tracing: Have preempt(irqs)off trace preempt disabled functions
[linux/fpc-iii.git] / fs / splice.c
blob28f8d9dd92e3a5a2b6b8def363f95ee3e97cee30
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include "internal.h"
39 * Attempt to steal a page from a pipe buffer. This should perhaps go into
40 * a vm helper function, it's already simplified quite a bit by the
41 * addition of remove_mapping(). If success is returned, the caller may
42 * attempt to reuse this page for another destination.
44 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
45 struct pipe_buffer *buf)
47 struct page *page = buf->page;
48 struct address_space *mapping;
50 lock_page(page);
52 mapping = page_mapping(page);
53 if (mapping) {
54 WARN_ON(!PageUptodate(page));
57 * At least for ext2 with nobh option, we need to wait on
58 * writeback completing on this page, since we'll remove it
59 * from the pagecache. Otherwise truncate wont wait on the
60 * page, allowing the disk blocks to be reused by someone else
61 * before we actually wrote our data to them. fs corruption
62 * ensues.
64 wait_on_page_writeback(page);
66 if (page_has_private(page) &&
67 !try_to_release_page(page, GFP_KERNEL))
68 goto out_unlock;
71 * If we succeeded in removing the mapping, set LRU flag
72 * and return good.
74 if (remove_mapping(mapping, page)) {
75 buf->flags |= PIPE_BUF_FLAG_LRU;
76 return 0;
81 * Raced with truncate or failed to remove page from current
82 * address space, unlock and return failure.
84 out_unlock:
85 unlock_page(page);
86 return 1;
89 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 page_cache_release(buf->page);
93 buf->flags &= ~PIPE_BUF_FLAG_LRU;
97 * Check whether the contents of buf is OK to access. Since the content
98 * is a page cache page, IO may be in flight.
100 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
101 struct pipe_buffer *buf)
103 struct page *page = buf->page;
104 int err;
106 if (!PageUptodate(page)) {
107 lock_page(page);
110 * Page got truncated/unhashed. This will cause a 0-byte
111 * splice, if this is the first page.
113 if (!page->mapping) {
114 err = -ENODATA;
115 goto error;
119 * Uh oh, read-error from disk.
121 if (!PageUptodate(page)) {
122 err = -EIO;
123 goto error;
127 * Page is ok afterall, we are done.
129 unlock_page(page);
132 return 0;
133 error:
134 unlock_page(page);
135 return err;
138 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 .can_merge = 0,
140 .confirm = page_cache_pipe_buf_confirm,
141 .release = page_cache_pipe_buf_release,
142 .steal = page_cache_pipe_buf_steal,
143 .get = generic_pipe_buf_get,
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147 struct pipe_buffer *buf)
149 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150 return 1;
152 buf->flags |= PIPE_BUF_FLAG_LRU;
153 return generic_pipe_buf_steal(pipe, buf);
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157 .can_merge = 0,
158 .confirm = generic_pipe_buf_confirm,
159 .release = page_cache_pipe_buf_release,
160 .steal = user_page_pipe_buf_steal,
161 .get = generic_pipe_buf_get,
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 smp_mb();
167 if (waitqueue_active(&pipe->wait))
168 wake_up_interruptible(&pipe->wait);
169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
175 * @spd: data to fill
177 * Description:
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 struct splice_pipe_desc *spd)
186 unsigned int spd_pages = spd->nr_pages;
187 int ret, do_wakeup, page_nr;
189 ret = 0;
190 do_wakeup = 0;
191 page_nr = 0;
193 pipe_lock(pipe);
195 for (;;) {
196 if (!pipe->readers) {
197 send_sig(SIGPIPE, current, 0);
198 if (!ret)
199 ret = -EPIPE;
200 break;
203 if (pipe->nrbufs < pipe->buffers) {
204 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
205 struct pipe_buffer *buf = pipe->bufs + newbuf;
207 buf->page = spd->pages[page_nr];
208 buf->offset = spd->partial[page_nr].offset;
209 buf->len = spd->partial[page_nr].len;
210 buf->private = spd->partial[page_nr].private;
211 buf->ops = spd->ops;
212 if (spd->flags & SPLICE_F_GIFT)
213 buf->flags |= PIPE_BUF_FLAG_GIFT;
215 pipe->nrbufs++;
216 page_nr++;
217 ret += buf->len;
219 if (pipe->files)
220 do_wakeup = 1;
222 if (!--spd->nr_pages)
223 break;
224 if (pipe->nrbufs < pipe->buffers)
225 continue;
227 break;
230 if (spd->flags & SPLICE_F_NONBLOCK) {
231 if (!ret)
232 ret = -EAGAIN;
233 break;
236 if (signal_pending(current)) {
237 if (!ret)
238 ret = -ERESTARTSYS;
239 break;
242 if (do_wakeup) {
243 smp_mb();
244 if (waitqueue_active(&pipe->wait))
245 wake_up_interruptible_sync(&pipe->wait);
246 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
247 do_wakeup = 0;
250 pipe->waiting_writers++;
251 pipe_wait(pipe);
252 pipe->waiting_writers--;
255 pipe_unlock(pipe);
257 if (do_wakeup)
258 wakeup_pipe_readers(pipe);
260 while (page_nr < spd_pages)
261 spd->spd_release(spd, page_nr++);
263 return ret;
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
268 page_cache_release(spd->pages[i]);
272 * Check if we need to grow the arrays holding pages and partial page
273 * descriptions.
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
277 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
279 spd->nr_pages_max = buffers;
280 if (buffers <= PIPE_DEF_BUFFERS)
281 return 0;
283 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
286 if (spd->pages && spd->partial)
287 return 0;
289 kfree(spd->pages);
290 kfree(spd->partial);
291 return -ENOMEM;
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
296 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297 return;
299 kfree(spd->pages);
300 kfree(spd->partial);
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305 struct pipe_inode_info *pipe, size_t len,
306 unsigned int flags)
308 struct address_space *mapping = in->f_mapping;
309 unsigned int loff, nr_pages, req_pages;
310 struct page *pages[PIPE_DEF_BUFFERS];
311 struct partial_page partial[PIPE_DEF_BUFFERS];
312 struct page *page;
313 pgoff_t index, end_index;
314 loff_t isize;
315 int error, page_nr;
316 struct splice_pipe_desc spd = {
317 .pages = pages,
318 .partial = partial,
319 .nr_pages_max = PIPE_DEF_BUFFERS,
320 .flags = flags,
321 .ops = &page_cache_pipe_buf_ops,
322 .spd_release = spd_release_page,
325 if (splice_grow_spd(pipe, &spd))
326 return -ENOMEM;
328 index = *ppos >> PAGE_CACHE_SHIFT;
329 loff = *ppos & ~PAGE_CACHE_MASK;
330 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331 nr_pages = min(req_pages, spd.nr_pages_max);
334 * Lookup the (hopefully) full range of pages we need.
336 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337 index += spd.nr_pages;
340 * If find_get_pages_contig() returned fewer pages than we needed,
341 * readahead/allocate the rest and fill in the holes.
343 if (spd.nr_pages < nr_pages)
344 page_cache_sync_readahead(mapping, &in->f_ra, in,
345 index, req_pages - spd.nr_pages);
347 error = 0;
348 while (spd.nr_pages < nr_pages) {
350 * Page could be there, find_get_pages_contig() breaks on
351 * the first hole.
353 page = find_get_page(mapping, index);
354 if (!page) {
356 * page didn't exist, allocate one.
358 page = page_cache_alloc_cold(mapping);
359 if (!page)
360 break;
362 error = add_to_page_cache_lru(page, mapping, index,
363 GFP_KERNEL);
364 if (unlikely(error)) {
365 page_cache_release(page);
366 if (error == -EEXIST)
367 continue;
368 break;
371 * add_to_page_cache() locks the page, unlock it
372 * to avoid convoluting the logic below even more.
374 unlock_page(page);
377 spd.pages[spd.nr_pages++] = page;
378 index++;
382 * Now loop over the map and see if we need to start IO on any
383 * pages, fill in the partial map, etc.
385 index = *ppos >> PAGE_CACHE_SHIFT;
386 nr_pages = spd.nr_pages;
387 spd.nr_pages = 0;
388 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389 unsigned int this_len;
391 if (!len)
392 break;
395 * this_len is the max we'll use from this page
397 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398 page = spd.pages[page_nr];
400 if (PageReadahead(page))
401 page_cache_async_readahead(mapping, &in->f_ra, in,
402 page, index, req_pages - page_nr);
405 * If the page isn't uptodate, we may need to start io on it
407 if (!PageUptodate(page)) {
408 lock_page(page);
411 * Page was truncated, or invalidated by the
412 * filesystem. Redo the find/create, but this time the
413 * page is kept locked, so there's no chance of another
414 * race with truncate/invalidate.
416 if (!page->mapping) {
417 unlock_page(page);
418 page = find_or_create_page(mapping, index,
419 mapping_gfp_mask(mapping));
421 if (!page) {
422 error = -ENOMEM;
423 break;
425 page_cache_release(spd.pages[page_nr]);
426 spd.pages[page_nr] = page;
429 * page was already under io and is now done, great
431 if (PageUptodate(page)) {
432 unlock_page(page);
433 goto fill_it;
437 * need to read in the page
439 error = mapping->a_ops->readpage(in, page);
440 if (unlikely(error)) {
442 * We really should re-lookup the page here,
443 * but it complicates things a lot. Instead
444 * lets just do what we already stored, and
445 * we'll get it the next time we are called.
447 if (error == AOP_TRUNCATED_PAGE)
448 error = 0;
450 break;
453 fill_it:
455 * i_size must be checked after PageUptodate.
457 isize = i_size_read(mapping->host);
458 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459 if (unlikely(!isize || index > end_index))
460 break;
463 * if this is the last page, see if we need to shrink
464 * the length and stop
466 if (end_index == index) {
467 unsigned int plen;
470 * max good bytes in this page
472 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473 if (plen <= loff)
474 break;
477 * force quit after adding this page
479 this_len = min(this_len, plen - loff);
480 len = this_len;
483 spd.partial[page_nr].offset = loff;
484 spd.partial[page_nr].len = this_len;
485 len -= this_len;
486 loff = 0;
487 spd.nr_pages++;
488 index++;
492 * Release any pages at the end, if we quit early. 'page_nr' is how far
493 * we got, 'nr_pages' is how many pages are in the map.
495 while (page_nr < nr_pages)
496 page_cache_release(spd.pages[page_nr++]);
497 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
499 if (spd.nr_pages)
500 error = splice_to_pipe(pipe, &spd);
502 splice_shrink_spd(&spd);
503 return error;
507 * generic_file_splice_read - splice data from file to a pipe
508 * @in: file to splice from
509 * @ppos: position in @in
510 * @pipe: pipe to splice to
511 * @len: number of bytes to splice
512 * @flags: splice modifier flags
514 * Description:
515 * Will read pages from given file and fill them into a pipe. Can be
516 * used as long as the address_space operations for the source implements
517 * a readpage() hook.
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521 struct pipe_inode_info *pipe, size_t len,
522 unsigned int flags)
524 loff_t isize, left;
525 int ret;
527 isize = i_size_read(in->f_mapping->host);
528 if (unlikely(*ppos >= isize))
529 return 0;
531 left = isize - *ppos;
532 if (unlikely(left < len))
533 len = left;
535 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
536 if (ret > 0) {
537 *ppos += ret;
538 file_accessed(in);
541 return ret;
543 EXPORT_SYMBOL(generic_file_splice_read);
545 static const struct pipe_buf_operations default_pipe_buf_ops = {
546 .can_merge = 0,
547 .confirm = generic_pipe_buf_confirm,
548 .release = generic_pipe_buf_release,
549 .steal = generic_pipe_buf_steal,
550 .get = generic_pipe_buf_get,
553 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
554 struct pipe_buffer *buf)
556 return 1;
559 /* Pipe buffer operations for a socket and similar. */
560 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
561 .can_merge = 0,
562 .confirm = generic_pipe_buf_confirm,
563 .release = generic_pipe_buf_release,
564 .steal = generic_pipe_buf_nosteal,
565 .get = generic_pipe_buf_get,
567 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
569 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
570 unsigned long vlen, loff_t offset)
572 mm_segment_t old_fs;
573 loff_t pos = offset;
574 ssize_t res;
576 old_fs = get_fs();
577 set_fs(get_ds());
578 /* The cast to a user pointer is valid due to the set_fs() */
579 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
580 set_fs(old_fs);
582 return res;
585 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
586 loff_t pos)
588 mm_segment_t old_fs;
589 ssize_t res;
591 old_fs = get_fs();
592 set_fs(get_ds());
593 /* The cast to a user pointer is valid due to the set_fs() */
594 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
595 set_fs(old_fs);
597 return res;
599 EXPORT_SYMBOL(kernel_write);
601 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
602 struct pipe_inode_info *pipe, size_t len,
603 unsigned int flags)
605 unsigned int nr_pages;
606 unsigned int nr_freed;
607 size_t offset;
608 struct page *pages[PIPE_DEF_BUFFERS];
609 struct partial_page partial[PIPE_DEF_BUFFERS];
610 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
611 ssize_t res;
612 size_t this_len;
613 int error;
614 int i;
615 struct splice_pipe_desc spd = {
616 .pages = pages,
617 .partial = partial,
618 .nr_pages_max = PIPE_DEF_BUFFERS,
619 .flags = flags,
620 .ops = &default_pipe_buf_ops,
621 .spd_release = spd_release_page,
624 if (splice_grow_spd(pipe, &spd))
625 return -ENOMEM;
627 res = -ENOMEM;
628 vec = __vec;
629 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
630 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
631 if (!vec)
632 goto shrink_ret;
635 offset = *ppos & ~PAGE_CACHE_MASK;
636 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
638 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
639 struct page *page;
641 page = alloc_page(GFP_USER);
642 error = -ENOMEM;
643 if (!page)
644 goto err;
646 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
647 vec[i].iov_base = (void __user *) page_address(page);
648 vec[i].iov_len = this_len;
649 spd.pages[i] = page;
650 spd.nr_pages++;
651 len -= this_len;
652 offset = 0;
655 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
656 if (res < 0) {
657 error = res;
658 goto err;
661 error = 0;
662 if (!res)
663 goto err;
665 nr_freed = 0;
666 for (i = 0; i < spd.nr_pages; i++) {
667 this_len = min_t(size_t, vec[i].iov_len, res);
668 spd.partial[i].offset = 0;
669 spd.partial[i].len = this_len;
670 if (!this_len) {
671 __free_page(spd.pages[i]);
672 spd.pages[i] = NULL;
673 nr_freed++;
675 res -= this_len;
677 spd.nr_pages -= nr_freed;
679 res = splice_to_pipe(pipe, &spd);
680 if (res > 0)
681 *ppos += res;
683 shrink_ret:
684 if (vec != __vec)
685 kfree(vec);
686 splice_shrink_spd(&spd);
687 return res;
689 err:
690 for (i = 0; i < spd.nr_pages; i++)
691 __free_page(spd.pages[i]);
693 res = error;
694 goto shrink_ret;
696 EXPORT_SYMBOL(default_file_splice_read);
699 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
700 * using sendpage(). Return the number of bytes sent.
702 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
703 struct pipe_buffer *buf, struct splice_desc *sd)
705 struct file *file = sd->u.file;
706 loff_t pos = sd->pos;
707 int more;
709 if (!likely(file->f_op->sendpage))
710 return -EINVAL;
712 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
714 if (sd->len < sd->total_len && pipe->nrbufs > 1)
715 more |= MSG_SENDPAGE_NOTLAST;
717 return file->f_op->sendpage(file, buf->page, buf->offset,
718 sd->len, &pos, more);
721 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
723 smp_mb();
724 if (waitqueue_active(&pipe->wait))
725 wake_up_interruptible(&pipe->wait);
726 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730 * splice_from_pipe_feed - feed available data from a pipe to a file
731 * @pipe: pipe to splice from
732 * @sd: information to @actor
733 * @actor: handler that splices the data
735 * Description:
736 * This function loops over the pipe and calls @actor to do the
737 * actual moving of a single struct pipe_buffer to the desired
738 * destination. It returns when there's no more buffers left in
739 * the pipe or if the requested number of bytes (@sd->total_len)
740 * have been copied. It returns a positive number (one) if the
741 * pipe needs to be filled with more data, zero if the required
742 * number of bytes have been copied and -errno on error.
744 * This, together with splice_from_pipe_{begin,end,next}, may be
745 * used to implement the functionality of __splice_from_pipe() when
746 * locking is required around copying the pipe buffers to the
747 * destination.
749 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
750 splice_actor *actor)
752 int ret;
754 while (pipe->nrbufs) {
755 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
756 const struct pipe_buf_operations *ops = buf->ops;
758 sd->len = buf->len;
759 if (sd->len > sd->total_len)
760 sd->len = sd->total_len;
762 ret = buf->ops->confirm(pipe, buf);
763 if (unlikely(ret)) {
764 if (ret == -ENODATA)
765 ret = 0;
766 return ret;
769 ret = actor(pipe, buf, sd);
770 if (ret <= 0)
771 return ret;
773 buf->offset += ret;
774 buf->len -= ret;
776 sd->num_spliced += ret;
777 sd->len -= ret;
778 sd->pos += ret;
779 sd->total_len -= ret;
781 if (!buf->len) {
782 buf->ops = NULL;
783 ops->release(pipe, buf);
784 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
785 pipe->nrbufs--;
786 if (pipe->files)
787 sd->need_wakeup = true;
790 if (!sd->total_len)
791 return 0;
794 return 1;
798 * splice_from_pipe_next - wait for some data to splice from
799 * @pipe: pipe to splice from
800 * @sd: information about the splice operation
802 * Description:
803 * This function will wait for some data and return a positive
804 * value (one) if pipe buffers are available. It will return zero
805 * or -errno if no more data needs to be spliced.
807 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
810 * Check for signal early to make process killable when there are
811 * always buffers available
813 if (signal_pending(current))
814 return -ERESTARTSYS;
816 while (!pipe->nrbufs) {
817 if (!pipe->writers)
818 return 0;
820 if (!pipe->waiting_writers && sd->num_spliced)
821 return 0;
823 if (sd->flags & SPLICE_F_NONBLOCK)
824 return -EAGAIN;
826 if (signal_pending(current))
827 return -ERESTARTSYS;
829 if (sd->need_wakeup) {
830 wakeup_pipe_writers(pipe);
831 sd->need_wakeup = false;
834 pipe_wait(pipe);
837 return 1;
841 * splice_from_pipe_begin - start splicing from pipe
842 * @sd: information about the splice operation
844 * Description:
845 * This function should be called before a loop containing
846 * splice_from_pipe_next() and splice_from_pipe_feed() to
847 * initialize the necessary fields of @sd.
849 static void splice_from_pipe_begin(struct splice_desc *sd)
851 sd->num_spliced = 0;
852 sd->need_wakeup = false;
856 * splice_from_pipe_end - finish splicing from pipe
857 * @pipe: pipe to splice from
858 * @sd: information about the splice operation
860 * Description:
861 * This function will wake up pipe writers if necessary. It should
862 * be called after a loop containing splice_from_pipe_next() and
863 * splice_from_pipe_feed().
865 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
867 if (sd->need_wakeup)
868 wakeup_pipe_writers(pipe);
872 * __splice_from_pipe - splice data from a pipe to given actor
873 * @pipe: pipe to splice from
874 * @sd: information to @actor
875 * @actor: handler that splices the data
877 * Description:
878 * This function does little more than loop over the pipe and call
879 * @actor to do the actual moving of a single struct pipe_buffer to
880 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
881 * pipe_to_user.
884 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
885 splice_actor *actor)
887 int ret;
889 splice_from_pipe_begin(sd);
890 do {
891 cond_resched();
892 ret = splice_from_pipe_next(pipe, sd);
893 if (ret > 0)
894 ret = splice_from_pipe_feed(pipe, sd, actor);
895 } while (ret > 0);
896 splice_from_pipe_end(pipe, sd);
898 return sd->num_spliced ? sd->num_spliced : ret;
900 EXPORT_SYMBOL(__splice_from_pipe);
903 * splice_from_pipe - splice data from a pipe to a file
904 * @pipe: pipe to splice from
905 * @out: file to splice to
906 * @ppos: position in @out
907 * @len: how many bytes to splice
908 * @flags: splice modifier flags
909 * @actor: handler that splices the data
911 * Description:
912 * See __splice_from_pipe. This function locks the pipe inode,
913 * otherwise it's identical to __splice_from_pipe().
916 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
917 loff_t *ppos, size_t len, unsigned int flags,
918 splice_actor *actor)
920 ssize_t ret;
921 struct splice_desc sd = {
922 .total_len = len,
923 .flags = flags,
924 .pos = *ppos,
925 .u.file = out,
928 pipe_lock(pipe);
929 ret = __splice_from_pipe(pipe, &sd, actor);
930 pipe_unlock(pipe);
932 return ret;
936 * iter_file_splice_write - splice data from a pipe to a file
937 * @pipe: pipe info
938 * @out: file to write to
939 * @ppos: position in @out
940 * @len: number of bytes to splice
941 * @flags: splice modifier flags
943 * Description:
944 * Will either move or copy pages (determined by @flags options) from
945 * the given pipe inode to the given file.
946 * This one is ->write_iter-based.
949 ssize_t
950 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
951 loff_t *ppos, size_t len, unsigned int flags)
953 struct splice_desc sd = {
954 .total_len = len,
955 .flags = flags,
956 .pos = *ppos,
957 .u.file = out,
959 int nbufs = pipe->buffers;
960 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
961 GFP_KERNEL);
962 ssize_t ret;
964 if (unlikely(!array))
965 return -ENOMEM;
967 pipe_lock(pipe);
969 splice_from_pipe_begin(&sd);
970 while (sd.total_len) {
971 struct iov_iter from;
972 struct kiocb kiocb;
973 size_t left;
974 int n, idx;
976 ret = splice_from_pipe_next(pipe, &sd);
977 if (ret <= 0)
978 break;
980 if (unlikely(nbufs < pipe->buffers)) {
981 kfree(array);
982 nbufs = pipe->buffers;
983 array = kcalloc(nbufs, sizeof(struct bio_vec),
984 GFP_KERNEL);
985 if (!array) {
986 ret = -ENOMEM;
987 break;
991 /* build the vector */
992 left = sd.total_len;
993 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
994 struct pipe_buffer *buf = pipe->bufs + idx;
995 size_t this_len = buf->len;
997 if (this_len > left)
998 this_len = left;
1000 if (idx == pipe->buffers - 1)
1001 idx = -1;
1003 ret = buf->ops->confirm(pipe, buf);
1004 if (unlikely(ret)) {
1005 if (ret == -ENODATA)
1006 ret = 0;
1007 goto done;
1010 array[n].bv_page = buf->page;
1011 array[n].bv_len = this_len;
1012 array[n].bv_offset = buf->offset;
1013 left -= this_len;
1016 /* ... iov_iter */
1017 from.type = ITER_BVEC | WRITE;
1018 from.bvec = array;
1019 from.nr_segs = n;
1020 from.count = sd.total_len - left;
1021 from.iov_offset = 0;
1023 /* ... and iocb */
1024 init_sync_kiocb(&kiocb, out);
1025 kiocb.ki_pos = sd.pos;
1026 kiocb.ki_nbytes = sd.total_len - left;
1028 /* now, send it */
1029 ret = out->f_op->write_iter(&kiocb, &from);
1030 if (-EIOCBQUEUED == ret)
1031 ret = wait_on_sync_kiocb(&kiocb);
1033 if (ret <= 0)
1034 break;
1036 sd.num_spliced += ret;
1037 sd.total_len -= ret;
1038 *ppos = sd.pos = kiocb.ki_pos;
1040 /* dismiss the fully eaten buffers, adjust the partial one */
1041 while (ret) {
1042 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1043 if (ret >= buf->len) {
1044 const struct pipe_buf_operations *ops = buf->ops;
1045 ret -= buf->len;
1046 buf->len = 0;
1047 buf->ops = NULL;
1048 ops->release(pipe, buf);
1049 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1050 pipe->nrbufs--;
1051 if (pipe->files)
1052 sd.need_wakeup = true;
1053 } else {
1054 buf->offset += ret;
1055 buf->len -= ret;
1056 ret = 0;
1060 done:
1061 kfree(array);
1062 splice_from_pipe_end(pipe, &sd);
1064 pipe_unlock(pipe);
1066 if (sd.num_spliced)
1067 ret = sd.num_spliced;
1069 return ret;
1072 EXPORT_SYMBOL(iter_file_splice_write);
1074 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1075 struct splice_desc *sd)
1077 int ret;
1078 void *data;
1079 loff_t tmp = sd->pos;
1081 data = kmap(buf->page);
1082 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1083 kunmap(buf->page);
1085 return ret;
1088 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1089 struct file *out, loff_t *ppos,
1090 size_t len, unsigned int flags)
1092 ssize_t ret;
1094 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1095 if (ret > 0)
1096 *ppos += ret;
1098 return ret;
1102 * generic_splice_sendpage - splice data from a pipe to a socket
1103 * @pipe: pipe to splice from
1104 * @out: socket to write to
1105 * @ppos: position in @out
1106 * @len: number of bytes to splice
1107 * @flags: splice modifier flags
1109 * Description:
1110 * Will send @len bytes from the pipe to a network socket. No data copying
1111 * is involved.
1114 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1115 loff_t *ppos, size_t len, unsigned int flags)
1117 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1120 EXPORT_SYMBOL(generic_splice_sendpage);
1123 * Attempt to initiate a splice from pipe to file.
1125 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1126 loff_t *ppos, size_t len, unsigned int flags)
1128 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1129 loff_t *, size_t, unsigned int);
1131 if (out->f_op->splice_write)
1132 splice_write = out->f_op->splice_write;
1133 else
1134 splice_write = default_file_splice_write;
1136 return splice_write(pipe, out, ppos, len, flags);
1140 * Attempt to initiate a splice from a file to a pipe.
1142 static long do_splice_to(struct file *in, loff_t *ppos,
1143 struct pipe_inode_info *pipe, size_t len,
1144 unsigned int flags)
1146 ssize_t (*splice_read)(struct file *, loff_t *,
1147 struct pipe_inode_info *, size_t, unsigned int);
1148 int ret;
1150 if (unlikely(!(in->f_mode & FMODE_READ)))
1151 return -EBADF;
1153 ret = rw_verify_area(READ, in, ppos, len);
1154 if (unlikely(ret < 0))
1155 return ret;
1157 if (in->f_op->splice_read)
1158 splice_read = in->f_op->splice_read;
1159 else
1160 splice_read = default_file_splice_read;
1162 return splice_read(in, ppos, pipe, len, flags);
1166 * splice_direct_to_actor - splices data directly between two non-pipes
1167 * @in: file to splice from
1168 * @sd: actor information on where to splice to
1169 * @actor: handles the data splicing
1171 * Description:
1172 * This is a special case helper to splice directly between two
1173 * points, without requiring an explicit pipe. Internally an allocated
1174 * pipe is cached in the process, and reused during the lifetime of
1175 * that process.
1178 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1179 splice_direct_actor *actor)
1181 struct pipe_inode_info *pipe;
1182 long ret, bytes;
1183 umode_t i_mode;
1184 size_t len;
1185 int i, flags, more;
1188 * We require the input being a regular file, as we don't want to
1189 * randomly drop data for eg socket -> socket splicing. Use the
1190 * piped splicing for that!
1192 i_mode = file_inode(in)->i_mode;
1193 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1194 return -EINVAL;
1197 * neither in nor out is a pipe, setup an internal pipe attached to
1198 * 'out' and transfer the wanted data from 'in' to 'out' through that
1200 pipe = current->splice_pipe;
1201 if (unlikely(!pipe)) {
1202 pipe = alloc_pipe_info();
1203 if (!pipe)
1204 return -ENOMEM;
1207 * We don't have an immediate reader, but we'll read the stuff
1208 * out of the pipe right after the splice_to_pipe(). So set
1209 * PIPE_READERS appropriately.
1211 pipe->readers = 1;
1213 current->splice_pipe = pipe;
1217 * Do the splice.
1219 ret = 0;
1220 bytes = 0;
1221 len = sd->total_len;
1222 flags = sd->flags;
1225 * Don't block on output, we have to drain the direct pipe.
1227 sd->flags &= ~SPLICE_F_NONBLOCK;
1228 more = sd->flags & SPLICE_F_MORE;
1230 while (len) {
1231 size_t read_len;
1232 loff_t pos = sd->pos, prev_pos = pos;
1234 ret = do_splice_to(in, &pos, pipe, len, flags);
1235 if (unlikely(ret <= 0))
1236 goto out_release;
1238 read_len = ret;
1239 sd->total_len = read_len;
1242 * If more data is pending, set SPLICE_F_MORE
1243 * If this is the last data and SPLICE_F_MORE was not set
1244 * initially, clears it.
1246 if (read_len < len)
1247 sd->flags |= SPLICE_F_MORE;
1248 else if (!more)
1249 sd->flags &= ~SPLICE_F_MORE;
1251 * NOTE: nonblocking mode only applies to the input. We
1252 * must not do the output in nonblocking mode as then we
1253 * could get stuck data in the internal pipe:
1255 ret = actor(pipe, sd);
1256 if (unlikely(ret <= 0)) {
1257 sd->pos = prev_pos;
1258 goto out_release;
1261 bytes += ret;
1262 len -= ret;
1263 sd->pos = pos;
1265 if (ret < read_len) {
1266 sd->pos = prev_pos + ret;
1267 goto out_release;
1271 done:
1272 pipe->nrbufs = pipe->curbuf = 0;
1273 file_accessed(in);
1274 return bytes;
1276 out_release:
1278 * If we did an incomplete transfer we must release
1279 * the pipe buffers in question:
1281 for (i = 0; i < pipe->buffers; i++) {
1282 struct pipe_buffer *buf = pipe->bufs + i;
1284 if (buf->ops) {
1285 buf->ops->release(pipe, buf);
1286 buf->ops = NULL;
1290 if (!bytes)
1291 bytes = ret;
1293 goto done;
1295 EXPORT_SYMBOL(splice_direct_to_actor);
1297 static int direct_splice_actor(struct pipe_inode_info *pipe,
1298 struct splice_desc *sd)
1300 struct file *file = sd->u.file;
1302 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1303 sd->flags);
1307 * do_splice_direct - splices data directly between two files
1308 * @in: file to splice from
1309 * @ppos: input file offset
1310 * @out: file to splice to
1311 * @opos: output file offset
1312 * @len: number of bytes to splice
1313 * @flags: splice modifier flags
1315 * Description:
1316 * For use by do_sendfile(). splice can easily emulate sendfile, but
1317 * doing it in the application would incur an extra system call
1318 * (splice in + splice out, as compared to just sendfile()). So this helper
1319 * can splice directly through a process-private pipe.
1322 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1323 loff_t *opos, size_t len, unsigned int flags)
1325 struct splice_desc sd = {
1326 .len = len,
1327 .total_len = len,
1328 .flags = flags,
1329 .pos = *ppos,
1330 .u.file = out,
1331 .opos = opos,
1333 long ret;
1335 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1336 return -EBADF;
1338 if (unlikely(out->f_flags & O_APPEND))
1339 return -EINVAL;
1341 ret = rw_verify_area(WRITE, out, opos, len);
1342 if (unlikely(ret < 0))
1343 return ret;
1345 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1346 if (ret > 0)
1347 *ppos = sd.pos;
1349 return ret;
1352 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1353 struct pipe_inode_info *opipe,
1354 size_t len, unsigned int flags);
1357 * Determine where to splice to/from.
1359 static long do_splice(struct file *in, loff_t __user *off_in,
1360 struct file *out, loff_t __user *off_out,
1361 size_t len, unsigned int flags)
1363 struct pipe_inode_info *ipipe;
1364 struct pipe_inode_info *opipe;
1365 loff_t offset;
1366 long ret;
1368 ipipe = get_pipe_info(in);
1369 opipe = get_pipe_info(out);
1371 if (ipipe && opipe) {
1372 if (off_in || off_out)
1373 return -ESPIPE;
1375 if (!(in->f_mode & FMODE_READ))
1376 return -EBADF;
1378 if (!(out->f_mode & FMODE_WRITE))
1379 return -EBADF;
1381 /* Splicing to self would be fun, but... */
1382 if (ipipe == opipe)
1383 return -EINVAL;
1385 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1388 if (ipipe) {
1389 if (off_in)
1390 return -ESPIPE;
1391 if (off_out) {
1392 if (!(out->f_mode & FMODE_PWRITE))
1393 return -EINVAL;
1394 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1395 return -EFAULT;
1396 } else {
1397 offset = out->f_pos;
1400 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1401 return -EBADF;
1403 if (unlikely(out->f_flags & O_APPEND))
1404 return -EINVAL;
1406 ret = rw_verify_area(WRITE, out, &offset, len);
1407 if (unlikely(ret < 0))
1408 return ret;
1410 file_start_write(out);
1411 ret = do_splice_from(ipipe, out, &offset, len, flags);
1412 file_end_write(out);
1414 if (!off_out)
1415 out->f_pos = offset;
1416 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1417 ret = -EFAULT;
1419 return ret;
1422 if (opipe) {
1423 if (off_out)
1424 return -ESPIPE;
1425 if (off_in) {
1426 if (!(in->f_mode & FMODE_PREAD))
1427 return -EINVAL;
1428 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1429 return -EFAULT;
1430 } else {
1431 offset = in->f_pos;
1434 ret = do_splice_to(in, &offset, opipe, len, flags);
1436 if (!off_in)
1437 in->f_pos = offset;
1438 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1439 ret = -EFAULT;
1441 return ret;
1444 return -EINVAL;
1448 * Map an iov into an array of pages and offset/length tupples. With the
1449 * partial_page structure, we can map several non-contiguous ranges into
1450 * our ones pages[] map instead of splitting that operation into pieces.
1451 * Could easily be exported as a generic helper for other users, in which
1452 * case one would probably want to add a 'max_nr_pages' parameter as well.
1454 static int get_iovec_page_array(const struct iovec __user *iov,
1455 unsigned int nr_vecs, struct page **pages,
1456 struct partial_page *partial, bool aligned,
1457 unsigned int pipe_buffers)
1459 int buffers = 0, error = 0;
1461 while (nr_vecs) {
1462 unsigned long off, npages;
1463 struct iovec entry;
1464 void __user *base;
1465 size_t len;
1466 int i;
1468 error = -EFAULT;
1469 if (copy_from_user(&entry, iov, sizeof(entry)))
1470 break;
1472 base = entry.iov_base;
1473 len = entry.iov_len;
1476 * Sanity check this iovec. 0 read succeeds.
1478 error = 0;
1479 if (unlikely(!len))
1480 break;
1481 error = -EFAULT;
1482 if (!access_ok(VERIFY_READ, base, len))
1483 break;
1486 * Get this base offset and number of pages, then map
1487 * in the user pages.
1489 off = (unsigned long) base & ~PAGE_MASK;
1492 * If asked for alignment, the offset must be zero and the
1493 * length a multiple of the PAGE_SIZE.
1495 error = -EINVAL;
1496 if (aligned && (off || len & ~PAGE_MASK))
1497 break;
1499 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1500 if (npages > pipe_buffers - buffers)
1501 npages = pipe_buffers - buffers;
1503 error = get_user_pages_fast((unsigned long)base, npages,
1504 0, &pages[buffers]);
1506 if (unlikely(error <= 0))
1507 break;
1510 * Fill this contiguous range into the partial page map.
1512 for (i = 0; i < error; i++) {
1513 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1515 partial[buffers].offset = off;
1516 partial[buffers].len = plen;
1518 off = 0;
1519 len -= plen;
1520 buffers++;
1524 * We didn't complete this iov, stop here since it probably
1525 * means we have to move some of this into a pipe to
1526 * be able to continue.
1528 if (len)
1529 break;
1532 * Don't continue if we mapped fewer pages than we asked for,
1533 * or if we mapped the max number of pages that we have
1534 * room for.
1536 if (error < npages || buffers == pipe_buffers)
1537 break;
1539 nr_vecs--;
1540 iov++;
1543 if (buffers)
1544 return buffers;
1546 return error;
1549 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1550 struct splice_desc *sd)
1552 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1553 return n == sd->len ? n : -EFAULT;
1557 * For lack of a better implementation, implement vmsplice() to userspace
1558 * as a simple copy of the pipes pages to the user iov.
1560 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1561 unsigned long nr_segs, unsigned int flags)
1563 struct pipe_inode_info *pipe;
1564 struct splice_desc sd;
1565 long ret;
1566 struct iovec iovstack[UIO_FASTIOV];
1567 struct iovec *iov = iovstack;
1568 struct iov_iter iter;
1569 ssize_t count;
1571 pipe = get_pipe_info(file);
1572 if (!pipe)
1573 return -EBADF;
1575 ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1576 ARRAY_SIZE(iovstack), iovstack, &iov);
1577 if (ret <= 0)
1578 goto out;
1580 count = ret;
1581 iov_iter_init(&iter, READ, iov, nr_segs, count);
1583 sd.len = 0;
1584 sd.total_len = count;
1585 sd.flags = flags;
1586 sd.u.data = &iter;
1587 sd.pos = 0;
1589 pipe_lock(pipe);
1590 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1591 pipe_unlock(pipe);
1593 out:
1594 if (iov != iovstack)
1595 kfree(iov);
1597 return ret;
1601 * vmsplice splices a user address range into a pipe. It can be thought of
1602 * as splice-from-memory, where the regular splice is splice-from-file (or
1603 * to file). In both cases the output is a pipe, naturally.
1605 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1606 unsigned long nr_segs, unsigned int flags)
1608 struct pipe_inode_info *pipe;
1609 struct page *pages[PIPE_DEF_BUFFERS];
1610 struct partial_page partial[PIPE_DEF_BUFFERS];
1611 struct splice_pipe_desc spd = {
1612 .pages = pages,
1613 .partial = partial,
1614 .nr_pages_max = PIPE_DEF_BUFFERS,
1615 .flags = flags,
1616 .ops = &user_page_pipe_buf_ops,
1617 .spd_release = spd_release_page,
1619 long ret;
1621 pipe = get_pipe_info(file);
1622 if (!pipe)
1623 return -EBADF;
1625 if (splice_grow_spd(pipe, &spd))
1626 return -ENOMEM;
1628 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1629 spd.partial, false,
1630 spd.nr_pages_max);
1631 if (spd.nr_pages <= 0)
1632 ret = spd.nr_pages;
1633 else
1634 ret = splice_to_pipe(pipe, &spd);
1636 splice_shrink_spd(&spd);
1637 return ret;
1641 * Note that vmsplice only really supports true splicing _from_ user memory
1642 * to a pipe, not the other way around. Splicing from user memory is a simple
1643 * operation that can be supported without any funky alignment restrictions
1644 * or nasty vm tricks. We simply map in the user memory and fill them into
1645 * a pipe. The reverse isn't quite as easy, though. There are two possible
1646 * solutions for that:
1648 * - memcpy() the data internally, at which point we might as well just
1649 * do a regular read() on the buffer anyway.
1650 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1651 * has restriction limitations on both ends of the pipe).
1653 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1656 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1657 unsigned long, nr_segs, unsigned int, flags)
1659 struct fd f;
1660 long error;
1662 if (unlikely(nr_segs > UIO_MAXIOV))
1663 return -EINVAL;
1664 else if (unlikely(!nr_segs))
1665 return 0;
1667 error = -EBADF;
1668 f = fdget(fd);
1669 if (f.file) {
1670 if (f.file->f_mode & FMODE_WRITE)
1671 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1672 else if (f.file->f_mode & FMODE_READ)
1673 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1675 fdput(f);
1678 return error;
1681 #ifdef CONFIG_COMPAT
1682 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1683 unsigned int, nr_segs, unsigned int, flags)
1685 unsigned i;
1686 struct iovec __user *iov;
1687 if (nr_segs > UIO_MAXIOV)
1688 return -EINVAL;
1689 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1690 for (i = 0; i < nr_segs; i++) {
1691 struct compat_iovec v;
1692 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1693 get_user(v.iov_len, &iov32[i].iov_len) ||
1694 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1695 put_user(v.iov_len, &iov[i].iov_len))
1696 return -EFAULT;
1698 return sys_vmsplice(fd, iov, nr_segs, flags);
1700 #endif
1702 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1703 int, fd_out, loff_t __user *, off_out,
1704 size_t, len, unsigned int, flags)
1706 struct fd in, out;
1707 long error;
1709 if (unlikely(!len))
1710 return 0;
1712 error = -EBADF;
1713 in = fdget(fd_in);
1714 if (in.file) {
1715 if (in.file->f_mode & FMODE_READ) {
1716 out = fdget(fd_out);
1717 if (out.file) {
1718 if (out.file->f_mode & FMODE_WRITE)
1719 error = do_splice(in.file, off_in,
1720 out.file, off_out,
1721 len, flags);
1722 fdput(out);
1725 fdput(in);
1727 return error;
1731 * Make sure there's data to read. Wait for input if we can, otherwise
1732 * return an appropriate error.
1734 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1736 int ret;
1739 * Check ->nrbufs without the inode lock first. This function
1740 * is speculative anyways, so missing one is ok.
1742 if (pipe->nrbufs)
1743 return 0;
1745 ret = 0;
1746 pipe_lock(pipe);
1748 while (!pipe->nrbufs) {
1749 if (signal_pending(current)) {
1750 ret = -ERESTARTSYS;
1751 break;
1753 if (!pipe->writers)
1754 break;
1755 if (!pipe->waiting_writers) {
1756 if (flags & SPLICE_F_NONBLOCK) {
1757 ret = -EAGAIN;
1758 break;
1761 pipe_wait(pipe);
1764 pipe_unlock(pipe);
1765 return ret;
1769 * Make sure there's writeable room. Wait for room if we can, otherwise
1770 * return an appropriate error.
1772 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1774 int ret;
1777 * Check ->nrbufs without the inode lock first. This function
1778 * is speculative anyways, so missing one is ok.
1780 if (pipe->nrbufs < pipe->buffers)
1781 return 0;
1783 ret = 0;
1784 pipe_lock(pipe);
1786 while (pipe->nrbufs >= pipe->buffers) {
1787 if (!pipe->readers) {
1788 send_sig(SIGPIPE, current, 0);
1789 ret = -EPIPE;
1790 break;
1792 if (flags & SPLICE_F_NONBLOCK) {
1793 ret = -EAGAIN;
1794 break;
1796 if (signal_pending(current)) {
1797 ret = -ERESTARTSYS;
1798 break;
1800 pipe->waiting_writers++;
1801 pipe_wait(pipe);
1802 pipe->waiting_writers--;
1805 pipe_unlock(pipe);
1806 return ret;
1810 * Splice contents of ipipe to opipe.
1812 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1813 struct pipe_inode_info *opipe,
1814 size_t len, unsigned int flags)
1816 struct pipe_buffer *ibuf, *obuf;
1817 int ret = 0, nbuf;
1818 bool input_wakeup = false;
1821 retry:
1822 ret = ipipe_prep(ipipe, flags);
1823 if (ret)
1824 return ret;
1826 ret = opipe_prep(opipe, flags);
1827 if (ret)
1828 return ret;
1831 * Potential ABBA deadlock, work around it by ordering lock
1832 * grabbing by pipe info address. Otherwise two different processes
1833 * could deadlock (one doing tee from A -> B, the other from B -> A).
1835 pipe_double_lock(ipipe, opipe);
1837 do {
1838 if (!opipe->readers) {
1839 send_sig(SIGPIPE, current, 0);
1840 if (!ret)
1841 ret = -EPIPE;
1842 break;
1845 if (!ipipe->nrbufs && !ipipe->writers)
1846 break;
1849 * Cannot make any progress, because either the input
1850 * pipe is empty or the output pipe is full.
1852 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1853 /* Already processed some buffers, break */
1854 if (ret)
1855 break;
1857 if (flags & SPLICE_F_NONBLOCK) {
1858 ret = -EAGAIN;
1859 break;
1863 * We raced with another reader/writer and haven't
1864 * managed to process any buffers. A zero return
1865 * value means EOF, so retry instead.
1867 pipe_unlock(ipipe);
1868 pipe_unlock(opipe);
1869 goto retry;
1872 ibuf = ipipe->bufs + ipipe->curbuf;
1873 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1874 obuf = opipe->bufs + nbuf;
1876 if (len >= ibuf->len) {
1878 * Simply move the whole buffer from ipipe to opipe
1880 *obuf = *ibuf;
1881 ibuf->ops = NULL;
1882 opipe->nrbufs++;
1883 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1884 ipipe->nrbufs--;
1885 input_wakeup = true;
1886 } else {
1888 * Get a reference to this pipe buffer,
1889 * so we can copy the contents over.
1891 ibuf->ops->get(ipipe, ibuf);
1892 *obuf = *ibuf;
1895 * Don't inherit the gift flag, we need to
1896 * prevent multiple steals of this page.
1898 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1900 obuf->len = len;
1901 opipe->nrbufs++;
1902 ibuf->offset += obuf->len;
1903 ibuf->len -= obuf->len;
1905 ret += obuf->len;
1906 len -= obuf->len;
1907 } while (len);
1909 pipe_unlock(ipipe);
1910 pipe_unlock(opipe);
1913 * If we put data in the output pipe, wakeup any potential readers.
1915 if (ret > 0)
1916 wakeup_pipe_readers(opipe);
1918 if (input_wakeup)
1919 wakeup_pipe_writers(ipipe);
1921 return ret;
1925 * Link contents of ipipe to opipe.
1927 static int link_pipe(struct pipe_inode_info *ipipe,
1928 struct pipe_inode_info *opipe,
1929 size_t len, unsigned int flags)
1931 struct pipe_buffer *ibuf, *obuf;
1932 int ret = 0, i = 0, nbuf;
1935 * Potential ABBA deadlock, work around it by ordering lock
1936 * grabbing by pipe info address. Otherwise two different processes
1937 * could deadlock (one doing tee from A -> B, the other from B -> A).
1939 pipe_double_lock(ipipe, opipe);
1941 do {
1942 if (!opipe->readers) {
1943 send_sig(SIGPIPE, current, 0);
1944 if (!ret)
1945 ret = -EPIPE;
1946 break;
1950 * If we have iterated all input buffers or ran out of
1951 * output room, break.
1953 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1954 break;
1956 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1957 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1960 * Get a reference to this pipe buffer,
1961 * so we can copy the contents over.
1963 ibuf->ops->get(ipipe, ibuf);
1965 obuf = opipe->bufs + nbuf;
1966 *obuf = *ibuf;
1969 * Don't inherit the gift flag, we need to
1970 * prevent multiple steals of this page.
1972 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1974 if (obuf->len > len)
1975 obuf->len = len;
1977 opipe->nrbufs++;
1978 ret += obuf->len;
1979 len -= obuf->len;
1980 i++;
1981 } while (len);
1984 * return EAGAIN if we have the potential of some data in the
1985 * future, otherwise just return 0
1987 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1988 ret = -EAGAIN;
1990 pipe_unlock(ipipe);
1991 pipe_unlock(opipe);
1994 * If we put data in the output pipe, wakeup any potential readers.
1996 if (ret > 0)
1997 wakeup_pipe_readers(opipe);
1999 return ret;
2003 * This is a tee(1) implementation that works on pipes. It doesn't copy
2004 * any data, it simply references the 'in' pages on the 'out' pipe.
2005 * The 'flags' used are the SPLICE_F_* variants, currently the only
2006 * applicable one is SPLICE_F_NONBLOCK.
2008 static long do_tee(struct file *in, struct file *out, size_t len,
2009 unsigned int flags)
2011 struct pipe_inode_info *ipipe = get_pipe_info(in);
2012 struct pipe_inode_info *opipe = get_pipe_info(out);
2013 int ret = -EINVAL;
2016 * Duplicate the contents of ipipe to opipe without actually
2017 * copying the data.
2019 if (ipipe && opipe && ipipe != opipe) {
2021 * Keep going, unless we encounter an error. The ipipe/opipe
2022 * ordering doesn't really matter.
2024 ret = ipipe_prep(ipipe, flags);
2025 if (!ret) {
2026 ret = opipe_prep(opipe, flags);
2027 if (!ret)
2028 ret = link_pipe(ipipe, opipe, len, flags);
2032 return ret;
2035 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2037 struct fd in;
2038 int error;
2040 if (unlikely(!len))
2041 return 0;
2043 error = -EBADF;
2044 in = fdget(fdin);
2045 if (in.file) {
2046 if (in.file->f_mode & FMODE_READ) {
2047 struct fd out = fdget(fdout);
2048 if (out.file) {
2049 if (out.file->f_mode & FMODE_WRITE)
2050 error = do_tee(in.file, out.file,
2051 len, flags);
2052 fdput(out);
2055 fdput(in);
2058 return error;