2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
36 #define BTRFS_ROOT_TRANS_TAG 0
38 static unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
39 [TRANS_STATE_RUNNING
] = 0U,
40 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
42 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
45 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
49 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
54 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
61 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
63 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
64 if (atomic_dec_and_test(&transaction
->use_count
)) {
65 BUG_ON(!list_empty(&transaction
->list
));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
67 while (!list_empty(&transaction
->pending_chunks
)) {
68 struct extent_map
*em
;
70 em
= list_first_entry(&transaction
->pending_chunks
,
71 struct extent_map
, list
);
72 list_del_init(&em
->list
);
75 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
79 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
,
80 struct btrfs_fs_info
*fs_info
)
82 struct btrfs_root
*root
, *tmp
;
84 down_write(&fs_info
->commit_root_sem
);
85 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
87 list_del_init(&root
->dirty_list
);
88 free_extent_buffer(root
->commit_root
);
89 root
->commit_root
= btrfs_root_node(root
);
90 if (is_fstree(root
->objectid
))
91 btrfs_unpin_free_ino(root
);
93 up_write(&fs_info
->commit_root_sem
);
96 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
99 if (type
& TRANS_EXTWRITERS
)
100 atomic_inc(&trans
->num_extwriters
);
103 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
106 if (type
& TRANS_EXTWRITERS
)
107 atomic_dec(&trans
->num_extwriters
);
110 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
113 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
116 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
118 return atomic_read(&trans
->num_extwriters
);
122 * either allocate a new transaction or hop into the existing one
124 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
126 struct btrfs_transaction
*cur_trans
;
127 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
129 spin_lock(&fs_info
->trans_lock
);
131 /* The file system has been taken offline. No new transactions. */
132 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
133 spin_unlock(&fs_info
->trans_lock
);
137 cur_trans
= fs_info
->running_transaction
;
139 if (cur_trans
->aborted
) {
140 spin_unlock(&fs_info
->trans_lock
);
141 return cur_trans
->aborted
;
143 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
144 spin_unlock(&fs_info
->trans_lock
);
147 atomic_inc(&cur_trans
->use_count
);
148 atomic_inc(&cur_trans
->num_writers
);
149 extwriter_counter_inc(cur_trans
, type
);
150 spin_unlock(&fs_info
->trans_lock
);
153 spin_unlock(&fs_info
->trans_lock
);
156 * If we are ATTACH, we just want to catch the current transaction,
157 * and commit it. If there is no transaction, just return ENOENT.
159 if (type
== TRANS_ATTACH
)
163 * JOIN_NOLOCK only happens during the transaction commit, so
164 * it is impossible that ->running_transaction is NULL
166 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
168 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
172 spin_lock(&fs_info
->trans_lock
);
173 if (fs_info
->running_transaction
) {
175 * someone started a transaction after we unlocked. Make sure
176 * to redo the checks above
178 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
180 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
181 spin_unlock(&fs_info
->trans_lock
);
182 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
186 atomic_set(&cur_trans
->num_writers
, 1);
187 extwriter_counter_init(cur_trans
, type
);
188 init_waitqueue_head(&cur_trans
->writer_wait
);
189 init_waitqueue_head(&cur_trans
->commit_wait
);
190 cur_trans
->state
= TRANS_STATE_RUNNING
;
192 * One for this trans handle, one so it will live on until we
193 * commit the transaction.
195 atomic_set(&cur_trans
->use_count
, 2);
196 cur_trans
->start_time
= get_seconds();
198 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
199 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
200 cur_trans
->delayed_refs
.num_heads_ready
= 0;
201 cur_trans
->delayed_refs
.num_heads
= 0;
202 cur_trans
->delayed_refs
.flushing
= 0;
203 cur_trans
->delayed_refs
.run_delayed_start
= 0;
206 * although the tree mod log is per file system and not per transaction,
207 * the log must never go across transaction boundaries.
210 if (!list_empty(&fs_info
->tree_mod_seq_list
))
211 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when "
212 "creating a fresh transaction\n");
213 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
214 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when "
215 "creating a fresh transaction\n");
216 atomic64_set(&fs_info
->tree_mod_seq
, 0);
218 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
220 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
221 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
222 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
223 INIT_LIST_HEAD(&cur_trans
->pending_ordered
);
224 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
225 extent_io_tree_init(&cur_trans
->dirty_pages
,
226 fs_info
->btree_inode
->i_mapping
);
227 fs_info
->generation
++;
228 cur_trans
->transid
= fs_info
->generation
;
229 fs_info
->running_transaction
= cur_trans
;
230 cur_trans
->aborted
= 0;
231 spin_unlock(&fs_info
->trans_lock
);
237 * this does all the record keeping required to make sure that a reference
238 * counted root is properly recorded in a given transaction. This is required
239 * to make sure the old root from before we joined the transaction is deleted
240 * when the transaction commits
242 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
243 struct btrfs_root
*root
)
245 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
246 root
->last_trans
< trans
->transid
) {
247 WARN_ON(root
== root
->fs_info
->extent_root
);
248 WARN_ON(root
->commit_root
!= root
->node
);
251 * see below for IN_TRANS_SETUP usage rules
252 * we have the reloc mutex held now, so there
253 * is only one writer in this function
255 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
257 /* make sure readers find IN_TRANS_SETUP before
258 * they find our root->last_trans update
262 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
263 if (root
->last_trans
== trans
->transid
) {
264 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
267 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
268 (unsigned long)root
->root_key
.objectid
,
269 BTRFS_ROOT_TRANS_TAG
);
270 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
271 root
->last_trans
= trans
->transid
;
273 /* this is pretty tricky. We don't want to
274 * take the relocation lock in btrfs_record_root_in_trans
275 * unless we're really doing the first setup for this root in
278 * Normally we'd use root->last_trans as a flag to decide
279 * if we want to take the expensive mutex.
281 * But, we have to set root->last_trans before we
282 * init the relocation root, otherwise, we trip over warnings
283 * in ctree.c. The solution used here is to flag ourselves
284 * with root IN_TRANS_SETUP. When this is 1, we're still
285 * fixing up the reloc trees and everyone must wait.
287 * When this is zero, they can trust root->last_trans and fly
288 * through btrfs_record_root_in_trans without having to take the
289 * lock. smp_wmb() makes sure that all the writes above are
290 * done before we pop in the zero below
292 btrfs_init_reloc_root(trans
, root
);
293 smp_mb__before_atomic();
294 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
300 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
301 struct btrfs_root
*root
)
303 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
307 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
311 if (root
->last_trans
== trans
->transid
&&
312 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
315 mutex_lock(&root
->fs_info
->reloc_mutex
);
316 record_root_in_trans(trans
, root
);
317 mutex_unlock(&root
->fs_info
->reloc_mutex
);
322 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
324 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
325 trans
->state
< TRANS_STATE_UNBLOCKED
&&
329 /* wait for commit against the current transaction to become unblocked
330 * when this is done, it is safe to start a new transaction, but the current
331 * transaction might not be fully on disk.
333 static void wait_current_trans(struct btrfs_root
*root
)
335 struct btrfs_transaction
*cur_trans
;
337 spin_lock(&root
->fs_info
->trans_lock
);
338 cur_trans
= root
->fs_info
->running_transaction
;
339 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
340 atomic_inc(&cur_trans
->use_count
);
341 spin_unlock(&root
->fs_info
->trans_lock
);
343 wait_event(root
->fs_info
->transaction_wait
,
344 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
346 btrfs_put_transaction(cur_trans
);
348 spin_unlock(&root
->fs_info
->trans_lock
);
352 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
354 if (root
->fs_info
->log_root_recovering
)
357 if (type
== TRANS_USERSPACE
)
360 if (type
== TRANS_START
&&
361 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
367 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
369 if (!root
->fs_info
->reloc_ctl
||
370 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
371 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
378 static struct btrfs_trans_handle
*
379 start_transaction(struct btrfs_root
*root
, u64 num_items
, unsigned int type
,
380 enum btrfs_reserve_flush_enum flush
)
382 struct btrfs_trans_handle
*h
;
383 struct btrfs_transaction
*cur_trans
;
385 u64 qgroup_reserved
= 0;
386 bool reloc_reserved
= false;
389 /* Send isn't supposed to start transactions. */
390 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
392 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
393 return ERR_PTR(-EROFS
);
395 if (current
->journal_info
) {
396 WARN_ON(type
& TRANS_EXTWRITERS
);
397 h
= current
->journal_info
;
399 WARN_ON(h
->use_count
> 2);
400 h
->orig_rsv
= h
->block_rsv
;
406 * Do the reservation before we join the transaction so we can do all
407 * the appropriate flushing if need be.
409 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
410 if (root
->fs_info
->quota_enabled
&&
411 is_fstree(root
->root_key
.objectid
)) {
412 qgroup_reserved
= num_items
* root
->nodesize
;
413 ret
= btrfs_qgroup_reserve(root
, qgroup_reserved
);
418 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
420 * Do the reservation for the relocation root creation
422 if (need_reserve_reloc_root(root
)) {
423 num_bytes
+= root
->nodesize
;
424 reloc_reserved
= true;
427 ret
= btrfs_block_rsv_add(root
,
428 &root
->fs_info
->trans_block_rsv
,
434 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
441 * If we are JOIN_NOLOCK we're already committing a transaction and
442 * waiting on this guy, so we don't need to do the sb_start_intwrite
443 * because we're already holding a ref. We need this because we could
444 * have raced in and did an fsync() on a file which can kick a commit
445 * and then we deadlock with somebody doing a freeze.
447 * If we are ATTACH, it means we just want to catch the current
448 * transaction and commit it, so we needn't do sb_start_intwrite().
450 if (type
& __TRANS_FREEZABLE
)
451 sb_start_intwrite(root
->fs_info
->sb
);
453 if (may_wait_transaction(root
, type
))
454 wait_current_trans(root
);
457 ret
= join_transaction(root
, type
);
459 wait_current_trans(root
);
460 if (unlikely(type
== TRANS_ATTACH
))
463 } while (ret
== -EBUSY
);
466 /* We must get the transaction if we are JOIN_NOLOCK. */
467 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
471 cur_trans
= root
->fs_info
->running_transaction
;
473 h
->transid
= cur_trans
->transid
;
474 h
->transaction
= cur_trans
;
476 h
->bytes_reserved
= 0;
478 h
->delayed_ref_updates
= 0;
484 h
->qgroup_reserved
= 0;
485 h
->delayed_ref_elem
.seq
= 0;
487 h
->allocating_chunk
= false;
488 h
->reloc_reserved
= false;
490 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
491 INIT_LIST_HEAD(&h
->new_bgs
);
492 INIT_LIST_HEAD(&h
->ordered
);
495 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
496 may_wait_transaction(root
, type
)) {
497 current
->journal_info
= h
;
498 btrfs_commit_transaction(h
, root
);
503 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
504 h
->transid
, num_bytes
, 1);
505 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
506 h
->bytes_reserved
= num_bytes
;
507 h
->reloc_reserved
= reloc_reserved
;
509 h
->qgroup_reserved
= qgroup_reserved
;
512 btrfs_record_root_in_trans(h
, root
);
514 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
515 current
->journal_info
= h
;
519 if (type
& __TRANS_FREEZABLE
)
520 sb_end_intwrite(root
->fs_info
->sb
);
521 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
524 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
528 btrfs_qgroup_free(root
, qgroup_reserved
);
532 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
535 return start_transaction(root
, num_items
, TRANS_START
,
536 BTRFS_RESERVE_FLUSH_ALL
);
539 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
540 struct btrfs_root
*root
, int num_items
)
542 return start_transaction(root
, num_items
, TRANS_START
,
543 BTRFS_RESERVE_FLUSH_LIMIT
);
546 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
548 return start_transaction(root
, 0, TRANS_JOIN
, 0);
551 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
553 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
556 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
558 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
562 * btrfs_attach_transaction() - catch the running transaction
564 * It is used when we want to commit the current the transaction, but
565 * don't want to start a new one.
567 * Note: If this function return -ENOENT, it just means there is no
568 * running transaction. But it is possible that the inactive transaction
569 * is still in the memory, not fully on disk. If you hope there is no
570 * inactive transaction in the fs when -ENOENT is returned, you should
572 * btrfs_attach_transaction_barrier()
574 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
576 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
580 * btrfs_attach_transaction_barrier() - catch the running transaction
582 * It is similar to the above function, the differentia is this one
583 * will wait for all the inactive transactions until they fully
586 struct btrfs_trans_handle
*
587 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
589 struct btrfs_trans_handle
*trans
;
591 trans
= start_transaction(root
, 0, TRANS_ATTACH
, 0);
592 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
593 btrfs_wait_for_commit(root
, 0);
598 /* wait for a transaction commit to be fully complete */
599 static noinline
void wait_for_commit(struct btrfs_root
*root
,
600 struct btrfs_transaction
*commit
)
602 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
605 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
607 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
611 if (transid
<= root
->fs_info
->last_trans_committed
)
614 /* find specified transaction */
615 spin_lock(&root
->fs_info
->trans_lock
);
616 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
617 if (t
->transid
== transid
) {
619 atomic_inc(&cur_trans
->use_count
);
623 if (t
->transid
> transid
) {
628 spin_unlock(&root
->fs_info
->trans_lock
);
631 * The specified transaction doesn't exist, or we
632 * raced with btrfs_commit_transaction
635 if (transid
> root
->fs_info
->last_trans_committed
)
640 /* find newest transaction that is committing | committed */
641 spin_lock(&root
->fs_info
->trans_lock
);
642 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
644 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
645 if (t
->state
== TRANS_STATE_COMPLETED
)
648 atomic_inc(&cur_trans
->use_count
);
652 spin_unlock(&root
->fs_info
->trans_lock
);
654 goto out
; /* nothing committing|committed */
657 wait_for_commit(root
, cur_trans
);
658 btrfs_put_transaction(cur_trans
);
663 void btrfs_throttle(struct btrfs_root
*root
)
665 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
666 wait_current_trans(root
);
669 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
670 struct btrfs_root
*root
)
672 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
673 btrfs_check_space_for_delayed_refs(trans
, root
))
676 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
679 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
680 struct btrfs_root
*root
)
682 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
687 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
688 cur_trans
->delayed_refs
.flushing
)
691 updates
= trans
->delayed_ref_updates
;
692 trans
->delayed_ref_updates
= 0;
694 err
= btrfs_run_delayed_refs(trans
, root
, updates
);
695 if (err
) /* Error code will also eval true */
699 return should_end_transaction(trans
, root
);
702 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
703 struct btrfs_root
*root
, int throttle
)
705 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
706 struct btrfs_fs_info
*info
= root
->fs_info
;
707 unsigned long cur
= trans
->delayed_ref_updates
;
708 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
710 int must_run_delayed_refs
= 0;
712 if (trans
->use_count
> 1) {
714 trans
->block_rsv
= trans
->orig_rsv
;
718 btrfs_trans_release_metadata(trans
, root
);
719 trans
->block_rsv
= NULL
;
721 if (!list_empty(&trans
->new_bgs
))
722 btrfs_create_pending_block_groups(trans
, root
);
724 if (!list_empty(&trans
->ordered
)) {
725 spin_lock(&info
->trans_lock
);
726 list_splice_init(&trans
->ordered
, &cur_trans
->pending_ordered
);
727 spin_unlock(&info
->trans_lock
);
730 trans
->delayed_ref_updates
= 0;
732 must_run_delayed_refs
=
733 btrfs_should_throttle_delayed_refs(trans
, root
);
734 cur
= max_t(unsigned long, cur
, 32);
737 * don't make the caller wait if they are from a NOLOCK
738 * or ATTACH transaction, it will deadlock with commit
740 if (must_run_delayed_refs
== 1 &&
741 (trans
->type
& (__TRANS_JOIN_NOLOCK
| __TRANS_ATTACH
)))
742 must_run_delayed_refs
= 2;
745 if (trans
->qgroup_reserved
) {
747 * the same root has to be passed here between start_transaction
748 * and end_transaction. Subvolume quota depends on this.
750 btrfs_qgroup_free(trans
->root
, trans
->qgroup_reserved
);
751 trans
->qgroup_reserved
= 0;
754 btrfs_trans_release_metadata(trans
, root
);
755 trans
->block_rsv
= NULL
;
757 if (!list_empty(&trans
->new_bgs
))
758 btrfs_create_pending_block_groups(trans
, root
);
760 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
761 should_end_transaction(trans
, root
) &&
762 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
763 spin_lock(&info
->trans_lock
);
764 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
765 cur_trans
->state
= TRANS_STATE_BLOCKED
;
766 spin_unlock(&info
->trans_lock
);
769 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
771 return btrfs_commit_transaction(trans
, root
);
773 wake_up_process(info
->transaction_kthread
);
776 if (trans
->type
& __TRANS_FREEZABLE
)
777 sb_end_intwrite(root
->fs_info
->sb
);
779 WARN_ON(cur_trans
!= info
->running_transaction
);
780 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
781 atomic_dec(&cur_trans
->num_writers
);
782 extwriter_counter_dec(cur_trans
, trans
->type
);
785 if (waitqueue_active(&cur_trans
->writer_wait
))
786 wake_up(&cur_trans
->writer_wait
);
787 btrfs_put_transaction(cur_trans
);
789 if (current
->journal_info
== trans
)
790 current
->journal_info
= NULL
;
793 btrfs_run_delayed_iputs(root
);
795 if (trans
->aborted
||
796 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
797 wake_up_process(info
->transaction_kthread
);
800 assert_qgroups_uptodate(trans
);
802 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
803 if (must_run_delayed_refs
) {
804 btrfs_async_run_delayed_refs(root
, cur
,
805 must_run_delayed_refs
== 1);
810 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
811 struct btrfs_root
*root
)
813 return __btrfs_end_transaction(trans
, root
, 0);
816 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
817 struct btrfs_root
*root
)
819 return __btrfs_end_transaction(trans
, root
, 1);
823 * when btree blocks are allocated, they have some corresponding bits set for
824 * them in one of two extent_io trees. This is used to make sure all of
825 * those extents are sent to disk but does not wait on them
827 int btrfs_write_marked_extents(struct btrfs_root
*root
,
828 struct extent_io_tree
*dirty_pages
, int mark
)
832 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
833 struct extent_state
*cached_state
= NULL
;
837 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
838 mark
, &cached_state
)) {
839 convert_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
840 mark
, &cached_state
, GFP_NOFS
);
842 err
= filemap_fdatawrite_range(mapping
, start
, end
);
854 * when btree blocks are allocated, they have some corresponding bits set for
855 * them in one of two extent_io trees. This is used to make sure all of
856 * those extents are on disk for transaction or log commit. We wait
857 * on all the pages and clear them from the dirty pages state tree
859 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
860 struct extent_io_tree
*dirty_pages
, int mark
)
864 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
865 struct extent_state
*cached_state
= NULL
;
868 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
871 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
872 EXTENT_NEED_WAIT
, &cached_state
)) {
873 clear_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
874 0, 0, &cached_state
, GFP_NOFS
);
875 err
= filemap_fdatawait_range(mapping
, start
, end
);
884 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
885 if ((mark
& EXTENT_DIRTY
) &&
886 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
,
887 &btree_ino
->runtime_flags
))
890 if ((mark
& EXTENT_NEW
) &&
891 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
,
892 &btree_ino
->runtime_flags
))
895 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR
,
896 &btree_ino
->runtime_flags
))
907 * when btree blocks are allocated, they have some corresponding bits set for
908 * them in one of two extent_io trees. This is used to make sure all of
909 * those extents are on disk for transaction or log commit
911 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
912 struct extent_io_tree
*dirty_pages
, int mark
)
916 struct blk_plug plug
;
918 blk_start_plug(&plug
);
919 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
920 blk_finish_plug(&plug
);
921 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
930 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
931 struct btrfs_root
*root
)
933 if (!trans
|| !trans
->transaction
) {
934 struct inode
*btree_inode
;
935 btree_inode
= root
->fs_info
->btree_inode
;
936 return filemap_write_and_wait(btree_inode
->i_mapping
);
938 return btrfs_write_and_wait_marked_extents(root
,
939 &trans
->transaction
->dirty_pages
,
944 * this is used to update the root pointer in the tree of tree roots.
946 * But, in the case of the extent allocation tree, updating the root
947 * pointer may allocate blocks which may change the root of the extent
950 * So, this loops and repeats and makes sure the cowonly root didn't
951 * change while the root pointer was being updated in the metadata.
953 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
954 struct btrfs_root
*root
)
959 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
961 old_root_used
= btrfs_root_used(&root
->root_item
);
962 btrfs_write_dirty_block_groups(trans
, root
);
965 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
966 if (old_root_bytenr
== root
->node
->start
&&
967 old_root_used
== btrfs_root_used(&root
->root_item
))
970 btrfs_set_root_node(&root
->root_item
, root
->node
);
971 ret
= btrfs_update_root(trans
, tree_root
,
977 old_root_used
= btrfs_root_used(&root
->root_item
);
978 ret
= btrfs_write_dirty_block_groups(trans
, root
);
987 * update all the cowonly tree roots on disk
989 * The error handling in this function may not be obvious. Any of the
990 * failures will cause the file system to go offline. We still need
991 * to clean up the delayed refs.
993 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
994 struct btrfs_root
*root
)
996 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
997 struct list_head
*next
;
998 struct extent_buffer
*eb
;
1001 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1005 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1006 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1008 btrfs_tree_unlock(eb
);
1009 free_extent_buffer(eb
);
1014 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1018 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
1021 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
1024 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
1028 /* run_qgroups might have added some more refs */
1029 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1033 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1034 next
= fs_info
->dirty_cowonly_roots
.next
;
1035 list_del_init(next
);
1036 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1038 if (root
!= fs_info
->extent_root
)
1039 list_add_tail(&root
->dirty_list
,
1040 &trans
->transaction
->switch_commits
);
1041 ret
= update_cowonly_root(trans
, root
);
1046 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1047 &trans
->transaction
->switch_commits
);
1048 btrfs_after_dev_replace_commit(fs_info
);
1054 * dead roots are old snapshots that need to be deleted. This allocates
1055 * a dirty root struct and adds it into the list of dead roots that need to
1058 void btrfs_add_dead_root(struct btrfs_root
*root
)
1060 spin_lock(&root
->fs_info
->trans_lock
);
1061 if (list_empty(&root
->root_list
))
1062 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1063 spin_unlock(&root
->fs_info
->trans_lock
);
1067 * update all the cowonly tree roots on disk
1069 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1070 struct btrfs_root
*root
)
1072 struct btrfs_root
*gang
[8];
1073 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1078 spin_lock(&fs_info
->fs_roots_radix_lock
);
1080 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1083 BTRFS_ROOT_TRANS_TAG
);
1086 for (i
= 0; i
< ret
; i
++) {
1088 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1089 (unsigned long)root
->root_key
.objectid
,
1090 BTRFS_ROOT_TRANS_TAG
);
1091 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1093 btrfs_free_log(trans
, root
);
1094 btrfs_update_reloc_root(trans
, root
);
1095 btrfs_orphan_commit_root(trans
, root
);
1097 btrfs_save_ino_cache(root
, trans
);
1099 /* see comments in should_cow_block() */
1100 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1101 smp_mb__after_atomic();
1103 if (root
->commit_root
!= root
->node
) {
1104 list_add_tail(&root
->dirty_list
,
1105 &trans
->transaction
->switch_commits
);
1106 btrfs_set_root_node(&root
->root_item
,
1110 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1113 spin_lock(&fs_info
->fs_roots_radix_lock
);
1118 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1123 * defrag a given btree.
1124 * Every leaf in the btree is read and defragged.
1126 int btrfs_defrag_root(struct btrfs_root
*root
)
1128 struct btrfs_fs_info
*info
= root
->fs_info
;
1129 struct btrfs_trans_handle
*trans
;
1132 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1136 trans
= btrfs_start_transaction(root
, 0);
1138 return PTR_ERR(trans
);
1140 ret
= btrfs_defrag_leaves(trans
, root
);
1142 btrfs_end_transaction(trans
, root
);
1143 btrfs_btree_balance_dirty(info
->tree_root
);
1146 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1149 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1150 pr_debug("BTRFS: defrag_root cancelled\n");
1155 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1160 * new snapshots need to be created at a very specific time in the
1161 * transaction commit. This does the actual creation.
1164 * If the error which may affect the commitment of the current transaction
1165 * happens, we should return the error number. If the error which just affect
1166 * the creation of the pending snapshots, just return 0.
1168 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1169 struct btrfs_fs_info
*fs_info
,
1170 struct btrfs_pending_snapshot
*pending
)
1172 struct btrfs_key key
;
1173 struct btrfs_root_item
*new_root_item
;
1174 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1175 struct btrfs_root
*root
= pending
->root
;
1176 struct btrfs_root
*parent_root
;
1177 struct btrfs_block_rsv
*rsv
;
1178 struct inode
*parent_inode
;
1179 struct btrfs_path
*path
;
1180 struct btrfs_dir_item
*dir_item
;
1181 struct dentry
*dentry
;
1182 struct extent_buffer
*tmp
;
1183 struct extent_buffer
*old
;
1184 struct timespec cur_time
= CURRENT_TIME
;
1192 path
= btrfs_alloc_path();
1194 pending
->error
= -ENOMEM
;
1198 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1199 if (!new_root_item
) {
1200 pending
->error
= -ENOMEM
;
1201 goto root_item_alloc_fail
;
1204 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1206 goto no_free_objectid
;
1208 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
1210 if (to_reserve
> 0) {
1211 pending
->error
= btrfs_block_rsv_add(root
,
1212 &pending
->block_rsv
,
1214 BTRFS_RESERVE_NO_FLUSH
);
1216 goto no_free_objectid
;
1219 key
.objectid
= objectid
;
1220 key
.offset
= (u64
)-1;
1221 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1223 rsv
= trans
->block_rsv
;
1224 trans
->block_rsv
= &pending
->block_rsv
;
1225 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1227 dentry
= pending
->dentry
;
1228 parent_inode
= pending
->dir
;
1229 parent_root
= BTRFS_I(parent_inode
)->root
;
1230 record_root_in_trans(trans
, parent_root
);
1233 * insert the directory item
1235 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1236 BUG_ON(ret
); /* -ENOMEM */
1238 /* check if there is a file/dir which has the same name. */
1239 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1240 btrfs_ino(parent_inode
),
1241 dentry
->d_name
.name
,
1242 dentry
->d_name
.len
, 0);
1243 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1244 pending
->error
= -EEXIST
;
1245 goto dir_item_existed
;
1246 } else if (IS_ERR(dir_item
)) {
1247 ret
= PTR_ERR(dir_item
);
1248 btrfs_abort_transaction(trans
, root
, ret
);
1251 btrfs_release_path(path
);
1254 * pull in the delayed directory update
1255 * and the delayed inode item
1256 * otherwise we corrupt the FS during
1259 ret
= btrfs_run_delayed_items(trans
, root
);
1260 if (ret
) { /* Transaction aborted */
1261 btrfs_abort_transaction(trans
, root
, ret
);
1265 record_root_in_trans(trans
, root
);
1266 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1267 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1268 btrfs_check_and_init_root_item(new_root_item
);
1270 root_flags
= btrfs_root_flags(new_root_item
);
1271 if (pending
->readonly
)
1272 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1274 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1275 btrfs_set_root_flags(new_root_item
, root_flags
);
1277 btrfs_set_root_generation_v2(new_root_item
,
1279 uuid_le_gen(&new_uuid
);
1280 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1281 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1283 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1284 memset(new_root_item
->received_uuid
, 0,
1285 sizeof(new_root_item
->received_uuid
));
1286 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1287 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1288 btrfs_set_root_stransid(new_root_item
, 0);
1289 btrfs_set_root_rtransid(new_root_item
, 0);
1291 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1292 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1293 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1295 old
= btrfs_lock_root_node(root
);
1296 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1298 btrfs_tree_unlock(old
);
1299 free_extent_buffer(old
);
1300 btrfs_abort_transaction(trans
, root
, ret
);
1304 btrfs_set_lock_blocking(old
);
1306 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1307 /* clean up in any case */
1308 btrfs_tree_unlock(old
);
1309 free_extent_buffer(old
);
1311 btrfs_abort_transaction(trans
, root
, ret
);
1316 * We need to flush delayed refs in order to make sure all of our quota
1317 * operations have been done before we call btrfs_qgroup_inherit.
1319 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1321 btrfs_abort_transaction(trans
, root
, ret
);
1325 ret
= btrfs_qgroup_inherit(trans
, fs_info
,
1326 root
->root_key
.objectid
,
1327 objectid
, pending
->inherit
);
1329 btrfs_abort_transaction(trans
, root
, ret
);
1333 /* see comments in should_cow_block() */
1334 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1337 btrfs_set_root_node(new_root_item
, tmp
);
1338 /* record when the snapshot was created in key.offset */
1339 key
.offset
= trans
->transid
;
1340 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1341 btrfs_tree_unlock(tmp
);
1342 free_extent_buffer(tmp
);
1344 btrfs_abort_transaction(trans
, root
, ret
);
1349 * insert root back/forward references
1351 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1352 parent_root
->root_key
.objectid
,
1353 btrfs_ino(parent_inode
), index
,
1354 dentry
->d_name
.name
, dentry
->d_name
.len
);
1356 btrfs_abort_transaction(trans
, root
, ret
);
1360 key
.offset
= (u64
)-1;
1361 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1362 if (IS_ERR(pending
->snap
)) {
1363 ret
= PTR_ERR(pending
->snap
);
1364 btrfs_abort_transaction(trans
, root
, ret
);
1368 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1370 btrfs_abort_transaction(trans
, root
, ret
);
1374 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1376 btrfs_abort_transaction(trans
, root
, ret
);
1380 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1381 dentry
->d_name
.name
, dentry
->d_name
.len
,
1383 BTRFS_FT_DIR
, index
);
1384 /* We have check then name at the beginning, so it is impossible. */
1385 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1387 btrfs_abort_transaction(trans
, root
, ret
);
1391 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1392 dentry
->d_name
.len
* 2);
1393 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1394 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1396 btrfs_abort_transaction(trans
, root
, ret
);
1399 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1400 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1402 btrfs_abort_transaction(trans
, root
, ret
);
1405 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1406 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1407 new_root_item
->received_uuid
,
1408 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1410 if (ret
&& ret
!= -EEXIST
) {
1411 btrfs_abort_transaction(trans
, root
, ret
);
1416 pending
->error
= ret
;
1418 trans
->block_rsv
= rsv
;
1419 trans
->bytes_reserved
= 0;
1421 kfree(new_root_item
);
1422 root_item_alloc_fail
:
1423 btrfs_free_path(path
);
1428 * create all the snapshots we've scheduled for creation
1430 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1431 struct btrfs_fs_info
*fs_info
)
1433 struct btrfs_pending_snapshot
*pending
, *next
;
1434 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1437 list_for_each_entry_safe(pending
, next
, head
, list
) {
1438 list_del(&pending
->list
);
1439 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1446 static void update_super_roots(struct btrfs_root
*root
)
1448 struct btrfs_root_item
*root_item
;
1449 struct btrfs_super_block
*super
;
1451 super
= root
->fs_info
->super_copy
;
1453 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1454 super
->chunk_root
= root_item
->bytenr
;
1455 super
->chunk_root_generation
= root_item
->generation
;
1456 super
->chunk_root_level
= root_item
->level
;
1458 root_item
= &root
->fs_info
->tree_root
->root_item
;
1459 super
->root
= root_item
->bytenr
;
1460 super
->generation
= root_item
->generation
;
1461 super
->root_level
= root_item
->level
;
1462 if (btrfs_test_opt(root
, SPACE_CACHE
))
1463 super
->cache_generation
= root_item
->generation
;
1464 if (root
->fs_info
->update_uuid_tree_gen
)
1465 super
->uuid_tree_generation
= root_item
->generation
;
1468 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1470 struct btrfs_transaction
*trans
;
1473 spin_lock(&info
->trans_lock
);
1474 trans
= info
->running_transaction
;
1476 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1477 spin_unlock(&info
->trans_lock
);
1481 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1483 struct btrfs_transaction
*trans
;
1486 spin_lock(&info
->trans_lock
);
1487 trans
= info
->running_transaction
;
1489 ret
= is_transaction_blocked(trans
);
1490 spin_unlock(&info
->trans_lock
);
1495 * wait for the current transaction commit to start and block subsequent
1498 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1499 struct btrfs_transaction
*trans
)
1501 wait_event(root
->fs_info
->transaction_blocked_wait
,
1502 trans
->state
>= TRANS_STATE_COMMIT_START
||
1507 * wait for the current transaction to start and then become unblocked.
1510 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1511 struct btrfs_transaction
*trans
)
1513 wait_event(root
->fs_info
->transaction_wait
,
1514 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1519 * commit transactions asynchronously. once btrfs_commit_transaction_async
1520 * returns, any subsequent transaction will not be allowed to join.
1522 struct btrfs_async_commit
{
1523 struct btrfs_trans_handle
*newtrans
;
1524 struct btrfs_root
*root
;
1525 struct work_struct work
;
1528 static void do_async_commit(struct work_struct
*work
)
1530 struct btrfs_async_commit
*ac
=
1531 container_of(work
, struct btrfs_async_commit
, work
);
1534 * We've got freeze protection passed with the transaction.
1535 * Tell lockdep about it.
1537 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1539 &ac
->root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1542 current
->journal_info
= ac
->newtrans
;
1544 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1548 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1549 struct btrfs_root
*root
,
1550 int wait_for_unblock
)
1552 struct btrfs_async_commit
*ac
;
1553 struct btrfs_transaction
*cur_trans
;
1555 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1559 INIT_WORK(&ac
->work
, do_async_commit
);
1561 ac
->newtrans
= btrfs_join_transaction(root
);
1562 if (IS_ERR(ac
->newtrans
)) {
1563 int err
= PTR_ERR(ac
->newtrans
);
1568 /* take transaction reference */
1569 cur_trans
= trans
->transaction
;
1570 atomic_inc(&cur_trans
->use_count
);
1572 btrfs_end_transaction(trans
, root
);
1575 * Tell lockdep we've released the freeze rwsem, since the
1576 * async commit thread will be the one to unlock it.
1578 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1580 &root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1583 schedule_work(&ac
->work
);
1585 /* wait for transaction to start and unblock */
1586 if (wait_for_unblock
)
1587 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1589 wait_current_trans_commit_start(root
, cur_trans
);
1591 if (current
->journal_info
== trans
)
1592 current
->journal_info
= NULL
;
1594 btrfs_put_transaction(cur_trans
);
1599 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1600 struct btrfs_root
*root
, int err
)
1602 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1605 WARN_ON(trans
->use_count
> 1);
1607 btrfs_abort_transaction(trans
, root
, err
);
1609 spin_lock(&root
->fs_info
->trans_lock
);
1612 * If the transaction is removed from the list, it means this
1613 * transaction has been committed successfully, so it is impossible
1614 * to call the cleanup function.
1616 BUG_ON(list_empty(&cur_trans
->list
));
1618 list_del_init(&cur_trans
->list
);
1619 if (cur_trans
== root
->fs_info
->running_transaction
) {
1620 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1621 spin_unlock(&root
->fs_info
->trans_lock
);
1622 wait_event(cur_trans
->writer_wait
,
1623 atomic_read(&cur_trans
->num_writers
) == 1);
1625 spin_lock(&root
->fs_info
->trans_lock
);
1627 spin_unlock(&root
->fs_info
->trans_lock
);
1629 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1631 spin_lock(&root
->fs_info
->trans_lock
);
1632 if (cur_trans
== root
->fs_info
->running_transaction
)
1633 root
->fs_info
->running_transaction
= NULL
;
1634 spin_unlock(&root
->fs_info
->trans_lock
);
1636 if (trans
->type
& __TRANS_FREEZABLE
)
1637 sb_end_intwrite(root
->fs_info
->sb
);
1638 btrfs_put_transaction(cur_trans
);
1639 btrfs_put_transaction(cur_trans
);
1641 trace_btrfs_transaction_commit(root
);
1643 if (current
->journal_info
== trans
)
1644 current
->journal_info
= NULL
;
1645 btrfs_scrub_cancel(root
->fs_info
);
1647 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1650 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1652 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1653 return btrfs_start_delalloc_roots(fs_info
, 1, -1);
1657 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1659 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1660 btrfs_wait_ordered_roots(fs_info
, -1);
1664 btrfs_wait_pending_ordered(struct btrfs_transaction
*cur_trans
,
1665 struct btrfs_fs_info
*fs_info
)
1667 struct btrfs_ordered_extent
*ordered
;
1669 spin_lock(&fs_info
->trans_lock
);
1670 while (!list_empty(&cur_trans
->pending_ordered
)) {
1671 ordered
= list_first_entry(&cur_trans
->pending_ordered
,
1672 struct btrfs_ordered_extent
,
1674 list_del_init(&ordered
->trans_list
);
1675 spin_unlock(&fs_info
->trans_lock
);
1677 wait_event(ordered
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
1679 btrfs_put_ordered_extent(ordered
);
1680 spin_lock(&fs_info
->trans_lock
);
1682 spin_unlock(&fs_info
->trans_lock
);
1685 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1686 struct btrfs_root
*root
)
1688 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1689 struct btrfs_transaction
*prev_trans
= NULL
;
1690 struct btrfs_inode
*btree_ino
= BTRFS_I(root
->fs_info
->btree_inode
);
1693 /* Stop the commit early if ->aborted is set */
1694 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1695 ret
= cur_trans
->aborted
;
1696 btrfs_end_transaction(trans
, root
);
1700 /* make a pass through all the delayed refs we have so far
1701 * any runnings procs may add more while we are here
1703 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1705 btrfs_end_transaction(trans
, root
);
1709 btrfs_trans_release_metadata(trans
, root
);
1710 trans
->block_rsv
= NULL
;
1711 if (trans
->qgroup_reserved
) {
1712 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1713 trans
->qgroup_reserved
= 0;
1716 cur_trans
= trans
->transaction
;
1719 * set the flushing flag so procs in this transaction have to
1720 * start sending their work down.
1722 cur_trans
->delayed_refs
.flushing
= 1;
1725 if (!list_empty(&trans
->new_bgs
))
1726 btrfs_create_pending_block_groups(trans
, root
);
1728 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1730 btrfs_end_transaction(trans
, root
);
1734 spin_lock(&root
->fs_info
->trans_lock
);
1735 list_splice_init(&trans
->ordered
, &cur_trans
->pending_ordered
);
1736 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1737 spin_unlock(&root
->fs_info
->trans_lock
);
1738 atomic_inc(&cur_trans
->use_count
);
1739 ret
= btrfs_end_transaction(trans
, root
);
1741 wait_for_commit(root
, cur_trans
);
1743 btrfs_put_transaction(cur_trans
);
1748 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1749 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1751 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1752 prev_trans
= list_entry(cur_trans
->list
.prev
,
1753 struct btrfs_transaction
, list
);
1754 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1755 atomic_inc(&prev_trans
->use_count
);
1756 spin_unlock(&root
->fs_info
->trans_lock
);
1758 wait_for_commit(root
, prev_trans
);
1759 ret
= prev_trans
->aborted
;
1761 btrfs_put_transaction(prev_trans
);
1763 goto cleanup_transaction
;
1765 spin_unlock(&root
->fs_info
->trans_lock
);
1768 spin_unlock(&root
->fs_info
->trans_lock
);
1771 extwriter_counter_dec(cur_trans
, trans
->type
);
1773 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1775 goto cleanup_transaction
;
1777 ret
= btrfs_run_delayed_items(trans
, root
);
1779 goto cleanup_transaction
;
1781 wait_event(cur_trans
->writer_wait
,
1782 extwriter_counter_read(cur_trans
) == 0);
1784 /* some pending stuffs might be added after the previous flush. */
1785 ret
= btrfs_run_delayed_items(trans
, root
);
1787 goto cleanup_transaction
;
1789 btrfs_wait_delalloc_flush(root
->fs_info
);
1791 btrfs_wait_pending_ordered(cur_trans
, root
->fs_info
);
1793 btrfs_scrub_pause(root
);
1795 * Ok now we need to make sure to block out any other joins while we
1796 * commit the transaction. We could have started a join before setting
1797 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1799 spin_lock(&root
->fs_info
->trans_lock
);
1800 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1801 spin_unlock(&root
->fs_info
->trans_lock
);
1802 wait_event(cur_trans
->writer_wait
,
1803 atomic_read(&cur_trans
->num_writers
) == 1);
1805 /* ->aborted might be set after the previous check, so check it */
1806 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1807 ret
= cur_trans
->aborted
;
1808 goto scrub_continue
;
1811 * the reloc mutex makes sure that we stop
1812 * the balancing code from coming in and moving
1813 * extents around in the middle of the commit
1815 mutex_lock(&root
->fs_info
->reloc_mutex
);
1818 * We needn't worry about the delayed items because we will
1819 * deal with them in create_pending_snapshot(), which is the
1820 * core function of the snapshot creation.
1822 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1824 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1825 goto scrub_continue
;
1829 * We insert the dir indexes of the snapshots and update the inode
1830 * of the snapshots' parents after the snapshot creation, so there
1831 * are some delayed items which are not dealt with. Now deal with
1834 * We needn't worry that this operation will corrupt the snapshots,
1835 * because all the tree which are snapshoted will be forced to COW
1836 * the nodes and leaves.
1838 ret
= btrfs_run_delayed_items(trans
, root
);
1840 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1841 goto scrub_continue
;
1844 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1846 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1847 goto scrub_continue
;
1851 * make sure none of the code above managed to slip in a
1854 btrfs_assert_delayed_root_empty(root
);
1856 WARN_ON(cur_trans
!= trans
->transaction
);
1858 /* btrfs_commit_tree_roots is responsible for getting the
1859 * various roots consistent with each other. Every pointer
1860 * in the tree of tree roots has to point to the most up to date
1861 * root for every subvolume and other tree. So, we have to keep
1862 * the tree logging code from jumping in and changing any
1865 * At this point in the commit, there can't be any tree-log
1866 * writers, but a little lower down we drop the trans mutex
1867 * and let new people in. By holding the tree_log_mutex
1868 * from now until after the super is written, we avoid races
1869 * with the tree-log code.
1871 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1873 ret
= commit_fs_roots(trans
, root
);
1875 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1876 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1877 goto scrub_continue
;
1881 * Since the transaction is done, we should set the inode map cache flag
1882 * before any other comming transaction.
1884 if (btrfs_test_opt(root
, CHANGE_INODE_CACHE
))
1885 btrfs_set_opt(root
->fs_info
->mount_opt
, INODE_MAP_CACHE
);
1887 btrfs_clear_opt(root
->fs_info
->mount_opt
, INODE_MAP_CACHE
);
1889 /* commit_fs_roots gets rid of all the tree log roots, it is now
1890 * safe to free the root of tree log roots
1892 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1894 ret
= commit_cowonly_roots(trans
, root
);
1896 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1897 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1898 goto scrub_continue
;
1902 * The tasks which save the space cache and inode cache may also
1903 * update ->aborted, check it.
1905 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1906 ret
= cur_trans
->aborted
;
1907 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1908 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1909 goto scrub_continue
;
1912 btrfs_prepare_extent_commit(trans
, root
);
1914 cur_trans
= root
->fs_info
->running_transaction
;
1916 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1917 root
->fs_info
->tree_root
->node
);
1918 list_add_tail(&root
->fs_info
->tree_root
->dirty_list
,
1919 &cur_trans
->switch_commits
);
1921 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1922 root
->fs_info
->chunk_root
->node
);
1923 list_add_tail(&root
->fs_info
->chunk_root
->dirty_list
,
1924 &cur_trans
->switch_commits
);
1926 switch_commit_roots(cur_trans
, root
->fs_info
);
1928 assert_qgroups_uptodate(trans
);
1929 update_super_roots(root
);
1931 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
1932 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
1933 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
1934 sizeof(*root
->fs_info
->super_copy
));
1936 btrfs_update_commit_device_size(root
->fs_info
);
1937 btrfs_update_commit_device_bytes_used(root
, cur_trans
);
1939 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR
, &btree_ino
->runtime_flags
);
1940 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR
, &btree_ino
->runtime_flags
);
1942 spin_lock(&root
->fs_info
->trans_lock
);
1943 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
1944 root
->fs_info
->running_transaction
= NULL
;
1945 spin_unlock(&root
->fs_info
->trans_lock
);
1946 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1948 wake_up(&root
->fs_info
->transaction_wait
);
1950 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1952 btrfs_error(root
->fs_info
, ret
,
1953 "Error while writing out transaction");
1954 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1955 goto scrub_continue
;
1958 ret
= write_ctree_super(trans
, root
, 0);
1960 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1961 goto scrub_continue
;
1965 * the super is written, we can safely allow the tree-loggers
1966 * to go about their business
1968 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1970 btrfs_finish_extent_commit(trans
, root
);
1972 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1974 * We needn't acquire the lock here because there is no other task
1975 * which can change it.
1977 cur_trans
->state
= TRANS_STATE_COMPLETED
;
1978 wake_up(&cur_trans
->commit_wait
);
1980 spin_lock(&root
->fs_info
->trans_lock
);
1981 list_del_init(&cur_trans
->list
);
1982 spin_unlock(&root
->fs_info
->trans_lock
);
1984 btrfs_put_transaction(cur_trans
);
1985 btrfs_put_transaction(cur_trans
);
1987 if (trans
->type
& __TRANS_FREEZABLE
)
1988 sb_end_intwrite(root
->fs_info
->sb
);
1990 trace_btrfs_transaction_commit(root
);
1992 btrfs_scrub_continue(root
);
1994 if (current
->journal_info
== trans
)
1995 current
->journal_info
= NULL
;
1997 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1999 if (current
!= root
->fs_info
->transaction_kthread
)
2000 btrfs_run_delayed_iputs(root
);
2005 btrfs_scrub_continue(root
);
2006 cleanup_transaction
:
2007 btrfs_trans_release_metadata(trans
, root
);
2008 trans
->block_rsv
= NULL
;
2009 if (trans
->qgroup_reserved
) {
2010 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
2011 trans
->qgroup_reserved
= 0;
2013 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
2014 if (current
->journal_info
== trans
)
2015 current
->journal_info
= NULL
;
2016 cleanup_transaction(trans
, root
, ret
);
2022 * return < 0 if error
2023 * 0 if there are no more dead_roots at the time of call
2024 * 1 there are more to be processed, call me again
2026 * The return value indicates there are certainly more snapshots to delete, but
2027 * if there comes a new one during processing, it may return 0. We don't mind,
2028 * because btrfs_commit_super will poke cleaner thread and it will process it a
2029 * few seconds later.
2031 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2034 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2036 spin_lock(&fs_info
->trans_lock
);
2037 if (list_empty(&fs_info
->dead_roots
)) {
2038 spin_unlock(&fs_info
->trans_lock
);
2041 root
= list_first_entry(&fs_info
->dead_roots
,
2042 struct btrfs_root
, root_list
);
2043 list_del_init(&root
->root_list
);
2044 spin_unlock(&fs_info
->trans_lock
);
2046 pr_debug("BTRFS: cleaner removing %llu\n", root
->objectid
);
2048 btrfs_kill_all_delayed_nodes(root
);
2050 if (btrfs_header_backref_rev(root
->node
) <
2051 BTRFS_MIXED_BACKREF_REV
)
2052 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2054 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2056 return (ret
< 0) ? 0 : 1;