depends();
89 head->__count++;
90 barrier();
92 return head;
95 void cyc2ns_read_end(struct cyc2ns_data *head)
97 barrier();
99 * If we're the outer most nested read; update the tail pointer
100 * when we're done. This notifies possible pending writers
101 * that we've observed the head pointer and that the other
102 * entry is now free.
104 if (!--head->__count) {
106 * x86-TSO does not reorder writes with older reads;
107 * therefore once this write becomes visible to another
108 * cpu, we must be finished reading the cyc2ns_data.
110 * matches with cyc2ns_write_begin().
112 this_cpu_write(cyc2ns.tail, head);
114 preempt_enable();
118 * Begin writing a new @data entry for @cpu.
120 * Assumes some sort of write side lock; currently 'provided' by the assumption
121 * that cpufreq will call its notifiers sequentially.
123 static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
125 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
126 struct cyc2ns_data *data = c2n->data;
128 if (data == c2n->head)
129 data++;
131 /* XXX send an IPI to @cpu in order to guarantee a read? */
134 * When we observe the tail write from cyc2ns_read_end(),
135 * the cpu must be done with that entry and its safe
136 * to start writing to it.
138 while (c2n->tail == data)
139 cpu_relax();
141 return data;
144 static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
146 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
149 * Ensure the @data writes are visible before we publish the
150 * entry. Matches the data-depencency in cyc2ns_read_begin().
152 smp_wmb();
154 ACCESS_ONCE(c2n->head) = data;
158 * Accelerators for sched_clock()
159 * convert from cycles(64bits) => nanoseconds (64bits)
160 * basic equation:
161 * ns = cycles / (freq / ns_per_sec)
162 * ns = cycles * (ns_per_sec / freq)
163 * ns = cycles * (10^9 / (cpu_khz * 10^3))
164 * ns = cycles * (10^6 / cpu_khz)
166 * Then we use scaling math (suggested by george@mvista.com) to get:
167 * ns = cycles * (10^6 * SC / cpu_khz) / SC
168 * ns = cycles * cyc2ns_scale / SC
170 * And since SC is a constant power of two, we can convert the div
171 * into a shift. The larger SC is, the more accurate the conversion, but
172 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
173 * (64-bit result) can be used.
175 * We can use khz divisor instead of mhz to keep a better precision.
176 * (mathieu.desnoyers@polymtl.ca)
178 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
181 static void cyc2ns_data_init(struct cyc2ns_data *data)
183 data->cyc2ns_mul = 0;
184 data->cyc2ns_shift = 0;
185 data->cyc2ns_offset = 0;
186 data->__count = 0;
189 static void cyc2ns_init(int cpu)
191 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
193 cyc2ns_data_init(&c2n->data[0]);
194 cyc2ns_data_init(&c2n->data[1]);
196 c2n->head = c2n->data;
197 c2n->tail = c2n->data;
200 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
202 struct cyc2ns_data *data, *tail;
203 unsigned long long ns;
206 * See cyc2ns_read_*() for details; replicated in order to avoid
207 * an extra few instructions that came with the abstraction.
208 * Notable, it allows us to only do the __count and tail update
209 * dance when its actually needed.
212 preempt_disable_notrace();
213 data = this_cpu_read(cyc2ns.head);
214 tail = this_cpu_read(cyc2ns.tail);
216 if (likely(data == tail)) {
217 ns = data->cyc2ns_offset;
218 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
219 } else {
220 data->__count++;
222 barrier();
224 ns = data->cyc2ns_offset;
225 ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
227 barrier();
229 if (!--data->__count)
230 this_cpu_write(cyc2ns.tail, data);
232 preempt_enable_notrace();
234 return ns;
237 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
239 unsigned long long tsc_now, ns_now;
240 struct cyc2ns_data *data;
241 unsigned long flags;
243 local_irq_save(flags);
244 sched_clock_idle_sleep_event();
246 if (!cpu_khz)
247 goto done;
249 data = cyc2ns_write_begin(cpu);
251 tsc_now = rdtsc();
252 ns_now = cycles_2_ns(tsc_now);
255 * Compute a new multiplier as per the above comment and ensure our
256 * time function is continuous; see the comment near struct
257 * cyc2ns_data.
259 clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
260 NSEC_PER_MSEC, 0);
263 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
264 * not expected to be greater than 31 due to the original published
265 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
266 * value) - refer perf_event_mmap_page documentation in perf_event.h.
268 if (data->cyc2ns_shift == 32) {
269 data->cyc2ns_shift = 31;
270 data->cyc2ns_mul >>= 1;
273 data->cyc2ns_offset = ns_now -
274 mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
276 cyc2ns_write_end(cpu, data);
278 done:
279 sched_clock_idle_wakeup_event(0);
280 local_irq_restore(flags);
283 * Scheduler clock - returns current time in nanosec units.
285 u64 native_sched_clock(void)
287 if (static_branch_likely(&__use_tsc)) {
288 u64 tsc_now = rdtsc();
290 /* return the value in ns */
291 return cycles_2_ns(tsc_now);
295 * Fall back to jiffies if there's no TSC available:
296 * ( But note that we still use it if the TSC is marked
297 * unstable. We do this because unlike Time Of Day,
298 * the scheduler clock tolerates small errors and it's
299 * very important for it to be as fast as the platform
300 * can achieve it. )
303 /* No locking but a rare wrong value is not a big deal: */
304 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
308 * Generate a sched_clock if you already have a TSC value.
310 u64 native_sched_clock_from_tsc(u64 tsc)
312 return cycles_2_ns(tsc);
315 /* We need to define a real function for sched_clock, to override the
316 weak default version */
317 #ifdef CONFIG_PARAVIRT
318 unsigned long long sched_clock(void)
320 return paravirt_sched_clock();
322 #else
323 unsigned long long
324 sched_clock(void) __attribute__((alias("native_sched_clock")));
325 #endif
327 int check_tsc_unstable(void)
329 return tsc_unstable;
331 EXPORT_SYMBOL_GPL(check_tsc_unstable);
333 int check_tsc_disabled(void)
335 return tsc_disabled;
337 EXPORT_SYMBOL_GPL(check_tsc_disabled);
339 #ifdef CONFIG_X86_TSC
340 int __init notsc_setup(char *str)
342 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
343 tsc_disabled = 1;
344 return 1;
346 #else
348 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
349 * in cpu/common.c
351 int __init notsc_setup(char *str)
353 setup_clear_cpu_cap(X86_FEATURE_TSC);
354 return 1;
356 #endif
358 __setup("notsc", notsc_setup);
360 static int no_sched_irq_time;
362 static int __init tsc_setup(char *str)
364 if (!strcmp(str, "reliable"))
365 tsc_clocksource_reliable = 1;
366 if (!strncmp(str, "noirqtime", 9))
367 no_sched_irq_time = 1;
368 return 1;
371 __setup("tsc=", tsc_setup);
373 #define MAX_RETRIES 5
374 #define SMI_TRESHOLD 50000
377 * Read TSC and the reference counters. Take care of SMI disturbance
379 static u64 tsc_read_refs(u64 *p, int hpet)
381 u64 t1, t2;
382 int i;
384 for (i = 0; i < MAX_RETRIES; i++) {
385 t1 = get_cycles();
386 if (hpet)
387 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
388 else
389 *p = acpi_pm_read_early();
390 t2 = get_cycles();
391 if ((t2 - t1) < SMI_TRESHOLD)
392 return t2;
394 return ULLONG_MAX;
398 * Calculate the TSC frequency from HPET reference
400 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
402 u64 tmp;
404 if (hpet2 < hpet1)
405 hpet2 += 0x100000000ULL;
406 hpet2 -= hpet1;
407 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
408 do_div(tmp, 1000000);
409 do_div(deltatsc, tmp);
411 return (unsigned long) deltatsc;
415 * Calculate the TSC frequency from PMTimer reference
417 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
419 u64 tmp;
421 if (!pm1 && !pm2)
422 return ULONG_MAX;
424 if (pm2 < pm1)
425 pm2 += (u64)ACPI_PM_OVRRUN;
426 pm2 -= pm1;
427 tmp = pm2 * 1000000000LL;
428 do_div(tmp, PMTMR_TICKS_PER_SEC);
429 do_div(deltatsc, tmp);
431 return (unsigned long) deltatsc;
434 #define CAL_MS 10
435 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
436 #define CAL_PIT_LOOPS 1000
438 #define CAL2_MS 50
439 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
440 #define CAL2_PIT_LOOPS 5000
444 * Try to calibrate the TSC against the Programmable
445 * Interrupt Timer and return the frequency of the TSC
446 * in kHz.
448 * Return ULONG_MAX on failure to calibrate.
450 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
452 u64 tsc, t1, t2, delta;
453 unsigned long tscmin, tscmax;
454 int pitcnt;
456 /* Set the Gate high, disable speaker */
457 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
460 * Setup CTC channel 2* for mode 0, (interrupt on terminal
461 * count mode), binary count. Set the latch register to 50ms
462 * (LSB then MSB) to begin countdown.
464 outb(0xb0, 0x43);
465 outb(latch & 0xff, 0x42);
466 outb(latch >> 8, 0x42);
468 tsc = t1 = t2 = get_cycles();
470 pitcnt = 0;
471 tscmax = 0;
472 tscmin = ULONG_MAX;
473 while ((inb(0x61) & 0x20) == 0) {
474 t2 = get_cycles();
475 delta = t2 - tsc;
476 tsc = t2;
477 if ((unsigned long) delta < tscmin)
478 tscmin = (unsigned int) delta;
479 if ((unsigned long) delta > tscmax)
480 tscmax = (unsigned int) delta;
481 pitcnt++;
485 * Sanity checks:
487 * If we were not able to read the PIT more than loopmin
488 * times, then we have been hit by a massive SMI
490 * If the maximum is 10 times larger than the minimum,
491 * then we got hit by an SMI as well.
493 if (pitcnt < loopmin || tscmax > 10 * tscmin)
494 return ULONG_MAX;
496 /* Calculate the PIT value */
497 delta = t2 - t1;
498 do_div(delta, ms);
499 return delta;
503 * This reads the current MSB of the PIT counter, and
504 * checks if we are running on sufficiently fast and
505 * non-virtualized hardware.
507 * Our expectations are:
509 * - the PIT is running at roughly 1.19MHz
511 * - each IO is going to take about 1us on real hardware,
512 * but we allow it to be much faster (by a factor of 10) or
513 * _slightly_ slower (ie we allow up to a 2us read+counter
514 * update - anything else implies a unacceptably slow CPU
515 * or PIT for the fast calibration to work.
517 * - with 256 PIT ticks to read the value, we have 214us to
518 * see the same MSB (and overhead like doing a single TSC
519 * read per MSB value etc).
521 * - We're doing 2 reads per loop (LSB, MSB), and we expect
522 * them each to take about a microsecond on real hardware.
523 * So we expect a count value of around 100. But we'll be
524 * generous, and accept anything over 50.
526 * - if the PIT is stuck, and we see *many* more reads, we
527 * return early (and the next caller of pit_expect_msb()
528 * then consider it a failure when they don't see the
529 * next expected value).
531 * These expectations mean that we know that we have seen the
532 * transition from one expected value to another with a fairly
533 * high accuracy, and we didn't miss any events. We can thus
534 * use the TSC value at the transitions to calculate a pretty
535 * good value for the TSC frequencty.
537 static inline int pit_verify_msb(unsigned char val)
539 /* Ignore LSB */
540 inb(0x42);
541 return inb(0x42) == val;
544 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
546 int count;
547 u64 tsc = 0, prev_tsc = 0;
549 for (count = 0; count < 50000; count++) {
550 if (!pit_verify_msb(val))
551 break;
552 prev_tsc = tsc;
553 tsc = get_cycles();
555 *deltap = get_cycles() - prev_tsc;
556 *tscp = tsc;
559 * We require _some_ success, but the quality control
560 * will be based on the error terms on the TSC values.
562 return count > 5;
566 * How many MSB values do we want to see? We aim for
567 * a maximum error rate of 500ppm (in practice the
568 * real error is much smaller), but refuse to spend
569 * more than 50ms on it.
571 #define MAX_QUICK_PIT_MS 50
572 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
574 static unsigned long quick_pit_calibrate(void)
576 int i;
577 u64 tsc, delta;
578 unsigned long d1, d2;
580 /* Set the Gate high, disable speaker */
581 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
584 * Counter 2, mode 0 (one-shot), binary count
586 * NOTE! Mode 2 decrements by two (and then the
587 * output is flipped each time, giving the same
588 * final output frequency as a decrement-by-one),
589 * so mode 0 is much better when looking at the
590 * individual counts.
592 outb(0xb0, 0x43);
594 /* Start at 0xffff */
595 outb(0xff, 0x42);
596 outb(0xff, 0x42);
599 * The PIT starts counting at the next edge, so we
600 * need to delay for a microsecond. The easiest way
601 * to do that is to just read back the 16-bit counter
602 * once from the PIT.
604 pit_verify_msb(0);
606 if (pit_expect_msb(0xff, &tsc, &d1)) {
607 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
608 if (!pit_expect_msb(0xff-i, &delta, &d2))
609 break;
611 delta -= tsc;
614 * Extrapolate the error and fail fast if the error will
615 * never be below 500 ppm.
617 if (i == 1 &&
618 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
619 return 0;
622 * Iterate until the error is less than 500 ppm
624 if (d1+d2 >= delta >> 11)
625 continue;
628 * Check the PIT one more time to verify that
629 * all TSC reads were stable wrt the PIT.
631 * This also guarantees serialization of the
632 * last cycle read ('d2') in pit_expect_msb.
634 if (!pit_verify_msb(0xfe - i))
635 break;
636 goto success;
639 pr_info("Fast TSC calibration failed\n");
640 return 0;
642 success:
644 * Ok, if we get here, then we've seen the
645 * MSB of the PIT decrement 'i' times, and the
646 * error has shrunk to less than 500 ppm.
648 * As a result, we can depend on there not being
649 * any odd delays anywhere, and the TSC reads are
650 * reliable (within the error).
652 * kHz = ticks / time-in-seconds / 1000;
653 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
654 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
656 delta *= PIT_TICK_RATE;
657 do_div(delta, i*256*1000);
658 pr_info("Fast TSC calibration using PIT\n");
659 return delta;
663 * native_calibrate_tsc - calibrate the tsc on boot
665 unsigned long native_calibrate_tsc(void)
667 u64 tsc1, tsc2, delta, ref1, ref2;
668 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
669 unsigned long flags, latch, ms, fast_calibrate;
670 int hpet = is_hpet_enabled(), i, loopmin;
672 /* Calibrate TSC using MSR for Intel Atom SoCs */
673 local_irq_save(flags);
674 fast_calibrate = try_msr_calibrate_tsc();
675 local_irq_restore(flags);
676 if (fast_calibrate)
677 return fast_calibrate;
679 local_irq_save(flags);
680 fast_calibrate = quick_pit_calibrate();
681 local_irq_restore(flags);
682 if (fast_calibrate)
683 return fast_calibrate;
686 * Run 5 calibration loops to get the lowest frequency value
687 * (the best estimate). We use two different calibration modes
688 * here:
690 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
691 * load a timeout of 50ms. We read the time right after we
692 * started the timer and wait until the PIT count down reaches
693 * zero. In each wait loop iteration we read the TSC and check
694 * the delta to the previous read. We keep track of the min
695 * and max values of that delta. The delta is mostly defined
696 * by the IO time of the PIT access, so we can detect when a
697 * SMI/SMM disturbance happened between the two reads. If the
698 * maximum time is significantly larger than the minimum time,
699 * then we discard the result and have another try.
701 * 2) Reference counter. If available we use the HPET or the
702 * PMTIMER as a reference to check the sanity of that value.
703 * We use separate TSC readouts and check inside of the
704 * reference read for a SMI/SMM disturbance. We dicard
705 * disturbed values here as well. We do that around the PIT
706 * calibration delay loop as we have to wait for a certain
707 * amount of time anyway.
710 /* Preset PIT loop values */
711 latch = CAL_LATCH;
712 ms = CAL_MS;
713 loopmin = CAL_PIT_LOOPS;
715 for (i = 0; i < 3; i++) {
716 unsigned long tsc_pit_khz;
719 * Read the start value and the reference count of
720 * hpet/pmtimer when available. Then do the PIT
721 * calibration, which will take at least 50ms, and
722 * read the end value.
724 local_irq_save(flags);
725 tsc1 = tsc_read_refs(&ref1, hpet);
726 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
727 tsc2 = tsc_read_refs(&ref2, hpet);
728 local_irq_restore(flags);
730 /* Pick the lowest PIT TSC calibration so far */
731 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
733 /* hpet or pmtimer available ? */
734 if (ref1 == ref2)
735 continue;
737 /* Check, whether the sampling was disturbed by an SMI */
738 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
739 continue;
741 tsc2 = (tsc2 - tsc1) * 1000000LL;
742 if (hpet)
743 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
744 else
745 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
747 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
749 /* Check the reference deviation */
750 delta = ((u64) tsc_pit_min) * 100;
751 do_div(delta, tsc_ref_min);
754 * If both calibration results are inside a 10% window
755 * then we can be sure, that the calibration
756 * succeeded. We break out of the loop right away. We
757 * use the reference value, as it is more precise.
759 if (delta >= 90 && delta <= 110) {
760 pr_info("PIT calibration matches %s. %d loops\n",
761 hpet ? "HPET" : "PMTIMER", i + 1);
762 return tsc_ref_min;
766 * Check whether PIT failed more than once. This
767 * happens in virtualized environments. We need to
768 * give the virtual PC a slightly longer timeframe for
769 * the HPET/PMTIMER to make the result precise.
771 if (i == 1 && tsc_pit_min == ULONG_MAX) {
772 latch = CAL2_LATCH;
773 ms = CAL2_MS;
774 loopmin = CAL2_PIT_LOOPS;
779 * Now check the results.
781 if (tsc_pit_min == ULONG_MAX) {
782 /* PIT gave no useful value */
783 pr_warn("Unable to calibrate against PIT\n");
785 /* We don't have an alternative source, disable TSC */
786 if (!hpet && !ref1 && !ref2) {
787 pr_notice("No reference (HPET/PMTIMER) available\n");
788 return 0;
791 /* The alternative source failed as well, disable TSC */
792 if (tsc_ref_min == ULONG_MAX) {
793 pr_warn("HPET/PMTIMER calibration failed\n");
794 return 0;
797 /* Use the alternative source */
798 pr_info("using %s reference calibration\n",
799 hpet ? "HPET" : "PMTIMER");
801 return tsc_ref_min;
804 /* We don't have an alternative source, use the PIT calibration value */
805 if (!hpet && !ref1 && !ref2) {
806 pr_info("Using PIT calibration value\n");
807 return tsc_pit_min;
810 /* The alternative source failed, use the PIT calibration value */
811 if (tsc_ref_min == ULONG_MAX) {
812 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
813 return tsc_pit_min;
817 * The calibration values differ too much. In doubt, we use
818 * the PIT value as we know that there are PMTIMERs around
819 * running at double speed. At least we let the user know:
821 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
822 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
823 pr_info("Using PIT calibration value\n");
824 return tsc_pit_min;
827 int recalibrate_cpu_khz(void)
829 #ifndef CONFIG_SMP
830 unsigned long cpu_khz_old = cpu_khz;
832 if (cpu_has_tsc) {
833 tsc_khz = x86_platform.calibrate_tsc();
834 cpu_khz = tsc_khz;
835 cpu_data(0).loops_per_jiffy =
836 cpufreq_scale(cpu_data(0).loops_per_jiffy,
837 cpu_khz_old, cpu_khz);
838 return 0;
839 } else
840 return -ENODEV;
841 #else
842 return -ENODEV;
843 #endif
846 EXPORT_SYMBOL(recalibrate_cpu_khz);
849 static unsigned long long cyc2ns_suspend;
851 void tsc_save_sched_clock_state(void)
853 if (!sched_clock_stable())
854 return;
856 cyc2ns_suspend = sched_clock();
860 * Even on processors with invariant TSC, TSC gets reset in some the
861 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
862 * arbitrary value (still sync'd across cpu's) during resume from such sleep
863 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
864 * that sched_clock() continues from the point where it was left off during
865 * suspend.
867 void tsc_restore_sched_clock_state(void)
869 unsigned long long offset;
870 unsigned long flags;
871 int cpu;
873 if (!sched_clock_stable())
874 return;
876 local_irq_save(flags);
879 * We're comming out of suspend, there's no concurrency yet; don't
880 * bother being nice about the RCU stuff, just write to both
881 * data fields.
884 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
885 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
887 offset = cyc2ns_suspend - sched_clock();
889 for_each_possible_cpu(cpu) {
890 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
891 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
894 local_irq_restore(flags);
897 #ifdef CONFIG_CPU_FREQ
899 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
900 * changes.
902 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
903 * not that important because current Opteron setups do not support
904 * scaling on SMP anyroads.
906 * Should fix up last_tsc too. Currently gettimeofday in the
907 * first tick after the change will be slightly wrong.
910 static unsigned int ref_freq;
911 static unsigned long loops_per_jiffy_ref;
912 static unsigned long tsc_khz_ref;
914 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
915 void *data)
917 struct cpufreq_freqs *freq = data;
918 unsigned long *lpj;
920 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
921 return 0;
923 lpj = &boot_cpu_data.loops_per_jiffy;
924 #ifdef CONFIG_SMP
925 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
926 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
927 #endif
929 if (!ref_freq) {
930 ref_freq = freq->old;
931 loops_per_jiffy_ref = *lpj;
932 tsc_khz_ref = tsc_khz;
934 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
935 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
936 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
938 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
939 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
940 mark_tsc_unstable("cpufreq changes");
942 set_cyc2ns_scale(tsc_khz, freq->cpu);
945 return 0;
948 static struct notifier_block time_cpufreq_notifier_block = {
949 .notifier_call = time_cpufreq_notifier
952 static int __init cpufreq_tsc(void)
954 if (!cpu_has_tsc)
955 return 0;
956 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
957 return 0;
958 cpufreq_register_notifier(&time_cpufreq_notifier_block,
959 CPUFREQ_TRANSITION_NOTIFIER);
960 return 0;
963 core_initcall(cpufreq_tsc);
965 #endif /* CONFIG_CPU_FREQ */
967 /* clocksource code */
969 static struct clocksource clocksource_tsc;
972 * We used to compare the TSC to the cycle_last value in the clocksource
973 * structure to avoid a nasty time-warp. This can be observed in a
974 * very small window right after one CPU updated cycle_last under
975 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
976 * is smaller than the cycle_last reference value due to a TSC which
977 * is slighty behind. This delta is nowhere else observable, but in
978 * that case it results in a forward time jump in the range of hours
979 * due to the unsigned delta calculation of the time keeping core
980 * code, which is necessary to support wrapping clocksources like pm
981 * timer.
983 * This sanity check is now done in the core timekeeping code.
984 * checking the result of read_tsc() - cycle_last for being negative.
985 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
987 static cycle_t read_tsc(struct clocksource *cs)
989 return (cycle_t)rdtsc_ordered();
993 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
995 static struct clocksource clocksource_tsc = {
996 .name = "tsc",
997 .rating = 300,
998 .read = read_tsc,
999 .mask = CLOCKSOURCE_MASK(64),
1000 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1001 CLOCK_SOURCE_MUST_VERIFY,
1002 .archdata = { .vclock_mode = VCLOCK_TSC },
1005 void mark_tsc_unstable(char *reason)
1007 if (!tsc_unstable) {
1008 tsc_unstable = 1;
1009 clear_sched_clock_stable();
1010 disable_sched_clock_irqtime();
1011 pr_info("Marking TSC unstable due to %s\n", reason);
1012 /* Change only the rating, when not registered */
1013 if (clocksource_tsc.mult)
1014 clocksource_mark_unstable(&clocksource_tsc);
1015 else {
1016 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1017 clocksource_tsc.rating = 0;
1022 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1024 static void __init check_system_tsc_reliable(void)
1026 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1027 if (is_geode_lx()) {
1028 /* RTSC counts during suspend */
1029 #define RTSC_SUSP 0x100
1030 unsigned long res_low, res_high;
1032 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1033 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1034 if (res_low & RTSC_SUSP)
1035 tsc_clocksource_reliable = 1;
1037 #endif
1038 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1039 tsc_clocksource_reliable = 1;
1043 * Make an educated guess if the TSC is trustworthy and synchronized
1044 * over all CPUs.
1046 int unsynchronized_tsc(void)
1048 if (!cpu_has_tsc || tsc_unstable)
1049 return 1;
1051 #ifdef CONFIG_SMP
1052 if (apic_is_clustered_box())
1053 return 1;
1054 #endif
1056 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1057 return 0;
1059 if (tsc_clocksource_reliable)
1060 return 0;
1062 * Intel systems are normally all synchronized.
1063 * Exceptions must mark TSC as unstable:
1065 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1066 /* assume multi socket systems are not synchronized: */
1067 if (num_possible_cpus() > 1)
1068 return 1;
1071 return 0;
1075 static void tsc_refine_calibration_work(struct work_struct *work);
1076 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1078 * tsc_refine_calibration_work - Further refine tsc freq calibration
1079 * @work - ignored.
1081 * This functions uses delayed work over a period of a
1082 * second to further refine the TSC freq value. Since this is
1083 * timer based, instead of loop based, we don't block the boot
1084 * process while this longer calibration is done.
1086 * If there are any calibration anomalies (too many SMIs, etc),
1087 * or the refined calibration is off by 1% of the fast early
1088 * calibration, we throw out the new calibration and use the
1089 * early calibration.
1091 static void tsc_refine_calibration_work(struct work_struct *work)
1093 static u64 tsc_start = -1, ref_start;
1094 static int hpet;
1095 u64 tsc_stop, ref_stop, delta;
1096 unsigned long freq;
1098 /* Don't bother refining TSC on unstable systems */
1099 if (check_tsc_unstable())
1100 goto out;
1103 * Since the work is started early in boot, we may be
1104 * delayed the first time we expire. So set the workqueue
1105 * again once we know timers are working.
1107 if (tsc_start == -1) {
1109 * Only set hpet once, to avoid mixing hardware
1110 * if the hpet becomes enabled later.
1112 hpet = is_hpet_enabled();
1113 schedule_delayed_work(&tsc_irqwork, HZ);
1114 tsc_start = tsc_read_refs(&ref_start, hpet);
1115 return;
1118 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1120 /* hpet or pmtimer available ? */
1121 if (ref_start == ref_stop)
1122 goto out;
1124 /* Check, whether the sampling was disturbed by an SMI */
1125 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1126 goto out;
1128 delta = tsc_stop - tsc_start;
1129 delta *= 1000000LL;
1130 if (hpet)
1131 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1132 else
1133 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1135 /* Make sure we're within 1% */
1136 if (abs(tsc_khz - freq) > tsc_khz/100)
1137 goto out;
1139 tsc_khz = freq;
1140 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1141 (unsigned long)tsc_khz / 1000,
1142 (unsigned long)tsc_khz % 1000);
1144 out:
1145 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1149 static int __init init_tsc_clocksource(void)
1151 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1152 return 0;
1154 if (tsc_clocksource_reliable)
1155 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1156 /* lower the rating if we already know its unstable: */
1157 if (check_tsc_unstable()) {
1158 clocksource_tsc.rating = 0;
1159 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1162 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1163 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1166 * Trust the results of the earlier calibration on systems
1167 * exporting a reliable TSC.
1169 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1170 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1171 return 0;
1174 schedule_delayed_work(&tsc_irqwork, 0);
1175 return 0;
1178 * We use device_initcall here, to ensure we run after the hpet
1179 * is fully initialized, which may occur at fs_initcall time.
1181 device_initcall(init_tsc_clocksource);
1183 void __init tsc_init(void)
1185 u64 lpj;
1186 int cpu;
1188 x86_init.timers.tsc_pre_init();
1190 if (!cpu_has_tsc) {
1191 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1192 return;
1195 tsc_khz = x86_platform.calibrate_tsc();
1196 cpu_khz = tsc_khz;
1198 if (!tsc_khz) {
1199 mark_tsc_unstable("could not calculate TSC khz");
1200 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1201 return;
1204 pr_info("Detected %lu.%03lu MHz processor\n",
1205 (unsigned long)cpu_khz / 1000,
1206 (unsigned long)cpu_khz % 1000);
1209 * Secondary CPUs do not run through tsc_init(), so set up
1210 * all the scale factors for all CPUs, assuming the same
1211 * speed as the bootup CPU. (cpufreq notifiers will fix this
1212 * up if their speed diverges)
1214 for_each_possible_cpu(cpu) {
1215 cyc2ns_init(cpu);
1216 set_cyc2ns_scale(cpu_khz, cpu);
1219 if (tsc_disabled > 0)
1220 return;
1222 /* now allow native_sched_clock() to use rdtsc */
1224 tsc_disabled = 0;
1225 static_branch_enable(&__use_tsc);
1227 if (!no_sched_irq_time)
1228 enable_sched_clock_irqtime();
1230 lpj = ((u64)tsc_khz * 1000);
1231 do_div(lpj, HZ);
1232 lpj_fine = lpj;
1234 use_tsc_delay();
1236 if (unsynchronized_tsc())
1237 mark_tsc_unstable("TSCs unsynchronized");
1239 check_system_tsc_reliable();
1242 #ifdef CONFIG_SMP
1244 * If we have a constant TSC and are using the TSC for the delay loop,
1245 * we can skip clock calibration if another cpu in the same socket has already
1246 * been calibrated. This assumes that CONSTANT_TSC applies to all
1247 * cpus in the socket - this should be a safe assumption.
1249 unsigned long calibrate_delay_is_known(void)
1251 int i, cpu = smp_processor_id();
1253 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1254 return 0;
1256 for_each_online_cpu(i)
1257 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1258 return cpu_data(i).loops_per_jiffy;
1259 return 0;
1261 #endif