2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
17 unsigned long blk_max_low_pfn
;
18 EXPORT_SYMBOL(blk_max_low_pfn
);
20 unsigned long blk_max_pfn
;
23 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
37 EXPORT_SYMBOL(blk_queue_prep_rq
);
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
52 q
->unprep_rq_fn
= ufn
;
54 EXPORT_SYMBOL(blk_queue_unprep_rq
);
57 * blk_queue_merge_bvec - set a merge_bvec function for queue
59 * @mbfn: merge_bvec_fn
61 * Usually queues have static limitations on the max sectors or segments that
62 * we can put in a request. Stacking drivers may have some settings that
63 * are dynamic, and thus we have to query the queue whether it is ok to
64 * add a new bio_vec to a bio at a given offset or not. If the block device
65 * has such limitations, it needs to register a merge_bvec_fn to control
66 * the size of bio's sent to it. Note that a block device *must* allow a
67 * single page to be added to an empty bio. The block device driver may want
68 * to use the bio_split() function to deal with these bio's. By default
69 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
72 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
74 q
->merge_bvec_fn
= mbfn
;
76 EXPORT_SYMBOL(blk_queue_merge_bvec
);
78 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
80 q
->softirq_done_fn
= fn
;
82 EXPORT_SYMBOL(blk_queue_softirq_done
);
84 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
86 q
->rq_timeout
= timeout
;
88 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
90 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
92 q
->rq_timed_out_fn
= fn
;
94 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
96 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
100 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
103 * blk_set_default_limits - reset limits to default values
104 * @lim: the queue_limits structure to reset
107 * Returns a queue_limit struct to its default state.
109 void blk_set_default_limits(struct queue_limits
*lim
)
111 lim
->max_segments
= BLK_MAX_SEGMENTS
;
112 lim
->max_integrity_segments
= 0;
113 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
114 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
115 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
116 lim
->chunk_sectors
= 0;
117 lim
->max_write_same_sectors
= 0;
118 lim
->max_discard_sectors
= 0;
119 lim
->discard_granularity
= 0;
120 lim
->discard_alignment
= 0;
121 lim
->discard_misaligned
= 0;
122 lim
->discard_zeroes_data
= 0;
123 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
124 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
125 lim
->alignment_offset
= 0;
130 EXPORT_SYMBOL(blk_set_default_limits
);
133 * blk_set_stacking_limits - set default limits for stacking devices
134 * @lim: the queue_limits structure to reset
137 * Returns a queue_limit struct to its default state. Should be used
138 * by stacking drivers like DM that have no internal limits.
140 void blk_set_stacking_limits(struct queue_limits
*lim
)
142 blk_set_default_limits(lim
);
144 /* Inherit limits from component devices */
145 lim
->discard_zeroes_data
= 1;
146 lim
->max_segments
= USHRT_MAX
;
147 lim
->max_hw_sectors
= UINT_MAX
;
148 lim
->max_segment_size
= UINT_MAX
;
149 lim
->max_sectors
= UINT_MAX
;
150 lim
->max_write_same_sectors
= UINT_MAX
;
152 EXPORT_SYMBOL(blk_set_stacking_limits
);
155 * blk_queue_make_request - define an alternate make_request function for a device
156 * @q: the request queue for the device to be affected
157 * @mfn: the alternate make_request function
160 * The normal way for &struct bios to be passed to a device
161 * driver is for them to be collected into requests on a request
162 * queue, and then to allow the device driver to select requests
163 * off that queue when it is ready. This works well for many block
164 * devices. However some block devices (typically virtual devices
165 * such as md or lvm) do not benefit from the processing on the
166 * request queue, and are served best by having the requests passed
167 * directly to them. This can be achieved by providing a function
168 * to blk_queue_make_request().
171 * The driver that does this *must* be able to deal appropriately
172 * with buffers in "highmemory". This can be accomplished by either calling
173 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
174 * blk_queue_bounce() to create a buffer in normal memory.
176 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
181 q
->nr_requests
= BLKDEV_MAX_RQ
;
183 q
->make_request_fn
= mfn
;
184 blk_queue_dma_alignment(q
, 511);
185 blk_queue_congestion_threshold(q
);
186 q
->nr_batching
= BLK_BATCH_REQ
;
188 blk_set_default_limits(&q
->limits
);
191 * by default assume old behaviour and bounce for any highmem page
193 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
195 EXPORT_SYMBOL(blk_queue_make_request
);
198 * blk_queue_bounce_limit - set bounce buffer limit for queue
199 * @q: the request queue for the device
200 * @max_addr: the maximum address the device can handle
203 * Different hardware can have different requirements as to what pages
204 * it can do I/O directly to. A low level driver can call
205 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
206 * buffers for doing I/O to pages residing above @max_addr.
208 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
210 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
213 q
->bounce_gfp
= GFP_NOIO
;
214 #if BITS_PER_LONG == 64
216 * Assume anything <= 4GB can be handled by IOMMU. Actually
217 * some IOMMUs can handle everything, but I don't know of a
218 * way to test this here.
220 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
222 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
224 if (b_pfn
< blk_max_low_pfn
)
226 q
->limits
.bounce_pfn
= b_pfn
;
229 init_emergency_isa_pool();
230 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
231 q
->limits
.bounce_pfn
= b_pfn
;
234 EXPORT_SYMBOL(blk_queue_bounce_limit
);
237 * blk_limits_max_hw_sectors - set hard and soft limit of max sectors for request
238 * @limits: the queue limits
239 * @max_hw_sectors: max hardware sectors in the usual 512b unit
242 * Enables a low level driver to set a hard upper limit,
243 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
244 * the device driver based upon the capabilities of the I/O
247 * max_sectors is a soft limit imposed by the block layer for
248 * filesystem type requests. This value can be overridden on a
249 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
250 * The soft limit can not exceed max_hw_sectors.
252 void blk_limits_max_hw_sectors(struct queue_limits
*limits
, unsigned int max_hw_sectors
)
254 if ((max_hw_sectors
<< 9) < PAGE_CACHE_SIZE
) {
255 max_hw_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
256 printk(KERN_INFO
"%s: set to minimum %d\n",
257 __func__
, max_hw_sectors
);
260 limits
->max_hw_sectors
= max_hw_sectors
;
261 limits
->max_sectors
= min_t(unsigned int, max_hw_sectors
,
262 BLK_DEF_MAX_SECTORS
);
264 EXPORT_SYMBOL(blk_limits_max_hw_sectors
);
267 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
268 * @q: the request queue for the device
269 * @max_hw_sectors: max hardware sectors in the usual 512b unit
272 * See description for blk_limits_max_hw_sectors().
274 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
276 blk_limits_max_hw_sectors(&q
->limits
, max_hw_sectors
);
278 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
281 * blk_queue_chunk_sectors - set size of the chunk for this queue
282 * @q: the request queue for the device
283 * @chunk_sectors: chunk sectors in the usual 512b unit
286 * If a driver doesn't want IOs to cross a given chunk size, it can set
287 * this limit and prevent merging across chunks. Note that the chunk size
288 * must currently be a power-of-2 in sectors. Also note that the block
289 * layer must accept a page worth of data at any offset. So if the
290 * crossing of chunks is a hard limitation in the driver, it must still be
291 * prepared to split single page bios.
293 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
295 BUG_ON(!is_power_of_2(chunk_sectors
));
296 q
->limits
.chunk_sectors
= chunk_sectors
;
298 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
301 * blk_queue_max_discard_sectors - set max sectors for a single discard
302 * @q: the request queue for the device
303 * @max_discard_sectors: maximum number of sectors to discard
305 void blk_queue_max_discard_sectors(struct request_queue
*q
,
306 unsigned int max_discard_sectors
)
308 q
->limits
.max_discard_sectors
= max_discard_sectors
;
310 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
313 * blk_queue_max_write_same_sectors - set max sectors for a single write same
314 * @q: the request queue for the device
315 * @max_write_same_sectors: maximum number of sectors to write per command
317 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
318 unsigned int max_write_same_sectors
)
320 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
322 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
325 * blk_queue_max_segments - set max hw segments for a request for this queue
326 * @q: the request queue for the device
327 * @max_segments: max number of segments
330 * Enables a low level driver to set an upper limit on the number of
331 * hw data segments in a request.
333 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
337 printk(KERN_INFO
"%s: set to minimum %d\n",
338 __func__
, max_segments
);
341 q
->limits
.max_segments
= max_segments
;
343 EXPORT_SYMBOL(blk_queue_max_segments
);
346 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
347 * @q: the request queue for the device
348 * @max_size: max size of segment in bytes
351 * Enables a low level driver to set an upper limit on the size of a
354 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
356 if (max_size
< PAGE_CACHE_SIZE
) {
357 max_size
= PAGE_CACHE_SIZE
;
358 printk(KERN_INFO
"%s: set to minimum %d\n",
362 q
->limits
.max_segment_size
= max_size
;
364 EXPORT_SYMBOL(blk_queue_max_segment_size
);
367 * blk_queue_logical_block_size - set logical block size for the queue
368 * @q: the request queue for the device
369 * @size: the logical block size, in bytes
372 * This should be set to the lowest possible block size that the
373 * storage device can address. The default of 512 covers most
376 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
378 q
->limits
.logical_block_size
= size
;
380 if (q
->limits
.physical_block_size
< size
)
381 q
->limits
.physical_block_size
= size
;
383 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
384 q
->limits
.io_min
= q
->limits
.physical_block_size
;
386 EXPORT_SYMBOL(blk_queue_logical_block_size
);
389 * blk_queue_physical_block_size - set physical block size for the queue
390 * @q: the request queue for the device
391 * @size: the physical block size, in bytes
394 * This should be set to the lowest possible sector size that the
395 * hardware can operate on without reverting to read-modify-write
398 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
400 q
->limits
.physical_block_size
= size
;
402 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
403 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
405 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
406 q
->limits
.io_min
= q
->limits
.physical_block_size
;
408 EXPORT_SYMBOL(blk_queue_physical_block_size
);
411 * blk_queue_alignment_offset - set physical block alignment offset
412 * @q: the request queue for the device
413 * @offset: alignment offset in bytes
416 * Some devices are naturally misaligned to compensate for things like
417 * the legacy DOS partition table 63-sector offset. Low-level drivers
418 * should call this function for devices whose first sector is not
421 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
423 q
->limits
.alignment_offset
=
424 offset
& (q
->limits
.physical_block_size
- 1);
425 q
->limits
.misaligned
= 0;
427 EXPORT_SYMBOL(blk_queue_alignment_offset
);
430 * blk_limits_io_min - set minimum request size for a device
431 * @limits: the queue limits
432 * @min: smallest I/O size in bytes
435 * Some devices have an internal block size bigger than the reported
436 * hardware sector size. This function can be used to signal the
437 * smallest I/O the device can perform without incurring a performance
440 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
442 limits
->io_min
= min
;
444 if (limits
->io_min
< limits
->logical_block_size
)
445 limits
->io_min
= limits
->logical_block_size
;
447 if (limits
->io_min
< limits
->physical_block_size
)
448 limits
->io_min
= limits
->physical_block_size
;
450 EXPORT_SYMBOL(blk_limits_io_min
);
453 * blk_queue_io_min - set minimum request size for the queue
454 * @q: the request queue for the device
455 * @min: smallest I/O size in bytes
458 * Storage devices may report a granularity or preferred minimum I/O
459 * size which is the smallest request the device can perform without
460 * incurring a performance penalty. For disk drives this is often the
461 * physical block size. For RAID arrays it is often the stripe chunk
462 * size. A properly aligned multiple of minimum_io_size is the
463 * preferred request size for workloads where a high number of I/O
464 * operations is desired.
466 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
468 blk_limits_io_min(&q
->limits
, min
);
470 EXPORT_SYMBOL(blk_queue_io_min
);
473 * blk_limits_io_opt - set optimal request size for a device
474 * @limits: the queue limits
475 * @opt: smallest I/O size in bytes
478 * Storage devices may report an optimal I/O size, which is the
479 * device's preferred unit for sustained I/O. This is rarely reported
480 * for disk drives. For RAID arrays it is usually the stripe width or
481 * the internal track size. A properly aligned multiple of
482 * optimal_io_size is the preferred request size for workloads where
483 * sustained throughput is desired.
485 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
487 limits
->io_opt
= opt
;
489 EXPORT_SYMBOL(blk_limits_io_opt
);
492 * blk_queue_io_opt - set optimal request size for the queue
493 * @q: the request queue for the device
494 * @opt: optimal request size in bytes
497 * Storage devices may report an optimal I/O size, which is the
498 * device's preferred unit for sustained I/O. This is rarely reported
499 * for disk drives. For RAID arrays it is usually the stripe width or
500 * the internal track size. A properly aligned multiple of
501 * optimal_io_size is the preferred request size for workloads where
502 * sustained throughput is desired.
504 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
506 blk_limits_io_opt(&q
->limits
, opt
);
508 EXPORT_SYMBOL(blk_queue_io_opt
);
511 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
512 * @t: the stacking driver (top)
513 * @b: the underlying device (bottom)
515 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
517 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
519 EXPORT_SYMBOL(blk_queue_stack_limits
);
522 * blk_stack_limits - adjust queue_limits for stacked devices
523 * @t: the stacking driver limits (top device)
524 * @b: the underlying queue limits (bottom, component device)
525 * @start: first data sector within component device
528 * This function is used by stacking drivers like MD and DM to ensure
529 * that all component devices have compatible block sizes and
530 * alignments. The stacking driver must provide a queue_limits
531 * struct (top) and then iteratively call the stacking function for
532 * all component (bottom) devices. The stacking function will
533 * attempt to combine the values and ensure proper alignment.
535 * Returns 0 if the top and bottom queue_limits are compatible. The
536 * top device's block sizes and alignment offsets may be adjusted to
537 * ensure alignment with the bottom device. If no compatible sizes
538 * and alignments exist, -1 is returned and the resulting top
539 * queue_limits will have the misaligned flag set to indicate that
540 * the alignment_offset is undefined.
542 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
545 unsigned int top
, bottom
, alignment
, ret
= 0;
547 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
548 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
549 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
550 b
->max_write_same_sectors
);
551 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
553 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
554 b
->seg_boundary_mask
);
556 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
557 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
558 b
->max_integrity_segments
);
560 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
561 b
->max_segment_size
);
563 t
->misaligned
|= b
->misaligned
;
565 alignment
= queue_limit_alignment_offset(b
, start
);
567 /* Bottom device has different alignment. Check that it is
568 * compatible with the current top alignment.
570 if (t
->alignment_offset
!= alignment
) {
572 top
= max(t
->physical_block_size
, t
->io_min
)
573 + t
->alignment_offset
;
574 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
576 /* Verify that top and bottom intervals line up */
577 if (max(top
, bottom
) % min(top
, bottom
)) {
583 t
->logical_block_size
= max(t
->logical_block_size
,
584 b
->logical_block_size
);
586 t
->physical_block_size
= max(t
->physical_block_size
,
587 b
->physical_block_size
);
589 t
->io_min
= max(t
->io_min
, b
->io_min
);
590 t
->io_opt
= lcm(t
->io_opt
, b
->io_opt
);
592 t
->cluster
&= b
->cluster
;
593 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
595 /* Physical block size a multiple of the logical block size? */
596 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
597 t
->physical_block_size
= t
->logical_block_size
;
602 /* Minimum I/O a multiple of the physical block size? */
603 if (t
->io_min
& (t
->physical_block_size
- 1)) {
604 t
->io_min
= t
->physical_block_size
;
609 /* Optimal I/O a multiple of the physical block size? */
610 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
616 t
->raid_partial_stripes_expensive
=
617 max(t
->raid_partial_stripes_expensive
,
618 b
->raid_partial_stripes_expensive
);
620 /* Find lowest common alignment_offset */
621 t
->alignment_offset
= lcm(t
->alignment_offset
, alignment
)
622 % max(t
->physical_block_size
, t
->io_min
);
624 /* Verify that new alignment_offset is on a logical block boundary */
625 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
630 /* Discard alignment and granularity */
631 if (b
->discard_granularity
) {
632 alignment
= queue_limit_discard_alignment(b
, start
);
634 if (t
->discard_granularity
!= 0 &&
635 t
->discard_alignment
!= alignment
) {
636 top
= t
->discard_granularity
+ t
->discard_alignment
;
637 bottom
= b
->discard_granularity
+ alignment
;
639 /* Verify that top and bottom intervals line up */
640 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
641 t
->discard_misaligned
= 1;
644 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
645 b
->max_discard_sectors
);
646 t
->discard_granularity
= max(t
->discard_granularity
,
647 b
->discard_granularity
);
648 t
->discard_alignment
= lcm(t
->discard_alignment
, alignment
) %
649 t
->discard_granularity
;
654 EXPORT_SYMBOL(blk_stack_limits
);
657 * bdev_stack_limits - adjust queue limits for stacked drivers
658 * @t: the stacking driver limits (top device)
659 * @bdev: the component block_device (bottom)
660 * @start: first data sector within component device
663 * Merges queue limits for a top device and a block_device. Returns
664 * 0 if alignment didn't change. Returns -1 if adding the bottom
665 * device caused misalignment.
667 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
670 struct request_queue
*bq
= bdev_get_queue(bdev
);
672 start
+= get_start_sect(bdev
);
674 return blk_stack_limits(t
, &bq
->limits
, start
);
676 EXPORT_SYMBOL(bdev_stack_limits
);
679 * disk_stack_limits - adjust queue limits for stacked drivers
680 * @disk: MD/DM gendisk (top)
681 * @bdev: the underlying block device (bottom)
682 * @offset: offset to beginning of data within component device
685 * Merges the limits for a top level gendisk and a bottom level
688 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
691 struct request_queue
*t
= disk
->queue
;
693 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
694 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
696 disk_name(disk
, 0, top
);
697 bdevname(bdev
, bottom
);
699 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
703 EXPORT_SYMBOL(disk_stack_limits
);
706 * blk_queue_dma_pad - set pad mask
707 * @q: the request queue for the device
712 * Appending pad buffer to a request modifies the last entry of a
713 * scatter list such that it includes the pad buffer.
715 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
717 q
->dma_pad_mask
= mask
;
719 EXPORT_SYMBOL(blk_queue_dma_pad
);
722 * blk_queue_update_dma_pad - update pad mask
723 * @q: the request queue for the device
726 * Update dma pad mask.
728 * Appending pad buffer to a request modifies the last entry of a
729 * scatter list such that it includes the pad buffer.
731 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
733 if (mask
> q
->dma_pad_mask
)
734 q
->dma_pad_mask
= mask
;
736 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
739 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
740 * @q: the request queue for the device
741 * @dma_drain_needed: fn which returns non-zero if drain is necessary
742 * @buf: physically contiguous buffer
743 * @size: size of the buffer in bytes
745 * Some devices have excess DMA problems and can't simply discard (or
746 * zero fill) the unwanted piece of the transfer. They have to have a
747 * real area of memory to transfer it into. The use case for this is
748 * ATAPI devices in DMA mode. If the packet command causes a transfer
749 * bigger than the transfer size some HBAs will lock up if there
750 * aren't DMA elements to contain the excess transfer. What this API
751 * does is adjust the queue so that the buf is always appended
752 * silently to the scatterlist.
754 * Note: This routine adjusts max_hw_segments to make room for appending
755 * the drain buffer. If you call blk_queue_max_segments() after calling
756 * this routine, you must set the limit to one fewer than your device
757 * can support otherwise there won't be room for the drain buffer.
759 int blk_queue_dma_drain(struct request_queue
*q
,
760 dma_drain_needed_fn
*dma_drain_needed
,
761 void *buf
, unsigned int size
)
763 if (queue_max_segments(q
) < 2)
765 /* make room for appending the drain */
766 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
767 q
->dma_drain_needed
= dma_drain_needed
;
768 q
->dma_drain_buffer
= buf
;
769 q
->dma_drain_size
= size
;
773 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
776 * blk_queue_segment_boundary - set boundary rules for segment merging
777 * @q: the request queue for the device
778 * @mask: the memory boundary mask
780 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
782 if (mask
< PAGE_CACHE_SIZE
- 1) {
783 mask
= PAGE_CACHE_SIZE
- 1;
784 printk(KERN_INFO
"%s: set to minimum %lx\n",
788 q
->limits
.seg_boundary_mask
= mask
;
790 EXPORT_SYMBOL(blk_queue_segment_boundary
);
793 * blk_queue_dma_alignment - set dma length and memory alignment
794 * @q: the request queue for the device
795 * @mask: alignment mask
798 * set required memory and length alignment for direct dma transactions.
799 * this is used when building direct io requests for the queue.
802 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
804 q
->dma_alignment
= mask
;
806 EXPORT_SYMBOL(blk_queue_dma_alignment
);
809 * blk_queue_update_dma_alignment - update dma length and memory alignment
810 * @q: the request queue for the device
811 * @mask: alignment mask
814 * update required memory and length alignment for direct dma transactions.
815 * If the requested alignment is larger than the current alignment, then
816 * the current queue alignment is updated to the new value, otherwise it
817 * is left alone. The design of this is to allow multiple objects
818 * (driver, device, transport etc) to set their respective
819 * alignments without having them interfere.
822 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
824 BUG_ON(mask
> PAGE_SIZE
);
826 if (mask
> q
->dma_alignment
)
827 q
->dma_alignment
= mask
;
829 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
832 * blk_queue_flush - configure queue's cache flush capability
833 * @q: the request queue for the device
834 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
836 * Tell block layer cache flush capability of @q. If it supports
837 * flushing, REQ_FLUSH should be set. If it supports bypassing
838 * write cache for individual writes, REQ_FUA should be set.
840 void blk_queue_flush(struct request_queue
*q
, unsigned int flush
)
842 WARN_ON_ONCE(flush
& ~(REQ_FLUSH
| REQ_FUA
));
844 if (WARN_ON_ONCE(!(flush
& REQ_FLUSH
) && (flush
& REQ_FUA
)))
847 q
->flush_flags
= flush
& (REQ_FLUSH
| REQ_FUA
);
849 EXPORT_SYMBOL_GPL(blk_queue_flush
);
851 void blk_queue_flush_queueable(struct request_queue
*q
, bool queueable
)
853 q
->flush_not_queueable
= !queueable
;
855 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable
);
857 static int __init
blk_settings_init(void)
859 blk_max_low_pfn
= max_low_pfn
- 1;
860 blk_max_pfn
= max_pfn
- 1;
863 subsys_initcall(blk_settings_init
);