Btrfs: fix list transaction->pending_ordered corruption
[linux/fpc-iii.git] / fs / btrfs / transaction.c
blob240019f36b2ab21f94470545446d1d9fb9737667
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 while (!list_empty(&transaction->pending_chunks)) {
68 struct extent_map *em;
70 em = list_first_entry(&transaction->pending_chunks,
71 struct extent_map, list);
72 list_del_init(&em->list);
73 free_extent_map(em);
75 kmem_cache_free(btrfs_transaction_cachep, transaction);
79 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
80 struct btrfs_fs_info *fs_info)
82 struct btrfs_root *root, *tmp;
84 down_write(&fs_info->commit_root_sem);
85 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
86 dirty_list) {
87 list_del_init(&root->dirty_list);
88 free_extent_buffer(root->commit_root);
89 root->commit_root = btrfs_root_node(root);
90 if (is_fstree(root->objectid))
91 btrfs_unpin_free_ino(root);
93 up_write(&fs_info->commit_root_sem);
96 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
97 unsigned int type)
99 if (type & TRANS_EXTWRITERS)
100 atomic_inc(&trans->num_extwriters);
103 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
104 unsigned int type)
106 if (type & TRANS_EXTWRITERS)
107 atomic_dec(&trans->num_extwriters);
110 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
111 unsigned int type)
113 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
116 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
118 return atomic_read(&trans->num_extwriters);
122 * either allocate a new transaction or hop into the existing one
124 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
126 struct btrfs_transaction *cur_trans;
127 struct btrfs_fs_info *fs_info = root->fs_info;
129 spin_lock(&fs_info->trans_lock);
130 loop:
131 /* The file system has been taken offline. No new transactions. */
132 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
133 spin_unlock(&fs_info->trans_lock);
134 return -EROFS;
137 cur_trans = fs_info->running_transaction;
138 if (cur_trans) {
139 if (cur_trans->aborted) {
140 spin_unlock(&fs_info->trans_lock);
141 return cur_trans->aborted;
143 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
144 spin_unlock(&fs_info->trans_lock);
145 return -EBUSY;
147 atomic_inc(&cur_trans->use_count);
148 atomic_inc(&cur_trans->num_writers);
149 extwriter_counter_inc(cur_trans, type);
150 spin_unlock(&fs_info->trans_lock);
151 return 0;
153 spin_unlock(&fs_info->trans_lock);
156 * If we are ATTACH, we just want to catch the current transaction,
157 * and commit it. If there is no transaction, just return ENOENT.
159 if (type == TRANS_ATTACH)
160 return -ENOENT;
163 * JOIN_NOLOCK only happens during the transaction commit, so
164 * it is impossible that ->running_transaction is NULL
166 BUG_ON(type == TRANS_JOIN_NOLOCK);
168 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
169 if (!cur_trans)
170 return -ENOMEM;
172 spin_lock(&fs_info->trans_lock);
173 if (fs_info->running_transaction) {
175 * someone started a transaction after we unlocked. Make sure
176 * to redo the checks above
178 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
179 goto loop;
180 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
181 spin_unlock(&fs_info->trans_lock);
182 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
183 return -EROFS;
186 atomic_set(&cur_trans->num_writers, 1);
187 extwriter_counter_init(cur_trans, type);
188 init_waitqueue_head(&cur_trans->writer_wait);
189 init_waitqueue_head(&cur_trans->commit_wait);
190 cur_trans->state = TRANS_STATE_RUNNING;
192 * One for this trans handle, one so it will live on until we
193 * commit the transaction.
195 atomic_set(&cur_trans->use_count, 2);
196 cur_trans->start_time = get_seconds();
198 cur_trans->delayed_refs.href_root = RB_ROOT;
199 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
200 cur_trans->delayed_refs.num_heads_ready = 0;
201 cur_trans->delayed_refs.num_heads = 0;
202 cur_trans->delayed_refs.flushing = 0;
203 cur_trans->delayed_refs.run_delayed_start = 0;
206 * although the tree mod log is per file system and not per transaction,
207 * the log must never go across transaction boundaries.
209 smp_mb();
210 if (!list_empty(&fs_info->tree_mod_seq_list))
211 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
212 "creating a fresh transaction\n");
213 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
214 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
215 "creating a fresh transaction\n");
216 atomic64_set(&fs_info->tree_mod_seq, 0);
218 spin_lock_init(&cur_trans->delayed_refs.lock);
220 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
221 INIT_LIST_HEAD(&cur_trans->pending_chunks);
222 INIT_LIST_HEAD(&cur_trans->switch_commits);
223 INIT_LIST_HEAD(&cur_trans->pending_ordered);
224 list_add_tail(&cur_trans->list, &fs_info->trans_list);
225 extent_io_tree_init(&cur_trans->dirty_pages,
226 fs_info->btree_inode->i_mapping);
227 fs_info->generation++;
228 cur_trans->transid = fs_info->generation;
229 fs_info->running_transaction = cur_trans;
230 cur_trans->aborted = 0;
231 spin_unlock(&fs_info->trans_lock);
233 return 0;
237 * this does all the record keeping required to make sure that a reference
238 * counted root is properly recorded in a given transaction. This is required
239 * to make sure the old root from before we joined the transaction is deleted
240 * when the transaction commits
242 static int record_root_in_trans(struct btrfs_trans_handle *trans,
243 struct btrfs_root *root)
245 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
246 root->last_trans < trans->transid) {
247 WARN_ON(root == root->fs_info->extent_root);
248 WARN_ON(root->commit_root != root->node);
251 * see below for IN_TRANS_SETUP usage rules
252 * we have the reloc mutex held now, so there
253 * is only one writer in this function
255 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
257 /* make sure readers find IN_TRANS_SETUP before
258 * they find our root->last_trans update
260 smp_wmb();
262 spin_lock(&root->fs_info->fs_roots_radix_lock);
263 if (root->last_trans == trans->transid) {
264 spin_unlock(&root->fs_info->fs_roots_radix_lock);
265 return 0;
267 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
268 (unsigned long)root->root_key.objectid,
269 BTRFS_ROOT_TRANS_TAG);
270 spin_unlock(&root->fs_info->fs_roots_radix_lock);
271 root->last_trans = trans->transid;
273 /* this is pretty tricky. We don't want to
274 * take the relocation lock in btrfs_record_root_in_trans
275 * unless we're really doing the first setup for this root in
276 * this transaction.
278 * Normally we'd use root->last_trans as a flag to decide
279 * if we want to take the expensive mutex.
281 * But, we have to set root->last_trans before we
282 * init the relocation root, otherwise, we trip over warnings
283 * in ctree.c. The solution used here is to flag ourselves
284 * with root IN_TRANS_SETUP. When this is 1, we're still
285 * fixing up the reloc trees and everyone must wait.
287 * When this is zero, they can trust root->last_trans and fly
288 * through btrfs_record_root_in_trans without having to take the
289 * lock. smp_wmb() makes sure that all the writes above are
290 * done before we pop in the zero below
292 btrfs_init_reloc_root(trans, root);
293 smp_mb__before_atomic();
294 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
296 return 0;
300 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
301 struct btrfs_root *root)
303 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
304 return 0;
307 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
308 * and barriers
310 smp_rmb();
311 if (root->last_trans == trans->transid &&
312 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
313 return 0;
315 mutex_lock(&root->fs_info->reloc_mutex);
316 record_root_in_trans(trans, root);
317 mutex_unlock(&root->fs_info->reloc_mutex);
319 return 0;
322 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
324 return (trans->state >= TRANS_STATE_BLOCKED &&
325 trans->state < TRANS_STATE_UNBLOCKED &&
326 !trans->aborted);
329 /* wait for commit against the current transaction to become unblocked
330 * when this is done, it is safe to start a new transaction, but the current
331 * transaction might not be fully on disk.
333 static void wait_current_trans(struct btrfs_root *root)
335 struct btrfs_transaction *cur_trans;
337 spin_lock(&root->fs_info->trans_lock);
338 cur_trans = root->fs_info->running_transaction;
339 if (cur_trans && is_transaction_blocked(cur_trans)) {
340 atomic_inc(&cur_trans->use_count);
341 spin_unlock(&root->fs_info->trans_lock);
343 wait_event(root->fs_info->transaction_wait,
344 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
345 cur_trans->aborted);
346 btrfs_put_transaction(cur_trans);
347 } else {
348 spin_unlock(&root->fs_info->trans_lock);
352 static int may_wait_transaction(struct btrfs_root *root, int type)
354 if (root->fs_info->log_root_recovering)
355 return 0;
357 if (type == TRANS_USERSPACE)
358 return 1;
360 if (type == TRANS_START &&
361 !atomic_read(&root->fs_info->open_ioctl_trans))
362 return 1;
364 return 0;
367 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
369 if (!root->fs_info->reloc_ctl ||
370 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
371 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
372 root->reloc_root)
373 return false;
375 return true;
378 static struct btrfs_trans_handle *
379 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
380 enum btrfs_reserve_flush_enum flush)
382 struct btrfs_trans_handle *h;
383 struct btrfs_transaction *cur_trans;
384 u64 num_bytes = 0;
385 u64 qgroup_reserved = 0;
386 bool reloc_reserved = false;
387 int ret;
389 /* Send isn't supposed to start transactions. */
390 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
392 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
393 return ERR_PTR(-EROFS);
395 if (current->journal_info) {
396 WARN_ON(type & TRANS_EXTWRITERS);
397 h = current->journal_info;
398 h->use_count++;
399 WARN_ON(h->use_count > 2);
400 h->orig_rsv = h->block_rsv;
401 h->block_rsv = NULL;
402 goto got_it;
406 * Do the reservation before we join the transaction so we can do all
407 * the appropriate flushing if need be.
409 if (num_items > 0 && root != root->fs_info->chunk_root) {
410 if (root->fs_info->quota_enabled &&
411 is_fstree(root->root_key.objectid)) {
412 qgroup_reserved = num_items * root->nodesize;
413 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
414 if (ret)
415 return ERR_PTR(ret);
418 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
420 * Do the reservation for the relocation root creation
422 if (need_reserve_reloc_root(root)) {
423 num_bytes += root->nodesize;
424 reloc_reserved = true;
427 ret = btrfs_block_rsv_add(root,
428 &root->fs_info->trans_block_rsv,
429 num_bytes, flush);
430 if (ret)
431 goto reserve_fail;
433 again:
434 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
435 if (!h) {
436 ret = -ENOMEM;
437 goto alloc_fail;
441 * If we are JOIN_NOLOCK we're already committing a transaction and
442 * waiting on this guy, so we don't need to do the sb_start_intwrite
443 * because we're already holding a ref. We need this because we could
444 * have raced in and did an fsync() on a file which can kick a commit
445 * and then we deadlock with somebody doing a freeze.
447 * If we are ATTACH, it means we just want to catch the current
448 * transaction and commit it, so we needn't do sb_start_intwrite().
450 if (type & __TRANS_FREEZABLE)
451 sb_start_intwrite(root->fs_info->sb);
453 if (may_wait_transaction(root, type))
454 wait_current_trans(root);
456 do {
457 ret = join_transaction(root, type);
458 if (ret == -EBUSY) {
459 wait_current_trans(root);
460 if (unlikely(type == TRANS_ATTACH))
461 ret = -ENOENT;
463 } while (ret == -EBUSY);
465 if (ret < 0) {
466 /* We must get the transaction if we are JOIN_NOLOCK. */
467 BUG_ON(type == TRANS_JOIN_NOLOCK);
468 goto join_fail;
471 cur_trans = root->fs_info->running_transaction;
473 h->transid = cur_trans->transid;
474 h->transaction = cur_trans;
475 h->blocks_used = 0;
476 h->bytes_reserved = 0;
477 h->root = root;
478 h->delayed_ref_updates = 0;
479 h->use_count = 1;
480 h->adding_csums = 0;
481 h->block_rsv = NULL;
482 h->orig_rsv = NULL;
483 h->aborted = 0;
484 h->qgroup_reserved = 0;
485 h->delayed_ref_elem.seq = 0;
486 h->type = type;
487 h->allocating_chunk = false;
488 h->reloc_reserved = false;
489 h->sync = false;
490 INIT_LIST_HEAD(&h->qgroup_ref_list);
491 INIT_LIST_HEAD(&h->new_bgs);
492 INIT_LIST_HEAD(&h->ordered);
494 smp_mb();
495 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
496 may_wait_transaction(root, type)) {
497 current->journal_info = h;
498 btrfs_commit_transaction(h, root);
499 goto again;
502 if (num_bytes) {
503 trace_btrfs_space_reservation(root->fs_info, "transaction",
504 h->transid, num_bytes, 1);
505 h->block_rsv = &root->fs_info->trans_block_rsv;
506 h->bytes_reserved = num_bytes;
507 h->reloc_reserved = reloc_reserved;
509 h->qgroup_reserved = qgroup_reserved;
511 got_it:
512 btrfs_record_root_in_trans(h, root);
514 if (!current->journal_info && type != TRANS_USERSPACE)
515 current->journal_info = h;
516 return h;
518 join_fail:
519 if (type & __TRANS_FREEZABLE)
520 sb_end_intwrite(root->fs_info->sb);
521 kmem_cache_free(btrfs_trans_handle_cachep, h);
522 alloc_fail:
523 if (num_bytes)
524 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
525 num_bytes);
526 reserve_fail:
527 if (qgroup_reserved)
528 btrfs_qgroup_free(root, qgroup_reserved);
529 return ERR_PTR(ret);
532 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
533 int num_items)
535 return start_transaction(root, num_items, TRANS_START,
536 BTRFS_RESERVE_FLUSH_ALL);
539 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
540 struct btrfs_root *root, int num_items)
542 return start_transaction(root, num_items, TRANS_START,
543 BTRFS_RESERVE_FLUSH_LIMIT);
546 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
548 return start_transaction(root, 0, TRANS_JOIN, 0);
551 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
553 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
556 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
558 return start_transaction(root, 0, TRANS_USERSPACE, 0);
562 * btrfs_attach_transaction() - catch the running transaction
564 * It is used when we want to commit the current the transaction, but
565 * don't want to start a new one.
567 * Note: If this function return -ENOENT, it just means there is no
568 * running transaction. But it is possible that the inactive transaction
569 * is still in the memory, not fully on disk. If you hope there is no
570 * inactive transaction in the fs when -ENOENT is returned, you should
571 * invoke
572 * btrfs_attach_transaction_barrier()
574 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
576 return start_transaction(root, 0, TRANS_ATTACH, 0);
580 * btrfs_attach_transaction_barrier() - catch the running transaction
582 * It is similar to the above function, the differentia is this one
583 * will wait for all the inactive transactions until they fully
584 * complete.
586 struct btrfs_trans_handle *
587 btrfs_attach_transaction_barrier(struct btrfs_root *root)
589 struct btrfs_trans_handle *trans;
591 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
592 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
593 btrfs_wait_for_commit(root, 0);
595 return trans;
598 /* wait for a transaction commit to be fully complete */
599 static noinline void wait_for_commit(struct btrfs_root *root,
600 struct btrfs_transaction *commit)
602 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
605 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
607 struct btrfs_transaction *cur_trans = NULL, *t;
608 int ret = 0;
610 if (transid) {
611 if (transid <= root->fs_info->last_trans_committed)
612 goto out;
614 /* find specified transaction */
615 spin_lock(&root->fs_info->trans_lock);
616 list_for_each_entry(t, &root->fs_info->trans_list, list) {
617 if (t->transid == transid) {
618 cur_trans = t;
619 atomic_inc(&cur_trans->use_count);
620 ret = 0;
621 break;
623 if (t->transid > transid) {
624 ret = 0;
625 break;
628 spin_unlock(&root->fs_info->trans_lock);
631 * The specified transaction doesn't exist, or we
632 * raced with btrfs_commit_transaction
634 if (!cur_trans) {
635 if (transid > root->fs_info->last_trans_committed)
636 ret = -EINVAL;
637 goto out;
639 } else {
640 /* find newest transaction that is committing | committed */
641 spin_lock(&root->fs_info->trans_lock);
642 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
643 list) {
644 if (t->state >= TRANS_STATE_COMMIT_START) {
645 if (t->state == TRANS_STATE_COMPLETED)
646 break;
647 cur_trans = t;
648 atomic_inc(&cur_trans->use_count);
649 break;
652 spin_unlock(&root->fs_info->trans_lock);
653 if (!cur_trans)
654 goto out; /* nothing committing|committed */
657 wait_for_commit(root, cur_trans);
658 btrfs_put_transaction(cur_trans);
659 out:
660 return ret;
663 void btrfs_throttle(struct btrfs_root *root)
665 if (!atomic_read(&root->fs_info->open_ioctl_trans))
666 wait_current_trans(root);
669 static int should_end_transaction(struct btrfs_trans_handle *trans,
670 struct btrfs_root *root)
672 if (root->fs_info->global_block_rsv.space_info->full &&
673 btrfs_check_space_for_delayed_refs(trans, root))
674 return 1;
676 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
679 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root)
682 struct btrfs_transaction *cur_trans = trans->transaction;
683 int updates;
684 int err;
686 smp_mb();
687 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
688 cur_trans->delayed_refs.flushing)
689 return 1;
691 updates = trans->delayed_ref_updates;
692 trans->delayed_ref_updates = 0;
693 if (updates) {
694 err = btrfs_run_delayed_refs(trans, root, updates);
695 if (err) /* Error code will also eval true */
696 return err;
699 return should_end_transaction(trans, root);
702 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
703 struct btrfs_root *root, int throttle)
705 struct btrfs_transaction *cur_trans = trans->transaction;
706 struct btrfs_fs_info *info = root->fs_info;
707 unsigned long cur = trans->delayed_ref_updates;
708 int lock = (trans->type != TRANS_JOIN_NOLOCK);
709 int err = 0;
710 int must_run_delayed_refs = 0;
712 if (trans->use_count > 1) {
713 trans->use_count--;
714 trans->block_rsv = trans->orig_rsv;
715 return 0;
718 btrfs_trans_release_metadata(trans, root);
719 trans->block_rsv = NULL;
721 if (!list_empty(&trans->new_bgs))
722 btrfs_create_pending_block_groups(trans, root);
724 if (!list_empty(&trans->ordered)) {
725 spin_lock(&info->trans_lock);
726 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
727 spin_unlock(&info->trans_lock);
730 trans->delayed_ref_updates = 0;
731 if (!trans->sync) {
732 must_run_delayed_refs =
733 btrfs_should_throttle_delayed_refs(trans, root);
734 cur = max_t(unsigned long, cur, 32);
737 * don't make the caller wait if they are from a NOLOCK
738 * or ATTACH transaction, it will deadlock with commit
740 if (must_run_delayed_refs == 1 &&
741 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
742 must_run_delayed_refs = 2;
745 if (trans->qgroup_reserved) {
747 * the same root has to be passed here between start_transaction
748 * and end_transaction. Subvolume quota depends on this.
750 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
751 trans->qgroup_reserved = 0;
754 btrfs_trans_release_metadata(trans, root);
755 trans->block_rsv = NULL;
757 if (!list_empty(&trans->new_bgs))
758 btrfs_create_pending_block_groups(trans, root);
760 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
761 should_end_transaction(trans, root) &&
762 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
763 spin_lock(&info->trans_lock);
764 if (cur_trans->state == TRANS_STATE_RUNNING)
765 cur_trans->state = TRANS_STATE_BLOCKED;
766 spin_unlock(&info->trans_lock);
769 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
770 if (throttle)
771 return btrfs_commit_transaction(trans, root);
772 else
773 wake_up_process(info->transaction_kthread);
776 if (trans->type & __TRANS_FREEZABLE)
777 sb_end_intwrite(root->fs_info->sb);
779 WARN_ON(cur_trans != info->running_transaction);
780 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
781 atomic_dec(&cur_trans->num_writers);
782 extwriter_counter_dec(cur_trans, trans->type);
784 smp_mb();
785 if (waitqueue_active(&cur_trans->writer_wait))
786 wake_up(&cur_trans->writer_wait);
787 btrfs_put_transaction(cur_trans);
789 if (current->journal_info == trans)
790 current->journal_info = NULL;
792 if (throttle)
793 btrfs_run_delayed_iputs(root);
795 if (trans->aborted ||
796 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
797 wake_up_process(info->transaction_kthread);
798 err = -EIO;
800 assert_qgroups_uptodate(trans);
802 kmem_cache_free(btrfs_trans_handle_cachep, trans);
803 if (must_run_delayed_refs) {
804 btrfs_async_run_delayed_refs(root, cur,
805 must_run_delayed_refs == 1);
807 return err;
810 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
811 struct btrfs_root *root)
813 return __btrfs_end_transaction(trans, root, 0);
816 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
817 struct btrfs_root *root)
819 return __btrfs_end_transaction(trans, root, 1);
823 * when btree blocks are allocated, they have some corresponding bits set for
824 * them in one of two extent_io trees. This is used to make sure all of
825 * those extents are sent to disk but does not wait on them
827 int btrfs_write_marked_extents(struct btrfs_root *root,
828 struct extent_io_tree *dirty_pages, int mark)
830 int err = 0;
831 int werr = 0;
832 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
833 struct extent_state *cached_state = NULL;
834 u64 start = 0;
835 u64 end;
837 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
838 mark, &cached_state)) {
839 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
840 mark, &cached_state, GFP_NOFS);
841 cached_state = NULL;
842 err = filemap_fdatawrite_range(mapping, start, end);
843 if (err)
844 werr = err;
845 cond_resched();
846 start = end + 1;
848 if (err)
849 werr = err;
850 return werr;
854 * when btree blocks are allocated, they have some corresponding bits set for
855 * them in one of two extent_io trees. This is used to make sure all of
856 * those extents are on disk for transaction or log commit. We wait
857 * on all the pages and clear them from the dirty pages state tree
859 int btrfs_wait_marked_extents(struct btrfs_root *root,
860 struct extent_io_tree *dirty_pages, int mark)
862 int err = 0;
863 int werr = 0;
864 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
865 struct extent_state *cached_state = NULL;
866 u64 start = 0;
867 u64 end;
868 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
869 bool errors = false;
871 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
872 EXTENT_NEED_WAIT, &cached_state)) {
873 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
874 0, 0, &cached_state, GFP_NOFS);
875 err = filemap_fdatawait_range(mapping, start, end);
876 if (err)
877 werr = err;
878 cond_resched();
879 start = end + 1;
881 if (err)
882 werr = err;
884 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
885 if ((mark & EXTENT_DIRTY) &&
886 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
887 &btree_ino->runtime_flags))
888 errors = true;
890 if ((mark & EXTENT_NEW) &&
891 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
892 &btree_ino->runtime_flags))
893 errors = true;
894 } else {
895 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
896 &btree_ino->runtime_flags))
897 errors = true;
900 if (errors && !werr)
901 werr = -EIO;
903 return werr;
907 * when btree blocks are allocated, they have some corresponding bits set for
908 * them in one of two extent_io trees. This is used to make sure all of
909 * those extents are on disk for transaction or log commit
911 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
912 struct extent_io_tree *dirty_pages, int mark)
914 int ret;
915 int ret2;
916 struct blk_plug plug;
918 blk_start_plug(&plug);
919 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
920 blk_finish_plug(&plug);
921 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
923 if (ret)
924 return ret;
925 if (ret2)
926 return ret2;
927 return 0;
930 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
931 struct btrfs_root *root)
933 if (!trans || !trans->transaction) {
934 struct inode *btree_inode;
935 btree_inode = root->fs_info->btree_inode;
936 return filemap_write_and_wait(btree_inode->i_mapping);
938 return btrfs_write_and_wait_marked_extents(root,
939 &trans->transaction->dirty_pages,
940 EXTENT_DIRTY);
944 * this is used to update the root pointer in the tree of tree roots.
946 * But, in the case of the extent allocation tree, updating the root
947 * pointer may allocate blocks which may change the root of the extent
948 * allocation tree.
950 * So, this loops and repeats and makes sure the cowonly root didn't
951 * change while the root pointer was being updated in the metadata.
953 static int update_cowonly_root(struct btrfs_trans_handle *trans,
954 struct btrfs_root *root)
956 int ret;
957 u64 old_root_bytenr;
958 u64 old_root_used;
959 struct btrfs_root *tree_root = root->fs_info->tree_root;
961 old_root_used = btrfs_root_used(&root->root_item);
962 btrfs_write_dirty_block_groups(trans, root);
964 while (1) {
965 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
966 if (old_root_bytenr == root->node->start &&
967 old_root_used == btrfs_root_used(&root->root_item))
968 break;
970 btrfs_set_root_node(&root->root_item, root->node);
971 ret = btrfs_update_root(trans, tree_root,
972 &root->root_key,
973 &root->root_item);
974 if (ret)
975 return ret;
977 old_root_used = btrfs_root_used(&root->root_item);
978 ret = btrfs_write_dirty_block_groups(trans, root);
979 if (ret)
980 return ret;
983 return 0;
987 * update all the cowonly tree roots on disk
989 * The error handling in this function may not be obvious. Any of the
990 * failures will cause the file system to go offline. We still need
991 * to clean up the delayed refs.
993 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
994 struct btrfs_root *root)
996 struct btrfs_fs_info *fs_info = root->fs_info;
997 struct list_head *next;
998 struct extent_buffer *eb;
999 int ret;
1001 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1002 if (ret)
1003 return ret;
1005 eb = btrfs_lock_root_node(fs_info->tree_root);
1006 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1007 0, &eb);
1008 btrfs_tree_unlock(eb);
1009 free_extent_buffer(eb);
1011 if (ret)
1012 return ret;
1014 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1015 if (ret)
1016 return ret;
1018 ret = btrfs_run_dev_stats(trans, root->fs_info);
1019 if (ret)
1020 return ret;
1021 ret = btrfs_run_dev_replace(trans, root->fs_info);
1022 if (ret)
1023 return ret;
1024 ret = btrfs_run_qgroups(trans, root->fs_info);
1025 if (ret)
1026 return ret;
1028 /* run_qgroups might have added some more refs */
1029 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1030 if (ret)
1031 return ret;
1033 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1034 next = fs_info->dirty_cowonly_roots.next;
1035 list_del_init(next);
1036 root = list_entry(next, struct btrfs_root, dirty_list);
1038 if (root != fs_info->extent_root)
1039 list_add_tail(&root->dirty_list,
1040 &trans->transaction->switch_commits);
1041 ret = update_cowonly_root(trans, root);
1042 if (ret)
1043 return ret;
1046 list_add_tail(&fs_info->extent_root->dirty_list,
1047 &trans->transaction->switch_commits);
1048 btrfs_after_dev_replace_commit(fs_info);
1050 return 0;
1054 * dead roots are old snapshots that need to be deleted. This allocates
1055 * a dirty root struct and adds it into the list of dead roots that need to
1056 * be deleted
1058 void btrfs_add_dead_root(struct btrfs_root *root)
1060 spin_lock(&root->fs_info->trans_lock);
1061 if (list_empty(&root->root_list))
1062 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1063 spin_unlock(&root->fs_info->trans_lock);
1067 * update all the cowonly tree roots on disk
1069 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root)
1072 struct btrfs_root *gang[8];
1073 struct btrfs_fs_info *fs_info = root->fs_info;
1074 int i;
1075 int ret;
1076 int err = 0;
1078 spin_lock(&fs_info->fs_roots_radix_lock);
1079 while (1) {
1080 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1081 (void **)gang, 0,
1082 ARRAY_SIZE(gang),
1083 BTRFS_ROOT_TRANS_TAG);
1084 if (ret == 0)
1085 break;
1086 for (i = 0; i < ret; i++) {
1087 root = gang[i];
1088 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1089 (unsigned long)root->root_key.objectid,
1090 BTRFS_ROOT_TRANS_TAG);
1091 spin_unlock(&fs_info->fs_roots_radix_lock);
1093 btrfs_free_log(trans, root);
1094 btrfs_update_reloc_root(trans, root);
1095 btrfs_orphan_commit_root(trans, root);
1097 btrfs_save_ino_cache(root, trans);
1099 /* see comments in should_cow_block() */
1100 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1101 smp_mb__after_atomic();
1103 if (root->commit_root != root->node) {
1104 list_add_tail(&root->dirty_list,
1105 &trans->transaction->switch_commits);
1106 btrfs_set_root_node(&root->root_item,
1107 root->node);
1110 err = btrfs_update_root(trans, fs_info->tree_root,
1111 &root->root_key,
1112 &root->root_item);
1113 spin_lock(&fs_info->fs_roots_radix_lock);
1114 if (err)
1115 break;
1118 spin_unlock(&fs_info->fs_roots_radix_lock);
1119 return err;
1123 * defrag a given btree.
1124 * Every leaf in the btree is read and defragged.
1126 int btrfs_defrag_root(struct btrfs_root *root)
1128 struct btrfs_fs_info *info = root->fs_info;
1129 struct btrfs_trans_handle *trans;
1130 int ret;
1132 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1133 return 0;
1135 while (1) {
1136 trans = btrfs_start_transaction(root, 0);
1137 if (IS_ERR(trans))
1138 return PTR_ERR(trans);
1140 ret = btrfs_defrag_leaves(trans, root);
1142 btrfs_end_transaction(trans, root);
1143 btrfs_btree_balance_dirty(info->tree_root);
1144 cond_resched();
1146 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1147 break;
1149 if (btrfs_defrag_cancelled(root->fs_info)) {
1150 pr_debug("BTRFS: defrag_root cancelled\n");
1151 ret = -EAGAIN;
1152 break;
1155 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1156 return ret;
1160 * new snapshots need to be created at a very specific time in the
1161 * transaction commit. This does the actual creation.
1163 * Note:
1164 * If the error which may affect the commitment of the current transaction
1165 * happens, we should return the error number. If the error which just affect
1166 * the creation of the pending snapshots, just return 0.
1168 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1169 struct btrfs_fs_info *fs_info,
1170 struct btrfs_pending_snapshot *pending)
1172 struct btrfs_key key;
1173 struct btrfs_root_item *new_root_item;
1174 struct btrfs_root *tree_root = fs_info->tree_root;
1175 struct btrfs_root *root = pending->root;
1176 struct btrfs_root *parent_root;
1177 struct btrfs_block_rsv *rsv;
1178 struct inode *parent_inode;
1179 struct btrfs_path *path;
1180 struct btrfs_dir_item *dir_item;
1181 struct dentry *dentry;
1182 struct extent_buffer *tmp;
1183 struct extent_buffer *old;
1184 struct timespec cur_time = CURRENT_TIME;
1185 int ret = 0;
1186 u64 to_reserve = 0;
1187 u64 index = 0;
1188 u64 objectid;
1189 u64 root_flags;
1190 uuid_le new_uuid;
1192 path = btrfs_alloc_path();
1193 if (!path) {
1194 pending->error = -ENOMEM;
1195 return 0;
1198 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1199 if (!new_root_item) {
1200 pending->error = -ENOMEM;
1201 goto root_item_alloc_fail;
1204 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1205 if (pending->error)
1206 goto no_free_objectid;
1208 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1210 if (to_reserve > 0) {
1211 pending->error = btrfs_block_rsv_add(root,
1212 &pending->block_rsv,
1213 to_reserve,
1214 BTRFS_RESERVE_NO_FLUSH);
1215 if (pending->error)
1216 goto no_free_objectid;
1219 key.objectid = objectid;
1220 key.offset = (u64)-1;
1221 key.type = BTRFS_ROOT_ITEM_KEY;
1223 rsv = trans->block_rsv;
1224 trans->block_rsv = &pending->block_rsv;
1225 trans->bytes_reserved = trans->block_rsv->reserved;
1227 dentry = pending->dentry;
1228 parent_inode = pending->dir;
1229 parent_root = BTRFS_I(parent_inode)->root;
1230 record_root_in_trans(trans, parent_root);
1233 * insert the directory item
1235 ret = btrfs_set_inode_index(parent_inode, &index);
1236 BUG_ON(ret); /* -ENOMEM */
1238 /* check if there is a file/dir which has the same name. */
1239 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1240 btrfs_ino(parent_inode),
1241 dentry->d_name.name,
1242 dentry->d_name.len, 0);
1243 if (dir_item != NULL && !IS_ERR(dir_item)) {
1244 pending->error = -EEXIST;
1245 goto dir_item_existed;
1246 } else if (IS_ERR(dir_item)) {
1247 ret = PTR_ERR(dir_item);
1248 btrfs_abort_transaction(trans, root, ret);
1249 goto fail;
1251 btrfs_release_path(path);
1254 * pull in the delayed directory update
1255 * and the delayed inode item
1256 * otherwise we corrupt the FS during
1257 * snapshot
1259 ret = btrfs_run_delayed_items(trans, root);
1260 if (ret) { /* Transaction aborted */
1261 btrfs_abort_transaction(trans, root, ret);
1262 goto fail;
1265 record_root_in_trans(trans, root);
1266 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1267 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1268 btrfs_check_and_init_root_item(new_root_item);
1270 root_flags = btrfs_root_flags(new_root_item);
1271 if (pending->readonly)
1272 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1273 else
1274 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1275 btrfs_set_root_flags(new_root_item, root_flags);
1277 btrfs_set_root_generation_v2(new_root_item,
1278 trans->transid);
1279 uuid_le_gen(&new_uuid);
1280 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1281 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1282 BTRFS_UUID_SIZE);
1283 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1284 memset(new_root_item->received_uuid, 0,
1285 sizeof(new_root_item->received_uuid));
1286 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1287 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1288 btrfs_set_root_stransid(new_root_item, 0);
1289 btrfs_set_root_rtransid(new_root_item, 0);
1291 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1292 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1293 btrfs_set_root_otransid(new_root_item, trans->transid);
1295 old = btrfs_lock_root_node(root);
1296 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1297 if (ret) {
1298 btrfs_tree_unlock(old);
1299 free_extent_buffer(old);
1300 btrfs_abort_transaction(trans, root, ret);
1301 goto fail;
1304 btrfs_set_lock_blocking(old);
1306 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1307 /* clean up in any case */
1308 btrfs_tree_unlock(old);
1309 free_extent_buffer(old);
1310 if (ret) {
1311 btrfs_abort_transaction(trans, root, ret);
1312 goto fail;
1316 * We need to flush delayed refs in order to make sure all of our quota
1317 * operations have been done before we call btrfs_qgroup_inherit.
1319 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1320 if (ret) {
1321 btrfs_abort_transaction(trans, root, ret);
1322 goto fail;
1325 ret = btrfs_qgroup_inherit(trans, fs_info,
1326 root->root_key.objectid,
1327 objectid, pending->inherit);
1328 if (ret) {
1329 btrfs_abort_transaction(trans, root, ret);
1330 goto fail;
1333 /* see comments in should_cow_block() */
1334 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1335 smp_wmb();
1337 btrfs_set_root_node(new_root_item, tmp);
1338 /* record when the snapshot was created in key.offset */
1339 key.offset = trans->transid;
1340 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1341 btrfs_tree_unlock(tmp);
1342 free_extent_buffer(tmp);
1343 if (ret) {
1344 btrfs_abort_transaction(trans, root, ret);
1345 goto fail;
1349 * insert root back/forward references
1351 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1352 parent_root->root_key.objectid,
1353 btrfs_ino(parent_inode), index,
1354 dentry->d_name.name, dentry->d_name.len);
1355 if (ret) {
1356 btrfs_abort_transaction(trans, root, ret);
1357 goto fail;
1360 key.offset = (u64)-1;
1361 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1362 if (IS_ERR(pending->snap)) {
1363 ret = PTR_ERR(pending->snap);
1364 btrfs_abort_transaction(trans, root, ret);
1365 goto fail;
1368 ret = btrfs_reloc_post_snapshot(trans, pending);
1369 if (ret) {
1370 btrfs_abort_transaction(trans, root, ret);
1371 goto fail;
1374 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1375 if (ret) {
1376 btrfs_abort_transaction(trans, root, ret);
1377 goto fail;
1380 ret = btrfs_insert_dir_item(trans, parent_root,
1381 dentry->d_name.name, dentry->d_name.len,
1382 parent_inode, &key,
1383 BTRFS_FT_DIR, index);
1384 /* We have check then name at the beginning, so it is impossible. */
1385 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1386 if (ret) {
1387 btrfs_abort_transaction(trans, root, ret);
1388 goto fail;
1391 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1392 dentry->d_name.len * 2);
1393 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1394 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1395 if (ret) {
1396 btrfs_abort_transaction(trans, root, ret);
1397 goto fail;
1399 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1400 BTRFS_UUID_KEY_SUBVOL, objectid);
1401 if (ret) {
1402 btrfs_abort_transaction(trans, root, ret);
1403 goto fail;
1405 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1406 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1407 new_root_item->received_uuid,
1408 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1409 objectid);
1410 if (ret && ret != -EEXIST) {
1411 btrfs_abort_transaction(trans, root, ret);
1412 goto fail;
1415 fail:
1416 pending->error = ret;
1417 dir_item_existed:
1418 trans->block_rsv = rsv;
1419 trans->bytes_reserved = 0;
1420 no_free_objectid:
1421 kfree(new_root_item);
1422 root_item_alloc_fail:
1423 btrfs_free_path(path);
1424 return ret;
1428 * create all the snapshots we've scheduled for creation
1430 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1431 struct btrfs_fs_info *fs_info)
1433 struct btrfs_pending_snapshot *pending, *next;
1434 struct list_head *head = &trans->transaction->pending_snapshots;
1435 int ret = 0;
1437 list_for_each_entry_safe(pending, next, head, list) {
1438 list_del(&pending->list);
1439 ret = create_pending_snapshot(trans, fs_info, pending);
1440 if (ret)
1441 break;
1443 return ret;
1446 static void update_super_roots(struct btrfs_root *root)
1448 struct btrfs_root_item *root_item;
1449 struct btrfs_super_block *super;
1451 super = root->fs_info->super_copy;
1453 root_item = &root->fs_info->chunk_root->root_item;
1454 super->chunk_root = root_item->bytenr;
1455 super->chunk_root_generation = root_item->generation;
1456 super->chunk_root_level = root_item->level;
1458 root_item = &root->fs_info->tree_root->root_item;
1459 super->root = root_item->bytenr;
1460 super->generation = root_item->generation;
1461 super->root_level = root_item->level;
1462 if (btrfs_test_opt(root, SPACE_CACHE))
1463 super->cache_generation = root_item->generation;
1464 if (root->fs_info->update_uuid_tree_gen)
1465 super->uuid_tree_generation = root_item->generation;
1468 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1470 struct btrfs_transaction *trans;
1471 int ret = 0;
1473 spin_lock(&info->trans_lock);
1474 trans = info->running_transaction;
1475 if (trans)
1476 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1477 spin_unlock(&info->trans_lock);
1478 return ret;
1481 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1483 struct btrfs_transaction *trans;
1484 int ret = 0;
1486 spin_lock(&info->trans_lock);
1487 trans = info->running_transaction;
1488 if (trans)
1489 ret = is_transaction_blocked(trans);
1490 spin_unlock(&info->trans_lock);
1491 return ret;
1495 * wait for the current transaction commit to start and block subsequent
1496 * transaction joins
1498 static void wait_current_trans_commit_start(struct btrfs_root *root,
1499 struct btrfs_transaction *trans)
1501 wait_event(root->fs_info->transaction_blocked_wait,
1502 trans->state >= TRANS_STATE_COMMIT_START ||
1503 trans->aborted);
1507 * wait for the current transaction to start and then become unblocked.
1508 * caller holds ref.
1510 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1511 struct btrfs_transaction *trans)
1513 wait_event(root->fs_info->transaction_wait,
1514 trans->state >= TRANS_STATE_UNBLOCKED ||
1515 trans->aborted);
1519 * commit transactions asynchronously. once btrfs_commit_transaction_async
1520 * returns, any subsequent transaction will not be allowed to join.
1522 struct btrfs_async_commit {
1523 struct btrfs_trans_handle *newtrans;
1524 struct btrfs_root *root;
1525 struct work_struct work;
1528 static void do_async_commit(struct work_struct *work)
1530 struct btrfs_async_commit *ac =
1531 container_of(work, struct btrfs_async_commit, work);
1534 * We've got freeze protection passed with the transaction.
1535 * Tell lockdep about it.
1537 if (ac->newtrans->type & __TRANS_FREEZABLE)
1538 rwsem_acquire_read(
1539 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1540 0, 1, _THIS_IP_);
1542 current->journal_info = ac->newtrans;
1544 btrfs_commit_transaction(ac->newtrans, ac->root);
1545 kfree(ac);
1548 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1549 struct btrfs_root *root,
1550 int wait_for_unblock)
1552 struct btrfs_async_commit *ac;
1553 struct btrfs_transaction *cur_trans;
1555 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1556 if (!ac)
1557 return -ENOMEM;
1559 INIT_WORK(&ac->work, do_async_commit);
1560 ac->root = root;
1561 ac->newtrans = btrfs_join_transaction(root);
1562 if (IS_ERR(ac->newtrans)) {
1563 int err = PTR_ERR(ac->newtrans);
1564 kfree(ac);
1565 return err;
1568 /* take transaction reference */
1569 cur_trans = trans->transaction;
1570 atomic_inc(&cur_trans->use_count);
1572 btrfs_end_transaction(trans, root);
1575 * Tell lockdep we've released the freeze rwsem, since the
1576 * async commit thread will be the one to unlock it.
1578 if (ac->newtrans->type & __TRANS_FREEZABLE)
1579 rwsem_release(
1580 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1581 1, _THIS_IP_);
1583 schedule_work(&ac->work);
1585 /* wait for transaction to start and unblock */
1586 if (wait_for_unblock)
1587 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1588 else
1589 wait_current_trans_commit_start(root, cur_trans);
1591 if (current->journal_info == trans)
1592 current->journal_info = NULL;
1594 btrfs_put_transaction(cur_trans);
1595 return 0;
1599 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1600 struct btrfs_root *root, int err)
1602 struct btrfs_transaction *cur_trans = trans->transaction;
1603 DEFINE_WAIT(wait);
1605 WARN_ON(trans->use_count > 1);
1607 btrfs_abort_transaction(trans, root, err);
1609 spin_lock(&root->fs_info->trans_lock);
1612 * If the transaction is removed from the list, it means this
1613 * transaction has been committed successfully, so it is impossible
1614 * to call the cleanup function.
1616 BUG_ON(list_empty(&cur_trans->list));
1618 list_del_init(&cur_trans->list);
1619 if (cur_trans == root->fs_info->running_transaction) {
1620 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1621 spin_unlock(&root->fs_info->trans_lock);
1622 wait_event(cur_trans->writer_wait,
1623 atomic_read(&cur_trans->num_writers) == 1);
1625 spin_lock(&root->fs_info->trans_lock);
1627 spin_unlock(&root->fs_info->trans_lock);
1629 btrfs_cleanup_one_transaction(trans->transaction, root);
1631 spin_lock(&root->fs_info->trans_lock);
1632 if (cur_trans == root->fs_info->running_transaction)
1633 root->fs_info->running_transaction = NULL;
1634 spin_unlock(&root->fs_info->trans_lock);
1636 if (trans->type & __TRANS_FREEZABLE)
1637 sb_end_intwrite(root->fs_info->sb);
1638 btrfs_put_transaction(cur_trans);
1639 btrfs_put_transaction(cur_trans);
1641 trace_btrfs_transaction_commit(root);
1643 if (current->journal_info == trans)
1644 current->journal_info = NULL;
1645 btrfs_scrub_cancel(root->fs_info);
1647 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1650 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1652 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1653 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1654 return 0;
1657 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1659 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1660 btrfs_wait_ordered_roots(fs_info, -1);
1663 static inline void
1664 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1665 struct btrfs_fs_info *fs_info)
1667 struct btrfs_ordered_extent *ordered;
1669 spin_lock(&fs_info->trans_lock);
1670 while (!list_empty(&cur_trans->pending_ordered)) {
1671 ordered = list_first_entry(&cur_trans->pending_ordered,
1672 struct btrfs_ordered_extent,
1673 trans_list);
1674 list_del_init(&ordered->trans_list);
1675 spin_unlock(&fs_info->trans_lock);
1677 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1678 &ordered->flags));
1679 btrfs_put_ordered_extent(ordered);
1680 spin_lock(&fs_info->trans_lock);
1682 spin_unlock(&fs_info->trans_lock);
1685 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1686 struct btrfs_root *root)
1688 struct btrfs_transaction *cur_trans = trans->transaction;
1689 struct btrfs_transaction *prev_trans = NULL;
1690 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1691 int ret;
1693 /* Stop the commit early if ->aborted is set */
1694 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1695 ret = cur_trans->aborted;
1696 btrfs_end_transaction(trans, root);
1697 return ret;
1700 /* make a pass through all the delayed refs we have so far
1701 * any runnings procs may add more while we are here
1703 ret = btrfs_run_delayed_refs(trans, root, 0);
1704 if (ret) {
1705 btrfs_end_transaction(trans, root);
1706 return ret;
1709 btrfs_trans_release_metadata(trans, root);
1710 trans->block_rsv = NULL;
1711 if (trans->qgroup_reserved) {
1712 btrfs_qgroup_free(root, trans->qgroup_reserved);
1713 trans->qgroup_reserved = 0;
1716 cur_trans = trans->transaction;
1719 * set the flushing flag so procs in this transaction have to
1720 * start sending their work down.
1722 cur_trans->delayed_refs.flushing = 1;
1723 smp_wmb();
1725 if (!list_empty(&trans->new_bgs))
1726 btrfs_create_pending_block_groups(trans, root);
1728 ret = btrfs_run_delayed_refs(trans, root, 0);
1729 if (ret) {
1730 btrfs_end_transaction(trans, root);
1731 return ret;
1734 spin_lock(&root->fs_info->trans_lock);
1735 list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1736 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1737 spin_unlock(&root->fs_info->trans_lock);
1738 atomic_inc(&cur_trans->use_count);
1739 ret = btrfs_end_transaction(trans, root);
1741 wait_for_commit(root, cur_trans);
1743 btrfs_put_transaction(cur_trans);
1745 return ret;
1748 cur_trans->state = TRANS_STATE_COMMIT_START;
1749 wake_up(&root->fs_info->transaction_blocked_wait);
1751 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1752 prev_trans = list_entry(cur_trans->list.prev,
1753 struct btrfs_transaction, list);
1754 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1755 atomic_inc(&prev_trans->use_count);
1756 spin_unlock(&root->fs_info->trans_lock);
1758 wait_for_commit(root, prev_trans);
1759 ret = prev_trans->aborted;
1761 btrfs_put_transaction(prev_trans);
1762 if (ret)
1763 goto cleanup_transaction;
1764 } else {
1765 spin_unlock(&root->fs_info->trans_lock);
1767 } else {
1768 spin_unlock(&root->fs_info->trans_lock);
1771 extwriter_counter_dec(cur_trans, trans->type);
1773 ret = btrfs_start_delalloc_flush(root->fs_info);
1774 if (ret)
1775 goto cleanup_transaction;
1777 ret = btrfs_run_delayed_items(trans, root);
1778 if (ret)
1779 goto cleanup_transaction;
1781 wait_event(cur_trans->writer_wait,
1782 extwriter_counter_read(cur_trans) == 0);
1784 /* some pending stuffs might be added after the previous flush. */
1785 ret = btrfs_run_delayed_items(trans, root);
1786 if (ret)
1787 goto cleanup_transaction;
1789 btrfs_wait_delalloc_flush(root->fs_info);
1791 btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1793 btrfs_scrub_pause(root);
1795 * Ok now we need to make sure to block out any other joins while we
1796 * commit the transaction. We could have started a join before setting
1797 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1799 spin_lock(&root->fs_info->trans_lock);
1800 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1801 spin_unlock(&root->fs_info->trans_lock);
1802 wait_event(cur_trans->writer_wait,
1803 atomic_read(&cur_trans->num_writers) == 1);
1805 /* ->aborted might be set after the previous check, so check it */
1806 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1807 ret = cur_trans->aborted;
1808 goto scrub_continue;
1811 * the reloc mutex makes sure that we stop
1812 * the balancing code from coming in and moving
1813 * extents around in the middle of the commit
1815 mutex_lock(&root->fs_info->reloc_mutex);
1818 * We needn't worry about the delayed items because we will
1819 * deal with them in create_pending_snapshot(), which is the
1820 * core function of the snapshot creation.
1822 ret = create_pending_snapshots(trans, root->fs_info);
1823 if (ret) {
1824 mutex_unlock(&root->fs_info->reloc_mutex);
1825 goto scrub_continue;
1829 * We insert the dir indexes of the snapshots and update the inode
1830 * of the snapshots' parents after the snapshot creation, so there
1831 * are some delayed items which are not dealt with. Now deal with
1832 * them.
1834 * We needn't worry that this operation will corrupt the snapshots,
1835 * because all the tree which are snapshoted will be forced to COW
1836 * the nodes and leaves.
1838 ret = btrfs_run_delayed_items(trans, root);
1839 if (ret) {
1840 mutex_unlock(&root->fs_info->reloc_mutex);
1841 goto scrub_continue;
1844 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1845 if (ret) {
1846 mutex_unlock(&root->fs_info->reloc_mutex);
1847 goto scrub_continue;
1851 * make sure none of the code above managed to slip in a
1852 * delayed item
1854 btrfs_assert_delayed_root_empty(root);
1856 WARN_ON(cur_trans != trans->transaction);
1858 /* btrfs_commit_tree_roots is responsible for getting the
1859 * various roots consistent with each other. Every pointer
1860 * in the tree of tree roots has to point to the most up to date
1861 * root for every subvolume and other tree. So, we have to keep
1862 * the tree logging code from jumping in and changing any
1863 * of the trees.
1865 * At this point in the commit, there can't be any tree-log
1866 * writers, but a little lower down we drop the trans mutex
1867 * and let new people in. By holding the tree_log_mutex
1868 * from now until after the super is written, we avoid races
1869 * with the tree-log code.
1871 mutex_lock(&root->fs_info->tree_log_mutex);
1873 ret = commit_fs_roots(trans, root);
1874 if (ret) {
1875 mutex_unlock(&root->fs_info->tree_log_mutex);
1876 mutex_unlock(&root->fs_info->reloc_mutex);
1877 goto scrub_continue;
1881 * Since the transaction is done, we should set the inode map cache flag
1882 * before any other comming transaction.
1884 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1885 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1886 else
1887 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1889 /* commit_fs_roots gets rid of all the tree log roots, it is now
1890 * safe to free the root of tree log roots
1892 btrfs_free_log_root_tree(trans, root->fs_info);
1894 ret = commit_cowonly_roots(trans, root);
1895 if (ret) {
1896 mutex_unlock(&root->fs_info->tree_log_mutex);
1897 mutex_unlock(&root->fs_info->reloc_mutex);
1898 goto scrub_continue;
1902 * The tasks which save the space cache and inode cache may also
1903 * update ->aborted, check it.
1905 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1906 ret = cur_trans->aborted;
1907 mutex_unlock(&root->fs_info->tree_log_mutex);
1908 mutex_unlock(&root->fs_info->reloc_mutex);
1909 goto scrub_continue;
1912 btrfs_prepare_extent_commit(trans, root);
1914 cur_trans = root->fs_info->running_transaction;
1916 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1917 root->fs_info->tree_root->node);
1918 list_add_tail(&root->fs_info->tree_root->dirty_list,
1919 &cur_trans->switch_commits);
1921 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1922 root->fs_info->chunk_root->node);
1923 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1924 &cur_trans->switch_commits);
1926 switch_commit_roots(cur_trans, root->fs_info);
1928 assert_qgroups_uptodate(trans);
1929 update_super_roots(root);
1931 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1932 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1933 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1934 sizeof(*root->fs_info->super_copy));
1936 btrfs_update_commit_device_size(root->fs_info);
1937 btrfs_update_commit_device_bytes_used(root, cur_trans);
1939 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
1940 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
1942 spin_lock(&root->fs_info->trans_lock);
1943 cur_trans->state = TRANS_STATE_UNBLOCKED;
1944 root->fs_info->running_transaction = NULL;
1945 spin_unlock(&root->fs_info->trans_lock);
1946 mutex_unlock(&root->fs_info->reloc_mutex);
1948 wake_up(&root->fs_info->transaction_wait);
1950 ret = btrfs_write_and_wait_transaction(trans, root);
1951 if (ret) {
1952 btrfs_error(root->fs_info, ret,
1953 "Error while writing out transaction");
1954 mutex_unlock(&root->fs_info->tree_log_mutex);
1955 goto scrub_continue;
1958 ret = write_ctree_super(trans, root, 0);
1959 if (ret) {
1960 mutex_unlock(&root->fs_info->tree_log_mutex);
1961 goto scrub_continue;
1965 * the super is written, we can safely allow the tree-loggers
1966 * to go about their business
1968 mutex_unlock(&root->fs_info->tree_log_mutex);
1970 btrfs_finish_extent_commit(trans, root);
1972 root->fs_info->last_trans_committed = cur_trans->transid;
1974 * We needn't acquire the lock here because there is no other task
1975 * which can change it.
1977 cur_trans->state = TRANS_STATE_COMPLETED;
1978 wake_up(&cur_trans->commit_wait);
1980 spin_lock(&root->fs_info->trans_lock);
1981 list_del_init(&cur_trans->list);
1982 spin_unlock(&root->fs_info->trans_lock);
1984 btrfs_put_transaction(cur_trans);
1985 btrfs_put_transaction(cur_trans);
1987 if (trans->type & __TRANS_FREEZABLE)
1988 sb_end_intwrite(root->fs_info->sb);
1990 trace_btrfs_transaction_commit(root);
1992 btrfs_scrub_continue(root);
1994 if (current->journal_info == trans)
1995 current->journal_info = NULL;
1997 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1999 if (current != root->fs_info->transaction_kthread)
2000 btrfs_run_delayed_iputs(root);
2002 return ret;
2004 scrub_continue:
2005 btrfs_scrub_continue(root);
2006 cleanup_transaction:
2007 btrfs_trans_release_metadata(trans, root);
2008 trans->block_rsv = NULL;
2009 if (trans->qgroup_reserved) {
2010 btrfs_qgroup_free(root, trans->qgroup_reserved);
2011 trans->qgroup_reserved = 0;
2013 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2014 if (current->journal_info == trans)
2015 current->journal_info = NULL;
2016 cleanup_transaction(trans, root, ret);
2018 return ret;
2022 * return < 0 if error
2023 * 0 if there are no more dead_roots at the time of call
2024 * 1 there are more to be processed, call me again
2026 * The return value indicates there are certainly more snapshots to delete, but
2027 * if there comes a new one during processing, it may return 0. We don't mind,
2028 * because btrfs_commit_super will poke cleaner thread and it will process it a
2029 * few seconds later.
2031 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2033 int ret;
2034 struct btrfs_fs_info *fs_info = root->fs_info;
2036 spin_lock(&fs_info->trans_lock);
2037 if (list_empty(&fs_info->dead_roots)) {
2038 spin_unlock(&fs_info->trans_lock);
2039 return 0;
2041 root = list_first_entry(&fs_info->dead_roots,
2042 struct btrfs_root, root_list);
2043 list_del_init(&root->root_list);
2044 spin_unlock(&fs_info->trans_lock);
2046 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2048 btrfs_kill_all_delayed_nodes(root);
2050 if (btrfs_header_backref_rev(root->node) <
2051 BTRFS_MIXED_BACKREF_REV)
2052 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2053 else
2054 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2056 return (ret < 0) ? 0 : 1;