2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_rwsem
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
34 * mapping->tree_lock (widely used)
35 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
36 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
37 * sb_lock (within inode_lock in fs/fs-writeback.c)
38 * mapping->tree_lock (widely used, in set_page_dirty,
39 * in arch-dependent flush_dcache_mmap_lock,
40 * within bdi.wb->list_lock in __sync_single_inode)
42 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/export.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/backing-dev.h>
62 #include <linux/page_idle.h>
64 #include <asm/tlbflush.h>
66 #include <trace/events/tlb.h>
70 static struct kmem_cache
*anon_vma_cachep
;
71 static struct kmem_cache
*anon_vma_chain_cachep
;
73 static inline struct anon_vma
*anon_vma_alloc(void)
75 struct anon_vma
*anon_vma
;
77 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
79 atomic_set(&anon_vma
->refcount
, 1);
80 anon_vma
->degree
= 1; /* Reference for first vma */
81 anon_vma
->parent
= anon_vma
;
83 * Initialise the anon_vma root to point to itself. If called
84 * from fork, the root will be reset to the parents anon_vma.
86 anon_vma
->root
= anon_vma
;
92 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
94 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
97 * Synchronize against page_lock_anon_vma_read() such that
98 * we can safely hold the lock without the anon_vma getting
101 * Relies on the full mb implied by the atomic_dec_and_test() from
102 * put_anon_vma() against the acquire barrier implied by
103 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
105 * page_lock_anon_vma_read() VS put_anon_vma()
106 * down_read_trylock() atomic_dec_and_test()
108 * atomic_read() rwsem_is_locked()
110 * LOCK should suffice since the actual taking of the lock must
111 * happen _before_ what follows.
114 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
115 anon_vma_lock_write(anon_vma
);
116 anon_vma_unlock_write(anon_vma
);
119 kmem_cache_free(anon_vma_cachep
, anon_vma
);
122 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
124 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
127 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
129 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
132 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
133 struct anon_vma_chain
*avc
,
134 struct anon_vma
*anon_vma
)
137 avc
->anon_vma
= anon_vma
;
138 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
139 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
143 * anon_vma_prepare - attach an anon_vma to a memory region
144 * @vma: the memory region in question
146 * This makes sure the memory mapping described by 'vma' has
147 * an 'anon_vma' attached to it, so that we can associate the
148 * anonymous pages mapped into it with that anon_vma.
150 * The common case will be that we already have one, but if
151 * not we either need to find an adjacent mapping that we
152 * can re-use the anon_vma from (very common when the only
153 * reason for splitting a vma has been mprotect()), or we
154 * allocate a new one.
156 * Anon-vma allocations are very subtle, because we may have
157 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
158 * and that may actually touch the spinlock even in the newly
159 * allocated vma (it depends on RCU to make sure that the
160 * anon_vma isn't actually destroyed).
162 * As a result, we need to do proper anon_vma locking even
163 * for the new allocation. At the same time, we do not want
164 * to do any locking for the common case of already having
167 * This must be called with the mmap_sem held for reading.
169 int anon_vma_prepare(struct vm_area_struct
*vma
)
171 struct anon_vma
*anon_vma
= vma
->anon_vma
;
172 struct anon_vma_chain
*avc
;
175 if (unlikely(!anon_vma
)) {
176 struct mm_struct
*mm
= vma
->vm_mm
;
177 struct anon_vma
*allocated
;
179 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
183 anon_vma
= find_mergeable_anon_vma(vma
);
186 anon_vma
= anon_vma_alloc();
187 if (unlikely(!anon_vma
))
188 goto out_enomem_free_avc
;
189 allocated
= anon_vma
;
192 anon_vma_lock_write(anon_vma
);
193 /* page_table_lock to protect against threads */
194 spin_lock(&mm
->page_table_lock
);
195 if (likely(!vma
->anon_vma
)) {
196 vma
->anon_vma
= anon_vma
;
197 anon_vma_chain_link(vma
, avc
, anon_vma
);
198 /* vma reference or self-parent link for new root */
203 spin_unlock(&mm
->page_table_lock
);
204 anon_vma_unlock_write(anon_vma
);
206 if (unlikely(allocated
))
207 put_anon_vma(allocated
);
209 anon_vma_chain_free(avc
);
214 anon_vma_chain_free(avc
);
220 * This is a useful helper function for locking the anon_vma root as
221 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
224 * Such anon_vma's should have the same root, so you'd expect to see
225 * just a single mutex_lock for the whole traversal.
227 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
229 struct anon_vma
*new_root
= anon_vma
->root
;
230 if (new_root
!= root
) {
231 if (WARN_ON_ONCE(root
))
232 up_write(&root
->rwsem
);
234 down_write(&root
->rwsem
);
239 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
242 up_write(&root
->rwsem
);
246 * Attach the anon_vmas from src to dst.
247 * Returns 0 on success, -ENOMEM on failure.
249 * If dst->anon_vma is NULL this function tries to find and reuse existing
250 * anon_vma which has no vmas and only one child anon_vma. This prevents
251 * degradation of anon_vma hierarchy to endless linear chain in case of
252 * constantly forking task. On the other hand, an anon_vma with more than one
253 * child isn't reused even if there was no alive vma, thus rmap walker has a
254 * good chance of avoiding scanning the whole hierarchy when it searches where
257 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
259 struct anon_vma_chain
*avc
, *pavc
;
260 struct anon_vma
*root
= NULL
;
262 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
263 struct anon_vma
*anon_vma
;
265 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
266 if (unlikely(!avc
)) {
267 unlock_anon_vma_root(root
);
269 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
273 anon_vma
= pavc
->anon_vma
;
274 root
= lock_anon_vma_root(root
, anon_vma
);
275 anon_vma_chain_link(dst
, avc
, anon_vma
);
278 * Reuse existing anon_vma if its degree lower than two,
279 * that means it has no vma and only one anon_vma child.
281 * Do not chose parent anon_vma, otherwise first child
282 * will always reuse it. Root anon_vma is never reused:
283 * it has self-parent reference and at least one child.
285 if (!dst
->anon_vma
&& anon_vma
!= src
->anon_vma
&&
286 anon_vma
->degree
< 2)
287 dst
->anon_vma
= anon_vma
;
290 dst
->anon_vma
->degree
++;
291 unlock_anon_vma_root(root
);
296 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
297 * decremented in unlink_anon_vmas().
298 * We can safely do this because callers of anon_vma_clone() don't care
299 * about dst->anon_vma if anon_vma_clone() failed.
301 dst
->anon_vma
= NULL
;
302 unlink_anon_vmas(dst
);
307 * Attach vma to its own anon_vma, as well as to the anon_vmas that
308 * the corresponding VMA in the parent process is attached to.
309 * Returns 0 on success, non-zero on failure.
311 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
313 struct anon_vma_chain
*avc
;
314 struct anon_vma
*anon_vma
;
317 /* Don't bother if the parent process has no anon_vma here. */
321 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
322 vma
->anon_vma
= NULL
;
325 * First, attach the new VMA to the parent VMA's anon_vmas,
326 * so rmap can find non-COWed pages in child processes.
328 error
= anon_vma_clone(vma
, pvma
);
332 /* An existing anon_vma has been reused, all done then. */
336 /* Then add our own anon_vma. */
337 anon_vma
= anon_vma_alloc();
340 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
342 goto out_error_free_anon_vma
;
345 * The root anon_vma's spinlock is the lock actually used when we
346 * lock any of the anon_vmas in this anon_vma tree.
348 anon_vma
->root
= pvma
->anon_vma
->root
;
349 anon_vma
->parent
= pvma
->anon_vma
;
351 * With refcounts, an anon_vma can stay around longer than the
352 * process it belongs to. The root anon_vma needs to be pinned until
353 * this anon_vma is freed, because the lock lives in the root.
355 get_anon_vma(anon_vma
->root
);
356 /* Mark this anon_vma as the one where our new (COWed) pages go. */
357 vma
->anon_vma
= anon_vma
;
358 anon_vma_lock_write(anon_vma
);
359 anon_vma_chain_link(vma
, avc
, anon_vma
);
360 anon_vma
->parent
->degree
++;
361 anon_vma_unlock_write(anon_vma
);
365 out_error_free_anon_vma
:
366 put_anon_vma(anon_vma
);
368 unlink_anon_vmas(vma
);
372 void unlink_anon_vmas(struct vm_area_struct
*vma
)
374 struct anon_vma_chain
*avc
, *next
;
375 struct anon_vma
*root
= NULL
;
378 * Unlink each anon_vma chained to the VMA. This list is ordered
379 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
382 struct anon_vma
*anon_vma
= avc
->anon_vma
;
384 root
= lock_anon_vma_root(root
, anon_vma
);
385 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
388 * Leave empty anon_vmas on the list - we'll need
389 * to free them outside the lock.
391 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
)) {
392 anon_vma
->parent
->degree
--;
396 list_del(&avc
->same_vma
);
397 anon_vma_chain_free(avc
);
400 vma
->anon_vma
->degree
--;
401 unlock_anon_vma_root(root
);
404 * Iterate the list once more, it now only contains empty and unlinked
405 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
406 * needing to write-acquire the anon_vma->root->rwsem.
408 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
409 struct anon_vma
*anon_vma
= avc
->anon_vma
;
411 BUG_ON(anon_vma
->degree
);
412 put_anon_vma(anon_vma
);
414 list_del(&avc
->same_vma
);
415 anon_vma_chain_free(avc
);
419 static void anon_vma_ctor(void *data
)
421 struct anon_vma
*anon_vma
= data
;
423 init_rwsem(&anon_vma
->rwsem
);
424 atomic_set(&anon_vma
->refcount
, 0);
425 anon_vma
->rb_root
= RB_ROOT
;
428 void __init
anon_vma_init(void)
430 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
431 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
432 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
436 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
438 * Since there is no serialization what so ever against page_remove_rmap()
439 * the best this function can do is return a locked anon_vma that might
440 * have been relevant to this page.
442 * The page might have been remapped to a different anon_vma or the anon_vma
443 * returned may already be freed (and even reused).
445 * In case it was remapped to a different anon_vma, the new anon_vma will be a
446 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
447 * ensure that any anon_vma obtained from the page will still be valid for as
448 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
450 * All users of this function must be very careful when walking the anon_vma
451 * chain and verify that the page in question is indeed mapped in it
452 * [ something equivalent to page_mapped_in_vma() ].
454 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
455 * that the anon_vma pointer from page->mapping is valid if there is a
456 * mapcount, we can dereference the anon_vma after observing those.
458 struct anon_vma
*page_get_anon_vma(struct page
*page
)
460 struct anon_vma
*anon_vma
= NULL
;
461 unsigned long anon_mapping
;
464 anon_mapping
= (unsigned long)READ_ONCE(page
->mapping
);
465 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
467 if (!page_mapped(page
))
470 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
471 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
477 * If this page is still mapped, then its anon_vma cannot have been
478 * freed. But if it has been unmapped, we have no security against the
479 * anon_vma structure being freed and reused (for another anon_vma:
480 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
481 * above cannot corrupt).
483 if (!page_mapped(page
)) {
485 put_anon_vma(anon_vma
);
495 * Similar to page_get_anon_vma() except it locks the anon_vma.
497 * Its a little more complex as it tries to keep the fast path to a single
498 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
499 * reference like with page_get_anon_vma() and then block on the mutex.
501 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
503 struct anon_vma
*anon_vma
= NULL
;
504 struct anon_vma
*root_anon_vma
;
505 unsigned long anon_mapping
;
508 anon_mapping
= (unsigned long)READ_ONCE(page
->mapping
);
509 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
511 if (!page_mapped(page
))
514 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
515 root_anon_vma
= READ_ONCE(anon_vma
->root
);
516 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
518 * If the page is still mapped, then this anon_vma is still
519 * its anon_vma, and holding the mutex ensures that it will
520 * not go away, see anon_vma_free().
522 if (!page_mapped(page
)) {
523 up_read(&root_anon_vma
->rwsem
);
529 /* trylock failed, we got to sleep */
530 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
535 if (!page_mapped(page
)) {
537 put_anon_vma(anon_vma
);
541 /* we pinned the anon_vma, its safe to sleep */
543 anon_vma_lock_read(anon_vma
);
545 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
547 * Oops, we held the last refcount, release the lock
548 * and bail -- can't simply use put_anon_vma() because
549 * we'll deadlock on the anon_vma_lock_write() recursion.
551 anon_vma_unlock_read(anon_vma
);
552 __put_anon_vma(anon_vma
);
563 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
565 anon_vma_unlock_read(anon_vma
);
569 * At what user virtual address is page expected in @vma?
571 static inline unsigned long
572 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
574 pgoff_t pgoff
= page_to_pgoff(page
);
575 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
579 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
581 unsigned long address
= __vma_address(page
, vma
);
583 /* page should be within @vma mapping range */
584 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
589 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
590 static void percpu_flush_tlb_batch_pages(void *data
)
593 * All TLB entries are flushed on the assumption that it is
594 * cheaper to flush all TLBs and let them be refilled than
595 * flushing individual PFNs. Note that we do not track mm's
596 * to flush as that might simply be multiple full TLB flushes
599 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED
);
604 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
605 * important if a PTE was dirty when it was unmapped that it's flushed
606 * before any IO is initiated on the page to prevent lost writes. Similarly,
607 * it must be flushed before freeing to prevent data leakage.
609 void try_to_unmap_flush(void)
611 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
614 if (!tlb_ubc
->flush_required
)
619 trace_tlb_flush(TLB_REMOTE_SHOOTDOWN
, -1UL);
621 if (cpumask_test_cpu(cpu
, &tlb_ubc
->cpumask
))
622 percpu_flush_tlb_batch_pages(&tlb_ubc
->cpumask
);
624 if (cpumask_any_but(&tlb_ubc
->cpumask
, cpu
) < nr_cpu_ids
) {
625 smp_call_function_many(&tlb_ubc
->cpumask
,
626 percpu_flush_tlb_batch_pages
, (void *)tlb_ubc
, true);
628 cpumask_clear(&tlb_ubc
->cpumask
);
629 tlb_ubc
->flush_required
= false;
630 tlb_ubc
->writable
= false;
634 /* Flush iff there are potentially writable TLB entries that can race with IO */
635 void try_to_unmap_flush_dirty(void)
637 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
639 if (tlb_ubc
->writable
)
640 try_to_unmap_flush();
643 static void set_tlb_ubc_flush_pending(struct mm_struct
*mm
,
644 struct page
*page
, bool writable
)
646 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
648 cpumask_or(&tlb_ubc
->cpumask
, &tlb_ubc
->cpumask
, mm_cpumask(mm
));
649 tlb_ubc
->flush_required
= true;
652 * If the PTE was dirty then it's best to assume it's writable. The
653 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
654 * before the page is queued for IO.
657 tlb_ubc
->writable
= true;
661 * Returns true if the TLB flush should be deferred to the end of a batch of
662 * unmap operations to reduce IPIs.
664 static bool should_defer_flush(struct mm_struct
*mm
, enum ttu_flags flags
)
666 bool should_defer
= false;
668 if (!(flags
& TTU_BATCH_FLUSH
))
671 /* If remote CPUs need to be flushed then defer batch the flush */
672 if (cpumask_any_but(mm_cpumask(mm
), get_cpu()) < nr_cpu_ids
)
679 static void set_tlb_ubc_flush_pending(struct mm_struct
*mm
,
680 struct page
*page
, bool writable
)
684 static bool should_defer_flush(struct mm_struct
*mm
, enum ttu_flags flags
)
688 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
691 * At what user virtual address is page expected in vma?
692 * Caller should check the page is actually part of the vma.
694 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
696 unsigned long address
;
697 if (PageAnon(page
)) {
698 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
700 * Note: swapoff's unuse_vma() is more efficient with this
701 * check, and needs it to match anon_vma when KSM is active.
703 if (!vma
->anon_vma
|| !page__anon_vma
||
704 vma
->anon_vma
->root
!= page__anon_vma
->root
)
706 } else if (page
->mapping
) {
707 if (!vma
->vm_file
|| vma
->vm_file
->f_mapping
!= page
->mapping
)
711 address
= __vma_address(page
, vma
);
712 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
717 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
724 pgd
= pgd_offset(mm
, address
);
725 if (!pgd_present(*pgd
))
728 pud
= pud_offset(pgd
, address
);
729 if (!pud_present(*pud
))
732 pmd
= pmd_offset(pud
, address
);
734 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
735 * without holding anon_vma lock for write. So when looking for a
736 * genuine pmde (in which to find pte), test present and !THP together.
740 if (!pmd_present(pmde
) || pmd_trans_huge(pmde
))
747 * Check that @page is mapped at @address into @mm.
749 * If @sync is false, page_check_address may perform a racy check to avoid
750 * the page table lock when the pte is not present (helpful when reclaiming
751 * highly shared pages).
753 * On success returns with pte mapped and locked.
755 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
756 unsigned long address
, spinlock_t
**ptlp
, int sync
)
762 if (unlikely(PageHuge(page
))) {
763 /* when pud is not present, pte will be NULL */
764 pte
= huge_pte_offset(mm
, address
);
768 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
772 pmd
= mm_find_pmd(mm
, address
);
776 pte
= pte_offset_map(pmd
, address
);
777 /* Make a quick check before getting the lock */
778 if (!sync
&& !pte_present(*pte
)) {
783 ptl
= pte_lockptr(mm
, pmd
);
786 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
790 pte_unmap_unlock(pte
, ptl
);
795 * page_mapped_in_vma - check whether a page is really mapped in a VMA
796 * @page: the page to test
797 * @vma: the VMA to test
799 * Returns 1 if the page is mapped into the page tables of the VMA, 0
800 * if the page is not mapped into the page tables of this VMA. Only
801 * valid for normal file or anonymous VMAs.
803 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
805 unsigned long address
;
809 address
= __vma_address(page
, vma
);
810 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
812 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
813 if (!pte
) /* the page is not in this mm */
815 pte_unmap_unlock(pte
, ptl
);
820 struct page_referenced_arg
{
823 unsigned long vm_flags
;
824 struct mem_cgroup
*memcg
;
827 * arg: page_referenced_arg will be passed
829 static int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
830 unsigned long address
, void *arg
)
832 struct mm_struct
*mm
= vma
->vm_mm
;
835 struct page_referenced_arg
*pra
= arg
;
837 if (unlikely(PageTransHuge(page
))) {
841 * rmap might return false positives; we must filter
842 * these out using page_check_address_pmd().
844 pmd
= page_check_address_pmd(page
, mm
, address
,
845 PAGE_CHECK_ADDRESS_PMD_FLAG
, &ptl
);
849 if (vma
->vm_flags
& VM_LOCKED
) {
851 pra
->vm_flags
|= VM_LOCKED
;
852 return SWAP_FAIL
; /* To break the loop */
855 /* go ahead even if the pmd is pmd_trans_splitting() */
856 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
863 * rmap might return false positives; we must filter
864 * these out using page_check_address().
866 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
870 if (vma
->vm_flags
& VM_LOCKED
) {
871 pte_unmap_unlock(pte
, ptl
);
872 pra
->vm_flags
|= VM_LOCKED
;
873 return SWAP_FAIL
; /* To break the loop */
876 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
878 * Don't treat a reference through a sequentially read
879 * mapping as such. If the page has been used in
880 * another mapping, we will catch it; if this other
881 * mapping is already gone, the unmap path will have
882 * set PG_referenced or activated the page.
884 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
887 pte_unmap_unlock(pte
, ptl
);
891 clear_page_idle(page
);
892 if (test_and_clear_page_young(page
))
897 pra
->vm_flags
|= vma
->vm_flags
;
902 return SWAP_SUCCESS
; /* To break the loop */
907 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
909 struct page_referenced_arg
*pra
= arg
;
910 struct mem_cgroup
*memcg
= pra
->memcg
;
912 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
919 * page_referenced - test if the page was referenced
920 * @page: the page to test
921 * @is_locked: caller holds lock on the page
922 * @memcg: target memory cgroup
923 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
925 * Quick test_and_clear_referenced for all mappings to a page,
926 * returns the number of ptes which referenced the page.
928 int page_referenced(struct page
*page
,
930 struct mem_cgroup
*memcg
,
931 unsigned long *vm_flags
)
935 struct page_referenced_arg pra
= {
936 .mapcount
= page_mapcount(page
),
939 struct rmap_walk_control rwc
= {
940 .rmap_one
= page_referenced_one
,
942 .anon_lock
= page_lock_anon_vma_read
,
946 if (!page_mapped(page
))
949 if (!page_rmapping(page
))
952 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
953 we_locked
= trylock_page(page
);
959 * If we are reclaiming on behalf of a cgroup, skip
960 * counting on behalf of references from different
964 rwc
.invalid_vma
= invalid_page_referenced_vma
;
967 ret
= rmap_walk(page
, &rwc
);
968 *vm_flags
= pra
.vm_flags
;
973 return pra
.referenced
;
976 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
977 unsigned long address
, void *arg
)
979 struct mm_struct
*mm
= vma
->vm_mm
;
985 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
989 if (pte_dirty(*pte
) || pte_write(*pte
)) {
992 flush_cache_page(vma
, address
, pte_pfn(*pte
));
993 entry
= ptep_clear_flush(vma
, address
, pte
);
994 entry
= pte_wrprotect(entry
);
995 entry
= pte_mkclean(entry
);
996 set_pte_at(mm
, address
, pte
, entry
);
1000 pte_unmap_unlock(pte
, ptl
);
1003 mmu_notifier_invalidate_page(mm
, address
);
1010 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
1012 if (vma
->vm_flags
& VM_SHARED
)
1018 int page_mkclean(struct page
*page
)
1021 struct address_space
*mapping
;
1022 struct rmap_walk_control rwc
= {
1023 .arg
= (void *)&cleaned
,
1024 .rmap_one
= page_mkclean_one
,
1025 .invalid_vma
= invalid_mkclean_vma
,
1028 BUG_ON(!PageLocked(page
));
1030 if (!page_mapped(page
))
1033 mapping
= page_mapping(page
);
1037 rmap_walk(page
, &rwc
);
1041 EXPORT_SYMBOL_GPL(page_mkclean
);
1044 * page_move_anon_rmap - move a page to our anon_vma
1045 * @page: the page to move to our anon_vma
1046 * @vma: the vma the page belongs to
1047 * @address: the user virtual address mapped
1049 * When a page belongs exclusively to one process after a COW event,
1050 * that page can be moved into the anon_vma that belongs to just that
1051 * process, so the rmap code will not search the parent or sibling
1054 void page_move_anon_rmap(struct page
*page
,
1055 struct vm_area_struct
*vma
, unsigned long address
)
1057 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1059 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1060 VM_BUG_ON_VMA(!anon_vma
, vma
);
1061 VM_BUG_ON_PAGE(page
->index
!= linear_page_index(vma
, address
), page
);
1063 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1065 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1066 * simultaneously, so a concurrent reader (eg page_referenced()'s
1067 * PageAnon()) will not see one without the other.
1069 WRITE_ONCE(page
->mapping
, (struct address_space
*) anon_vma
);
1073 * __page_set_anon_rmap - set up new anonymous rmap
1074 * @page: Page to add to rmap
1075 * @vma: VM area to add page to.
1076 * @address: User virtual address of the mapping
1077 * @exclusive: the page is exclusively owned by the current process
1079 static void __page_set_anon_rmap(struct page
*page
,
1080 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1082 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1090 * If the page isn't exclusively mapped into this vma,
1091 * we must use the _oldest_ possible anon_vma for the
1095 anon_vma
= anon_vma
->root
;
1097 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1098 page
->mapping
= (struct address_space
*) anon_vma
;
1099 page
->index
= linear_page_index(vma
, address
);
1103 * __page_check_anon_rmap - sanity check anonymous rmap addition
1104 * @page: the page to add the mapping to
1105 * @vma: the vm area in which the mapping is added
1106 * @address: the user virtual address mapped
1108 static void __page_check_anon_rmap(struct page
*page
,
1109 struct vm_area_struct
*vma
, unsigned long address
)
1111 #ifdef CONFIG_DEBUG_VM
1113 * The page's anon-rmap details (mapping and index) are guaranteed to
1114 * be set up correctly at this point.
1116 * We have exclusion against page_add_anon_rmap because the caller
1117 * always holds the page locked, except if called from page_dup_rmap,
1118 * in which case the page is already known to be setup.
1120 * We have exclusion against page_add_new_anon_rmap because those pages
1121 * are initially only visible via the pagetables, and the pte is locked
1122 * over the call to page_add_new_anon_rmap.
1124 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1125 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1130 * page_add_anon_rmap - add pte mapping to an anonymous page
1131 * @page: the page to add the mapping to
1132 * @vma: the vm area in which the mapping is added
1133 * @address: the user virtual address mapped
1135 * The caller needs to hold the pte lock, and the page must be locked in
1136 * the anon_vma case: to serialize mapping,index checking after setting,
1137 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1138 * (but PageKsm is never downgraded to PageAnon).
1140 void page_add_anon_rmap(struct page
*page
,
1141 struct vm_area_struct
*vma
, unsigned long address
)
1143 do_page_add_anon_rmap(page
, vma
, address
, 0);
1147 * Special version of the above for do_swap_page, which often runs
1148 * into pages that are exclusively owned by the current process.
1149 * Everybody else should continue to use page_add_anon_rmap above.
1151 void do_page_add_anon_rmap(struct page
*page
,
1152 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1154 int first
= atomic_inc_and_test(&page
->_mapcount
);
1157 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1158 * these counters are not modified in interrupt context, and
1159 * pte lock(a spinlock) is held, which implies preemption
1162 if (PageTransHuge(page
))
1163 __inc_zone_page_state(page
,
1164 NR_ANON_TRANSPARENT_HUGEPAGES
);
1165 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1166 hpage_nr_pages(page
));
1168 if (unlikely(PageKsm(page
)))
1171 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1172 /* address might be in next vma when migration races vma_adjust */
1174 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1176 __page_check_anon_rmap(page
, vma
, address
);
1180 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1181 * @page: the page to add the mapping to
1182 * @vma: the vm area in which the mapping is added
1183 * @address: the user virtual address mapped
1185 * Same as page_add_anon_rmap but must only be called on *new* pages.
1186 * This means the inc-and-test can be bypassed.
1187 * Page does not have to be locked.
1189 void page_add_new_anon_rmap(struct page
*page
,
1190 struct vm_area_struct
*vma
, unsigned long address
)
1192 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
1193 SetPageSwapBacked(page
);
1194 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1195 if (PageTransHuge(page
))
1196 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1197 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1198 hpage_nr_pages(page
));
1199 __page_set_anon_rmap(page
, vma
, address
, 1);
1203 * page_add_file_rmap - add pte mapping to a file page
1204 * @page: the page to add the mapping to
1206 * The caller needs to hold the pte lock.
1208 void page_add_file_rmap(struct page
*page
)
1210 struct mem_cgroup
*memcg
;
1212 memcg
= mem_cgroup_begin_page_stat(page
);
1213 if (atomic_inc_and_test(&page
->_mapcount
)) {
1214 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1215 mem_cgroup_inc_page_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
1217 mem_cgroup_end_page_stat(memcg
);
1220 static void page_remove_file_rmap(struct page
*page
)
1222 struct mem_cgroup
*memcg
;
1224 memcg
= mem_cgroup_begin_page_stat(page
);
1226 /* page still mapped by someone else? */
1227 if (!atomic_add_negative(-1, &page
->_mapcount
))
1230 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1231 if (unlikely(PageHuge(page
)))
1235 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1236 * these counters are not modified in interrupt context, and
1237 * pte lock(a spinlock) is held, which implies preemption disabled.
1239 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1240 mem_cgroup_dec_page_stat(memcg
, MEM_CGROUP_STAT_FILE_MAPPED
);
1242 if (unlikely(PageMlocked(page
)))
1243 clear_page_mlock(page
);
1245 mem_cgroup_end_page_stat(memcg
);
1249 * page_remove_rmap - take down pte mapping from a page
1250 * @page: page to remove mapping from
1252 * The caller needs to hold the pte lock.
1254 void page_remove_rmap(struct page
*page
)
1256 if (!PageAnon(page
)) {
1257 page_remove_file_rmap(page
);
1261 /* page still mapped by someone else? */
1262 if (!atomic_add_negative(-1, &page
->_mapcount
))
1265 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1266 if (unlikely(PageHuge(page
)))
1270 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1271 * these counters are not modified in interrupt context, and
1272 * pte lock(a spinlock) is held, which implies preemption disabled.
1274 if (PageTransHuge(page
))
1275 __dec_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1277 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1278 -hpage_nr_pages(page
));
1280 if (unlikely(PageMlocked(page
)))
1281 clear_page_mlock(page
);
1284 * It would be tidy to reset the PageAnon mapping here,
1285 * but that might overwrite a racing page_add_anon_rmap
1286 * which increments mapcount after us but sets mapping
1287 * before us: so leave the reset to free_hot_cold_page,
1288 * and remember that it's only reliable while mapped.
1289 * Leaving it set also helps swapoff to reinstate ptes
1290 * faster for those pages still in swapcache.
1295 * @arg: enum ttu_flags will be passed to this argument
1297 static int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1298 unsigned long address
, void *arg
)
1300 struct mm_struct
*mm
= vma
->vm_mm
;
1304 int ret
= SWAP_AGAIN
;
1305 enum ttu_flags flags
= (enum ttu_flags
)arg
;
1307 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1312 * If the page is mlock()d, we cannot swap it out.
1313 * If it's recently referenced (perhaps page_referenced
1314 * skipped over this mm) then we should reactivate it.
1316 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1317 if (vma
->vm_flags
& VM_LOCKED
)
1320 if (flags
& TTU_MUNLOCK
)
1323 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1324 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1330 /* Nuke the page table entry. */
1331 flush_cache_page(vma
, address
, page_to_pfn(page
));
1332 if (should_defer_flush(mm
, flags
)) {
1334 * We clear the PTE but do not flush so potentially a remote
1335 * CPU could still be writing to the page. If the entry was
1336 * previously clean then the architecture must guarantee that
1337 * a clear->dirty transition on a cached TLB entry is written
1338 * through and traps if the PTE is unmapped.
1340 pteval
= ptep_get_and_clear(mm
, address
, pte
);
1342 set_tlb_ubc_flush_pending(mm
, page
, pte_dirty(pteval
));
1344 pteval
= ptep_clear_flush(vma
, address
, pte
);
1347 /* Move the dirty bit to the physical page now the pte is gone. */
1348 if (pte_dirty(pteval
))
1349 set_page_dirty(page
);
1351 /* Update high watermark before we lower rss */
1352 update_hiwater_rss(mm
);
1354 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1355 if (PageHuge(page
)) {
1356 hugetlb_count_sub(1 << compound_order(page
), mm
);
1359 dec_mm_counter(mm
, MM_ANONPAGES
);
1361 dec_mm_counter(mm
, MM_FILEPAGES
);
1363 set_pte_at(mm
, address
, pte
,
1364 swp_entry_to_pte(make_hwpoison_entry(page
)));
1365 } else if (pte_unused(pteval
)) {
1367 * The guest indicated that the page content is of no
1368 * interest anymore. Simply discard the pte, vmscan
1369 * will take care of the rest.
1372 dec_mm_counter(mm
, MM_ANONPAGES
);
1374 dec_mm_counter(mm
, MM_FILEPAGES
);
1375 } else if (PageAnon(page
)) {
1376 swp_entry_t entry
= { .val
= page_private(page
) };
1379 if (PageSwapCache(page
)) {
1381 * Store the swap location in the pte.
1382 * See handle_pte_fault() ...
1384 if (swap_duplicate(entry
) < 0) {
1385 set_pte_at(mm
, address
, pte
, pteval
);
1389 if (list_empty(&mm
->mmlist
)) {
1390 spin_lock(&mmlist_lock
);
1391 if (list_empty(&mm
->mmlist
))
1392 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1393 spin_unlock(&mmlist_lock
);
1395 dec_mm_counter(mm
, MM_ANONPAGES
);
1396 inc_mm_counter(mm
, MM_SWAPENTS
);
1397 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1399 * Store the pfn of the page in a special migration
1400 * pte. do_swap_page() will wait until the migration
1401 * pte is removed and then restart fault handling.
1403 BUG_ON(!(flags
& TTU_MIGRATION
));
1404 entry
= make_migration_entry(page
, pte_write(pteval
));
1406 swp_pte
= swp_entry_to_pte(entry
);
1407 if (pte_soft_dirty(pteval
))
1408 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1409 set_pte_at(mm
, address
, pte
, swp_pte
);
1410 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1411 (flags
& TTU_MIGRATION
)) {
1412 /* Establish migration entry for a file page */
1414 entry
= make_migration_entry(page
, pte_write(pteval
));
1415 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1417 dec_mm_counter(mm
, MM_FILEPAGES
);
1419 page_remove_rmap(page
);
1420 page_cache_release(page
);
1423 pte_unmap_unlock(pte
, ptl
);
1424 if (ret
!= SWAP_FAIL
&& !(flags
& TTU_MUNLOCK
))
1425 mmu_notifier_invalidate_page(mm
, address
);
1430 pte_unmap_unlock(pte
, ptl
);
1434 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1435 * unstable result and race. Plus, We can't wait here because
1436 * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem.
1437 * if trylock failed, the page remain in evictable lru and later
1438 * vmscan could retry to move the page to unevictable lru if the
1439 * page is actually mlocked.
1441 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1442 if (vma
->vm_flags
& VM_LOCKED
) {
1443 mlock_vma_page(page
);
1446 up_read(&vma
->vm_mm
->mmap_sem
);
1451 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1453 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1458 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1459 VM_STACK_INCOMPLETE_SETUP
)
1465 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1467 return is_vma_temporary_stack(vma
);
1470 static int page_not_mapped(struct page
*page
)
1472 return !page_mapped(page
);
1476 * try_to_unmap - try to remove all page table mappings to a page
1477 * @page: the page to get unmapped
1478 * @flags: action and flags
1480 * Tries to remove all the page table entries which are mapping this
1481 * page, used in the pageout path. Caller must hold the page lock.
1482 * Return values are:
1484 * SWAP_SUCCESS - we succeeded in removing all mappings
1485 * SWAP_AGAIN - we missed a mapping, try again later
1486 * SWAP_FAIL - the page is unswappable
1487 * SWAP_MLOCK - page is mlocked.
1489 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1492 struct rmap_walk_control rwc
= {
1493 .rmap_one
= try_to_unmap_one
,
1494 .arg
= (void *)flags
,
1495 .done
= page_not_mapped
,
1496 .anon_lock
= page_lock_anon_vma_read
,
1499 VM_BUG_ON_PAGE(!PageHuge(page
) && PageTransHuge(page
), page
);
1502 * During exec, a temporary VMA is setup and later moved.
1503 * The VMA is moved under the anon_vma lock but not the
1504 * page tables leading to a race where migration cannot
1505 * find the migration ptes. Rather than increasing the
1506 * locking requirements of exec(), migration skips
1507 * temporary VMAs until after exec() completes.
1509 if ((flags
& TTU_MIGRATION
) && !PageKsm(page
) && PageAnon(page
))
1510 rwc
.invalid_vma
= invalid_migration_vma
;
1512 ret
= rmap_walk(page
, &rwc
);
1514 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1520 * try_to_munlock - try to munlock a page
1521 * @page: the page to be munlocked
1523 * Called from munlock code. Checks all of the VMAs mapping the page
1524 * to make sure nobody else has this page mlocked. The page will be
1525 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1527 * Return values are:
1529 * SWAP_AGAIN - no vma is holding page mlocked, or,
1530 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1531 * SWAP_FAIL - page cannot be located at present
1532 * SWAP_MLOCK - page is now mlocked.
1534 int try_to_munlock(struct page
*page
)
1537 struct rmap_walk_control rwc
= {
1538 .rmap_one
= try_to_unmap_one
,
1539 .arg
= (void *)TTU_MUNLOCK
,
1540 .done
= page_not_mapped
,
1541 .anon_lock
= page_lock_anon_vma_read
,
1545 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1547 ret
= rmap_walk(page
, &rwc
);
1551 void __put_anon_vma(struct anon_vma
*anon_vma
)
1553 struct anon_vma
*root
= anon_vma
->root
;
1555 anon_vma_free(anon_vma
);
1556 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1557 anon_vma_free(root
);
1560 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1561 struct rmap_walk_control
*rwc
)
1563 struct anon_vma
*anon_vma
;
1566 return rwc
->anon_lock(page
);
1569 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1570 * because that depends on page_mapped(); but not all its usages
1571 * are holding mmap_sem. Users without mmap_sem are required to
1572 * take a reference count to prevent the anon_vma disappearing
1574 anon_vma
= page_anon_vma(page
);
1578 anon_vma_lock_read(anon_vma
);
1583 * rmap_walk_anon - do something to anonymous page using the object-based
1585 * @page: the page to be handled
1586 * @rwc: control variable according to each walk type
1588 * Find all the mappings of a page using the mapping pointer and the vma chains
1589 * contained in the anon_vma struct it points to.
1591 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1592 * where the page was found will be held for write. So, we won't recheck
1593 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1596 static int rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
)
1598 struct anon_vma
*anon_vma
;
1600 struct anon_vma_chain
*avc
;
1601 int ret
= SWAP_AGAIN
;
1603 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1607 pgoff
= page_to_pgoff(page
);
1608 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1609 struct vm_area_struct
*vma
= avc
->vma
;
1610 unsigned long address
= vma_address(page
, vma
);
1612 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1615 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1616 if (ret
!= SWAP_AGAIN
)
1618 if (rwc
->done
&& rwc
->done(page
))
1621 anon_vma_unlock_read(anon_vma
);
1626 * rmap_walk_file - do something to file page using the object-based rmap method
1627 * @page: the page to be handled
1628 * @rwc: control variable according to each walk type
1630 * Find all the mappings of a page using the mapping pointer and the vma chains
1631 * contained in the address_space struct it points to.
1633 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1634 * where the page was found will be held for write. So, we won't recheck
1635 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1638 static int rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
)
1640 struct address_space
*mapping
= page
->mapping
;
1642 struct vm_area_struct
*vma
;
1643 int ret
= SWAP_AGAIN
;
1646 * The page lock not only makes sure that page->mapping cannot
1647 * suddenly be NULLified by truncation, it makes sure that the
1648 * structure at mapping cannot be freed and reused yet,
1649 * so we can safely take mapping->i_mmap_rwsem.
1651 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1656 pgoff
= page_to_pgoff(page
);
1657 i_mmap_lock_read(mapping
);
1658 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1659 unsigned long address
= vma_address(page
, vma
);
1661 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1664 ret
= rwc
->rmap_one(page
, vma
, address
, rwc
->arg
);
1665 if (ret
!= SWAP_AGAIN
)
1667 if (rwc
->done
&& rwc
->done(page
))
1672 i_mmap_unlock_read(mapping
);
1676 int rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1678 if (unlikely(PageKsm(page
)))
1679 return rmap_walk_ksm(page
, rwc
);
1680 else if (PageAnon(page
))
1681 return rmap_walk_anon(page
, rwc
);
1683 return rmap_walk_file(page
, rwc
);
1686 #ifdef CONFIG_HUGETLB_PAGE
1688 * The following three functions are for anonymous (private mapped) hugepages.
1689 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1690 * and no lru code, because we handle hugepages differently from common pages.
1692 static void __hugepage_set_anon_rmap(struct page
*page
,
1693 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1695 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1702 anon_vma
= anon_vma
->root
;
1704 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1705 page
->mapping
= (struct address_space
*) anon_vma
;
1706 page
->index
= linear_page_index(vma
, address
);
1709 void hugepage_add_anon_rmap(struct page
*page
,
1710 struct vm_area_struct
*vma
, unsigned long address
)
1712 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1715 BUG_ON(!PageLocked(page
));
1717 /* address might be in next vma when migration races vma_adjust */
1718 first
= atomic_inc_and_test(&page
->_mapcount
);
1720 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1723 void hugepage_add_new_anon_rmap(struct page
*page
,
1724 struct vm_area_struct
*vma
, unsigned long address
)
1726 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1727 atomic_set(&page
->_mapcount
, 0);
1728 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1730 #endif /* CONFIG_HUGETLB_PAGE */