4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/gfp.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/version.h>
42 #include <linux/ctype.h>
44 #include <linux/compat.h>
45 #include <linux/syscalls.h>
46 #include <linux/kprobes.h>
47 #include <linux/user_namespace.h>
49 #include <linux/kmsg_dump.h>
50 /* Move somewhere else to avoid recompiling? */
51 #include <generated/utsrelease.h>
53 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
57 #ifndef SET_UNALIGN_CTL
58 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
60 #ifndef GET_UNALIGN_CTL
61 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
64 # define SET_FPEMU_CTL(a,b) (-EINVAL)
67 # define GET_FPEMU_CTL(a,b) (-EINVAL)
70 # define SET_FPEXC_CTL(a,b) (-EINVAL)
73 # define GET_FPEXC_CTL(a,b) (-EINVAL)
76 # define GET_ENDIAN(a,b) (-EINVAL)
79 # define SET_ENDIAN(a,b) (-EINVAL)
82 # define GET_TSC_CTL(a) (-EINVAL)
85 # define SET_TSC_CTL(a) (-EINVAL)
89 * this is where the system-wide overflow UID and GID are defined, for
90 * architectures that now have 32-bit UID/GID but didn't in the past
93 int overflowuid
= DEFAULT_OVERFLOWUID
;
94 int overflowgid
= DEFAULT_OVERFLOWGID
;
97 EXPORT_SYMBOL(overflowuid
);
98 EXPORT_SYMBOL(overflowgid
);
102 * the same as above, but for filesystems which can only store a 16-bit
103 * UID and GID. as such, this is needed on all architectures
106 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
107 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
109 EXPORT_SYMBOL(fs_overflowuid
);
110 EXPORT_SYMBOL(fs_overflowgid
);
113 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
118 EXPORT_SYMBOL(cad_pid
);
121 * If set, this is used for preparing the system to power off.
124 void (*pm_power_off_prepare
)(void);
127 * Returns true if current's euid is same as p's uid or euid,
128 * or has CAP_SYS_NICE to p's user_ns.
130 * Called with rcu_read_lock, creds are safe
132 static bool set_one_prio_perm(struct task_struct
*p
)
134 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
136 if (pcred
->user
->user_ns
== cred
->user
->user_ns
&&
137 (pcred
->uid
== cred
->euid
||
138 pcred
->euid
== cred
->euid
))
140 if (ns_capable(pcred
->user
->user_ns
, CAP_SYS_NICE
))
146 * set the priority of a task
147 * - the caller must hold the RCU read lock
149 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
153 if (!set_one_prio_perm(p
)) {
157 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
161 no_nice
= security_task_setnice(p
, niceval
);
168 set_user_nice(p
, niceval
);
173 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
175 struct task_struct
*g
, *p
;
176 struct user_struct
*user
;
177 const struct cred
*cred
= current_cred();
181 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
184 /* normalize: avoid signed division (rounding problems) */
192 read_lock(&tasklist_lock
);
196 p
= find_task_by_vpid(who
);
200 error
= set_one_prio(p
, niceval
, error
);
204 pgrp
= find_vpid(who
);
206 pgrp
= task_pgrp(current
);
207 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
208 error
= set_one_prio(p
, niceval
, error
);
209 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
212 user
= (struct user_struct
*) cred
->user
;
215 else if ((who
!= cred
->uid
) &&
216 !(user
= find_user(who
)))
217 goto out_unlock
; /* No processes for this user */
219 do_each_thread(g
, p
) {
220 if (__task_cred(p
)->uid
== who
)
221 error
= set_one_prio(p
, niceval
, error
);
222 } while_each_thread(g
, p
);
223 if (who
!= cred
->uid
)
224 free_uid(user
); /* For find_user() */
228 read_unlock(&tasklist_lock
);
235 * Ugh. To avoid negative return values, "getpriority()" will
236 * not return the normal nice-value, but a negated value that
237 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
238 * to stay compatible.
240 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
242 struct task_struct
*g
, *p
;
243 struct user_struct
*user
;
244 const struct cred
*cred
= current_cred();
245 long niceval
, retval
= -ESRCH
;
248 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
252 read_lock(&tasklist_lock
);
256 p
= find_task_by_vpid(who
);
260 niceval
= 20 - task_nice(p
);
261 if (niceval
> retval
)
267 pgrp
= find_vpid(who
);
269 pgrp
= task_pgrp(current
);
270 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
271 niceval
= 20 - task_nice(p
);
272 if (niceval
> retval
)
274 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
277 user
= (struct user_struct
*) cred
->user
;
280 else if ((who
!= cred
->uid
) &&
281 !(user
= find_user(who
)))
282 goto out_unlock
; /* No processes for this user */
284 do_each_thread(g
, p
) {
285 if (__task_cred(p
)->uid
== who
) {
286 niceval
= 20 - task_nice(p
);
287 if (niceval
> retval
)
290 } while_each_thread(g
, p
);
291 if (who
!= cred
->uid
)
292 free_uid(user
); /* for find_user() */
296 read_unlock(&tasklist_lock
);
303 * emergency_restart - reboot the system
305 * Without shutting down any hardware or taking any locks
306 * reboot the system. This is called when we know we are in
307 * trouble so this is our best effort to reboot. This is
308 * safe to call in interrupt context.
310 void emergency_restart(void)
312 kmsg_dump(KMSG_DUMP_EMERG
);
313 machine_emergency_restart();
315 EXPORT_SYMBOL_GPL(emergency_restart
);
317 void kernel_restart_prepare(char *cmd
)
319 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
320 system_state
= SYSTEM_RESTART
;
321 usermodehelper_disable();
326 * register_reboot_notifier - Register function to be called at reboot time
327 * @nb: Info about notifier function to be called
329 * Registers a function with the list of functions
330 * to be called at reboot time.
332 * Currently always returns zero, as blocking_notifier_chain_register()
333 * always returns zero.
335 int register_reboot_notifier(struct notifier_block
*nb
)
337 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
339 EXPORT_SYMBOL(register_reboot_notifier
);
342 * unregister_reboot_notifier - Unregister previously registered reboot notifier
343 * @nb: Hook to be unregistered
345 * Unregisters a previously registered reboot
348 * Returns zero on success, or %-ENOENT on failure.
350 int unregister_reboot_notifier(struct notifier_block
*nb
)
352 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
354 EXPORT_SYMBOL(unregister_reboot_notifier
);
356 /* Add backwards compatibility for stable trees. */
357 #ifndef PF_NO_SETAFFINITY
358 #define PF_NO_SETAFFINITY PF_THREAD_BOUND
361 static void migrate_to_reboot_cpu(void)
363 /* The boot cpu is always logical cpu 0 */
366 cpu_hotplug_disable();
368 /* Make certain the cpu I'm about to reboot on is online */
369 if (!cpu_online(cpu
))
370 cpu
= cpumask_first(cpu_online_mask
);
372 /* Prevent races with other tasks migrating this task */
373 current
->flags
|= PF_NO_SETAFFINITY
;
375 /* Make certain I only run on the appropriate processor */
376 set_cpus_allowed_ptr(current
, cpumask_of(cpu
));
380 * kernel_restart - reboot the system
381 * @cmd: pointer to buffer containing command to execute for restart
384 * Shutdown everything and perform a clean reboot.
385 * This is not safe to call in interrupt context.
387 void kernel_restart(char *cmd
)
389 kernel_restart_prepare(cmd
);
390 migrate_to_reboot_cpu();
393 printk(KERN_EMERG
"Restarting system.\n");
395 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
396 kmsg_dump(KMSG_DUMP_RESTART
);
397 machine_restart(cmd
);
399 EXPORT_SYMBOL_GPL(kernel_restart
);
401 static void kernel_shutdown_prepare(enum system_states state
)
403 blocking_notifier_call_chain(&reboot_notifier_list
,
404 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
405 system_state
= state
;
406 usermodehelper_disable();
410 * kernel_halt - halt the system
412 * Shutdown everything and perform a clean system halt.
414 void kernel_halt(void)
416 kernel_shutdown_prepare(SYSTEM_HALT
);
417 migrate_to_reboot_cpu();
419 printk(KERN_EMERG
"System halted.\n");
420 kmsg_dump(KMSG_DUMP_HALT
);
424 EXPORT_SYMBOL_GPL(kernel_halt
);
427 * kernel_power_off - power_off the system
429 * Shutdown everything and perform a clean system power_off.
431 void kernel_power_off(void)
433 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
434 if (pm_power_off_prepare
)
435 pm_power_off_prepare();
436 migrate_to_reboot_cpu();
438 printk(KERN_EMERG
"Power down.\n");
439 kmsg_dump(KMSG_DUMP_POWEROFF
);
442 EXPORT_SYMBOL_GPL(kernel_power_off
);
444 static DEFINE_MUTEX(reboot_mutex
);
447 * Reboot system call: for obvious reasons only root may call it,
448 * and even root needs to set up some magic numbers in the registers
449 * so that some mistake won't make this reboot the whole machine.
450 * You can also set the meaning of the ctrl-alt-del-key here.
452 * reboot doesn't sync: do that yourself before calling this.
454 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
460 /* We only trust the superuser with rebooting the system. */
461 if (!capable(CAP_SYS_BOOT
))
464 /* For safety, we require "magic" arguments. */
465 if (magic1
!= LINUX_REBOOT_MAGIC1
||
466 (magic2
!= LINUX_REBOOT_MAGIC2
&&
467 magic2
!= LINUX_REBOOT_MAGIC2A
&&
468 magic2
!= LINUX_REBOOT_MAGIC2B
&&
469 magic2
!= LINUX_REBOOT_MAGIC2C
))
472 /* Instead of trying to make the power_off code look like
473 * halt when pm_power_off is not set do it the easy way.
475 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
476 cmd
= LINUX_REBOOT_CMD_HALT
;
478 mutex_lock(&reboot_mutex
);
480 case LINUX_REBOOT_CMD_RESTART
:
481 kernel_restart(NULL
);
484 case LINUX_REBOOT_CMD_CAD_ON
:
488 case LINUX_REBOOT_CMD_CAD_OFF
:
492 case LINUX_REBOOT_CMD_HALT
:
495 panic("cannot halt");
497 case LINUX_REBOOT_CMD_POWER_OFF
:
502 case LINUX_REBOOT_CMD_RESTART2
:
503 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
507 buffer
[sizeof(buffer
) - 1] = '\0';
509 kernel_restart(buffer
);
513 case LINUX_REBOOT_CMD_KEXEC
:
514 ret
= kernel_kexec();
518 #ifdef CONFIG_HIBERNATION
519 case LINUX_REBOOT_CMD_SW_SUSPEND
:
528 mutex_unlock(&reboot_mutex
);
532 static void deferred_cad(struct work_struct
*dummy
)
534 kernel_restart(NULL
);
538 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
539 * As it's called within an interrupt, it may NOT sync: the only choice
540 * is whether to reboot at once, or just ignore the ctrl-alt-del.
542 void ctrl_alt_del(void)
544 static DECLARE_WORK(cad_work
, deferred_cad
);
547 schedule_work(&cad_work
);
549 kill_cad_pid(SIGINT
, 1);
553 * Unprivileged users may change the real gid to the effective gid
554 * or vice versa. (BSD-style)
556 * If you set the real gid at all, or set the effective gid to a value not
557 * equal to the real gid, then the saved gid is set to the new effective gid.
559 * This makes it possible for a setgid program to completely drop its
560 * privileges, which is often a useful assertion to make when you are doing
561 * a security audit over a program.
563 * The general idea is that a program which uses just setregid() will be
564 * 100% compatible with BSD. A program which uses just setgid() will be
565 * 100% compatible with POSIX with saved IDs.
567 * SMP: There are not races, the GIDs are checked only by filesystem
568 * operations (as far as semantic preservation is concerned).
570 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
572 const struct cred
*old
;
576 new = prepare_creds();
579 old
= current_cred();
582 if (rgid
!= (gid_t
) -1) {
583 if (old
->gid
== rgid
||
585 nsown_capable(CAP_SETGID
))
590 if (egid
!= (gid_t
) -1) {
591 if (old
->gid
== egid
||
594 nsown_capable(CAP_SETGID
))
600 if (rgid
!= (gid_t
) -1 ||
601 (egid
!= (gid_t
) -1 && egid
!= old
->gid
))
602 new->sgid
= new->egid
;
603 new->fsgid
= new->egid
;
605 return commit_creds(new);
613 * setgid() is implemented like SysV w/ SAVED_IDS
615 * SMP: Same implicit races as above.
617 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
619 const struct cred
*old
;
623 new = prepare_creds();
626 old
= current_cred();
629 if (nsown_capable(CAP_SETGID
))
630 new->gid
= new->egid
= new->sgid
= new->fsgid
= gid
;
631 else if (gid
== old
->gid
|| gid
== old
->sgid
)
632 new->egid
= new->fsgid
= gid
;
636 return commit_creds(new);
644 * change the user struct in a credentials set to match the new UID
646 static int set_user(struct cred
*new)
648 struct user_struct
*new_user
;
650 new_user
= alloc_uid(current_user_ns(), new->uid
);
655 * We don't fail in case of NPROC limit excess here because too many
656 * poorly written programs don't check set*uid() return code, assuming
657 * it never fails if called by root. We may still enforce NPROC limit
658 * for programs doing set*uid()+execve() by harmlessly deferring the
659 * failure to the execve() stage.
661 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
662 new_user
!= INIT_USER
)
663 current
->flags
|= PF_NPROC_EXCEEDED
;
665 current
->flags
&= ~PF_NPROC_EXCEEDED
;
668 new->user
= new_user
;
673 * Unprivileged users may change the real uid to the effective uid
674 * or vice versa. (BSD-style)
676 * If you set the real uid at all, or set the effective uid to a value not
677 * equal to the real uid, then the saved uid is set to the new effective uid.
679 * This makes it possible for a setuid program to completely drop its
680 * privileges, which is often a useful assertion to make when you are doing
681 * a security audit over a program.
683 * The general idea is that a program which uses just setreuid() will be
684 * 100% compatible with BSD. A program which uses just setuid() will be
685 * 100% compatible with POSIX with saved IDs.
687 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
689 const struct cred
*old
;
693 new = prepare_creds();
696 old
= current_cred();
699 if (ruid
!= (uid_t
) -1) {
701 if (old
->uid
!= ruid
&&
703 !nsown_capable(CAP_SETUID
))
707 if (euid
!= (uid_t
) -1) {
709 if (old
->uid
!= euid
&&
712 !nsown_capable(CAP_SETUID
))
716 if (new->uid
!= old
->uid
) {
717 retval
= set_user(new);
721 if (ruid
!= (uid_t
) -1 ||
722 (euid
!= (uid_t
) -1 && euid
!= old
->uid
))
723 new->suid
= new->euid
;
724 new->fsuid
= new->euid
;
726 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
730 return commit_creds(new);
738 * setuid() is implemented like SysV with SAVED_IDS
740 * Note that SAVED_ID's is deficient in that a setuid root program
741 * like sendmail, for example, cannot set its uid to be a normal
742 * user and then switch back, because if you're root, setuid() sets
743 * the saved uid too. If you don't like this, blame the bright people
744 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
745 * will allow a root program to temporarily drop privileges and be able to
746 * regain them by swapping the real and effective uid.
748 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
750 const struct cred
*old
;
754 new = prepare_creds();
757 old
= current_cred();
760 if (nsown_capable(CAP_SETUID
)) {
761 new->suid
= new->uid
= uid
;
762 if (uid
!= old
->uid
) {
763 retval
= set_user(new);
767 } else if (uid
!= old
->uid
&& uid
!= new->suid
) {
771 new->fsuid
= new->euid
= uid
;
773 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
777 return commit_creds(new);
786 * This function implements a generic ability to update ruid, euid,
787 * and suid. This allows you to implement the 4.4 compatible seteuid().
789 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
791 const struct cred
*old
;
795 new = prepare_creds();
799 old
= current_cred();
802 if (!nsown_capable(CAP_SETUID
)) {
803 if (ruid
!= (uid_t
) -1 && ruid
!= old
->uid
&&
804 ruid
!= old
->euid
&& ruid
!= old
->suid
)
806 if (euid
!= (uid_t
) -1 && euid
!= old
->uid
&&
807 euid
!= old
->euid
&& euid
!= old
->suid
)
809 if (suid
!= (uid_t
) -1 && suid
!= old
->uid
&&
810 suid
!= old
->euid
&& suid
!= old
->suid
)
814 if (ruid
!= (uid_t
) -1) {
816 if (ruid
!= old
->uid
) {
817 retval
= set_user(new);
822 if (euid
!= (uid_t
) -1)
824 if (suid
!= (uid_t
) -1)
826 new->fsuid
= new->euid
;
828 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
832 return commit_creds(new);
839 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruid
, uid_t __user
*, euid
, uid_t __user
*, suid
)
841 const struct cred
*cred
= current_cred();
844 if (!(retval
= put_user(cred
->uid
, ruid
)) &&
845 !(retval
= put_user(cred
->euid
, euid
)))
846 retval
= put_user(cred
->suid
, suid
);
852 * Same as above, but for rgid, egid, sgid.
854 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
856 const struct cred
*old
;
860 new = prepare_creds();
863 old
= current_cred();
866 if (!nsown_capable(CAP_SETGID
)) {
867 if (rgid
!= (gid_t
) -1 && rgid
!= old
->gid
&&
868 rgid
!= old
->egid
&& rgid
!= old
->sgid
)
870 if (egid
!= (gid_t
) -1 && egid
!= old
->gid
&&
871 egid
!= old
->egid
&& egid
!= old
->sgid
)
873 if (sgid
!= (gid_t
) -1 && sgid
!= old
->gid
&&
874 sgid
!= old
->egid
&& sgid
!= old
->sgid
)
878 if (rgid
!= (gid_t
) -1)
880 if (egid
!= (gid_t
) -1)
882 if (sgid
!= (gid_t
) -1)
884 new->fsgid
= new->egid
;
886 return commit_creds(new);
893 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgid
, gid_t __user
*, egid
, gid_t __user
*, sgid
)
895 const struct cred
*cred
= current_cred();
898 if (!(retval
= put_user(cred
->gid
, rgid
)) &&
899 !(retval
= put_user(cred
->egid
, egid
)))
900 retval
= put_user(cred
->sgid
, sgid
);
907 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
908 * is used for "access()" and for the NFS daemon (letting nfsd stay at
909 * whatever uid it wants to). It normally shadows "euid", except when
910 * explicitly set by setfsuid() or for access..
912 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
914 const struct cred
*old
;
918 new = prepare_creds();
920 return current_fsuid();
921 old
= current_cred();
922 old_fsuid
= old
->fsuid
;
924 if (uid
== old
->uid
|| uid
== old
->euid
||
925 uid
== old
->suid
|| uid
== old
->fsuid
||
926 nsown_capable(CAP_SETUID
)) {
927 if (uid
!= old_fsuid
) {
929 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
943 * Samma på svenska..
945 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
947 const struct cred
*old
;
951 new = prepare_creds();
953 return current_fsgid();
954 old
= current_cred();
955 old_fsgid
= old
->fsgid
;
957 if (gid
== old
->gid
|| gid
== old
->egid
||
958 gid
== old
->sgid
|| gid
== old
->fsgid
||
959 nsown_capable(CAP_SETGID
)) {
960 if (gid
!= old_fsgid
) {
974 void do_sys_times(struct tms
*tms
)
976 cputime_t tgutime
, tgstime
, cutime
, cstime
;
978 spin_lock_irq(¤t
->sighand
->siglock
);
979 thread_group_times(current
, &tgutime
, &tgstime
);
980 cutime
= current
->signal
->cutime
;
981 cstime
= current
->signal
->cstime
;
982 spin_unlock_irq(¤t
->sighand
->siglock
);
983 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
984 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
985 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
986 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
989 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
995 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
998 force_successful_syscall_return();
999 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1003 * This needs some heavy checking ...
1004 * I just haven't the stomach for it. I also don't fully
1005 * understand sessions/pgrp etc. Let somebody who does explain it.
1007 * OK, I think I have the protection semantics right.... this is really
1008 * only important on a multi-user system anyway, to make sure one user
1009 * can't send a signal to a process owned by another. -TYT, 12/12/91
1011 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1014 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1016 struct task_struct
*p
;
1017 struct task_struct
*group_leader
= current
->group_leader
;
1022 pid
= task_pid_vnr(group_leader
);
1029 /* From this point forward we keep holding onto the tasklist lock
1030 * so that our parent does not change from under us. -DaveM
1032 write_lock_irq(&tasklist_lock
);
1035 p
= find_task_by_vpid(pid
);
1040 if (!thread_group_leader(p
))
1043 if (same_thread_group(p
->real_parent
, group_leader
)) {
1045 if (task_session(p
) != task_session(group_leader
))
1052 if (p
!= group_leader
)
1057 if (p
->signal
->leader
)
1062 struct task_struct
*g
;
1064 pgrp
= find_vpid(pgid
);
1065 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1066 if (!g
|| task_session(g
) != task_session(group_leader
))
1070 err
= security_task_setpgid(p
, pgid
);
1074 if (task_pgrp(p
) != pgrp
)
1075 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1079 /* All paths lead to here, thus we are safe. -DaveM */
1080 write_unlock_irq(&tasklist_lock
);
1085 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1087 struct task_struct
*p
;
1093 grp
= task_pgrp(current
);
1096 p
= find_task_by_vpid(pid
);
1103 retval
= security_task_getpgid(p
);
1107 retval
= pid_vnr(grp
);
1113 #ifdef __ARCH_WANT_SYS_GETPGRP
1115 SYSCALL_DEFINE0(getpgrp
)
1117 return sys_getpgid(0);
1122 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1124 struct task_struct
*p
;
1130 sid
= task_session(current
);
1133 p
= find_task_by_vpid(pid
);
1136 sid
= task_session(p
);
1140 retval
= security_task_getsid(p
);
1144 retval
= pid_vnr(sid
);
1150 SYSCALL_DEFINE0(setsid
)
1152 struct task_struct
*group_leader
= current
->group_leader
;
1153 struct pid
*sid
= task_pid(group_leader
);
1154 pid_t session
= pid_vnr(sid
);
1157 write_lock_irq(&tasklist_lock
);
1158 /* Fail if I am already a session leader */
1159 if (group_leader
->signal
->leader
)
1162 /* Fail if a process group id already exists that equals the
1163 * proposed session id.
1165 if (pid_task(sid
, PIDTYPE_PGID
))
1168 group_leader
->signal
->leader
= 1;
1169 __set_special_pids(sid
);
1171 proc_clear_tty(group_leader
);
1175 write_unlock_irq(&tasklist_lock
);
1177 proc_sid_connector(group_leader
);
1178 sched_autogroup_create_attach(group_leader
);
1183 DECLARE_RWSEM(uts_sem
);
1185 #ifdef COMPAT_UTS_MACHINE
1186 #define override_architecture(name) \
1187 (personality(current->personality) == PER_LINUX32 && \
1188 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1189 sizeof(COMPAT_UTS_MACHINE)))
1191 #define override_architecture(name) 0
1195 * Work around broken programs that cannot handle "Linux 3.0".
1196 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1198 static int override_release(char __user
*release
, size_t len
)
1202 if (current
->personality
& UNAME26
) {
1203 const char *rest
= UTS_RELEASE
;
1204 char buf
[65] = { 0 };
1210 if (*rest
== '.' && ++ndots
>= 3)
1212 if (!isdigit(*rest
) && *rest
!= '.')
1216 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 40;
1217 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1218 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1219 ret
= copy_to_user(release
, buf
, copy
+ 1);
1224 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1228 down_read(&uts_sem
);
1229 if (copy_to_user(name
, utsname(), sizeof *name
))
1233 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1235 if (!errno
&& override_architecture(name
))
1240 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1244 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1251 down_read(&uts_sem
);
1252 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1256 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1258 if (!error
&& override_architecture(name
))
1263 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1269 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1272 down_read(&uts_sem
);
1273 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1275 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1276 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1278 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1279 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1281 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1282 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1284 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1285 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1287 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1290 if (!error
&& override_architecture(name
))
1292 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1294 return error
? -EFAULT
: 0;
1298 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1301 char tmp
[__NEW_UTS_LEN
];
1303 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1306 if (len
< 0 || len
> __NEW_UTS_LEN
)
1308 down_write(&uts_sem
);
1310 if (!copy_from_user(tmp
, name
, len
)) {
1311 struct new_utsname
*u
= utsname();
1313 memcpy(u
->nodename
, tmp
, len
);
1314 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1317 uts_proc_notify(UTS_PROC_HOSTNAME
);
1322 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1324 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1327 struct new_utsname
*u
;
1331 down_read(&uts_sem
);
1333 i
= 1 + strlen(u
->nodename
);
1337 if (copy_to_user(name
, u
->nodename
, i
))
1346 * Only setdomainname; getdomainname can be implemented by calling
1349 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1352 char tmp
[__NEW_UTS_LEN
];
1354 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1356 if (len
< 0 || len
> __NEW_UTS_LEN
)
1359 down_write(&uts_sem
);
1361 if (!copy_from_user(tmp
, name
, len
)) {
1362 struct new_utsname
*u
= utsname();
1364 memcpy(u
->domainname
, tmp
, len
);
1365 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1368 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1373 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1375 struct rlimit value
;
1378 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1380 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1385 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1388 * Back compatibility for getrlimit. Needed for some apps.
1391 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1392 struct rlimit __user
*, rlim
)
1395 if (resource
>= RLIM_NLIMITS
)
1398 task_lock(current
->group_leader
);
1399 x
= current
->signal
->rlim
[resource
];
1400 task_unlock(current
->group_leader
);
1401 if (x
.rlim_cur
> 0x7FFFFFFF)
1402 x
.rlim_cur
= 0x7FFFFFFF;
1403 if (x
.rlim_max
> 0x7FFFFFFF)
1404 x
.rlim_max
= 0x7FFFFFFF;
1405 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1410 static inline bool rlim64_is_infinity(__u64 rlim64
)
1412 #if BITS_PER_LONG < 64
1413 return rlim64
>= ULONG_MAX
;
1415 return rlim64
== RLIM64_INFINITY
;
1419 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1421 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1422 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1424 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1425 if (rlim
->rlim_max
== RLIM_INFINITY
)
1426 rlim64
->rlim_max
= RLIM64_INFINITY
;
1428 rlim64
->rlim_max
= rlim
->rlim_max
;
1431 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1433 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1434 rlim
->rlim_cur
= RLIM_INFINITY
;
1436 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1437 if (rlim64_is_infinity(rlim64
->rlim_max
))
1438 rlim
->rlim_max
= RLIM_INFINITY
;
1440 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1443 /* make sure you are allowed to change @tsk limits before calling this */
1444 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1445 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1447 struct rlimit
*rlim
;
1450 if (resource
>= RLIM_NLIMITS
)
1453 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1455 if (resource
== RLIMIT_NOFILE
&&
1456 new_rlim
->rlim_max
> sysctl_nr_open
)
1460 /* protect tsk->signal and tsk->sighand from disappearing */
1461 read_lock(&tasklist_lock
);
1462 if (!tsk
->sighand
) {
1467 rlim
= tsk
->signal
->rlim
+ resource
;
1468 task_lock(tsk
->group_leader
);
1470 /* Keep the capable check against init_user_ns until
1471 cgroups can contain all limits */
1472 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1473 !capable(CAP_SYS_RESOURCE
))
1476 retval
= security_task_setrlimit(tsk
->group_leader
,
1477 resource
, new_rlim
);
1478 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1480 * The caller is asking for an immediate RLIMIT_CPU
1481 * expiry. But we use the zero value to mean "it was
1482 * never set". So let's cheat and make it one second
1485 new_rlim
->rlim_cur
= 1;
1494 task_unlock(tsk
->group_leader
);
1497 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1498 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1499 * very long-standing error, and fixing it now risks breakage of
1500 * applications, so we live with it
1502 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1503 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1504 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1506 read_unlock(&tasklist_lock
);
1510 /* rcu lock must be held */
1511 static int check_prlimit_permission(struct task_struct
*task
)
1513 const struct cred
*cred
= current_cred(), *tcred
;
1515 if (current
== task
)
1518 tcred
= __task_cred(task
);
1519 if (cred
->user
->user_ns
== tcred
->user
->user_ns
&&
1520 (cred
->uid
== tcred
->euid
&&
1521 cred
->uid
== tcred
->suid
&&
1522 cred
->uid
== tcred
->uid
&&
1523 cred
->gid
== tcred
->egid
&&
1524 cred
->gid
== tcred
->sgid
&&
1525 cred
->gid
== tcred
->gid
))
1527 if (ns_capable(tcred
->user
->user_ns
, CAP_SYS_RESOURCE
))
1533 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1534 const struct rlimit64 __user
*, new_rlim
,
1535 struct rlimit64 __user
*, old_rlim
)
1537 struct rlimit64 old64
, new64
;
1538 struct rlimit old
, new;
1539 struct task_struct
*tsk
;
1543 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1545 rlim64_to_rlim(&new64
, &new);
1549 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1554 ret
= check_prlimit_permission(tsk
);
1559 get_task_struct(tsk
);
1562 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1563 old_rlim
? &old
: NULL
);
1565 if (!ret
&& old_rlim
) {
1566 rlim_to_rlim64(&old
, &old64
);
1567 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1571 put_task_struct(tsk
);
1575 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1577 struct rlimit new_rlim
;
1579 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1581 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1585 * It would make sense to put struct rusage in the task_struct,
1586 * except that would make the task_struct be *really big*. After
1587 * task_struct gets moved into malloc'ed memory, it would
1588 * make sense to do this. It will make moving the rest of the information
1589 * a lot simpler! (Which we're not doing right now because we're not
1590 * measuring them yet).
1592 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1593 * races with threads incrementing their own counters. But since word
1594 * reads are atomic, we either get new values or old values and we don't
1595 * care which for the sums. We always take the siglock to protect reading
1596 * the c* fields from p->signal from races with exit.c updating those
1597 * fields when reaping, so a sample either gets all the additions of a
1598 * given child after it's reaped, or none so this sample is before reaping.
1601 * We need to take the siglock for CHILDEREN, SELF and BOTH
1602 * for the cases current multithreaded, non-current single threaded
1603 * non-current multithreaded. Thread traversal is now safe with
1605 * Strictly speaking, we donot need to take the siglock if we are current and
1606 * single threaded, as no one else can take our signal_struct away, no one
1607 * else can reap the children to update signal->c* counters, and no one else
1608 * can race with the signal-> fields. If we do not take any lock, the
1609 * signal-> fields could be read out of order while another thread was just
1610 * exiting. So we should place a read memory barrier when we avoid the lock.
1611 * On the writer side, write memory barrier is implied in __exit_signal
1612 * as __exit_signal releases the siglock spinlock after updating the signal->
1613 * fields. But we don't do this yet to keep things simple.
1617 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1619 r
->ru_nvcsw
+= t
->nvcsw
;
1620 r
->ru_nivcsw
+= t
->nivcsw
;
1621 r
->ru_minflt
+= t
->min_flt
;
1622 r
->ru_majflt
+= t
->maj_flt
;
1623 r
->ru_inblock
+= task_io_get_inblock(t
);
1624 r
->ru_oublock
+= task_io_get_oublock(t
);
1627 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1629 struct task_struct
*t
;
1630 unsigned long flags
;
1631 cputime_t tgutime
, tgstime
, utime
, stime
;
1632 unsigned long maxrss
= 0;
1634 memset((char *) r
, 0, sizeof *r
);
1635 utime
= stime
= cputime_zero
;
1637 if (who
== RUSAGE_THREAD
) {
1638 task_times(current
, &utime
, &stime
);
1639 accumulate_thread_rusage(p
, r
);
1640 maxrss
= p
->signal
->maxrss
;
1644 if (!lock_task_sighand(p
, &flags
))
1649 case RUSAGE_CHILDREN
:
1650 utime
= p
->signal
->cutime
;
1651 stime
= p
->signal
->cstime
;
1652 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1653 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1654 r
->ru_minflt
= p
->signal
->cmin_flt
;
1655 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1656 r
->ru_inblock
= p
->signal
->cinblock
;
1657 r
->ru_oublock
= p
->signal
->coublock
;
1658 maxrss
= p
->signal
->cmaxrss
;
1660 if (who
== RUSAGE_CHILDREN
)
1664 thread_group_times(p
, &tgutime
, &tgstime
);
1665 utime
= cputime_add(utime
, tgutime
);
1666 stime
= cputime_add(stime
, tgstime
);
1667 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1668 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1669 r
->ru_minflt
+= p
->signal
->min_flt
;
1670 r
->ru_majflt
+= p
->signal
->maj_flt
;
1671 r
->ru_inblock
+= p
->signal
->inblock
;
1672 r
->ru_oublock
+= p
->signal
->oublock
;
1673 if (maxrss
< p
->signal
->maxrss
)
1674 maxrss
= p
->signal
->maxrss
;
1677 accumulate_thread_rusage(t
, r
);
1685 unlock_task_sighand(p
, &flags
);
1688 cputime_to_timeval(utime
, &r
->ru_utime
);
1689 cputime_to_timeval(stime
, &r
->ru_stime
);
1691 if (who
!= RUSAGE_CHILDREN
) {
1692 struct mm_struct
*mm
= get_task_mm(p
);
1694 setmax_mm_hiwater_rss(&maxrss
, mm
);
1698 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1701 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1704 k_getrusage(p
, who
, &r
);
1705 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1708 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1710 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1711 who
!= RUSAGE_THREAD
)
1713 return getrusage(current
, who
, ru
);
1716 SYSCALL_DEFINE1(umask
, int, mask
)
1718 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1722 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
1723 unsigned long, arg4
, unsigned long, arg5
)
1725 struct task_struct
*me
= current
;
1726 unsigned char comm
[sizeof(me
->comm
)];
1729 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
1730 if (error
!= -ENOSYS
)
1735 case PR_SET_PDEATHSIG
:
1736 if (!valid_signal(arg2
)) {
1740 me
->pdeath_signal
= arg2
;
1743 case PR_GET_PDEATHSIG
:
1744 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
1746 case PR_GET_DUMPABLE
:
1747 error
= get_dumpable(me
->mm
);
1749 case PR_SET_DUMPABLE
:
1750 if (arg2
< 0 || arg2
> 1) {
1754 set_dumpable(me
->mm
, arg2
);
1758 case PR_SET_UNALIGN
:
1759 error
= SET_UNALIGN_CTL(me
, arg2
);
1761 case PR_GET_UNALIGN
:
1762 error
= GET_UNALIGN_CTL(me
, arg2
);
1765 error
= SET_FPEMU_CTL(me
, arg2
);
1768 error
= GET_FPEMU_CTL(me
, arg2
);
1771 error
= SET_FPEXC_CTL(me
, arg2
);
1774 error
= GET_FPEXC_CTL(me
, arg2
);
1777 error
= PR_TIMING_STATISTICAL
;
1780 if (arg2
!= PR_TIMING_STATISTICAL
)
1787 comm
[sizeof(me
->comm
)-1] = 0;
1788 if (strncpy_from_user(comm
, (char __user
*)arg2
,
1789 sizeof(me
->comm
) - 1) < 0)
1791 set_task_comm(me
, comm
);
1792 proc_comm_connector(me
);
1795 get_task_comm(comm
, me
);
1796 if (copy_to_user((char __user
*)arg2
, comm
,
1801 error
= GET_ENDIAN(me
, arg2
);
1804 error
= SET_ENDIAN(me
, arg2
);
1807 case PR_GET_SECCOMP
:
1808 error
= prctl_get_seccomp();
1810 case PR_SET_SECCOMP
:
1811 error
= prctl_set_seccomp(arg2
);
1814 error
= GET_TSC_CTL(arg2
);
1817 error
= SET_TSC_CTL(arg2
);
1819 case PR_TASK_PERF_EVENTS_DISABLE
:
1820 error
= perf_event_task_disable();
1822 case PR_TASK_PERF_EVENTS_ENABLE
:
1823 error
= perf_event_task_enable();
1825 case PR_GET_TIMERSLACK
:
1826 error
= current
->timer_slack_ns
;
1828 case PR_SET_TIMERSLACK
:
1830 current
->timer_slack_ns
=
1831 current
->default_timer_slack_ns
;
1833 current
->timer_slack_ns
= arg2
;
1840 case PR_MCE_KILL_CLEAR
:
1843 current
->flags
&= ~PF_MCE_PROCESS
;
1845 case PR_MCE_KILL_SET
:
1846 current
->flags
|= PF_MCE_PROCESS
;
1847 if (arg3
== PR_MCE_KILL_EARLY
)
1848 current
->flags
|= PF_MCE_EARLY
;
1849 else if (arg3
== PR_MCE_KILL_LATE
)
1850 current
->flags
&= ~PF_MCE_EARLY
;
1851 else if (arg3
== PR_MCE_KILL_DEFAULT
)
1853 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
1862 case PR_MCE_KILL_GET
:
1863 if (arg2
| arg3
| arg4
| arg5
)
1865 if (current
->flags
& PF_MCE_PROCESS
)
1866 error
= (current
->flags
& PF_MCE_EARLY
) ?
1867 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
1869 error
= PR_MCE_KILL_DEFAULT
;
1878 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
1879 struct getcpu_cache __user
*, unused
)
1882 int cpu
= raw_smp_processor_id();
1884 err
|= put_user(cpu
, cpup
);
1886 err
|= put_user(cpu_to_node(cpu
), nodep
);
1887 return err
? -EFAULT
: 0;
1890 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
1892 static void argv_cleanup(struct subprocess_info
*info
)
1894 argv_free(info
->argv
);
1898 * orderly_poweroff - Trigger an orderly system poweroff
1899 * @force: force poweroff if command execution fails
1901 * This may be called from any context to trigger a system shutdown.
1902 * If the orderly shutdown fails, it will force an immediate shutdown.
1904 int orderly_poweroff(bool force
)
1907 char **argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
1908 static char *envp
[] = {
1910 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1914 struct subprocess_info
*info
;
1917 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
1918 __func__
, poweroff_cmd
);
1922 info
= call_usermodehelper_setup(argv
[0], argv
, envp
, GFP_ATOMIC
);
1928 call_usermodehelper_setfns(info
, NULL
, argv_cleanup
, NULL
);
1930 ret
= call_usermodehelper_exec(info
, UMH_NO_WAIT
);
1934 printk(KERN_WARNING
"Failed to start orderly shutdown: "
1935 "forcing the issue\n");
1937 /* I guess this should try to kick off some daemon to
1938 sync and poweroff asap. Or not even bother syncing
1939 if we're doing an emergency shutdown? */
1946 EXPORT_SYMBOL_GPL(orderly_poweroff
);