2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
25 #include "xfs_mount.h"
26 #include "xfs_inode.h"
27 #include "xfs_trans.h"
28 #include "xfs_inode_item.h"
29 #include "xfs_error.h"
30 #include "xfs_trace.h"
31 #include "xfs_trans_priv.h"
32 #include "xfs_dinode.h"
36 kmem_zone_t
*xfs_ili_zone
; /* inode log item zone */
38 static inline struct xfs_inode_log_item
*INODE_ITEM(struct xfs_log_item
*lip
)
40 return container_of(lip
, struct xfs_inode_log_item
, ili_item
);
44 xfs_inode_item_data_fork_size(
45 struct xfs_inode_log_item
*iip
,
49 struct xfs_inode
*ip
= iip
->ili_inode
;
51 switch (ip
->i_d
.di_format
) {
52 case XFS_DINODE_FMT_EXTENTS
:
53 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
54 ip
->i_d
.di_nextents
> 0 &&
55 ip
->i_df
.if_bytes
> 0) {
56 /* worst case, doesn't subtract delalloc extents */
57 *nbytes
+= XFS_IFORK_DSIZE(ip
);
61 case XFS_DINODE_FMT_BTREE
:
62 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
63 ip
->i_df
.if_broot_bytes
> 0) {
64 *nbytes
+= ip
->i_df
.if_broot_bytes
;
68 case XFS_DINODE_FMT_LOCAL
:
69 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
70 ip
->i_df
.if_bytes
> 0) {
71 *nbytes
+= roundup(ip
->i_df
.if_bytes
, 4);
76 case XFS_DINODE_FMT_DEV
:
77 case XFS_DINODE_FMT_UUID
:
86 xfs_inode_item_attr_fork_size(
87 struct xfs_inode_log_item
*iip
,
91 struct xfs_inode
*ip
= iip
->ili_inode
;
93 switch (ip
->i_d
.di_aformat
) {
94 case XFS_DINODE_FMT_EXTENTS
:
95 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
96 ip
->i_d
.di_anextents
> 0 &&
97 ip
->i_afp
->if_bytes
> 0) {
98 /* worst case, doesn't subtract unused space */
99 *nbytes
+= XFS_IFORK_ASIZE(ip
);
103 case XFS_DINODE_FMT_BTREE
:
104 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
105 ip
->i_afp
->if_broot_bytes
> 0) {
106 *nbytes
+= ip
->i_afp
->if_broot_bytes
;
110 case XFS_DINODE_FMT_LOCAL
:
111 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
112 ip
->i_afp
->if_bytes
> 0) {
113 *nbytes
+= roundup(ip
->i_afp
->if_bytes
, 4);
124 * This returns the number of iovecs needed to log the given inode item.
126 * We need one iovec for the inode log format structure, one for the
127 * inode core, and possibly one for the inode data/extents/b-tree root
128 * and one for the inode attribute data/extents/b-tree root.
132 struct xfs_log_item
*lip
,
136 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
137 struct xfs_inode
*ip
= iip
->ili_inode
;
140 *nbytes
+= sizeof(struct xfs_inode_log_format
) +
141 xfs_icdinode_size(ip
->i_d
.di_version
);
143 xfs_inode_item_data_fork_size(iip
, nvecs
, nbytes
);
145 xfs_inode_item_attr_fork_size(iip
, nvecs
, nbytes
);
149 xfs_inode_item_format_data_fork(
150 struct xfs_inode_log_item
*iip
,
151 struct xfs_inode_log_format
*ilf
,
152 struct xfs_log_vec
*lv
,
153 struct xfs_log_iovec
**vecp
)
155 struct xfs_inode
*ip
= iip
->ili_inode
;
158 switch (ip
->i_d
.di_format
) {
159 case XFS_DINODE_FMT_EXTENTS
:
161 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
162 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
164 if ((iip
->ili_fields
& XFS_ILOG_DEXT
) &&
165 ip
->i_d
.di_nextents
> 0 &&
166 ip
->i_df
.if_bytes
> 0) {
167 struct xfs_bmbt_rec
*p
;
169 ASSERT(ip
->i_df
.if_u1
.if_extents
!= NULL
);
170 ASSERT(ip
->i_df
.if_bytes
/ sizeof(xfs_bmbt_rec_t
) > 0);
172 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IEXT
);
173 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_DATA_FORK
);
174 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
176 ASSERT(data_bytes
<= ip
->i_df
.if_bytes
);
178 ilf
->ilf_dsize
= data_bytes
;
181 iip
->ili_fields
&= ~XFS_ILOG_DEXT
;
184 case XFS_DINODE_FMT_BTREE
:
186 ~(XFS_ILOG_DDATA
| XFS_ILOG_DEXT
|
187 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
189 if ((iip
->ili_fields
& XFS_ILOG_DBROOT
) &&
190 ip
->i_df
.if_broot_bytes
> 0) {
191 ASSERT(ip
->i_df
.if_broot
!= NULL
);
192 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IBROOT
,
194 ip
->i_df
.if_broot_bytes
);
195 ilf
->ilf_dsize
= ip
->i_df
.if_broot_bytes
;
198 ASSERT(!(iip
->ili_fields
&
200 iip
->ili_fields
&= ~XFS_ILOG_DBROOT
;
203 case XFS_DINODE_FMT_LOCAL
:
205 ~(XFS_ILOG_DEXT
| XFS_ILOG_DBROOT
|
206 XFS_ILOG_DEV
| XFS_ILOG_UUID
);
207 if ((iip
->ili_fields
& XFS_ILOG_DDATA
) &&
208 ip
->i_df
.if_bytes
> 0) {
210 * Round i_bytes up to a word boundary.
211 * The underlying memory is guaranteed to
212 * to be there by xfs_idata_realloc().
214 data_bytes
= roundup(ip
->i_df
.if_bytes
, 4);
215 ASSERT(ip
->i_df
.if_real_bytes
== 0 ||
216 ip
->i_df
.if_real_bytes
== data_bytes
);
217 ASSERT(ip
->i_df
.if_u1
.if_data
!= NULL
);
218 ASSERT(ip
->i_d
.di_size
> 0);
219 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_ILOCAL
,
220 ip
->i_df
.if_u1
.if_data
, data_bytes
);
221 ilf
->ilf_dsize
= (unsigned)data_bytes
;
224 iip
->ili_fields
&= ~XFS_ILOG_DDATA
;
227 case XFS_DINODE_FMT_DEV
:
229 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
230 XFS_ILOG_DEXT
| XFS_ILOG_UUID
);
231 if (iip
->ili_fields
& XFS_ILOG_DEV
)
232 ilf
->ilf_u
.ilfu_rdev
= ip
->i_df
.if_u2
.if_rdev
;
234 case XFS_DINODE_FMT_UUID
:
236 ~(XFS_ILOG_DDATA
| XFS_ILOG_DBROOT
|
237 XFS_ILOG_DEXT
| XFS_ILOG_DEV
);
238 if (iip
->ili_fields
& XFS_ILOG_UUID
)
239 ilf
->ilf_u
.ilfu_uuid
= ip
->i_df
.if_u2
.if_uuid
;
248 xfs_inode_item_format_attr_fork(
249 struct xfs_inode_log_item
*iip
,
250 struct xfs_inode_log_format
*ilf
,
251 struct xfs_log_vec
*lv
,
252 struct xfs_log_iovec
**vecp
)
254 struct xfs_inode
*ip
= iip
->ili_inode
;
257 switch (ip
->i_d
.di_aformat
) {
258 case XFS_DINODE_FMT_EXTENTS
:
260 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
);
262 if ((iip
->ili_fields
& XFS_ILOG_AEXT
) &&
263 ip
->i_d
.di_anextents
> 0 &&
264 ip
->i_afp
->if_bytes
> 0) {
265 struct xfs_bmbt_rec
*p
;
267 ASSERT(ip
->i_afp
->if_bytes
/ sizeof(xfs_bmbt_rec_t
) ==
268 ip
->i_d
.di_anextents
);
269 ASSERT(ip
->i_afp
->if_u1
.if_extents
!= NULL
);
271 p
= xlog_prepare_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_EXT
);
272 data_bytes
= xfs_iextents_copy(ip
, p
, XFS_ATTR_FORK
);
273 xlog_finish_iovec(lv
, *vecp
, data_bytes
);
275 ilf
->ilf_asize
= data_bytes
;
278 iip
->ili_fields
&= ~XFS_ILOG_AEXT
;
281 case XFS_DINODE_FMT_BTREE
:
283 ~(XFS_ILOG_ADATA
| XFS_ILOG_AEXT
);
285 if ((iip
->ili_fields
& XFS_ILOG_ABROOT
) &&
286 ip
->i_afp
->if_broot_bytes
> 0) {
287 ASSERT(ip
->i_afp
->if_broot
!= NULL
);
289 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_BROOT
,
291 ip
->i_afp
->if_broot_bytes
);
292 ilf
->ilf_asize
= ip
->i_afp
->if_broot_bytes
;
295 iip
->ili_fields
&= ~XFS_ILOG_ABROOT
;
298 case XFS_DINODE_FMT_LOCAL
:
300 ~(XFS_ILOG_AEXT
| XFS_ILOG_ABROOT
);
302 if ((iip
->ili_fields
& XFS_ILOG_ADATA
) &&
303 ip
->i_afp
->if_bytes
> 0) {
305 * Round i_bytes up to a word boundary.
306 * The underlying memory is guaranteed to
307 * to be there by xfs_idata_realloc().
309 data_bytes
= roundup(ip
->i_afp
->if_bytes
, 4);
310 ASSERT(ip
->i_afp
->if_real_bytes
== 0 ||
311 ip
->i_afp
->if_real_bytes
== data_bytes
);
312 ASSERT(ip
->i_afp
->if_u1
.if_data
!= NULL
);
313 xlog_copy_iovec(lv
, vecp
, XLOG_REG_TYPE_IATTR_LOCAL
,
314 ip
->i_afp
->if_u1
.if_data
,
316 ilf
->ilf_asize
= (unsigned)data_bytes
;
319 iip
->ili_fields
&= ~XFS_ILOG_ADATA
;
329 * This is called to fill in the vector of log iovecs for the given inode
330 * log item. It fills the first item with an inode log format structure,
331 * the second with the on-disk inode structure, and a possible third and/or
332 * fourth with the inode data/extents/b-tree root and inode attributes
333 * data/extents/b-tree root.
336 xfs_inode_item_format(
337 struct xfs_log_item
*lip
,
338 struct xfs_log_vec
*lv
)
340 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
341 struct xfs_inode
*ip
= iip
->ili_inode
;
342 struct xfs_inode_log_format
*ilf
;
343 struct xfs_log_iovec
*vecp
= NULL
;
345 ASSERT(ip
->i_d
.di_version
> 1);
347 ilf
= xlog_prepare_iovec(lv
, &vecp
, XLOG_REG_TYPE_IFORMAT
);
348 ilf
->ilf_type
= XFS_LI_INODE
;
349 ilf
->ilf_ino
= ip
->i_ino
;
350 ilf
->ilf_blkno
= ip
->i_imap
.im_blkno
;
351 ilf
->ilf_len
= ip
->i_imap
.im_len
;
352 ilf
->ilf_boffset
= ip
->i_imap
.im_boffset
;
353 ilf
->ilf_fields
= XFS_ILOG_CORE
;
354 ilf
->ilf_size
= 2; /* format + core */
355 xlog_finish_iovec(lv
, vecp
, sizeof(struct xfs_inode_log_format
));
357 xlog_copy_iovec(lv
, &vecp
, XLOG_REG_TYPE_ICORE
,
359 xfs_icdinode_size(ip
->i_d
.di_version
));
361 xfs_inode_item_format_data_fork(iip
, ilf
, lv
, &vecp
);
362 if (XFS_IFORK_Q(ip
)) {
363 xfs_inode_item_format_attr_fork(iip
, ilf
, lv
, &vecp
);
366 ~(XFS_ILOG_ADATA
| XFS_ILOG_ABROOT
| XFS_ILOG_AEXT
);
369 /* update the format with the exact fields we actually logged */
370 ilf
->ilf_fields
|= (iip
->ili_fields
& ~XFS_ILOG_TIMESTAMP
);
374 * This is called to pin the inode associated with the inode log
375 * item in memory so it cannot be written out.
379 struct xfs_log_item
*lip
)
381 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
383 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
385 trace_xfs_inode_pin(ip
, _RET_IP_
);
386 atomic_inc(&ip
->i_pincount
);
391 * This is called to unpin the inode associated with the inode log
392 * item which was previously pinned with a call to xfs_inode_item_pin().
394 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
397 xfs_inode_item_unpin(
398 struct xfs_log_item
*lip
,
401 struct xfs_inode
*ip
= INODE_ITEM(lip
)->ili_inode
;
403 trace_xfs_inode_unpin(ip
, _RET_IP_
);
404 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
405 if (atomic_dec_and_test(&ip
->i_pincount
))
406 wake_up_bit(&ip
->i_flags
, __XFS_IPINNED_BIT
);
411 struct xfs_log_item
*lip
,
412 struct list_head
*buffer_list
)
414 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
415 struct xfs_inode
*ip
= iip
->ili_inode
;
416 struct xfs_buf
*bp
= NULL
;
417 uint rval
= XFS_ITEM_SUCCESS
;
420 if (xfs_ipincount(ip
) > 0)
421 return XFS_ITEM_PINNED
;
423 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
))
424 return XFS_ITEM_LOCKED
;
427 * Re-check the pincount now that we stabilized the value by
430 if (xfs_ipincount(ip
) > 0) {
431 rval
= XFS_ITEM_PINNED
;
436 * Stale inode items should force out the iclog.
438 if (ip
->i_flags
& XFS_ISTALE
) {
439 rval
= XFS_ITEM_PINNED
;
444 * Someone else is already flushing the inode. Nothing we can do
445 * here but wait for the flush to finish and remove the item from
448 if (!xfs_iflock_nowait(ip
)) {
449 rval
= XFS_ITEM_FLUSHING
;
453 ASSERT(iip
->ili_fields
!= 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
454 ASSERT(iip
->ili_logged
== 0 || XFS_FORCED_SHUTDOWN(ip
->i_mount
));
456 spin_unlock(&lip
->li_ailp
->xa_lock
);
458 error
= xfs_iflush(ip
, &bp
);
460 if (!xfs_buf_delwri_queue(bp
, buffer_list
))
461 rval
= XFS_ITEM_FLUSHING
;
465 spin_lock(&lip
->li_ailp
->xa_lock
);
467 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
472 * Unlock the inode associated with the inode log item.
473 * Clear the fields of the inode and inode log item that
474 * are specific to the current transaction. If the
475 * hold flags is set, do not unlock the inode.
478 xfs_inode_item_unlock(
479 struct xfs_log_item
*lip
)
481 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
482 struct xfs_inode
*ip
= iip
->ili_inode
;
483 unsigned short lock_flags
;
485 ASSERT(ip
->i_itemp
!= NULL
);
486 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
488 lock_flags
= iip
->ili_lock_flags
;
489 iip
->ili_lock_flags
= 0;
491 xfs_iunlock(ip
, lock_flags
);
495 * This is called to find out where the oldest active copy of the inode log
496 * item in the on disk log resides now that the last log write of it completed
497 * at the given lsn. Since we always re-log all dirty data in an inode, the
498 * latest copy in the on disk log is the only one that matters. Therefore,
499 * simply return the given lsn.
501 * If the inode has been marked stale because the cluster is being freed, we
502 * don't want to (re-)insert this inode into the AIL. There is a race condition
503 * where the cluster buffer may be unpinned before the inode is inserted into
504 * the AIL during transaction committed processing. If the buffer is unpinned
505 * before the inode item has been committed and inserted, then it is possible
506 * for the buffer to be written and IO completes before the inode is inserted
507 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
508 * AIL which will never get removed. It will, however, get reclaimed which
509 * triggers an assert in xfs_inode_free() complaining about freein an inode
512 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
513 * transaction committed code knows that it does not need to do any further
514 * processing on the item.
517 xfs_inode_item_committed(
518 struct xfs_log_item
*lip
,
521 struct xfs_inode_log_item
*iip
= INODE_ITEM(lip
);
522 struct xfs_inode
*ip
= iip
->ili_inode
;
524 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
525 xfs_inode_item_unpin(lip
, 0);
532 * XXX rcc - this one really has to do something. Probably needs
533 * to stamp in a new field in the incore inode.
536 xfs_inode_item_committing(
537 struct xfs_log_item
*lip
,
540 INODE_ITEM(lip
)->ili_last_lsn
= lsn
;
544 * This is the ops vector shared by all buf log items.
546 static const struct xfs_item_ops xfs_inode_item_ops
= {
547 .iop_size
= xfs_inode_item_size
,
548 .iop_format
= xfs_inode_item_format
,
549 .iop_pin
= xfs_inode_item_pin
,
550 .iop_unpin
= xfs_inode_item_unpin
,
551 .iop_unlock
= xfs_inode_item_unlock
,
552 .iop_committed
= xfs_inode_item_committed
,
553 .iop_push
= xfs_inode_item_push
,
554 .iop_committing
= xfs_inode_item_committing
559 * Initialize the inode log item for a newly allocated (in-core) inode.
563 struct xfs_inode
*ip
,
564 struct xfs_mount
*mp
)
566 struct xfs_inode_log_item
*iip
;
568 ASSERT(ip
->i_itemp
== NULL
);
569 iip
= ip
->i_itemp
= kmem_zone_zalloc(xfs_ili_zone
, KM_SLEEP
);
572 xfs_log_item_init(mp
, &iip
->ili_item
, XFS_LI_INODE
,
573 &xfs_inode_item_ops
);
577 * Free the inode log item and any memory hanging off of it.
580 xfs_inode_item_destroy(
583 kmem_zone_free(xfs_ili_zone
, ip
->i_itemp
);
588 * This is the inode flushing I/O completion routine. It is called
589 * from interrupt level when the buffer containing the inode is
590 * flushed to disk. It is responsible for removing the inode item
591 * from the AIL if it has not been re-logged, and unlocking the inode's
594 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
595 * list for other inodes that will run this function. We remove them from the
596 * buffer list so we can process all the inode IO completions in one AIL lock
602 struct xfs_log_item
*lip
)
604 struct xfs_inode_log_item
*iip
;
605 struct xfs_log_item
*blip
;
606 struct xfs_log_item
*next
;
607 struct xfs_log_item
*prev
;
608 struct xfs_ail
*ailp
= lip
->li_ailp
;
612 * Scan the buffer IO completions for other inodes being completed and
613 * attach them to the current inode log item.
617 while (blip
!= NULL
) {
618 if (lip
->li_cb
!= xfs_iflush_done
) {
620 blip
= blip
->li_bio_list
;
624 /* remove from list */
625 next
= blip
->li_bio_list
;
629 prev
->li_bio_list
= next
;
632 /* add to current list */
633 blip
->li_bio_list
= lip
->li_bio_list
;
634 lip
->li_bio_list
= blip
;
637 * while we have the item, do the unlocked check for needing
640 iip
= INODE_ITEM(blip
);
641 if (iip
->ili_logged
&& blip
->li_lsn
== iip
->ili_flush_lsn
)
647 /* make sure we capture the state of the initial inode. */
648 iip
= INODE_ITEM(lip
);
649 if (iip
->ili_logged
&& lip
->li_lsn
== iip
->ili_flush_lsn
)
653 * We only want to pull the item from the AIL if it is
654 * actually there and its location in the log has not
655 * changed since we started the flush. Thus, we only bother
656 * if the ili_logged flag is set and the inode's lsn has not
657 * changed. First we check the lsn outside
658 * the lock since it's cheaper, and then we recheck while
659 * holding the lock before removing the inode from the AIL.
662 struct xfs_log_item
*log_items
[need_ail
];
664 spin_lock(&ailp
->xa_lock
);
665 for (blip
= lip
; blip
; blip
= blip
->li_bio_list
) {
666 iip
= INODE_ITEM(blip
);
667 if (iip
->ili_logged
&&
668 blip
->li_lsn
== iip
->ili_flush_lsn
) {
669 log_items
[i
++] = blip
;
671 ASSERT(i
<= need_ail
);
673 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
674 xfs_trans_ail_delete_bulk(ailp
, log_items
, i
,
675 SHUTDOWN_CORRUPT_INCORE
);
680 * clean up and unlock the flush lock now we are done. We can clear the
681 * ili_last_fields bits now that we know that the data corresponding to
682 * them is safely on disk.
684 for (blip
= lip
; blip
; blip
= next
) {
685 next
= blip
->li_bio_list
;
686 blip
->li_bio_list
= NULL
;
688 iip
= INODE_ITEM(blip
);
690 iip
->ili_last_fields
= 0;
691 xfs_ifunlock(iip
->ili_inode
);
696 * This is the inode flushing abort routine. It is called from xfs_iflush when
697 * the filesystem is shutting down to clean up the inode state. It is
698 * responsible for removing the inode item from the AIL if it has not been
699 * re-logged, and unlocking the inode's flush lock.
706 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
709 struct xfs_ail
*ailp
= iip
->ili_item
.li_ailp
;
710 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
711 spin_lock(&ailp
->xa_lock
);
712 if (iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) {
713 /* xfs_trans_ail_delete() drops the AIL lock. */
714 xfs_trans_ail_delete(ailp
, &iip
->ili_item
,
716 SHUTDOWN_LOG_IO_ERROR
:
717 SHUTDOWN_CORRUPT_INCORE
);
719 spin_unlock(&ailp
->xa_lock
);
723 * Clear the ili_last_fields bits now that we know that the
724 * data corresponding to them is safely on disk.
726 iip
->ili_last_fields
= 0;
728 * Clear the inode logging fields so no more flushes are
734 * Release the inode's flush lock since we're done with it.
742 struct xfs_log_item
*lip
)
744 xfs_iflush_abort(INODE_ITEM(lip
)->ili_inode
, true);
748 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
749 * (which can have different field alignments) to the native version
752 xfs_inode_item_format_convert(
753 xfs_log_iovec_t
*buf
,
754 xfs_inode_log_format_t
*in_f
)
756 if (buf
->i_len
== sizeof(xfs_inode_log_format_32_t
)) {
757 xfs_inode_log_format_32_t
*in_f32
= buf
->i_addr
;
759 in_f
->ilf_type
= in_f32
->ilf_type
;
760 in_f
->ilf_size
= in_f32
->ilf_size
;
761 in_f
->ilf_fields
= in_f32
->ilf_fields
;
762 in_f
->ilf_asize
= in_f32
->ilf_asize
;
763 in_f
->ilf_dsize
= in_f32
->ilf_dsize
;
764 in_f
->ilf_ino
= in_f32
->ilf_ino
;
765 /* copy biggest field of ilf_u */
766 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
767 in_f32
->ilf_u
.ilfu_uuid
.__u_bits
,
769 in_f
->ilf_blkno
= in_f32
->ilf_blkno
;
770 in_f
->ilf_len
= in_f32
->ilf_len
;
771 in_f
->ilf_boffset
= in_f32
->ilf_boffset
;
773 } else if (buf
->i_len
== sizeof(xfs_inode_log_format_64_t
)){
774 xfs_inode_log_format_64_t
*in_f64
= buf
->i_addr
;
776 in_f
->ilf_type
= in_f64
->ilf_type
;
777 in_f
->ilf_size
= in_f64
->ilf_size
;
778 in_f
->ilf_fields
= in_f64
->ilf_fields
;
779 in_f
->ilf_asize
= in_f64
->ilf_asize
;
780 in_f
->ilf_dsize
= in_f64
->ilf_dsize
;
781 in_f
->ilf_ino
= in_f64
->ilf_ino
;
782 /* copy biggest field of ilf_u */
783 memcpy(in_f
->ilf_u
.ilfu_uuid
.__u_bits
,
784 in_f64
->ilf_u
.ilfu_uuid
.__u_bits
,
786 in_f
->ilf_blkno
= in_f64
->ilf_blkno
;
787 in_f
->ilf_len
= in_f64
->ilf_len
;
788 in_f
->ilf_boffset
= in_f64
->ilf_boffset
;