2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
48 #include <asm/irq_regs.h>
50 static struct workqueue_struct
*perf_wq
;
52 struct remote_function_call
{
53 struct task_struct
*p
;
54 int (*func
)(void *info
);
59 static void remote_function(void *data
)
61 struct remote_function_call
*tfc
= data
;
62 struct task_struct
*p
= tfc
->p
;
66 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
70 tfc
->ret
= tfc
->func(tfc
->info
);
74 * task_function_call - call a function on the cpu on which a task runs
75 * @p: the task to evaluate
76 * @func: the function to be called
77 * @info: the function call argument
79 * Calls the function @func when the task is currently running. This might
80 * be on the current CPU, which just calls the function directly
82 * returns: @func return value, or
83 * -ESRCH - when the process isn't running
84 * -EAGAIN - when the process moved away
87 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
89 struct remote_function_call data
= {
93 .ret
= -ESRCH
, /* No such (running) process */
97 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
103 * cpu_function_call - call a function on the cpu
104 * @func: the function to be called
105 * @info: the function call argument
107 * Calls the function @func on the remote cpu.
109 * returns: @func return value or -ENXIO when the cpu is offline
111 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
113 struct remote_function_call data
= {
117 .ret
= -ENXIO
, /* No such CPU */
120 smp_call_function_single(cpu
, remote_function
, &data
, 1);
125 #define EVENT_OWNER_KERNEL ((void *) -1)
127 static bool is_kernel_event(struct perf_event
*event
)
129 return event
->owner
== EVENT_OWNER_KERNEL
;
132 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
133 PERF_FLAG_FD_OUTPUT |\
134 PERF_FLAG_PID_CGROUP |\
135 PERF_FLAG_FD_CLOEXEC)
138 * branch priv levels that need permission checks
140 #define PERF_SAMPLE_BRANCH_PERM_PLM \
141 (PERF_SAMPLE_BRANCH_KERNEL |\
142 PERF_SAMPLE_BRANCH_HV)
145 EVENT_FLEXIBLE
= 0x1,
147 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
151 * perf_sched_events : >0 events exist
152 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
154 struct static_key_deferred perf_sched_events __read_mostly
;
155 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
156 static DEFINE_PER_CPU(atomic_t
, perf_branch_stack_events
);
158 static atomic_t nr_mmap_events __read_mostly
;
159 static atomic_t nr_comm_events __read_mostly
;
160 static atomic_t nr_task_events __read_mostly
;
161 static atomic_t nr_freq_events __read_mostly
;
163 static LIST_HEAD(pmus
);
164 static DEFINE_MUTEX(pmus_lock
);
165 static struct srcu_struct pmus_srcu
;
168 * perf event paranoia level:
169 * -1 - not paranoid at all
170 * 0 - disallow raw tracepoint access for unpriv
171 * 1 - disallow cpu events for unpriv
172 * 2 - disallow kernel profiling for unpriv
174 int sysctl_perf_event_paranoid __read_mostly
= 1;
176 /* Minimum for 512 kiB + 1 user control page */
177 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
180 * max perf event sample rate
182 #define DEFAULT_MAX_SAMPLE_RATE 100000
183 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
184 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
186 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
188 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
189 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
191 static int perf_sample_allowed_ns __read_mostly
=
192 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
194 void update_perf_cpu_limits(void)
196 u64 tmp
= perf_sample_period_ns
;
198 tmp
*= sysctl_perf_cpu_time_max_percent
;
200 ACCESS_ONCE(perf_sample_allowed_ns
) = tmp
;
203 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
);
205 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
206 void __user
*buffer
, size_t *lenp
,
209 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
214 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
215 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
216 update_perf_cpu_limits();
221 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
223 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
224 void __user
*buffer
, size_t *lenp
,
227 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
232 update_perf_cpu_limits();
238 * perf samples are done in some very critical code paths (NMIs).
239 * If they take too much CPU time, the system can lock up and not
240 * get any real work done. This will drop the sample rate when
241 * we detect that events are taking too long.
243 #define NR_ACCUMULATED_SAMPLES 128
244 static DEFINE_PER_CPU(u64
, running_sample_length
);
246 static void perf_duration_warn(struct irq_work
*w
)
248 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
249 u64 avg_local_sample_len
;
250 u64 local_samples_len
;
252 local_samples_len
= __this_cpu_read(running_sample_length
);
253 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
255 printk_ratelimited(KERN_WARNING
256 "perf interrupt took too long (%lld > %lld), lowering "
257 "kernel.perf_event_max_sample_rate to %d\n",
258 avg_local_sample_len
, allowed_ns
>> 1,
259 sysctl_perf_event_sample_rate
);
262 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
264 void perf_sample_event_took(u64 sample_len_ns
)
266 u64 allowed_ns
= ACCESS_ONCE(perf_sample_allowed_ns
);
267 u64 avg_local_sample_len
;
268 u64 local_samples_len
;
273 /* decay the counter by 1 average sample */
274 local_samples_len
= __this_cpu_read(running_sample_length
);
275 local_samples_len
-= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
276 local_samples_len
+= sample_len_ns
;
277 __this_cpu_write(running_sample_length
, local_samples_len
);
280 * note: this will be biased artifically low until we have
281 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
282 * from having to maintain a count.
284 avg_local_sample_len
= local_samples_len
/NR_ACCUMULATED_SAMPLES
;
286 if (avg_local_sample_len
<= allowed_ns
)
289 if (max_samples_per_tick
<= 1)
292 max_samples_per_tick
= DIV_ROUND_UP(max_samples_per_tick
, 2);
293 sysctl_perf_event_sample_rate
= max_samples_per_tick
* HZ
;
294 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
296 update_perf_cpu_limits();
298 if (!irq_work_queue(&perf_duration_work
)) {
299 early_printk("perf interrupt took too long (%lld > %lld), lowering "
300 "kernel.perf_event_max_sample_rate to %d\n",
301 avg_local_sample_len
, allowed_ns
>> 1,
302 sysctl_perf_event_sample_rate
);
306 static atomic64_t perf_event_id
;
308 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
309 enum event_type_t event_type
);
311 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
312 enum event_type_t event_type
,
313 struct task_struct
*task
);
315 static void update_context_time(struct perf_event_context
*ctx
);
316 static u64
perf_event_time(struct perf_event
*event
);
318 void __weak
perf_event_print_debug(void) { }
320 extern __weak
const char *perf_pmu_name(void)
325 static inline u64
perf_clock(void)
327 return local_clock();
330 static inline struct perf_cpu_context
*
331 __get_cpu_context(struct perf_event_context
*ctx
)
333 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
336 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
337 struct perf_event_context
*ctx
)
339 raw_spin_lock(&cpuctx
->ctx
.lock
);
341 raw_spin_lock(&ctx
->lock
);
344 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
345 struct perf_event_context
*ctx
)
348 raw_spin_unlock(&ctx
->lock
);
349 raw_spin_unlock(&cpuctx
->ctx
.lock
);
352 #ifdef CONFIG_CGROUP_PERF
355 * perf_cgroup_info keeps track of time_enabled for a cgroup.
356 * This is a per-cpu dynamically allocated data structure.
358 struct perf_cgroup_info
{
364 struct cgroup_subsys_state css
;
365 struct perf_cgroup_info __percpu
*info
;
369 * Must ensure cgroup is pinned (css_get) before calling
370 * this function. In other words, we cannot call this function
371 * if there is no cgroup event for the current CPU context.
373 static inline struct perf_cgroup
*
374 perf_cgroup_from_task(struct task_struct
*task
)
376 return container_of(task_css(task
, perf_event_cgrp_id
),
377 struct perf_cgroup
, css
);
381 perf_cgroup_match(struct perf_event
*event
)
383 struct perf_event_context
*ctx
= event
->ctx
;
384 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
386 /* @event doesn't care about cgroup */
390 /* wants specific cgroup scope but @cpuctx isn't associated with any */
395 * Cgroup scoping is recursive. An event enabled for a cgroup is
396 * also enabled for all its descendant cgroups. If @cpuctx's
397 * cgroup is a descendant of @event's (the test covers identity
398 * case), it's a match.
400 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
401 event
->cgrp
->css
.cgroup
);
404 static inline void perf_detach_cgroup(struct perf_event
*event
)
406 css_put(&event
->cgrp
->css
);
410 static inline int is_cgroup_event(struct perf_event
*event
)
412 return event
->cgrp
!= NULL
;
415 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
417 struct perf_cgroup_info
*t
;
419 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
423 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
425 struct perf_cgroup_info
*info
;
430 info
= this_cpu_ptr(cgrp
->info
);
432 info
->time
+= now
- info
->timestamp
;
433 info
->timestamp
= now
;
436 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
438 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
440 __update_cgrp_time(cgrp_out
);
443 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
445 struct perf_cgroup
*cgrp
;
448 * ensure we access cgroup data only when needed and
449 * when we know the cgroup is pinned (css_get)
451 if (!is_cgroup_event(event
))
454 cgrp
= perf_cgroup_from_task(current
);
456 * Do not update time when cgroup is not active
458 if (cgrp
== event
->cgrp
)
459 __update_cgrp_time(event
->cgrp
);
463 perf_cgroup_set_timestamp(struct task_struct
*task
,
464 struct perf_event_context
*ctx
)
466 struct perf_cgroup
*cgrp
;
467 struct perf_cgroup_info
*info
;
470 * ctx->lock held by caller
471 * ensure we do not access cgroup data
472 * unless we have the cgroup pinned (css_get)
474 if (!task
|| !ctx
->nr_cgroups
)
477 cgrp
= perf_cgroup_from_task(task
);
478 info
= this_cpu_ptr(cgrp
->info
);
479 info
->timestamp
= ctx
->timestamp
;
482 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
483 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
486 * reschedule events based on the cgroup constraint of task.
488 * mode SWOUT : schedule out everything
489 * mode SWIN : schedule in based on cgroup for next
491 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
493 struct perf_cpu_context
*cpuctx
;
498 * disable interrupts to avoid geting nr_cgroup
499 * changes via __perf_event_disable(). Also
502 local_irq_save(flags
);
505 * we reschedule only in the presence of cgroup
506 * constrained events.
510 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
511 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
512 if (cpuctx
->unique_pmu
!= pmu
)
513 continue; /* ensure we process each cpuctx once */
516 * perf_cgroup_events says at least one
517 * context on this CPU has cgroup events.
519 * ctx->nr_cgroups reports the number of cgroup
520 * events for a context.
522 if (cpuctx
->ctx
.nr_cgroups
> 0) {
523 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
524 perf_pmu_disable(cpuctx
->ctx
.pmu
);
526 if (mode
& PERF_CGROUP_SWOUT
) {
527 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
529 * must not be done before ctxswout due
530 * to event_filter_match() in event_sched_out()
535 if (mode
& PERF_CGROUP_SWIN
) {
536 WARN_ON_ONCE(cpuctx
->cgrp
);
538 * set cgrp before ctxsw in to allow
539 * event_filter_match() to not have to pass
542 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
543 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
545 perf_pmu_enable(cpuctx
->ctx
.pmu
);
546 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
552 local_irq_restore(flags
);
555 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
556 struct task_struct
*next
)
558 struct perf_cgroup
*cgrp1
;
559 struct perf_cgroup
*cgrp2
= NULL
;
562 * we come here when we know perf_cgroup_events > 0
564 cgrp1
= perf_cgroup_from_task(task
);
567 * next is NULL when called from perf_event_enable_on_exec()
568 * that will systematically cause a cgroup_switch()
571 cgrp2
= perf_cgroup_from_task(next
);
574 * only schedule out current cgroup events if we know
575 * that we are switching to a different cgroup. Otherwise,
576 * do no touch the cgroup events.
579 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
582 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
583 struct task_struct
*task
)
585 struct perf_cgroup
*cgrp1
;
586 struct perf_cgroup
*cgrp2
= NULL
;
589 * we come here when we know perf_cgroup_events > 0
591 cgrp1
= perf_cgroup_from_task(task
);
593 /* prev can never be NULL */
594 cgrp2
= perf_cgroup_from_task(prev
);
597 * only need to schedule in cgroup events if we are changing
598 * cgroup during ctxsw. Cgroup events were not scheduled
599 * out of ctxsw out if that was not the case.
602 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
605 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
606 struct perf_event_attr
*attr
,
607 struct perf_event
*group_leader
)
609 struct perf_cgroup
*cgrp
;
610 struct cgroup_subsys_state
*css
;
611 struct fd f
= fdget(fd
);
617 css
= css_tryget_online_from_dir(f
.file
->f_dentry
,
618 &perf_event_cgrp_subsys
);
624 cgrp
= container_of(css
, struct perf_cgroup
, css
);
628 * all events in a group must monitor
629 * the same cgroup because a task belongs
630 * to only one perf cgroup at a time
632 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
633 perf_detach_cgroup(event
);
642 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
644 struct perf_cgroup_info
*t
;
645 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
646 event
->shadow_ctx_time
= now
- t
->timestamp
;
650 perf_cgroup_defer_enabled(struct perf_event
*event
)
653 * when the current task's perf cgroup does not match
654 * the event's, we need to remember to call the
655 * perf_mark_enable() function the first time a task with
656 * a matching perf cgroup is scheduled in.
658 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
659 event
->cgrp_defer_enabled
= 1;
663 perf_cgroup_mark_enabled(struct perf_event
*event
,
664 struct perf_event_context
*ctx
)
666 struct perf_event
*sub
;
667 u64 tstamp
= perf_event_time(event
);
669 if (!event
->cgrp_defer_enabled
)
672 event
->cgrp_defer_enabled
= 0;
674 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
675 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
676 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
677 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
678 sub
->cgrp_defer_enabled
= 0;
682 #else /* !CONFIG_CGROUP_PERF */
685 perf_cgroup_match(struct perf_event
*event
)
690 static inline void perf_detach_cgroup(struct perf_event
*event
)
693 static inline int is_cgroup_event(struct perf_event
*event
)
698 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
703 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
707 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
711 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
712 struct task_struct
*next
)
716 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
717 struct task_struct
*task
)
721 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
722 struct perf_event_attr
*attr
,
723 struct perf_event
*group_leader
)
729 perf_cgroup_set_timestamp(struct task_struct
*task
,
730 struct perf_event_context
*ctx
)
735 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
740 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
744 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
750 perf_cgroup_defer_enabled(struct perf_event
*event
)
755 perf_cgroup_mark_enabled(struct perf_event
*event
,
756 struct perf_event_context
*ctx
)
762 * set default to be dependent on timer tick just
765 #define PERF_CPU_HRTIMER (1000 / HZ)
767 * function must be called with interrupts disbled
769 static enum hrtimer_restart
perf_cpu_hrtimer_handler(struct hrtimer
*hr
)
771 struct perf_cpu_context
*cpuctx
;
772 enum hrtimer_restart ret
= HRTIMER_NORESTART
;
775 WARN_ON(!irqs_disabled());
777 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
779 rotations
= perf_rotate_context(cpuctx
);
782 * arm timer if needed
785 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
786 ret
= HRTIMER_RESTART
;
792 /* CPU is going down */
793 void perf_cpu_hrtimer_cancel(int cpu
)
795 struct perf_cpu_context
*cpuctx
;
799 if (WARN_ON(cpu
!= smp_processor_id()))
802 local_irq_save(flags
);
806 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
807 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
809 if (pmu
->task_ctx_nr
== perf_sw_context
)
812 hrtimer_cancel(&cpuctx
->hrtimer
);
817 local_irq_restore(flags
);
820 static void __perf_cpu_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
822 struct hrtimer
*hr
= &cpuctx
->hrtimer
;
823 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
826 /* no multiplexing needed for SW PMU */
827 if (pmu
->task_ctx_nr
== perf_sw_context
)
831 * check default is sane, if not set then force to
832 * default interval (1/tick)
834 timer
= pmu
->hrtimer_interval_ms
;
836 timer
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
838 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
840 hrtimer_init(hr
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
841 hr
->function
= perf_cpu_hrtimer_handler
;
844 static void perf_cpu_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
846 struct hrtimer
*hr
= &cpuctx
->hrtimer
;
847 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
850 if (pmu
->task_ctx_nr
== perf_sw_context
)
853 if (hrtimer_active(hr
))
856 if (!hrtimer_callback_running(hr
))
857 __hrtimer_start_range_ns(hr
, cpuctx
->hrtimer_interval
,
858 0, HRTIMER_MODE_REL_PINNED
, 0);
861 void perf_pmu_disable(struct pmu
*pmu
)
863 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
865 pmu
->pmu_disable(pmu
);
868 void perf_pmu_enable(struct pmu
*pmu
)
870 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
872 pmu
->pmu_enable(pmu
);
875 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
878 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
879 * because they're strictly cpu affine and rotate_start is called with IRQs
880 * disabled, while rotate_context is called from IRQ context.
882 static void perf_pmu_rotate_start(struct pmu
*pmu
)
884 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
885 struct list_head
*head
= this_cpu_ptr(&rotation_list
);
887 WARN_ON(!irqs_disabled());
889 if (list_empty(&cpuctx
->rotation_list
))
890 list_add(&cpuctx
->rotation_list
, head
);
893 static void get_ctx(struct perf_event_context
*ctx
)
895 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
898 static void put_ctx(struct perf_event_context
*ctx
)
900 if (atomic_dec_and_test(&ctx
->refcount
)) {
902 put_ctx(ctx
->parent_ctx
);
904 put_task_struct(ctx
->task
);
905 kfree_rcu(ctx
, rcu_head
);
910 * This must be done under the ctx->lock, such as to serialize against
911 * context_equiv(), therefore we cannot call put_ctx() since that might end up
912 * calling scheduler related locks and ctx->lock nests inside those.
914 static __must_check
struct perf_event_context
*
915 unclone_ctx(struct perf_event_context
*ctx
)
917 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
919 lockdep_assert_held(&ctx
->lock
);
922 ctx
->parent_ctx
= NULL
;
928 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
931 * only top level events have the pid namespace they were created in
934 event
= event
->parent
;
936 return task_tgid_nr_ns(p
, event
->ns
);
939 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
942 * only top level events have the pid namespace they were created in
945 event
= event
->parent
;
947 return task_pid_nr_ns(p
, event
->ns
);
951 * If we inherit events we want to return the parent event id
954 static u64
primary_event_id(struct perf_event
*event
)
959 id
= event
->parent
->id
;
965 * Get the perf_event_context for a task and lock it.
966 * This has to cope with with the fact that until it is locked,
967 * the context could get moved to another task.
969 static struct perf_event_context
*
970 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
972 struct perf_event_context
*ctx
;
976 * One of the few rules of preemptible RCU is that one cannot do
977 * rcu_read_unlock() while holding a scheduler (or nested) lock when
978 * part of the read side critical section was preemptible -- see
979 * rcu_read_unlock_special().
981 * Since ctx->lock nests under rq->lock we must ensure the entire read
982 * side critical section is non-preemptible.
986 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
989 * If this context is a clone of another, it might
990 * get swapped for another underneath us by
991 * perf_event_task_sched_out, though the
992 * rcu_read_lock() protects us from any context
993 * getting freed. Lock the context and check if it
994 * got swapped before we could get the lock, and retry
995 * if so. If we locked the right context, then it
996 * can't get swapped on us any more.
998 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
999 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1000 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
1006 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1007 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
1017 * Get the context for a task and increment its pin_count so it
1018 * can't get swapped to another task. This also increments its
1019 * reference count so that the context can't get freed.
1021 static struct perf_event_context
*
1022 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1024 struct perf_event_context
*ctx
;
1025 unsigned long flags
;
1027 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1030 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1035 static void perf_unpin_context(struct perf_event_context
*ctx
)
1037 unsigned long flags
;
1039 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1041 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1045 * Update the record of the current time in a context.
1047 static void update_context_time(struct perf_event_context
*ctx
)
1049 u64 now
= perf_clock();
1051 ctx
->time
+= now
- ctx
->timestamp
;
1052 ctx
->timestamp
= now
;
1055 static u64
perf_event_time(struct perf_event
*event
)
1057 struct perf_event_context
*ctx
= event
->ctx
;
1059 if (is_cgroup_event(event
))
1060 return perf_cgroup_event_time(event
);
1062 return ctx
? ctx
->time
: 0;
1066 * Update the total_time_enabled and total_time_running fields for a event.
1067 * The caller of this function needs to hold the ctx->lock.
1069 static void update_event_times(struct perf_event
*event
)
1071 struct perf_event_context
*ctx
= event
->ctx
;
1074 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
1075 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
1078 * in cgroup mode, time_enabled represents
1079 * the time the event was enabled AND active
1080 * tasks were in the monitored cgroup. This is
1081 * independent of the activity of the context as
1082 * there may be a mix of cgroup and non-cgroup events.
1084 * That is why we treat cgroup events differently
1087 if (is_cgroup_event(event
))
1088 run_end
= perf_cgroup_event_time(event
);
1089 else if (ctx
->is_active
)
1090 run_end
= ctx
->time
;
1092 run_end
= event
->tstamp_stopped
;
1094 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
1096 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
1097 run_end
= event
->tstamp_stopped
;
1099 run_end
= perf_event_time(event
);
1101 event
->total_time_running
= run_end
- event
->tstamp_running
;
1106 * Update total_time_enabled and total_time_running for all events in a group.
1108 static void update_group_times(struct perf_event
*leader
)
1110 struct perf_event
*event
;
1112 update_event_times(leader
);
1113 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
1114 update_event_times(event
);
1117 static struct list_head
*
1118 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
1120 if (event
->attr
.pinned
)
1121 return &ctx
->pinned_groups
;
1123 return &ctx
->flexible_groups
;
1127 * Add a event from the lists for its context.
1128 * Must be called with ctx->mutex and ctx->lock held.
1131 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1133 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1134 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1137 * If we're a stand alone event or group leader, we go to the context
1138 * list, group events are kept attached to the group so that
1139 * perf_group_detach can, at all times, locate all siblings.
1141 if (event
->group_leader
== event
) {
1142 struct list_head
*list
;
1144 if (is_software_event(event
))
1145 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
1147 list
= ctx_group_list(event
, ctx
);
1148 list_add_tail(&event
->group_entry
, list
);
1151 if (is_cgroup_event(event
))
1154 if (has_branch_stack(event
))
1155 ctx
->nr_branch_stack
++;
1157 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1158 if (!ctx
->nr_events
)
1159 perf_pmu_rotate_start(ctx
->pmu
);
1161 if (event
->attr
.inherit_stat
)
1168 * Initialize event state based on the perf_event_attr::disabled.
1170 static inline void perf_event__state_init(struct perf_event
*event
)
1172 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1173 PERF_EVENT_STATE_INACTIVE
;
1177 * Called at perf_event creation and when events are attached/detached from a
1180 static void perf_event__read_size(struct perf_event
*event
)
1182 int entry
= sizeof(u64
); /* value */
1186 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1187 size
+= sizeof(u64
);
1189 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1190 size
+= sizeof(u64
);
1192 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1193 entry
+= sizeof(u64
);
1195 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1196 nr
+= event
->group_leader
->nr_siblings
;
1197 size
+= sizeof(u64
);
1201 event
->read_size
= size
;
1204 static void perf_event__header_size(struct perf_event
*event
)
1206 struct perf_sample_data
*data
;
1207 u64 sample_type
= event
->attr
.sample_type
;
1210 perf_event__read_size(event
);
1212 if (sample_type
& PERF_SAMPLE_IP
)
1213 size
+= sizeof(data
->ip
);
1215 if (sample_type
& PERF_SAMPLE_ADDR
)
1216 size
+= sizeof(data
->addr
);
1218 if (sample_type
& PERF_SAMPLE_PERIOD
)
1219 size
+= sizeof(data
->period
);
1221 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1222 size
+= sizeof(data
->weight
);
1224 if (sample_type
& PERF_SAMPLE_READ
)
1225 size
+= event
->read_size
;
1227 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1228 size
+= sizeof(data
->data_src
.val
);
1230 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1231 size
+= sizeof(data
->txn
);
1233 event
->header_size
= size
;
1236 static void perf_event__id_header_size(struct perf_event
*event
)
1238 struct perf_sample_data
*data
;
1239 u64 sample_type
= event
->attr
.sample_type
;
1242 if (sample_type
& PERF_SAMPLE_TID
)
1243 size
+= sizeof(data
->tid_entry
);
1245 if (sample_type
& PERF_SAMPLE_TIME
)
1246 size
+= sizeof(data
->time
);
1248 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1249 size
+= sizeof(data
->id
);
1251 if (sample_type
& PERF_SAMPLE_ID
)
1252 size
+= sizeof(data
->id
);
1254 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1255 size
+= sizeof(data
->stream_id
);
1257 if (sample_type
& PERF_SAMPLE_CPU
)
1258 size
+= sizeof(data
->cpu_entry
);
1260 event
->id_header_size
= size
;
1263 static void perf_group_attach(struct perf_event
*event
)
1265 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1268 * We can have double attach due to group movement in perf_event_open.
1270 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1273 event
->attach_state
|= PERF_ATTACH_GROUP
;
1275 if (group_leader
== event
)
1278 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
1279 !is_software_event(event
))
1280 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
1282 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1283 group_leader
->nr_siblings
++;
1285 perf_event__header_size(group_leader
);
1287 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1288 perf_event__header_size(pos
);
1292 * Remove a event from the lists for its context.
1293 * Must be called with ctx->mutex and ctx->lock held.
1296 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1298 struct perf_cpu_context
*cpuctx
;
1300 * We can have double detach due to exit/hot-unplug + close.
1302 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1305 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1307 if (is_cgroup_event(event
)) {
1309 cpuctx
= __get_cpu_context(ctx
);
1311 * if there are no more cgroup events
1312 * then cler cgrp to avoid stale pointer
1313 * in update_cgrp_time_from_cpuctx()
1315 if (!ctx
->nr_cgroups
)
1316 cpuctx
->cgrp
= NULL
;
1319 if (has_branch_stack(event
))
1320 ctx
->nr_branch_stack
--;
1323 if (event
->attr
.inherit_stat
)
1326 list_del_rcu(&event
->event_entry
);
1328 if (event
->group_leader
== event
)
1329 list_del_init(&event
->group_entry
);
1331 update_group_times(event
);
1334 * If event was in error state, then keep it
1335 * that way, otherwise bogus counts will be
1336 * returned on read(). The only way to get out
1337 * of error state is by explicit re-enabling
1340 if (event
->state
> PERF_EVENT_STATE_OFF
)
1341 event
->state
= PERF_EVENT_STATE_OFF
;
1346 static void perf_group_detach(struct perf_event
*event
)
1348 struct perf_event
*sibling
, *tmp
;
1349 struct list_head
*list
= NULL
;
1352 * We can have double detach due to exit/hot-unplug + close.
1354 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1357 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1360 * If this is a sibling, remove it from its group.
1362 if (event
->group_leader
!= event
) {
1363 list_del_init(&event
->group_entry
);
1364 event
->group_leader
->nr_siblings
--;
1368 if (!list_empty(&event
->group_entry
))
1369 list
= &event
->group_entry
;
1372 * If this was a group event with sibling events then
1373 * upgrade the siblings to singleton events by adding them
1374 * to whatever list we are on.
1376 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1378 list_move_tail(&sibling
->group_entry
, list
);
1379 sibling
->group_leader
= sibling
;
1381 /* Inherit group flags from the previous leader */
1382 sibling
->group_flags
= event
->group_flags
;
1386 perf_event__header_size(event
->group_leader
);
1388 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1389 perf_event__header_size(tmp
);
1393 * User event without the task.
1395 static bool is_orphaned_event(struct perf_event
*event
)
1397 return event
&& !is_kernel_event(event
) && !event
->owner
;
1401 * Event has a parent but parent's task finished and it's
1402 * alive only because of children holding refference.
1404 static bool is_orphaned_child(struct perf_event
*event
)
1406 return is_orphaned_event(event
->parent
);
1409 static void orphans_remove_work(struct work_struct
*work
);
1411 static void schedule_orphans_remove(struct perf_event_context
*ctx
)
1413 if (!ctx
->task
|| ctx
->orphans_remove_sched
|| !perf_wq
)
1416 if (queue_delayed_work(perf_wq
, &ctx
->orphans_remove
, 1)) {
1418 ctx
->orphans_remove_sched
= true;
1422 static int __init
perf_workqueue_init(void)
1424 perf_wq
= create_singlethread_workqueue("perf");
1425 WARN(!perf_wq
, "failed to create perf workqueue\n");
1426 return perf_wq
? 0 : -1;
1429 core_initcall(perf_workqueue_init
);
1432 event_filter_match(struct perf_event
*event
)
1434 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1435 && perf_cgroup_match(event
);
1439 event_sched_out(struct perf_event
*event
,
1440 struct perf_cpu_context
*cpuctx
,
1441 struct perf_event_context
*ctx
)
1443 u64 tstamp
= perf_event_time(event
);
1446 * An event which could not be activated because of
1447 * filter mismatch still needs to have its timings
1448 * maintained, otherwise bogus information is return
1449 * via read() for time_enabled, time_running:
1451 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1452 && !event_filter_match(event
)) {
1453 delta
= tstamp
- event
->tstamp_stopped
;
1454 event
->tstamp_running
+= delta
;
1455 event
->tstamp_stopped
= tstamp
;
1458 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1461 perf_pmu_disable(event
->pmu
);
1463 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1464 if (event
->pending_disable
) {
1465 event
->pending_disable
= 0;
1466 event
->state
= PERF_EVENT_STATE_OFF
;
1468 event
->tstamp_stopped
= tstamp
;
1469 event
->pmu
->del(event
, 0);
1472 if (!is_software_event(event
))
1473 cpuctx
->active_oncpu
--;
1475 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1477 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1478 cpuctx
->exclusive
= 0;
1480 if (is_orphaned_child(event
))
1481 schedule_orphans_remove(ctx
);
1483 perf_pmu_enable(event
->pmu
);
1487 group_sched_out(struct perf_event
*group_event
,
1488 struct perf_cpu_context
*cpuctx
,
1489 struct perf_event_context
*ctx
)
1491 struct perf_event
*event
;
1492 int state
= group_event
->state
;
1494 event_sched_out(group_event
, cpuctx
, ctx
);
1497 * Schedule out siblings (if any):
1499 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1500 event_sched_out(event
, cpuctx
, ctx
);
1502 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1503 cpuctx
->exclusive
= 0;
1506 struct remove_event
{
1507 struct perf_event
*event
;
1512 * Cross CPU call to remove a performance event
1514 * We disable the event on the hardware level first. After that we
1515 * remove it from the context list.
1517 static int __perf_remove_from_context(void *info
)
1519 struct remove_event
*re
= info
;
1520 struct perf_event
*event
= re
->event
;
1521 struct perf_event_context
*ctx
= event
->ctx
;
1522 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1524 raw_spin_lock(&ctx
->lock
);
1525 event_sched_out(event
, cpuctx
, ctx
);
1526 if (re
->detach_group
)
1527 perf_group_detach(event
);
1528 list_del_event(event
, ctx
);
1529 if (!ctx
->nr_events
&& cpuctx
->task_ctx
== ctx
) {
1531 cpuctx
->task_ctx
= NULL
;
1533 raw_spin_unlock(&ctx
->lock
);
1540 * Remove the event from a task's (or a CPU's) list of events.
1542 * CPU events are removed with a smp call. For task events we only
1543 * call when the task is on a CPU.
1545 * If event->ctx is a cloned context, callers must make sure that
1546 * every task struct that event->ctx->task could possibly point to
1547 * remains valid. This is OK when called from perf_release since
1548 * that only calls us on the top-level context, which can't be a clone.
1549 * When called from perf_event_exit_task, it's OK because the
1550 * context has been detached from its task.
1552 static void perf_remove_from_context(struct perf_event
*event
, bool detach_group
)
1554 struct perf_event_context
*ctx
= event
->ctx
;
1555 struct task_struct
*task
= ctx
->task
;
1556 struct remove_event re
= {
1558 .detach_group
= detach_group
,
1561 lockdep_assert_held(&ctx
->mutex
);
1565 * Per cpu events are removed via an smp call. The removal can
1566 * fail if the CPU is currently offline, but in that case we
1567 * already called __perf_remove_from_context from
1568 * perf_event_exit_cpu.
1570 cpu_function_call(event
->cpu
, __perf_remove_from_context
, &re
);
1575 if (!task_function_call(task
, __perf_remove_from_context
, &re
))
1578 raw_spin_lock_irq(&ctx
->lock
);
1580 * If we failed to find a running task, but find the context active now
1581 * that we've acquired the ctx->lock, retry.
1583 if (ctx
->is_active
) {
1584 raw_spin_unlock_irq(&ctx
->lock
);
1586 * Reload the task pointer, it might have been changed by
1587 * a concurrent perf_event_context_sched_out().
1594 * Since the task isn't running, its safe to remove the event, us
1595 * holding the ctx->lock ensures the task won't get scheduled in.
1598 perf_group_detach(event
);
1599 list_del_event(event
, ctx
);
1600 raw_spin_unlock_irq(&ctx
->lock
);
1604 * Cross CPU call to disable a performance event
1606 int __perf_event_disable(void *info
)
1608 struct perf_event
*event
= info
;
1609 struct perf_event_context
*ctx
= event
->ctx
;
1610 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1613 * If this is a per-task event, need to check whether this
1614 * event's task is the current task on this cpu.
1616 * Can trigger due to concurrent perf_event_context_sched_out()
1617 * flipping contexts around.
1619 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1622 raw_spin_lock(&ctx
->lock
);
1625 * If the event is on, turn it off.
1626 * If it is in error state, leave it in error state.
1628 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1629 update_context_time(ctx
);
1630 update_cgrp_time_from_event(event
);
1631 update_group_times(event
);
1632 if (event
== event
->group_leader
)
1633 group_sched_out(event
, cpuctx
, ctx
);
1635 event_sched_out(event
, cpuctx
, ctx
);
1636 event
->state
= PERF_EVENT_STATE_OFF
;
1639 raw_spin_unlock(&ctx
->lock
);
1647 * If event->ctx is a cloned context, callers must make sure that
1648 * every task struct that event->ctx->task could possibly point to
1649 * remains valid. This condition is satisifed when called through
1650 * perf_event_for_each_child or perf_event_for_each because they
1651 * hold the top-level event's child_mutex, so any descendant that
1652 * goes to exit will block in sync_child_event.
1653 * When called from perf_pending_event it's OK because event->ctx
1654 * is the current context on this CPU and preemption is disabled,
1655 * hence we can't get into perf_event_task_sched_out for this context.
1657 void perf_event_disable(struct perf_event
*event
)
1659 struct perf_event_context
*ctx
= event
->ctx
;
1660 struct task_struct
*task
= ctx
->task
;
1664 * Disable the event on the cpu that it's on
1666 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1671 if (!task_function_call(task
, __perf_event_disable
, event
))
1674 raw_spin_lock_irq(&ctx
->lock
);
1676 * If the event is still active, we need to retry the cross-call.
1678 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1679 raw_spin_unlock_irq(&ctx
->lock
);
1681 * Reload the task pointer, it might have been changed by
1682 * a concurrent perf_event_context_sched_out().
1689 * Since we have the lock this context can't be scheduled
1690 * in, so we can change the state safely.
1692 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1693 update_group_times(event
);
1694 event
->state
= PERF_EVENT_STATE_OFF
;
1696 raw_spin_unlock_irq(&ctx
->lock
);
1698 EXPORT_SYMBOL_GPL(perf_event_disable
);
1700 static void perf_set_shadow_time(struct perf_event
*event
,
1701 struct perf_event_context
*ctx
,
1705 * use the correct time source for the time snapshot
1707 * We could get by without this by leveraging the
1708 * fact that to get to this function, the caller
1709 * has most likely already called update_context_time()
1710 * and update_cgrp_time_xx() and thus both timestamp
1711 * are identical (or very close). Given that tstamp is,
1712 * already adjusted for cgroup, we could say that:
1713 * tstamp - ctx->timestamp
1715 * tstamp - cgrp->timestamp.
1717 * Then, in perf_output_read(), the calculation would
1718 * work with no changes because:
1719 * - event is guaranteed scheduled in
1720 * - no scheduled out in between
1721 * - thus the timestamp would be the same
1723 * But this is a bit hairy.
1725 * So instead, we have an explicit cgroup call to remain
1726 * within the time time source all along. We believe it
1727 * is cleaner and simpler to understand.
1729 if (is_cgroup_event(event
))
1730 perf_cgroup_set_shadow_time(event
, tstamp
);
1732 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1735 #define MAX_INTERRUPTS (~0ULL)
1737 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1740 event_sched_in(struct perf_event
*event
,
1741 struct perf_cpu_context
*cpuctx
,
1742 struct perf_event_context
*ctx
)
1744 u64 tstamp
= perf_event_time(event
);
1747 lockdep_assert_held(&ctx
->lock
);
1749 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1752 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1753 event
->oncpu
= smp_processor_id();
1756 * Unthrottle events, since we scheduled we might have missed several
1757 * ticks already, also for a heavily scheduling task there is little
1758 * guarantee it'll get a tick in a timely manner.
1760 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1761 perf_log_throttle(event
, 1);
1762 event
->hw
.interrupts
= 0;
1766 * The new state must be visible before we turn it on in the hardware:
1770 perf_pmu_disable(event
->pmu
);
1772 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1773 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1779 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1781 perf_set_shadow_time(event
, ctx
, tstamp
);
1783 if (!is_software_event(event
))
1784 cpuctx
->active_oncpu
++;
1786 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1789 if (event
->attr
.exclusive
)
1790 cpuctx
->exclusive
= 1;
1792 if (is_orphaned_child(event
))
1793 schedule_orphans_remove(ctx
);
1796 perf_pmu_enable(event
->pmu
);
1802 group_sched_in(struct perf_event
*group_event
,
1803 struct perf_cpu_context
*cpuctx
,
1804 struct perf_event_context
*ctx
)
1806 struct perf_event
*event
, *partial_group
= NULL
;
1807 struct pmu
*pmu
= ctx
->pmu
;
1808 u64 now
= ctx
->time
;
1809 bool simulate
= false;
1811 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1814 pmu
->start_txn(pmu
);
1816 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1817 pmu
->cancel_txn(pmu
);
1818 perf_cpu_hrtimer_restart(cpuctx
);
1823 * Schedule in siblings as one group (if any):
1825 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1826 if (event_sched_in(event
, cpuctx
, ctx
)) {
1827 partial_group
= event
;
1832 if (!pmu
->commit_txn(pmu
))
1837 * Groups can be scheduled in as one unit only, so undo any
1838 * partial group before returning:
1839 * The events up to the failed event are scheduled out normally,
1840 * tstamp_stopped will be updated.
1842 * The failed events and the remaining siblings need to have
1843 * their timings updated as if they had gone thru event_sched_in()
1844 * and event_sched_out(). This is required to get consistent timings
1845 * across the group. This also takes care of the case where the group
1846 * could never be scheduled by ensuring tstamp_stopped is set to mark
1847 * the time the event was actually stopped, such that time delta
1848 * calculation in update_event_times() is correct.
1850 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1851 if (event
== partial_group
)
1855 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1856 event
->tstamp_stopped
= now
;
1858 event_sched_out(event
, cpuctx
, ctx
);
1861 event_sched_out(group_event
, cpuctx
, ctx
);
1863 pmu
->cancel_txn(pmu
);
1865 perf_cpu_hrtimer_restart(cpuctx
);
1871 * Work out whether we can put this event group on the CPU now.
1873 static int group_can_go_on(struct perf_event
*event
,
1874 struct perf_cpu_context
*cpuctx
,
1878 * Groups consisting entirely of software events can always go on.
1880 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1883 * If an exclusive group is already on, no other hardware
1886 if (cpuctx
->exclusive
)
1889 * If this group is exclusive and there are already
1890 * events on the CPU, it can't go on.
1892 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
1895 * Otherwise, try to add it if all previous groups were able
1901 static void add_event_to_ctx(struct perf_event
*event
,
1902 struct perf_event_context
*ctx
)
1904 u64 tstamp
= perf_event_time(event
);
1906 list_add_event(event
, ctx
);
1907 perf_group_attach(event
);
1908 event
->tstamp_enabled
= tstamp
;
1909 event
->tstamp_running
= tstamp
;
1910 event
->tstamp_stopped
= tstamp
;
1913 static void task_ctx_sched_out(struct perf_event_context
*ctx
);
1915 ctx_sched_in(struct perf_event_context
*ctx
,
1916 struct perf_cpu_context
*cpuctx
,
1917 enum event_type_t event_type
,
1918 struct task_struct
*task
);
1920 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
1921 struct perf_event_context
*ctx
,
1922 struct task_struct
*task
)
1924 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
1926 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
1927 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
1929 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
1933 * Cross CPU call to install and enable a performance event
1935 * Must be called with ctx->mutex held
1937 static int __perf_install_in_context(void *info
)
1939 struct perf_event
*event
= info
;
1940 struct perf_event_context
*ctx
= event
->ctx
;
1941 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1942 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
1943 struct task_struct
*task
= current
;
1945 perf_ctx_lock(cpuctx
, task_ctx
);
1946 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1949 * If there was an active task_ctx schedule it out.
1952 task_ctx_sched_out(task_ctx
);
1955 * If the context we're installing events in is not the
1956 * active task_ctx, flip them.
1958 if (ctx
->task
&& task_ctx
!= ctx
) {
1960 raw_spin_unlock(&task_ctx
->lock
);
1961 raw_spin_lock(&ctx
->lock
);
1966 cpuctx
->task_ctx
= task_ctx
;
1967 task
= task_ctx
->task
;
1970 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
1972 update_context_time(ctx
);
1974 * update cgrp time only if current cgrp
1975 * matches event->cgrp. Must be done before
1976 * calling add_event_to_ctx()
1978 update_cgrp_time_from_event(event
);
1980 add_event_to_ctx(event
, ctx
);
1983 * Schedule everything back in
1985 perf_event_sched_in(cpuctx
, task_ctx
, task
);
1987 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1988 perf_ctx_unlock(cpuctx
, task_ctx
);
1994 * Attach a performance event to a context
1996 * First we add the event to the list with the hardware enable bit
1997 * in event->hw_config cleared.
1999 * If the event is attached to a task which is on a CPU we use a smp
2000 * call to enable it in the task context. The task might have been
2001 * scheduled away, but we check this in the smp call again.
2004 perf_install_in_context(struct perf_event_context
*ctx
,
2005 struct perf_event
*event
,
2008 struct task_struct
*task
= ctx
->task
;
2010 lockdep_assert_held(&ctx
->mutex
);
2013 if (event
->cpu
!= -1)
2018 * Per cpu events are installed via an smp call and
2019 * the install is always successful.
2021 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2026 if (!task_function_call(task
, __perf_install_in_context
, event
))
2029 raw_spin_lock_irq(&ctx
->lock
);
2031 * If we failed to find a running task, but find the context active now
2032 * that we've acquired the ctx->lock, retry.
2034 if (ctx
->is_active
) {
2035 raw_spin_unlock_irq(&ctx
->lock
);
2037 * Reload the task pointer, it might have been changed by
2038 * a concurrent perf_event_context_sched_out().
2045 * Since the task isn't running, its safe to add the event, us holding
2046 * the ctx->lock ensures the task won't get scheduled in.
2048 add_event_to_ctx(event
, ctx
);
2049 raw_spin_unlock_irq(&ctx
->lock
);
2053 * Put a event into inactive state and update time fields.
2054 * Enabling the leader of a group effectively enables all
2055 * the group members that aren't explicitly disabled, so we
2056 * have to update their ->tstamp_enabled also.
2057 * Note: this works for group members as well as group leaders
2058 * since the non-leader members' sibling_lists will be empty.
2060 static void __perf_event_mark_enabled(struct perf_event
*event
)
2062 struct perf_event
*sub
;
2063 u64 tstamp
= perf_event_time(event
);
2065 event
->state
= PERF_EVENT_STATE_INACTIVE
;
2066 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
2067 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
2068 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
2069 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
2074 * Cross CPU call to enable a performance event
2076 static int __perf_event_enable(void *info
)
2078 struct perf_event
*event
= info
;
2079 struct perf_event_context
*ctx
= event
->ctx
;
2080 struct perf_event
*leader
= event
->group_leader
;
2081 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2085 * There's a time window between 'ctx->is_active' check
2086 * in perf_event_enable function and this place having:
2088 * - ctx->lock unlocked
2090 * where the task could be killed and 'ctx' deactivated
2091 * by perf_event_exit_task.
2093 if (!ctx
->is_active
)
2096 raw_spin_lock(&ctx
->lock
);
2097 update_context_time(ctx
);
2099 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2103 * set current task's cgroup time reference point
2105 perf_cgroup_set_timestamp(current
, ctx
);
2107 __perf_event_mark_enabled(event
);
2109 if (!event_filter_match(event
)) {
2110 if (is_cgroup_event(event
))
2111 perf_cgroup_defer_enabled(event
);
2116 * If the event is in a group and isn't the group leader,
2117 * then don't put it on unless the group is on.
2119 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
2122 if (!group_can_go_on(event
, cpuctx
, 1)) {
2125 if (event
== leader
)
2126 err
= group_sched_in(event
, cpuctx
, ctx
);
2128 err
= event_sched_in(event
, cpuctx
, ctx
);
2133 * If this event can't go on and it's part of a
2134 * group, then the whole group has to come off.
2136 if (leader
!= event
) {
2137 group_sched_out(leader
, cpuctx
, ctx
);
2138 perf_cpu_hrtimer_restart(cpuctx
);
2140 if (leader
->attr
.pinned
) {
2141 update_group_times(leader
);
2142 leader
->state
= PERF_EVENT_STATE_ERROR
;
2147 raw_spin_unlock(&ctx
->lock
);
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
2157 * remains valid. This condition is satisfied when called through
2158 * perf_event_for_each_child or perf_event_for_each as described
2159 * for perf_event_disable.
2161 void perf_event_enable(struct perf_event
*event
)
2163 struct perf_event_context
*ctx
= event
->ctx
;
2164 struct task_struct
*task
= ctx
->task
;
2168 * Enable the event on the cpu that it's on
2170 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
2174 raw_spin_lock_irq(&ctx
->lock
);
2175 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2179 * If the event is in error state, clear that first.
2180 * That way, if we see the event in error state below, we
2181 * know that it has gone back into error state, as distinct
2182 * from the task having been scheduled away before the
2183 * cross-call arrived.
2185 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2186 event
->state
= PERF_EVENT_STATE_OFF
;
2189 if (!ctx
->is_active
) {
2190 __perf_event_mark_enabled(event
);
2194 raw_spin_unlock_irq(&ctx
->lock
);
2196 if (!task_function_call(task
, __perf_event_enable
, event
))
2199 raw_spin_lock_irq(&ctx
->lock
);
2202 * If the context is active and the event is still off,
2203 * we need to retry the cross-call.
2205 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
2207 * task could have been flipped by a concurrent
2208 * perf_event_context_sched_out()
2215 raw_spin_unlock_irq(&ctx
->lock
);
2217 EXPORT_SYMBOL_GPL(perf_event_enable
);
2219 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2222 * not supported on inherited events
2224 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2227 atomic_add(refresh
, &event
->event_limit
);
2228 perf_event_enable(event
);
2232 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2234 static void ctx_sched_out(struct perf_event_context
*ctx
,
2235 struct perf_cpu_context
*cpuctx
,
2236 enum event_type_t event_type
)
2238 struct perf_event
*event
;
2239 int is_active
= ctx
->is_active
;
2241 ctx
->is_active
&= ~event_type
;
2242 if (likely(!ctx
->nr_events
))
2245 update_context_time(ctx
);
2246 update_cgrp_time_from_cpuctx(cpuctx
);
2247 if (!ctx
->nr_active
)
2250 perf_pmu_disable(ctx
->pmu
);
2251 if ((is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
)) {
2252 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
2253 group_sched_out(event
, cpuctx
, ctx
);
2256 if ((is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
)) {
2257 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
2258 group_sched_out(event
, cpuctx
, ctx
);
2260 perf_pmu_enable(ctx
->pmu
);
2264 * Test whether two contexts are equivalent, i.e. whether they have both been
2265 * cloned from the same version of the same context.
2267 * Equivalence is measured using a generation number in the context that is
2268 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2269 * and list_del_event().
2271 static int context_equiv(struct perf_event_context
*ctx1
,
2272 struct perf_event_context
*ctx2
)
2274 lockdep_assert_held(&ctx1
->lock
);
2275 lockdep_assert_held(&ctx2
->lock
);
2277 /* Pinning disables the swap optimization */
2278 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2281 /* If ctx1 is the parent of ctx2 */
2282 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2285 /* If ctx2 is the parent of ctx1 */
2286 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2290 * If ctx1 and ctx2 have the same parent; we flatten the parent
2291 * hierarchy, see perf_event_init_context().
2293 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2294 ctx1
->parent_gen
== ctx2
->parent_gen
)
2301 static void __perf_event_sync_stat(struct perf_event
*event
,
2302 struct perf_event
*next_event
)
2306 if (!event
->attr
.inherit_stat
)
2310 * Update the event value, we cannot use perf_event_read()
2311 * because we're in the middle of a context switch and have IRQs
2312 * disabled, which upsets smp_call_function_single(), however
2313 * we know the event must be on the current CPU, therefore we
2314 * don't need to use it.
2316 switch (event
->state
) {
2317 case PERF_EVENT_STATE_ACTIVE
:
2318 event
->pmu
->read(event
);
2321 case PERF_EVENT_STATE_INACTIVE
:
2322 update_event_times(event
);
2330 * In order to keep per-task stats reliable we need to flip the event
2331 * values when we flip the contexts.
2333 value
= local64_read(&next_event
->count
);
2334 value
= local64_xchg(&event
->count
, value
);
2335 local64_set(&next_event
->count
, value
);
2337 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
2338 swap(event
->total_time_running
, next_event
->total_time_running
);
2341 * Since we swizzled the values, update the user visible data too.
2343 perf_event_update_userpage(event
);
2344 perf_event_update_userpage(next_event
);
2347 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
2348 struct perf_event_context
*next_ctx
)
2350 struct perf_event
*event
, *next_event
;
2355 update_context_time(ctx
);
2357 event
= list_first_entry(&ctx
->event_list
,
2358 struct perf_event
, event_entry
);
2360 next_event
= list_first_entry(&next_ctx
->event_list
,
2361 struct perf_event
, event_entry
);
2363 while (&event
->event_entry
!= &ctx
->event_list
&&
2364 &next_event
->event_entry
!= &next_ctx
->event_list
) {
2366 __perf_event_sync_stat(event
, next_event
);
2368 event
= list_next_entry(event
, event_entry
);
2369 next_event
= list_next_entry(next_event
, event_entry
);
2373 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
2374 struct task_struct
*next
)
2376 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
2377 struct perf_event_context
*next_ctx
;
2378 struct perf_event_context
*parent
, *next_parent
;
2379 struct perf_cpu_context
*cpuctx
;
2385 cpuctx
= __get_cpu_context(ctx
);
2386 if (!cpuctx
->task_ctx
)
2390 next_ctx
= next
->perf_event_ctxp
[ctxn
];
2394 parent
= rcu_dereference(ctx
->parent_ctx
);
2395 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
2397 /* If neither context have a parent context; they cannot be clones. */
2398 if (!parent
&& !next_parent
)
2401 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
2403 * Looks like the two contexts are clones, so we might be
2404 * able to optimize the context switch. We lock both
2405 * contexts and check that they are clones under the
2406 * lock (including re-checking that neither has been
2407 * uncloned in the meantime). It doesn't matter which
2408 * order we take the locks because no other cpu could
2409 * be trying to lock both of these tasks.
2411 raw_spin_lock(&ctx
->lock
);
2412 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2413 if (context_equiv(ctx
, next_ctx
)) {
2415 * XXX do we need a memory barrier of sorts
2416 * wrt to rcu_dereference() of perf_event_ctxp
2418 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
2419 next
->perf_event_ctxp
[ctxn
] = ctx
;
2421 next_ctx
->task
= task
;
2424 perf_event_sync_stat(ctx
, next_ctx
);
2426 raw_spin_unlock(&next_ctx
->lock
);
2427 raw_spin_unlock(&ctx
->lock
);
2433 raw_spin_lock(&ctx
->lock
);
2434 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2435 cpuctx
->task_ctx
= NULL
;
2436 raw_spin_unlock(&ctx
->lock
);
2440 #define for_each_task_context_nr(ctxn) \
2441 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2444 * Called from scheduler to remove the events of the current task,
2445 * with interrupts disabled.
2447 * We stop each event and update the event value in event->count.
2449 * This does not protect us against NMI, but disable()
2450 * sets the disabled bit in the control field of event _before_
2451 * accessing the event control register. If a NMI hits, then it will
2452 * not restart the event.
2454 void __perf_event_task_sched_out(struct task_struct
*task
,
2455 struct task_struct
*next
)
2459 for_each_task_context_nr(ctxn
)
2460 perf_event_context_sched_out(task
, ctxn
, next
);
2463 * if cgroup events exist on this CPU, then we need
2464 * to check if we have to switch out PMU state.
2465 * cgroup event are system-wide mode only
2467 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2468 perf_cgroup_sched_out(task
, next
);
2471 static void task_ctx_sched_out(struct perf_event_context
*ctx
)
2473 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2475 if (!cpuctx
->task_ctx
)
2478 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2481 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2482 cpuctx
->task_ctx
= NULL
;
2486 * Called with IRQs disabled
2488 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2489 enum event_type_t event_type
)
2491 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2495 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2496 struct perf_cpu_context
*cpuctx
)
2498 struct perf_event
*event
;
2500 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2501 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2503 if (!event_filter_match(event
))
2506 /* may need to reset tstamp_enabled */
2507 if (is_cgroup_event(event
))
2508 perf_cgroup_mark_enabled(event
, ctx
);
2510 if (group_can_go_on(event
, cpuctx
, 1))
2511 group_sched_in(event
, cpuctx
, ctx
);
2514 * If this pinned group hasn't been scheduled,
2515 * put it in error state.
2517 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2518 update_group_times(event
);
2519 event
->state
= PERF_EVENT_STATE_ERROR
;
2525 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2526 struct perf_cpu_context
*cpuctx
)
2528 struct perf_event
*event
;
2531 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2532 /* Ignore events in OFF or ERROR state */
2533 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2536 * Listen to the 'cpu' scheduling filter constraint
2539 if (!event_filter_match(event
))
2542 /* may need to reset tstamp_enabled */
2543 if (is_cgroup_event(event
))
2544 perf_cgroup_mark_enabled(event
, ctx
);
2546 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2547 if (group_sched_in(event
, cpuctx
, ctx
))
2554 ctx_sched_in(struct perf_event_context
*ctx
,
2555 struct perf_cpu_context
*cpuctx
,
2556 enum event_type_t event_type
,
2557 struct task_struct
*task
)
2560 int is_active
= ctx
->is_active
;
2562 ctx
->is_active
|= event_type
;
2563 if (likely(!ctx
->nr_events
))
2567 ctx
->timestamp
= now
;
2568 perf_cgroup_set_timestamp(task
, ctx
);
2570 * First go through the list and put on any pinned groups
2571 * in order to give them the best chance of going on.
2573 if (!(is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
))
2574 ctx_pinned_sched_in(ctx
, cpuctx
);
2576 /* Then walk through the lower prio flexible groups */
2577 if (!(is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
))
2578 ctx_flexible_sched_in(ctx
, cpuctx
);
2581 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2582 enum event_type_t event_type
,
2583 struct task_struct
*task
)
2585 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2587 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2590 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2591 struct task_struct
*task
)
2593 struct perf_cpu_context
*cpuctx
;
2595 cpuctx
= __get_cpu_context(ctx
);
2596 if (cpuctx
->task_ctx
== ctx
)
2599 perf_ctx_lock(cpuctx
, ctx
);
2600 perf_pmu_disable(ctx
->pmu
);
2602 * We want to keep the following priority order:
2603 * cpu pinned (that don't need to move), task pinned,
2604 * cpu flexible, task flexible.
2606 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2609 cpuctx
->task_ctx
= ctx
;
2611 perf_event_sched_in(cpuctx
, cpuctx
->task_ctx
, task
);
2613 perf_pmu_enable(ctx
->pmu
);
2614 perf_ctx_unlock(cpuctx
, ctx
);
2617 * Since these rotations are per-cpu, we need to ensure the
2618 * cpu-context we got scheduled on is actually rotating.
2620 perf_pmu_rotate_start(ctx
->pmu
);
2624 * When sampling the branck stack in system-wide, it may be necessary
2625 * to flush the stack on context switch. This happens when the branch
2626 * stack does not tag its entries with the pid of the current task.
2627 * Otherwise it becomes impossible to associate a branch entry with a
2628 * task. This ambiguity is more likely to appear when the branch stack
2629 * supports priv level filtering and the user sets it to monitor only
2630 * at the user level (which could be a useful measurement in system-wide
2631 * mode). In that case, the risk is high of having a branch stack with
2632 * branch from multiple tasks. Flushing may mean dropping the existing
2633 * entries or stashing them somewhere in the PMU specific code layer.
2635 * This function provides the context switch callback to the lower code
2636 * layer. It is invoked ONLY when there is at least one system-wide context
2637 * with at least one active event using taken branch sampling.
2639 static void perf_branch_stack_sched_in(struct task_struct
*prev
,
2640 struct task_struct
*task
)
2642 struct perf_cpu_context
*cpuctx
;
2644 unsigned long flags
;
2646 /* no need to flush branch stack if not changing task */
2650 local_irq_save(flags
);
2654 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
2655 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2658 * check if the context has at least one
2659 * event using PERF_SAMPLE_BRANCH_STACK
2661 if (cpuctx
->ctx
.nr_branch_stack
> 0
2662 && pmu
->flush_branch_stack
) {
2664 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2666 perf_pmu_disable(pmu
);
2668 pmu
->flush_branch_stack();
2670 perf_pmu_enable(pmu
);
2672 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2678 local_irq_restore(flags
);
2682 * Called from scheduler to add the events of the current task
2683 * with interrupts disabled.
2685 * We restore the event value and then enable it.
2687 * This does not protect us against NMI, but enable()
2688 * sets the enabled bit in the control field of event _before_
2689 * accessing the event control register. If a NMI hits, then it will
2690 * keep the event running.
2692 void __perf_event_task_sched_in(struct task_struct
*prev
,
2693 struct task_struct
*task
)
2695 struct perf_event_context
*ctx
;
2698 for_each_task_context_nr(ctxn
) {
2699 ctx
= task
->perf_event_ctxp
[ctxn
];
2703 perf_event_context_sched_in(ctx
, task
);
2706 * if cgroup events exist on this CPU, then we need
2707 * to check if we have to switch in PMU state.
2708 * cgroup event are system-wide mode only
2710 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
2711 perf_cgroup_sched_in(prev
, task
);
2713 /* check for system-wide branch_stack events */
2714 if (atomic_read(this_cpu_ptr(&perf_branch_stack_events
)))
2715 perf_branch_stack_sched_in(prev
, task
);
2718 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2720 u64 frequency
= event
->attr
.sample_freq
;
2721 u64 sec
= NSEC_PER_SEC
;
2722 u64 divisor
, dividend
;
2724 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2726 count_fls
= fls64(count
);
2727 nsec_fls
= fls64(nsec
);
2728 frequency_fls
= fls64(frequency
);
2732 * We got @count in @nsec, with a target of sample_freq HZ
2733 * the target period becomes:
2736 * period = -------------------
2737 * @nsec * sample_freq
2742 * Reduce accuracy by one bit such that @a and @b converge
2743 * to a similar magnitude.
2745 #define REDUCE_FLS(a, b) \
2747 if (a##_fls > b##_fls) { \
2757 * Reduce accuracy until either term fits in a u64, then proceed with
2758 * the other, so that finally we can do a u64/u64 division.
2760 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2761 REDUCE_FLS(nsec
, frequency
);
2762 REDUCE_FLS(sec
, count
);
2765 if (count_fls
+ sec_fls
> 64) {
2766 divisor
= nsec
* frequency
;
2768 while (count_fls
+ sec_fls
> 64) {
2769 REDUCE_FLS(count
, sec
);
2773 dividend
= count
* sec
;
2775 dividend
= count
* sec
;
2777 while (nsec_fls
+ frequency_fls
> 64) {
2778 REDUCE_FLS(nsec
, frequency
);
2782 divisor
= nsec
* frequency
;
2788 return div64_u64(dividend
, divisor
);
2791 static DEFINE_PER_CPU(int, perf_throttled_count
);
2792 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
2794 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
2796 struct hw_perf_event
*hwc
= &event
->hw
;
2797 s64 period
, sample_period
;
2800 period
= perf_calculate_period(event
, nsec
, count
);
2802 delta
= (s64
)(period
- hwc
->sample_period
);
2803 delta
= (delta
+ 7) / 8; /* low pass filter */
2805 sample_period
= hwc
->sample_period
+ delta
;
2810 hwc
->sample_period
= sample_period
;
2812 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2814 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2816 local64_set(&hwc
->period_left
, 0);
2819 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2824 * combine freq adjustment with unthrottling to avoid two passes over the
2825 * events. At the same time, make sure, having freq events does not change
2826 * the rate of unthrottling as that would introduce bias.
2828 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
2831 struct perf_event
*event
;
2832 struct hw_perf_event
*hwc
;
2833 u64 now
, period
= TICK_NSEC
;
2837 * only need to iterate over all events iff:
2838 * - context have events in frequency mode (needs freq adjust)
2839 * - there are events to unthrottle on this cpu
2841 if (!(ctx
->nr_freq
|| needs_unthr
))
2844 raw_spin_lock(&ctx
->lock
);
2845 perf_pmu_disable(ctx
->pmu
);
2847 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2848 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2851 if (!event_filter_match(event
))
2854 perf_pmu_disable(event
->pmu
);
2858 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
2859 hwc
->interrupts
= 0;
2860 perf_log_throttle(event
, 1);
2861 event
->pmu
->start(event
, 0);
2864 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2868 * stop the event and update event->count
2870 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2872 now
= local64_read(&event
->count
);
2873 delta
= now
- hwc
->freq_count_stamp
;
2874 hwc
->freq_count_stamp
= now
;
2878 * reload only if value has changed
2879 * we have stopped the event so tell that
2880 * to perf_adjust_period() to avoid stopping it
2884 perf_adjust_period(event
, period
, delta
, false);
2886 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
2888 perf_pmu_enable(event
->pmu
);
2891 perf_pmu_enable(ctx
->pmu
);
2892 raw_spin_unlock(&ctx
->lock
);
2896 * Round-robin a context's events:
2898 static void rotate_ctx(struct perf_event_context
*ctx
)
2901 * Rotate the first entry last of non-pinned groups. Rotation might be
2902 * disabled by the inheritance code.
2904 if (!ctx
->rotate_disable
)
2905 list_rotate_left(&ctx
->flexible_groups
);
2909 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2910 * because they're strictly cpu affine and rotate_start is called with IRQs
2911 * disabled, while rotate_context is called from IRQ context.
2913 static int perf_rotate_context(struct perf_cpu_context
*cpuctx
)
2915 struct perf_event_context
*ctx
= NULL
;
2916 int rotate
= 0, remove
= 1;
2918 if (cpuctx
->ctx
.nr_events
) {
2920 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
2924 ctx
= cpuctx
->task_ctx
;
2925 if (ctx
&& ctx
->nr_events
) {
2927 if (ctx
->nr_events
!= ctx
->nr_active
)
2934 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2935 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2937 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2939 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
2941 rotate_ctx(&cpuctx
->ctx
);
2945 perf_event_sched_in(cpuctx
, ctx
, current
);
2947 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2948 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2951 list_del_init(&cpuctx
->rotation_list
);
2956 #ifdef CONFIG_NO_HZ_FULL
2957 bool perf_event_can_stop_tick(void)
2959 if (atomic_read(&nr_freq_events
) ||
2960 __this_cpu_read(perf_throttled_count
))
2967 void perf_event_task_tick(void)
2969 struct list_head
*head
= this_cpu_ptr(&rotation_list
);
2970 struct perf_cpu_context
*cpuctx
, *tmp
;
2971 struct perf_event_context
*ctx
;
2974 WARN_ON(!irqs_disabled());
2976 __this_cpu_inc(perf_throttled_seq
);
2977 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
2979 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
2981 perf_adjust_freq_unthr_context(ctx
, throttled
);
2983 ctx
= cpuctx
->task_ctx
;
2985 perf_adjust_freq_unthr_context(ctx
, throttled
);
2989 static int event_enable_on_exec(struct perf_event
*event
,
2990 struct perf_event_context
*ctx
)
2992 if (!event
->attr
.enable_on_exec
)
2995 event
->attr
.enable_on_exec
= 0;
2996 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2999 __perf_event_mark_enabled(event
);
3005 * Enable all of a task's events that have been marked enable-on-exec.
3006 * This expects task == current.
3008 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
3010 struct perf_event_context
*clone_ctx
= NULL
;
3011 struct perf_event
*event
;
3012 unsigned long flags
;
3016 local_irq_save(flags
);
3017 if (!ctx
|| !ctx
->nr_events
)
3021 * We must ctxsw out cgroup events to avoid conflict
3022 * when invoking perf_task_event_sched_in() later on
3023 * in this function. Otherwise we end up trying to
3024 * ctxswin cgroup events which are already scheduled
3027 perf_cgroup_sched_out(current
, NULL
);
3029 raw_spin_lock(&ctx
->lock
);
3030 task_ctx_sched_out(ctx
);
3032 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
3033 ret
= event_enable_on_exec(event
, ctx
);
3039 * Unclone this context if we enabled any event.
3042 clone_ctx
= unclone_ctx(ctx
);
3044 raw_spin_unlock(&ctx
->lock
);
3047 * Also calls ctxswin for cgroup events, if any:
3049 perf_event_context_sched_in(ctx
, ctx
->task
);
3051 local_irq_restore(flags
);
3057 void perf_event_exec(void)
3059 struct perf_event_context
*ctx
;
3063 for_each_task_context_nr(ctxn
) {
3064 ctx
= current
->perf_event_ctxp
[ctxn
];
3068 perf_event_enable_on_exec(ctx
);
3074 * Cross CPU call to read the hardware event
3076 static void __perf_event_read(void *info
)
3078 struct perf_event
*event
= info
;
3079 struct perf_event_context
*ctx
= event
->ctx
;
3080 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3083 * If this is a task context, we need to check whether it is
3084 * the current task context of this cpu. If not it has been
3085 * scheduled out before the smp call arrived. In that case
3086 * event->count would have been updated to a recent sample
3087 * when the event was scheduled out.
3089 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3092 raw_spin_lock(&ctx
->lock
);
3093 if (ctx
->is_active
) {
3094 update_context_time(ctx
);
3095 update_cgrp_time_from_event(event
);
3097 update_event_times(event
);
3098 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3099 event
->pmu
->read(event
);
3100 raw_spin_unlock(&ctx
->lock
);
3103 static inline u64
perf_event_count(struct perf_event
*event
)
3105 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
3108 static u64
perf_event_read(struct perf_event
*event
)
3111 * If event is enabled and currently active on a CPU, update the
3112 * value in the event structure:
3114 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
3115 smp_call_function_single(event
->oncpu
,
3116 __perf_event_read
, event
, 1);
3117 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3118 struct perf_event_context
*ctx
= event
->ctx
;
3119 unsigned long flags
;
3121 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
3123 * may read while context is not active
3124 * (e.g., thread is blocked), in that case
3125 * we cannot update context time
3127 if (ctx
->is_active
) {
3128 update_context_time(ctx
);
3129 update_cgrp_time_from_event(event
);
3131 update_event_times(event
);
3132 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3135 return perf_event_count(event
);
3139 * Initialize the perf_event context in a task_struct:
3141 static void __perf_event_init_context(struct perf_event_context
*ctx
)
3143 raw_spin_lock_init(&ctx
->lock
);
3144 mutex_init(&ctx
->mutex
);
3145 INIT_LIST_HEAD(&ctx
->pinned_groups
);
3146 INIT_LIST_HEAD(&ctx
->flexible_groups
);
3147 INIT_LIST_HEAD(&ctx
->event_list
);
3148 atomic_set(&ctx
->refcount
, 1);
3149 INIT_DELAYED_WORK(&ctx
->orphans_remove
, orphans_remove_work
);
3152 static struct perf_event_context
*
3153 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
3155 struct perf_event_context
*ctx
;
3157 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
3161 __perf_event_init_context(ctx
);
3164 get_task_struct(task
);
3171 static struct task_struct
*
3172 find_lively_task_by_vpid(pid_t vpid
)
3174 struct task_struct
*task
;
3181 task
= find_task_by_vpid(vpid
);
3183 get_task_struct(task
);
3187 return ERR_PTR(-ESRCH
);
3189 /* Reuse ptrace permission checks for now. */
3191 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
3196 put_task_struct(task
);
3197 return ERR_PTR(err
);
3202 * Returns a matching context with refcount and pincount.
3204 static struct perf_event_context
*
3205 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
3207 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3208 struct perf_cpu_context
*cpuctx
;
3209 unsigned long flags
;
3213 /* Must be root to operate on a CPU event: */
3214 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
3215 return ERR_PTR(-EACCES
);
3218 * We could be clever and allow to attach a event to an
3219 * offline CPU and activate it when the CPU comes up, but
3222 if (!cpu_online(cpu
))
3223 return ERR_PTR(-ENODEV
);
3225 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
3234 ctxn
= pmu
->task_ctx_nr
;
3239 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
3241 clone_ctx
= unclone_ctx(ctx
);
3243 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
3248 ctx
= alloc_perf_context(pmu
, task
);
3254 mutex_lock(&task
->perf_event_mutex
);
3256 * If it has already passed perf_event_exit_task().
3257 * we must see PF_EXITING, it takes this mutex too.
3259 if (task
->flags
& PF_EXITING
)
3261 else if (task
->perf_event_ctxp
[ctxn
])
3266 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
3268 mutex_unlock(&task
->perf_event_mutex
);
3270 if (unlikely(err
)) {
3282 return ERR_PTR(err
);
3285 static void perf_event_free_filter(struct perf_event
*event
);
3287 static void free_event_rcu(struct rcu_head
*head
)
3289 struct perf_event
*event
;
3291 event
= container_of(head
, struct perf_event
, rcu_head
);
3293 put_pid_ns(event
->ns
);
3294 perf_event_free_filter(event
);
3298 static void ring_buffer_put(struct ring_buffer
*rb
);
3299 static void ring_buffer_attach(struct perf_event
*event
,
3300 struct ring_buffer
*rb
);
3302 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
3307 if (has_branch_stack(event
)) {
3308 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
3309 atomic_dec(&per_cpu(perf_branch_stack_events
, cpu
));
3311 if (is_cgroup_event(event
))
3312 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
3315 static void unaccount_event(struct perf_event
*event
)
3320 if (event
->attach_state
& PERF_ATTACH_TASK
)
3321 static_key_slow_dec_deferred(&perf_sched_events
);
3322 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
3323 atomic_dec(&nr_mmap_events
);
3324 if (event
->attr
.comm
)
3325 atomic_dec(&nr_comm_events
);
3326 if (event
->attr
.task
)
3327 atomic_dec(&nr_task_events
);
3328 if (event
->attr
.freq
)
3329 atomic_dec(&nr_freq_events
);
3330 if (is_cgroup_event(event
))
3331 static_key_slow_dec_deferred(&perf_sched_events
);
3332 if (has_branch_stack(event
))
3333 static_key_slow_dec_deferred(&perf_sched_events
);
3335 unaccount_event_cpu(event
, event
->cpu
);
3338 static void __free_event(struct perf_event
*event
)
3340 if (!event
->parent
) {
3341 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
3342 put_callchain_buffers();
3346 event
->destroy(event
);
3349 put_ctx(event
->ctx
);
3352 module_put(event
->pmu
->module
);
3354 call_rcu(&event
->rcu_head
, free_event_rcu
);
3357 static void _free_event(struct perf_event
*event
)
3359 irq_work_sync(&event
->pending
);
3361 unaccount_event(event
);
3365 * Can happen when we close an event with re-directed output.
3367 * Since we have a 0 refcount, perf_mmap_close() will skip
3368 * over us; possibly making our ring_buffer_put() the last.
3370 mutex_lock(&event
->mmap_mutex
);
3371 ring_buffer_attach(event
, NULL
);
3372 mutex_unlock(&event
->mmap_mutex
);
3375 if (is_cgroup_event(event
))
3376 perf_detach_cgroup(event
);
3378 __free_event(event
);
3382 * Used to free events which have a known refcount of 1, such as in error paths
3383 * where the event isn't exposed yet and inherited events.
3385 static void free_event(struct perf_event
*event
)
3387 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
3388 "unexpected event refcount: %ld; ptr=%p\n",
3389 atomic_long_read(&event
->refcount
), event
)) {
3390 /* leak to avoid use-after-free */
3398 * Remove user event from the owner task.
3400 static void perf_remove_from_owner(struct perf_event
*event
)
3402 struct task_struct
*owner
;
3405 owner
= ACCESS_ONCE(event
->owner
);
3407 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3408 * !owner it means the list deletion is complete and we can indeed
3409 * free this event, otherwise we need to serialize on
3410 * owner->perf_event_mutex.
3412 smp_read_barrier_depends();
3415 * Since delayed_put_task_struct() also drops the last
3416 * task reference we can safely take a new reference
3417 * while holding the rcu_read_lock().
3419 get_task_struct(owner
);
3424 mutex_lock(&owner
->perf_event_mutex
);
3426 * We have to re-check the event->owner field, if it is cleared
3427 * we raced with perf_event_exit_task(), acquiring the mutex
3428 * ensured they're done, and we can proceed with freeing the
3432 list_del_init(&event
->owner_entry
);
3433 mutex_unlock(&owner
->perf_event_mutex
);
3434 put_task_struct(owner
);
3439 * Called when the last reference to the file is gone.
3441 static void put_event(struct perf_event
*event
)
3443 struct perf_event_context
*ctx
= event
->ctx
;
3445 if (!atomic_long_dec_and_test(&event
->refcount
))
3448 if (!is_kernel_event(event
))
3449 perf_remove_from_owner(event
);
3451 WARN_ON_ONCE(ctx
->parent_ctx
);
3453 * There are two ways this annotation is useful:
3455 * 1) there is a lock recursion from perf_event_exit_task
3456 * see the comment there.
3458 * 2) there is a lock-inversion with mmap_sem through
3459 * perf_event_read_group(), which takes faults while
3460 * holding ctx->mutex, however this is called after
3461 * the last filedesc died, so there is no possibility
3462 * to trigger the AB-BA case.
3464 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
3465 perf_remove_from_context(event
, true);
3466 mutex_unlock(&ctx
->mutex
);
3471 int perf_event_release_kernel(struct perf_event
*event
)
3476 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
3478 static int perf_release(struct inode
*inode
, struct file
*file
)
3480 put_event(file
->private_data
);
3485 * Remove all orphanes events from the context.
3487 static void orphans_remove_work(struct work_struct
*work
)
3489 struct perf_event_context
*ctx
;
3490 struct perf_event
*event
, *tmp
;
3492 ctx
= container_of(work
, struct perf_event_context
,
3493 orphans_remove
.work
);
3495 mutex_lock(&ctx
->mutex
);
3496 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
) {
3497 struct perf_event
*parent_event
= event
->parent
;
3499 if (!is_orphaned_child(event
))
3502 perf_remove_from_context(event
, true);
3504 mutex_lock(&parent_event
->child_mutex
);
3505 list_del_init(&event
->child_list
);
3506 mutex_unlock(&parent_event
->child_mutex
);
3509 put_event(parent_event
);
3512 raw_spin_lock_irq(&ctx
->lock
);
3513 ctx
->orphans_remove_sched
= false;
3514 raw_spin_unlock_irq(&ctx
->lock
);
3515 mutex_unlock(&ctx
->mutex
);
3520 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
3522 struct perf_event
*child
;
3528 mutex_lock(&event
->child_mutex
);
3529 total
+= perf_event_read(event
);
3530 *enabled
+= event
->total_time_enabled
+
3531 atomic64_read(&event
->child_total_time_enabled
);
3532 *running
+= event
->total_time_running
+
3533 atomic64_read(&event
->child_total_time_running
);
3535 list_for_each_entry(child
, &event
->child_list
, child_list
) {
3536 total
+= perf_event_read(child
);
3537 *enabled
+= child
->total_time_enabled
;
3538 *running
+= child
->total_time_running
;
3540 mutex_unlock(&event
->child_mutex
);
3544 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3546 static int perf_event_read_group(struct perf_event
*event
,
3547 u64 read_format
, char __user
*buf
)
3549 struct perf_event
*leader
= event
->group_leader
, *sub
;
3550 int n
= 0, size
= 0, ret
= -EFAULT
;
3551 struct perf_event_context
*ctx
= leader
->ctx
;
3553 u64 count
, enabled
, running
;
3555 mutex_lock(&ctx
->mutex
);
3556 count
= perf_event_read_value(leader
, &enabled
, &running
);
3558 values
[n
++] = 1 + leader
->nr_siblings
;
3559 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3560 values
[n
++] = enabled
;
3561 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3562 values
[n
++] = running
;
3563 values
[n
++] = count
;
3564 if (read_format
& PERF_FORMAT_ID
)
3565 values
[n
++] = primary_event_id(leader
);
3567 size
= n
* sizeof(u64
);
3569 if (copy_to_user(buf
, values
, size
))
3574 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3577 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3578 if (read_format
& PERF_FORMAT_ID
)
3579 values
[n
++] = primary_event_id(sub
);
3581 size
= n
* sizeof(u64
);
3583 if (copy_to_user(buf
+ ret
, values
, size
)) {
3591 mutex_unlock(&ctx
->mutex
);
3596 static int perf_event_read_one(struct perf_event
*event
,
3597 u64 read_format
, char __user
*buf
)
3599 u64 enabled
, running
;
3603 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3604 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3605 values
[n
++] = enabled
;
3606 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3607 values
[n
++] = running
;
3608 if (read_format
& PERF_FORMAT_ID
)
3609 values
[n
++] = primary_event_id(event
);
3611 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3614 return n
* sizeof(u64
);
3617 static bool is_event_hup(struct perf_event
*event
)
3621 if (event
->state
!= PERF_EVENT_STATE_EXIT
)
3624 mutex_lock(&event
->child_mutex
);
3625 no_children
= list_empty(&event
->child_list
);
3626 mutex_unlock(&event
->child_mutex
);
3631 * Read the performance event - simple non blocking version for now
3634 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3636 u64 read_format
= event
->attr
.read_format
;
3640 * Return end-of-file for a read on a event that is in
3641 * error state (i.e. because it was pinned but it couldn't be
3642 * scheduled on to the CPU at some point).
3644 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3647 if (count
< event
->read_size
)
3650 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3651 if (read_format
& PERF_FORMAT_GROUP
)
3652 ret
= perf_event_read_group(event
, read_format
, buf
);
3654 ret
= perf_event_read_one(event
, read_format
, buf
);
3660 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3662 struct perf_event
*event
= file
->private_data
;
3664 return perf_read_hw(event
, buf
, count
);
3667 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3669 struct perf_event
*event
= file
->private_data
;
3670 struct ring_buffer
*rb
;
3671 unsigned int events
= POLLHUP
;
3673 poll_wait(file
, &event
->waitq
, wait
);
3675 if (is_event_hup(event
))
3679 * Pin the event->rb by taking event->mmap_mutex; otherwise
3680 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3682 mutex_lock(&event
->mmap_mutex
);
3685 events
= atomic_xchg(&rb
->poll
, 0);
3686 mutex_unlock(&event
->mmap_mutex
);
3690 static void perf_event_reset(struct perf_event
*event
)
3692 (void)perf_event_read(event
);
3693 local64_set(&event
->count
, 0);
3694 perf_event_update_userpage(event
);
3698 * Holding the top-level event's child_mutex means that any
3699 * descendant process that has inherited this event will block
3700 * in sync_child_event if it goes to exit, thus satisfying the
3701 * task existence requirements of perf_event_enable/disable.
3703 static void perf_event_for_each_child(struct perf_event
*event
,
3704 void (*func
)(struct perf_event
*))
3706 struct perf_event
*child
;
3708 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3709 mutex_lock(&event
->child_mutex
);
3711 list_for_each_entry(child
, &event
->child_list
, child_list
)
3713 mutex_unlock(&event
->child_mutex
);
3716 static void perf_event_for_each(struct perf_event
*event
,
3717 void (*func
)(struct perf_event
*))
3719 struct perf_event_context
*ctx
= event
->ctx
;
3720 struct perf_event
*sibling
;
3722 WARN_ON_ONCE(ctx
->parent_ctx
);
3723 mutex_lock(&ctx
->mutex
);
3724 event
= event
->group_leader
;
3726 perf_event_for_each_child(event
, func
);
3727 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3728 perf_event_for_each_child(sibling
, func
);
3729 mutex_unlock(&ctx
->mutex
);
3732 struct period_event
{
3733 struct perf_event
*event
;
3737 static int __perf_event_period(void *info
)
3739 struct period_event
*pe
= info
;
3740 struct perf_event
*event
= pe
->event
;
3741 struct perf_event_context
*ctx
= event
->ctx
;
3742 u64 value
= pe
->value
;
3745 raw_spin_lock(&ctx
->lock
);
3746 if (event
->attr
.freq
) {
3747 event
->attr
.sample_freq
= value
;
3749 event
->attr
.sample_period
= value
;
3750 event
->hw
.sample_period
= value
;
3753 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
3755 perf_pmu_disable(ctx
->pmu
);
3756 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3759 local64_set(&event
->hw
.period_left
, 0);
3762 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3763 perf_pmu_enable(ctx
->pmu
);
3765 raw_spin_unlock(&ctx
->lock
);
3770 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3772 struct period_event pe
= { .event
= event
, };
3773 struct perf_event_context
*ctx
= event
->ctx
;
3774 struct task_struct
*task
;
3777 if (!is_sampling_event(event
))
3780 if (copy_from_user(&value
, arg
, sizeof(value
)))
3786 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
3793 cpu_function_call(event
->cpu
, __perf_event_period
, &pe
);
3798 if (!task_function_call(task
, __perf_event_period
, &pe
))
3801 raw_spin_lock_irq(&ctx
->lock
);
3802 if (ctx
->is_active
) {
3803 raw_spin_unlock_irq(&ctx
->lock
);
3808 __perf_event_period(&pe
);
3809 raw_spin_unlock_irq(&ctx
->lock
);
3814 static const struct file_operations perf_fops
;
3816 static inline int perf_fget_light(int fd
, struct fd
*p
)
3818 struct fd f
= fdget(fd
);
3822 if (f
.file
->f_op
!= &perf_fops
) {
3830 static int perf_event_set_output(struct perf_event
*event
,
3831 struct perf_event
*output_event
);
3832 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
3834 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
3836 struct perf_event
*event
= file
->private_data
;
3837 void (*func
)(struct perf_event
*);
3841 case PERF_EVENT_IOC_ENABLE
:
3842 func
= perf_event_enable
;
3844 case PERF_EVENT_IOC_DISABLE
:
3845 func
= perf_event_disable
;
3847 case PERF_EVENT_IOC_RESET
:
3848 func
= perf_event_reset
;
3851 case PERF_EVENT_IOC_REFRESH
:
3852 return perf_event_refresh(event
, arg
);
3854 case PERF_EVENT_IOC_PERIOD
:
3855 return perf_event_period(event
, (u64 __user
*)arg
);
3857 case PERF_EVENT_IOC_ID
:
3859 u64 id
= primary_event_id(event
);
3861 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
3866 case PERF_EVENT_IOC_SET_OUTPUT
:
3870 struct perf_event
*output_event
;
3872 ret
= perf_fget_light(arg
, &output
);
3875 output_event
= output
.file
->private_data
;
3876 ret
= perf_event_set_output(event
, output_event
);
3879 ret
= perf_event_set_output(event
, NULL
);
3884 case PERF_EVENT_IOC_SET_FILTER
:
3885 return perf_event_set_filter(event
, (void __user
*)arg
);
3891 if (flags
& PERF_IOC_FLAG_GROUP
)
3892 perf_event_for_each(event
, func
);
3894 perf_event_for_each_child(event
, func
);
3899 #ifdef CONFIG_COMPAT
3900 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
3903 switch (_IOC_NR(cmd
)) {
3904 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
3905 case _IOC_NR(PERF_EVENT_IOC_ID
):
3906 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3907 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
3908 cmd
&= ~IOCSIZE_MASK
;
3909 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
3913 return perf_ioctl(file
, cmd
, arg
);
3916 # define perf_compat_ioctl NULL
3919 int perf_event_task_enable(void)
3921 struct perf_event
*event
;
3923 mutex_lock(¤t
->perf_event_mutex
);
3924 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3925 perf_event_for_each_child(event
, perf_event_enable
);
3926 mutex_unlock(¤t
->perf_event_mutex
);
3931 int perf_event_task_disable(void)
3933 struct perf_event
*event
;
3935 mutex_lock(¤t
->perf_event_mutex
);
3936 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3937 perf_event_for_each_child(event
, perf_event_disable
);
3938 mutex_unlock(¤t
->perf_event_mutex
);
3943 static int perf_event_index(struct perf_event
*event
)
3945 if (event
->hw
.state
& PERF_HES_STOPPED
)
3948 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3951 return event
->pmu
->event_idx(event
);
3954 static void calc_timer_values(struct perf_event
*event
,
3961 *now
= perf_clock();
3962 ctx_time
= event
->shadow_ctx_time
+ *now
;
3963 *enabled
= ctx_time
- event
->tstamp_enabled
;
3964 *running
= ctx_time
- event
->tstamp_running
;
3967 static void perf_event_init_userpage(struct perf_event
*event
)
3969 struct perf_event_mmap_page
*userpg
;
3970 struct ring_buffer
*rb
;
3973 rb
= rcu_dereference(event
->rb
);
3977 userpg
= rb
->user_page
;
3979 /* Allow new userspace to detect that bit 0 is deprecated */
3980 userpg
->cap_bit0_is_deprecated
= 1;
3981 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
3987 void __weak
arch_perf_update_userpage(struct perf_event_mmap_page
*userpg
, u64 now
)
3992 * Callers need to ensure there can be no nesting of this function, otherwise
3993 * the seqlock logic goes bad. We can not serialize this because the arch
3994 * code calls this from NMI context.
3996 void perf_event_update_userpage(struct perf_event
*event
)
3998 struct perf_event_mmap_page
*userpg
;
3999 struct ring_buffer
*rb
;
4000 u64 enabled
, running
, now
;
4003 rb
= rcu_dereference(event
->rb
);
4008 * compute total_time_enabled, total_time_running
4009 * based on snapshot values taken when the event
4010 * was last scheduled in.
4012 * we cannot simply called update_context_time()
4013 * because of locking issue as we can be called in
4016 calc_timer_values(event
, &now
, &enabled
, &running
);
4018 userpg
= rb
->user_page
;
4020 * Disable preemption so as to not let the corresponding user-space
4021 * spin too long if we get preempted.
4026 userpg
->index
= perf_event_index(event
);
4027 userpg
->offset
= perf_event_count(event
);
4029 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
4031 userpg
->time_enabled
= enabled
+
4032 atomic64_read(&event
->child_total_time_enabled
);
4034 userpg
->time_running
= running
+
4035 atomic64_read(&event
->child_total_time_running
);
4037 arch_perf_update_userpage(userpg
, now
);
4046 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4048 struct perf_event
*event
= vma
->vm_file
->private_data
;
4049 struct ring_buffer
*rb
;
4050 int ret
= VM_FAULT_SIGBUS
;
4052 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
4053 if (vmf
->pgoff
== 0)
4059 rb
= rcu_dereference(event
->rb
);
4063 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
4066 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
4070 get_page(vmf
->page
);
4071 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
4072 vmf
->page
->index
= vmf
->pgoff
;
4081 static void ring_buffer_attach(struct perf_event
*event
,
4082 struct ring_buffer
*rb
)
4084 struct ring_buffer
*old_rb
= NULL
;
4085 unsigned long flags
;
4089 * Should be impossible, we set this when removing
4090 * event->rb_entry and wait/clear when adding event->rb_entry.
4092 WARN_ON_ONCE(event
->rcu_pending
);
4095 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
4096 list_del_rcu(&event
->rb_entry
);
4097 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
4099 event
->rcu_batches
= get_state_synchronize_rcu();
4100 event
->rcu_pending
= 1;
4104 if (event
->rcu_pending
) {
4105 cond_synchronize_rcu(event
->rcu_batches
);
4106 event
->rcu_pending
= 0;
4109 spin_lock_irqsave(&rb
->event_lock
, flags
);
4110 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
4111 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
4114 rcu_assign_pointer(event
->rb
, rb
);
4117 ring_buffer_put(old_rb
);
4119 * Since we detached before setting the new rb, so that we
4120 * could attach the new rb, we could have missed a wakeup.
4123 wake_up_all(&event
->waitq
);
4127 static void ring_buffer_wakeup(struct perf_event
*event
)
4129 struct ring_buffer
*rb
;
4132 rb
= rcu_dereference(event
->rb
);
4134 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
4135 wake_up_all(&event
->waitq
);
4140 static void rb_free_rcu(struct rcu_head
*rcu_head
)
4142 struct ring_buffer
*rb
;
4144 rb
= container_of(rcu_head
, struct ring_buffer
, rcu_head
);
4148 static struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
4150 struct ring_buffer
*rb
;
4153 rb
= rcu_dereference(event
->rb
);
4155 if (!atomic_inc_not_zero(&rb
->refcount
))
4163 static void ring_buffer_put(struct ring_buffer
*rb
)
4165 if (!atomic_dec_and_test(&rb
->refcount
))
4168 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
4170 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
4173 static void perf_mmap_open(struct vm_area_struct
*vma
)
4175 struct perf_event
*event
= vma
->vm_file
->private_data
;
4177 atomic_inc(&event
->mmap_count
);
4178 atomic_inc(&event
->rb
->mmap_count
);
4182 * A buffer can be mmap()ed multiple times; either directly through the same
4183 * event, or through other events by use of perf_event_set_output().
4185 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4186 * the buffer here, where we still have a VM context. This means we need
4187 * to detach all events redirecting to us.
4189 static void perf_mmap_close(struct vm_area_struct
*vma
)
4191 struct perf_event
*event
= vma
->vm_file
->private_data
;
4193 struct ring_buffer
*rb
= ring_buffer_get(event
);
4194 struct user_struct
*mmap_user
= rb
->mmap_user
;
4195 int mmap_locked
= rb
->mmap_locked
;
4196 unsigned long size
= perf_data_size(rb
);
4198 atomic_dec(&rb
->mmap_count
);
4200 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
4203 ring_buffer_attach(event
, NULL
);
4204 mutex_unlock(&event
->mmap_mutex
);
4206 /* If there's still other mmap()s of this buffer, we're done. */
4207 if (atomic_read(&rb
->mmap_count
))
4211 * No other mmap()s, detach from all other events that might redirect
4212 * into the now unreachable buffer. Somewhat complicated by the
4213 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4217 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
4218 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
4220 * This event is en-route to free_event() which will
4221 * detach it and remove it from the list.
4227 mutex_lock(&event
->mmap_mutex
);
4229 * Check we didn't race with perf_event_set_output() which can
4230 * swizzle the rb from under us while we were waiting to
4231 * acquire mmap_mutex.
4233 * If we find a different rb; ignore this event, a next
4234 * iteration will no longer find it on the list. We have to
4235 * still restart the iteration to make sure we're not now
4236 * iterating the wrong list.
4238 if (event
->rb
== rb
)
4239 ring_buffer_attach(event
, NULL
);
4241 mutex_unlock(&event
->mmap_mutex
);
4245 * Restart the iteration; either we're on the wrong list or
4246 * destroyed its integrity by doing a deletion.
4253 * It could be there's still a few 0-ref events on the list; they'll
4254 * get cleaned up by free_event() -- they'll also still have their
4255 * ref on the rb and will free it whenever they are done with it.
4257 * Aside from that, this buffer is 'fully' detached and unmapped,
4258 * undo the VM accounting.
4261 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
4262 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
4263 free_uid(mmap_user
);
4266 ring_buffer_put(rb
); /* could be last */
4269 static const struct vm_operations_struct perf_mmap_vmops
= {
4270 .open
= perf_mmap_open
,
4271 .close
= perf_mmap_close
,
4272 .fault
= perf_mmap_fault
,
4273 .page_mkwrite
= perf_mmap_fault
,
4276 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
4278 struct perf_event
*event
= file
->private_data
;
4279 unsigned long user_locked
, user_lock_limit
;
4280 struct user_struct
*user
= current_user();
4281 unsigned long locked
, lock_limit
;
4282 struct ring_buffer
*rb
;
4283 unsigned long vma_size
;
4284 unsigned long nr_pages
;
4285 long user_extra
, extra
;
4286 int ret
= 0, flags
= 0;
4289 * Don't allow mmap() of inherited per-task counters. This would
4290 * create a performance issue due to all children writing to the
4293 if (event
->cpu
== -1 && event
->attr
.inherit
)
4296 if (!(vma
->vm_flags
& VM_SHARED
))
4299 vma_size
= vma
->vm_end
- vma
->vm_start
;
4300 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
4303 * If we have rb pages ensure they're a power-of-two number, so we
4304 * can do bitmasks instead of modulo.
4306 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
4309 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
4312 if (vma
->vm_pgoff
!= 0)
4315 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4317 mutex_lock(&event
->mmap_mutex
);
4319 if (event
->rb
->nr_pages
!= nr_pages
) {
4324 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
4326 * Raced against perf_mmap_close() through
4327 * perf_event_set_output(). Try again, hope for better
4330 mutex_unlock(&event
->mmap_mutex
);
4337 user_extra
= nr_pages
+ 1;
4338 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
4341 * Increase the limit linearly with more CPUs:
4343 user_lock_limit
*= num_online_cpus();
4345 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
4348 if (user_locked
> user_lock_limit
)
4349 extra
= user_locked
- user_lock_limit
;
4351 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
4352 lock_limit
>>= PAGE_SHIFT
;
4353 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
4355 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
4356 !capable(CAP_IPC_LOCK
)) {
4363 if (vma
->vm_flags
& VM_WRITE
)
4364 flags
|= RING_BUFFER_WRITABLE
;
4366 rb
= rb_alloc(nr_pages
,
4367 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
4375 atomic_set(&rb
->mmap_count
, 1);
4376 rb
->mmap_locked
= extra
;
4377 rb
->mmap_user
= get_current_user();
4379 atomic_long_add(user_extra
, &user
->locked_vm
);
4380 vma
->vm_mm
->pinned_vm
+= extra
;
4382 ring_buffer_attach(event
, rb
);
4384 perf_event_init_userpage(event
);
4385 perf_event_update_userpage(event
);
4389 atomic_inc(&event
->mmap_count
);
4390 mutex_unlock(&event
->mmap_mutex
);
4393 * Since pinned accounting is per vm we cannot allow fork() to copy our
4396 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
4397 vma
->vm_ops
= &perf_mmap_vmops
;
4402 static int perf_fasync(int fd
, struct file
*filp
, int on
)
4404 struct inode
*inode
= file_inode(filp
);
4405 struct perf_event
*event
= filp
->private_data
;
4408 mutex_lock(&inode
->i_mutex
);
4409 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
4410 mutex_unlock(&inode
->i_mutex
);
4418 static const struct file_operations perf_fops
= {
4419 .llseek
= no_llseek
,
4420 .release
= perf_release
,
4423 .unlocked_ioctl
= perf_ioctl
,
4424 .compat_ioctl
= perf_compat_ioctl
,
4426 .fasync
= perf_fasync
,
4432 * If there's data, ensure we set the poll() state and publish everything
4433 * to user-space before waking everybody up.
4436 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
4438 /* only the parent has fasync state */
4440 event
= event
->parent
;
4441 return &event
->fasync
;
4444 void perf_event_wakeup(struct perf_event
*event
)
4446 ring_buffer_wakeup(event
);
4448 if (event
->pending_kill
) {
4449 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
4450 event
->pending_kill
= 0;
4454 static void perf_pending_event(struct irq_work
*entry
)
4456 struct perf_event
*event
= container_of(entry
,
4457 struct perf_event
, pending
);
4460 rctx
= perf_swevent_get_recursion_context();
4462 * If we 'fail' here, that's OK, it means recursion is already disabled
4463 * and we won't recurse 'further'.
4466 if (event
->pending_disable
) {
4467 event
->pending_disable
= 0;
4468 __perf_event_disable(event
);
4471 if (event
->pending_wakeup
) {
4472 event
->pending_wakeup
= 0;
4473 perf_event_wakeup(event
);
4477 perf_swevent_put_recursion_context(rctx
);
4481 * We assume there is only KVM supporting the callbacks.
4482 * Later on, we might change it to a list if there is
4483 * another virtualization implementation supporting the callbacks.
4485 struct perf_guest_info_callbacks
*perf_guest_cbs
;
4487 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4489 perf_guest_cbs
= cbs
;
4492 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
4494 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
4496 perf_guest_cbs
= NULL
;
4499 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
4502 perf_output_sample_regs(struct perf_output_handle
*handle
,
4503 struct pt_regs
*regs
, u64 mask
)
4507 for_each_set_bit(bit
, (const unsigned long *) &mask
,
4508 sizeof(mask
) * BITS_PER_BYTE
) {
4511 val
= perf_reg_value(regs
, bit
);
4512 perf_output_put(handle
, val
);
4516 static void perf_sample_regs_user(struct perf_regs_user
*regs_user
,
4517 struct pt_regs
*regs
)
4519 if (!user_mode(regs
)) {
4521 regs
= task_pt_regs(current
);
4527 regs_user
->regs
= regs
;
4528 regs_user
->abi
= perf_reg_abi(current
);
4533 * Get remaining task size from user stack pointer.
4535 * It'd be better to take stack vma map and limit this more
4536 * precisly, but there's no way to get it safely under interrupt,
4537 * so using TASK_SIZE as limit.
4539 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
4541 unsigned long addr
= perf_user_stack_pointer(regs
);
4543 if (!addr
|| addr
>= TASK_SIZE
)
4546 return TASK_SIZE
- addr
;
4550 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
4551 struct pt_regs
*regs
)
4555 /* No regs, no stack pointer, no dump. */
4560 * Check if we fit in with the requested stack size into the:
4562 * If we don't, we limit the size to the TASK_SIZE.
4564 * - remaining sample size
4565 * If we don't, we customize the stack size to
4566 * fit in to the remaining sample size.
4569 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
4570 stack_size
= min(stack_size
, (u16
) task_size
);
4572 /* Current header size plus static size and dynamic size. */
4573 header_size
+= 2 * sizeof(u64
);
4575 /* Do we fit in with the current stack dump size? */
4576 if ((u16
) (header_size
+ stack_size
) < header_size
) {
4578 * If we overflow the maximum size for the sample,
4579 * we customize the stack dump size to fit in.
4581 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
4582 stack_size
= round_up(stack_size
, sizeof(u64
));
4589 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
4590 struct pt_regs
*regs
)
4592 /* Case of a kernel thread, nothing to dump */
4595 perf_output_put(handle
, size
);
4604 * - the size requested by user or the best one we can fit
4605 * in to the sample max size
4607 * - user stack dump data
4609 * - the actual dumped size
4613 perf_output_put(handle
, dump_size
);
4616 sp
= perf_user_stack_pointer(regs
);
4617 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
4618 dyn_size
= dump_size
- rem
;
4620 perf_output_skip(handle
, rem
);
4623 perf_output_put(handle
, dyn_size
);
4627 static void __perf_event_header__init_id(struct perf_event_header
*header
,
4628 struct perf_sample_data
*data
,
4629 struct perf_event
*event
)
4631 u64 sample_type
= event
->attr
.sample_type
;
4633 data
->type
= sample_type
;
4634 header
->size
+= event
->id_header_size
;
4636 if (sample_type
& PERF_SAMPLE_TID
) {
4637 /* namespace issues */
4638 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
4639 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
4642 if (sample_type
& PERF_SAMPLE_TIME
)
4643 data
->time
= perf_clock();
4645 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
4646 data
->id
= primary_event_id(event
);
4648 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4649 data
->stream_id
= event
->id
;
4651 if (sample_type
& PERF_SAMPLE_CPU
) {
4652 data
->cpu_entry
.cpu
= raw_smp_processor_id();
4653 data
->cpu_entry
.reserved
= 0;
4657 void perf_event_header__init_id(struct perf_event_header
*header
,
4658 struct perf_sample_data
*data
,
4659 struct perf_event
*event
)
4661 if (event
->attr
.sample_id_all
)
4662 __perf_event_header__init_id(header
, data
, event
);
4665 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
4666 struct perf_sample_data
*data
)
4668 u64 sample_type
= data
->type
;
4670 if (sample_type
& PERF_SAMPLE_TID
)
4671 perf_output_put(handle
, data
->tid_entry
);
4673 if (sample_type
& PERF_SAMPLE_TIME
)
4674 perf_output_put(handle
, data
->time
);
4676 if (sample_type
& PERF_SAMPLE_ID
)
4677 perf_output_put(handle
, data
->id
);
4679 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4680 perf_output_put(handle
, data
->stream_id
);
4682 if (sample_type
& PERF_SAMPLE_CPU
)
4683 perf_output_put(handle
, data
->cpu_entry
);
4685 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
4686 perf_output_put(handle
, data
->id
);
4689 void perf_event__output_id_sample(struct perf_event
*event
,
4690 struct perf_output_handle
*handle
,
4691 struct perf_sample_data
*sample
)
4693 if (event
->attr
.sample_id_all
)
4694 __perf_event__output_id_sample(handle
, sample
);
4697 static void perf_output_read_one(struct perf_output_handle
*handle
,
4698 struct perf_event
*event
,
4699 u64 enabled
, u64 running
)
4701 u64 read_format
= event
->attr
.read_format
;
4705 values
[n
++] = perf_event_count(event
);
4706 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4707 values
[n
++] = enabled
+
4708 atomic64_read(&event
->child_total_time_enabled
);
4710 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4711 values
[n
++] = running
+
4712 atomic64_read(&event
->child_total_time_running
);
4714 if (read_format
& PERF_FORMAT_ID
)
4715 values
[n
++] = primary_event_id(event
);
4717 __output_copy(handle
, values
, n
* sizeof(u64
));
4721 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4723 static void perf_output_read_group(struct perf_output_handle
*handle
,
4724 struct perf_event
*event
,
4725 u64 enabled
, u64 running
)
4727 struct perf_event
*leader
= event
->group_leader
, *sub
;
4728 u64 read_format
= event
->attr
.read_format
;
4732 values
[n
++] = 1 + leader
->nr_siblings
;
4734 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4735 values
[n
++] = enabled
;
4737 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4738 values
[n
++] = running
;
4740 if (leader
!= event
)
4741 leader
->pmu
->read(leader
);
4743 values
[n
++] = perf_event_count(leader
);
4744 if (read_format
& PERF_FORMAT_ID
)
4745 values
[n
++] = primary_event_id(leader
);
4747 __output_copy(handle
, values
, n
* sizeof(u64
));
4749 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
4752 if ((sub
!= event
) &&
4753 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
4754 sub
->pmu
->read(sub
);
4756 values
[n
++] = perf_event_count(sub
);
4757 if (read_format
& PERF_FORMAT_ID
)
4758 values
[n
++] = primary_event_id(sub
);
4760 __output_copy(handle
, values
, n
* sizeof(u64
));
4764 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4765 PERF_FORMAT_TOTAL_TIME_RUNNING)
4767 static void perf_output_read(struct perf_output_handle
*handle
,
4768 struct perf_event
*event
)
4770 u64 enabled
= 0, running
= 0, now
;
4771 u64 read_format
= event
->attr
.read_format
;
4774 * compute total_time_enabled, total_time_running
4775 * based on snapshot values taken when the event
4776 * was last scheduled in.
4778 * we cannot simply called update_context_time()
4779 * because of locking issue as we are called in
4782 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
4783 calc_timer_values(event
, &now
, &enabled
, &running
);
4785 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
4786 perf_output_read_group(handle
, event
, enabled
, running
);
4788 perf_output_read_one(handle
, event
, enabled
, running
);
4791 void perf_output_sample(struct perf_output_handle
*handle
,
4792 struct perf_event_header
*header
,
4793 struct perf_sample_data
*data
,
4794 struct perf_event
*event
)
4796 u64 sample_type
= data
->type
;
4798 perf_output_put(handle
, *header
);
4800 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
4801 perf_output_put(handle
, data
->id
);
4803 if (sample_type
& PERF_SAMPLE_IP
)
4804 perf_output_put(handle
, data
->ip
);
4806 if (sample_type
& PERF_SAMPLE_TID
)
4807 perf_output_put(handle
, data
->tid_entry
);
4809 if (sample_type
& PERF_SAMPLE_TIME
)
4810 perf_output_put(handle
, data
->time
);
4812 if (sample_type
& PERF_SAMPLE_ADDR
)
4813 perf_output_put(handle
, data
->addr
);
4815 if (sample_type
& PERF_SAMPLE_ID
)
4816 perf_output_put(handle
, data
->id
);
4818 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
4819 perf_output_put(handle
, data
->stream_id
);
4821 if (sample_type
& PERF_SAMPLE_CPU
)
4822 perf_output_put(handle
, data
->cpu_entry
);
4824 if (sample_type
& PERF_SAMPLE_PERIOD
)
4825 perf_output_put(handle
, data
->period
);
4827 if (sample_type
& PERF_SAMPLE_READ
)
4828 perf_output_read(handle
, event
);
4830 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4831 if (data
->callchain
) {
4834 if (data
->callchain
)
4835 size
+= data
->callchain
->nr
;
4837 size
*= sizeof(u64
);
4839 __output_copy(handle
, data
->callchain
, size
);
4842 perf_output_put(handle
, nr
);
4846 if (sample_type
& PERF_SAMPLE_RAW
) {
4848 perf_output_put(handle
, data
->raw
->size
);
4849 __output_copy(handle
, data
->raw
->data
,
4856 .size
= sizeof(u32
),
4859 perf_output_put(handle
, raw
);
4863 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
4864 if (data
->br_stack
) {
4867 size
= data
->br_stack
->nr
4868 * sizeof(struct perf_branch_entry
);
4870 perf_output_put(handle
, data
->br_stack
->nr
);
4871 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
4874 * we always store at least the value of nr
4877 perf_output_put(handle
, nr
);
4881 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
4882 u64 abi
= data
->regs_user
.abi
;
4885 * If there are no regs to dump, notice it through
4886 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4888 perf_output_put(handle
, abi
);
4891 u64 mask
= event
->attr
.sample_regs_user
;
4892 perf_output_sample_regs(handle
,
4893 data
->regs_user
.regs
,
4898 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
4899 perf_output_sample_ustack(handle
,
4900 data
->stack_user_size
,
4901 data
->regs_user
.regs
);
4904 if (sample_type
& PERF_SAMPLE_WEIGHT
)
4905 perf_output_put(handle
, data
->weight
);
4907 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
4908 perf_output_put(handle
, data
->data_src
.val
);
4910 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
4911 perf_output_put(handle
, data
->txn
);
4913 if (!event
->attr
.watermark
) {
4914 int wakeup_events
= event
->attr
.wakeup_events
;
4916 if (wakeup_events
) {
4917 struct ring_buffer
*rb
= handle
->rb
;
4918 int events
= local_inc_return(&rb
->events
);
4920 if (events
>= wakeup_events
) {
4921 local_sub(wakeup_events
, &rb
->events
);
4922 local_inc(&rb
->wakeup
);
4928 void perf_prepare_sample(struct perf_event_header
*header
,
4929 struct perf_sample_data
*data
,
4930 struct perf_event
*event
,
4931 struct pt_regs
*regs
)
4933 u64 sample_type
= event
->attr
.sample_type
;
4935 header
->type
= PERF_RECORD_SAMPLE
;
4936 header
->size
= sizeof(*header
) + event
->header_size
;
4939 header
->misc
|= perf_misc_flags(regs
);
4941 __perf_event_header__init_id(header
, data
, event
);
4943 if (sample_type
& PERF_SAMPLE_IP
)
4944 data
->ip
= perf_instruction_pointer(regs
);
4946 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4949 data
->callchain
= perf_callchain(event
, regs
);
4951 if (data
->callchain
)
4952 size
+= data
->callchain
->nr
;
4954 header
->size
+= size
* sizeof(u64
);
4957 if (sample_type
& PERF_SAMPLE_RAW
) {
4958 int size
= sizeof(u32
);
4961 size
+= data
->raw
->size
;
4963 size
+= sizeof(u32
);
4965 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
4966 header
->size
+= size
;
4969 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
4970 int size
= sizeof(u64
); /* nr */
4971 if (data
->br_stack
) {
4972 size
+= data
->br_stack
->nr
4973 * sizeof(struct perf_branch_entry
);
4975 header
->size
+= size
;
4978 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
4979 /* regs dump ABI info */
4980 int size
= sizeof(u64
);
4982 perf_sample_regs_user(&data
->regs_user
, regs
);
4984 if (data
->regs_user
.regs
) {
4985 u64 mask
= event
->attr
.sample_regs_user
;
4986 size
+= hweight64(mask
) * sizeof(u64
);
4989 header
->size
+= size
;
4992 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
4994 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4995 * processed as the last one or have additional check added
4996 * in case new sample type is added, because we could eat
4997 * up the rest of the sample size.
4999 struct perf_regs_user
*uregs
= &data
->regs_user
;
5000 u16 stack_size
= event
->attr
.sample_stack_user
;
5001 u16 size
= sizeof(u64
);
5004 perf_sample_regs_user(uregs
, regs
);
5006 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
5010 * If there is something to dump, add space for the dump
5011 * itself and for the field that tells the dynamic size,
5012 * which is how many have been actually dumped.
5015 size
+= sizeof(u64
) + stack_size
;
5017 data
->stack_user_size
= stack_size
;
5018 header
->size
+= size
;
5022 static void perf_event_output(struct perf_event
*event
,
5023 struct perf_sample_data
*data
,
5024 struct pt_regs
*regs
)
5026 struct perf_output_handle handle
;
5027 struct perf_event_header header
;
5029 /* protect the callchain buffers */
5032 perf_prepare_sample(&header
, data
, event
, regs
);
5034 if (perf_output_begin(&handle
, event
, header
.size
))
5037 perf_output_sample(&handle
, &header
, data
, event
);
5039 perf_output_end(&handle
);
5049 struct perf_read_event
{
5050 struct perf_event_header header
;
5057 perf_event_read_event(struct perf_event
*event
,
5058 struct task_struct
*task
)
5060 struct perf_output_handle handle
;
5061 struct perf_sample_data sample
;
5062 struct perf_read_event read_event
= {
5064 .type
= PERF_RECORD_READ
,
5066 .size
= sizeof(read_event
) + event
->read_size
,
5068 .pid
= perf_event_pid(event
, task
),
5069 .tid
= perf_event_tid(event
, task
),
5073 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
5074 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
5078 perf_output_put(&handle
, read_event
);
5079 perf_output_read(&handle
, event
);
5080 perf_event__output_id_sample(event
, &handle
, &sample
);
5082 perf_output_end(&handle
);
5085 typedef void (perf_event_aux_output_cb
)(struct perf_event
*event
, void *data
);
5088 perf_event_aux_ctx(struct perf_event_context
*ctx
,
5089 perf_event_aux_output_cb output
,
5092 struct perf_event
*event
;
5094 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
5095 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
5097 if (!event_filter_match(event
))
5099 output(event
, data
);
5104 perf_event_aux(perf_event_aux_output_cb output
, void *data
,
5105 struct perf_event_context
*task_ctx
)
5107 struct perf_cpu_context
*cpuctx
;
5108 struct perf_event_context
*ctx
;
5113 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5114 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
5115 if (cpuctx
->unique_pmu
!= pmu
)
5117 perf_event_aux_ctx(&cpuctx
->ctx
, output
, data
);
5120 ctxn
= pmu
->task_ctx_nr
;
5123 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
5125 perf_event_aux_ctx(ctx
, output
, data
);
5127 put_cpu_ptr(pmu
->pmu_cpu_context
);
5132 perf_event_aux_ctx(task_ctx
, output
, data
);
5139 * task tracking -- fork/exit
5141 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5144 struct perf_task_event
{
5145 struct task_struct
*task
;
5146 struct perf_event_context
*task_ctx
;
5149 struct perf_event_header header
;
5159 static int perf_event_task_match(struct perf_event
*event
)
5161 return event
->attr
.comm
|| event
->attr
.mmap
||
5162 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
5166 static void perf_event_task_output(struct perf_event
*event
,
5169 struct perf_task_event
*task_event
= data
;
5170 struct perf_output_handle handle
;
5171 struct perf_sample_data sample
;
5172 struct task_struct
*task
= task_event
->task
;
5173 int ret
, size
= task_event
->event_id
.header
.size
;
5175 if (!perf_event_task_match(event
))
5178 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
5180 ret
= perf_output_begin(&handle
, event
,
5181 task_event
->event_id
.header
.size
);
5185 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
5186 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
5188 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
5189 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
5191 perf_output_put(&handle
, task_event
->event_id
);
5193 perf_event__output_id_sample(event
, &handle
, &sample
);
5195 perf_output_end(&handle
);
5197 task_event
->event_id
.header
.size
= size
;
5200 static void perf_event_task(struct task_struct
*task
,
5201 struct perf_event_context
*task_ctx
,
5204 struct perf_task_event task_event
;
5206 if (!atomic_read(&nr_comm_events
) &&
5207 !atomic_read(&nr_mmap_events
) &&
5208 !atomic_read(&nr_task_events
))
5211 task_event
= (struct perf_task_event
){
5213 .task_ctx
= task_ctx
,
5216 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
5218 .size
= sizeof(task_event
.event_id
),
5224 .time
= perf_clock(),
5228 perf_event_aux(perf_event_task_output
,
5233 void perf_event_fork(struct task_struct
*task
)
5235 perf_event_task(task
, NULL
, 1);
5242 struct perf_comm_event
{
5243 struct task_struct
*task
;
5248 struct perf_event_header header
;
5255 static int perf_event_comm_match(struct perf_event
*event
)
5257 return event
->attr
.comm
;
5260 static void perf_event_comm_output(struct perf_event
*event
,
5263 struct perf_comm_event
*comm_event
= data
;
5264 struct perf_output_handle handle
;
5265 struct perf_sample_data sample
;
5266 int size
= comm_event
->event_id
.header
.size
;
5269 if (!perf_event_comm_match(event
))
5272 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
5273 ret
= perf_output_begin(&handle
, event
,
5274 comm_event
->event_id
.header
.size
);
5279 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
5280 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
5282 perf_output_put(&handle
, comm_event
->event_id
);
5283 __output_copy(&handle
, comm_event
->comm
,
5284 comm_event
->comm_size
);
5286 perf_event__output_id_sample(event
, &handle
, &sample
);
5288 perf_output_end(&handle
);
5290 comm_event
->event_id
.header
.size
= size
;
5293 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
5295 char comm
[TASK_COMM_LEN
];
5298 memset(comm
, 0, sizeof(comm
));
5299 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
5300 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
5302 comm_event
->comm
= comm
;
5303 comm_event
->comm_size
= size
;
5305 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
5307 perf_event_aux(perf_event_comm_output
,
5312 void perf_event_comm(struct task_struct
*task
, bool exec
)
5314 struct perf_comm_event comm_event
;
5316 if (!atomic_read(&nr_comm_events
))
5319 comm_event
= (struct perf_comm_event
){
5325 .type
= PERF_RECORD_COMM
,
5326 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
5334 perf_event_comm_event(&comm_event
);
5341 struct perf_mmap_event
{
5342 struct vm_area_struct
*vma
;
5344 const char *file_name
;
5352 struct perf_event_header header
;
5362 static int perf_event_mmap_match(struct perf_event
*event
,
5365 struct perf_mmap_event
*mmap_event
= data
;
5366 struct vm_area_struct
*vma
= mmap_event
->vma
;
5367 int executable
= vma
->vm_flags
& VM_EXEC
;
5369 return (!executable
&& event
->attr
.mmap_data
) ||
5370 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
5373 static void perf_event_mmap_output(struct perf_event
*event
,
5376 struct perf_mmap_event
*mmap_event
= data
;
5377 struct perf_output_handle handle
;
5378 struct perf_sample_data sample
;
5379 int size
= mmap_event
->event_id
.header
.size
;
5382 if (!perf_event_mmap_match(event
, data
))
5385 if (event
->attr
.mmap2
) {
5386 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
5387 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
5388 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
5389 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
5390 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
5391 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
5392 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
5395 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
5396 ret
= perf_output_begin(&handle
, event
,
5397 mmap_event
->event_id
.header
.size
);
5401 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
5402 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
5404 perf_output_put(&handle
, mmap_event
->event_id
);
5406 if (event
->attr
.mmap2
) {
5407 perf_output_put(&handle
, mmap_event
->maj
);
5408 perf_output_put(&handle
, mmap_event
->min
);
5409 perf_output_put(&handle
, mmap_event
->ino
);
5410 perf_output_put(&handle
, mmap_event
->ino_generation
);
5411 perf_output_put(&handle
, mmap_event
->prot
);
5412 perf_output_put(&handle
, mmap_event
->flags
);
5415 __output_copy(&handle
, mmap_event
->file_name
,
5416 mmap_event
->file_size
);
5418 perf_event__output_id_sample(event
, &handle
, &sample
);
5420 perf_output_end(&handle
);
5422 mmap_event
->event_id
.header
.size
= size
;
5425 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
5427 struct vm_area_struct
*vma
= mmap_event
->vma
;
5428 struct file
*file
= vma
->vm_file
;
5429 int maj
= 0, min
= 0;
5430 u64 ino
= 0, gen
= 0;
5431 u32 prot
= 0, flags
= 0;
5438 struct inode
*inode
;
5441 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5447 * d_path() works from the end of the rb backwards, so we
5448 * need to add enough zero bytes after the string to handle
5449 * the 64bit alignment we do later.
5451 name
= d_path(&file
->f_path
, buf
, PATH_MAX
- sizeof(u64
));
5456 inode
= file_inode(vma
->vm_file
);
5457 dev
= inode
->i_sb
->s_dev
;
5459 gen
= inode
->i_generation
;
5463 if (vma
->vm_flags
& VM_READ
)
5465 if (vma
->vm_flags
& VM_WRITE
)
5467 if (vma
->vm_flags
& VM_EXEC
)
5470 if (vma
->vm_flags
& VM_MAYSHARE
)
5473 flags
= MAP_PRIVATE
;
5475 if (vma
->vm_flags
& VM_DENYWRITE
)
5476 flags
|= MAP_DENYWRITE
;
5477 if (vma
->vm_flags
& VM_MAYEXEC
)
5478 flags
|= MAP_EXECUTABLE
;
5479 if (vma
->vm_flags
& VM_LOCKED
)
5480 flags
|= MAP_LOCKED
;
5481 if (vma
->vm_flags
& VM_HUGETLB
)
5482 flags
|= MAP_HUGETLB
;
5486 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
5487 name
= (char *) vma
->vm_ops
->name(vma
);
5492 name
= (char *)arch_vma_name(vma
);
5496 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
5497 vma
->vm_end
>= vma
->vm_mm
->brk
) {
5501 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
5502 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
5512 strlcpy(tmp
, name
, sizeof(tmp
));
5516 * Since our buffer works in 8 byte units we need to align our string
5517 * size to a multiple of 8. However, we must guarantee the tail end is
5518 * zero'd out to avoid leaking random bits to userspace.
5520 size
= strlen(name
)+1;
5521 while (!IS_ALIGNED(size
, sizeof(u64
)))
5522 name
[size
++] = '\0';
5524 mmap_event
->file_name
= name
;
5525 mmap_event
->file_size
= size
;
5526 mmap_event
->maj
= maj
;
5527 mmap_event
->min
= min
;
5528 mmap_event
->ino
= ino
;
5529 mmap_event
->ino_generation
= gen
;
5530 mmap_event
->prot
= prot
;
5531 mmap_event
->flags
= flags
;
5533 if (!(vma
->vm_flags
& VM_EXEC
))
5534 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
5536 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
5538 perf_event_aux(perf_event_mmap_output
,
5545 void perf_event_mmap(struct vm_area_struct
*vma
)
5547 struct perf_mmap_event mmap_event
;
5549 if (!atomic_read(&nr_mmap_events
))
5552 mmap_event
= (struct perf_mmap_event
){
5558 .type
= PERF_RECORD_MMAP
,
5559 .misc
= PERF_RECORD_MISC_USER
,
5564 .start
= vma
->vm_start
,
5565 .len
= vma
->vm_end
- vma
->vm_start
,
5566 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
5568 /* .maj (attr_mmap2 only) */
5569 /* .min (attr_mmap2 only) */
5570 /* .ino (attr_mmap2 only) */
5571 /* .ino_generation (attr_mmap2 only) */
5572 /* .prot (attr_mmap2 only) */
5573 /* .flags (attr_mmap2 only) */
5576 perf_event_mmap_event(&mmap_event
);
5580 * IRQ throttle logging
5583 static void perf_log_throttle(struct perf_event
*event
, int enable
)
5585 struct perf_output_handle handle
;
5586 struct perf_sample_data sample
;
5590 struct perf_event_header header
;
5594 } throttle_event
= {
5596 .type
= PERF_RECORD_THROTTLE
,
5598 .size
= sizeof(throttle_event
),
5600 .time
= perf_clock(),
5601 .id
= primary_event_id(event
),
5602 .stream_id
= event
->id
,
5606 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
5608 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
5610 ret
= perf_output_begin(&handle
, event
,
5611 throttle_event
.header
.size
);
5615 perf_output_put(&handle
, throttle_event
);
5616 perf_event__output_id_sample(event
, &handle
, &sample
);
5617 perf_output_end(&handle
);
5621 * Generic event overflow handling, sampling.
5624 static int __perf_event_overflow(struct perf_event
*event
,
5625 int throttle
, struct perf_sample_data
*data
,
5626 struct pt_regs
*regs
)
5628 int events
= atomic_read(&event
->event_limit
);
5629 struct hw_perf_event
*hwc
= &event
->hw
;
5634 * Non-sampling counters might still use the PMI to fold short
5635 * hardware counters, ignore those.
5637 if (unlikely(!is_sampling_event(event
)))
5640 seq
= __this_cpu_read(perf_throttled_seq
);
5641 if (seq
!= hwc
->interrupts_seq
) {
5642 hwc
->interrupts_seq
= seq
;
5643 hwc
->interrupts
= 1;
5646 if (unlikely(throttle
5647 && hwc
->interrupts
>= max_samples_per_tick
)) {
5648 __this_cpu_inc(perf_throttled_count
);
5649 hwc
->interrupts
= MAX_INTERRUPTS
;
5650 perf_log_throttle(event
, 0);
5651 tick_nohz_full_kick();
5656 if (event
->attr
.freq
) {
5657 u64 now
= perf_clock();
5658 s64 delta
= now
- hwc
->freq_time_stamp
;
5660 hwc
->freq_time_stamp
= now
;
5662 if (delta
> 0 && delta
< 2*TICK_NSEC
)
5663 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
5667 * XXX event_limit might not quite work as expected on inherited
5671 event
->pending_kill
= POLL_IN
;
5672 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
5674 event
->pending_kill
= POLL_HUP
;
5675 event
->pending_disable
= 1;
5676 irq_work_queue(&event
->pending
);
5679 if (event
->overflow_handler
)
5680 event
->overflow_handler(event
, data
, regs
);
5682 perf_event_output(event
, data
, regs
);
5684 if (*perf_event_fasync(event
) && event
->pending_kill
) {
5685 event
->pending_wakeup
= 1;
5686 irq_work_queue(&event
->pending
);
5692 int perf_event_overflow(struct perf_event
*event
,
5693 struct perf_sample_data
*data
,
5694 struct pt_regs
*regs
)
5696 return __perf_event_overflow(event
, 1, data
, regs
);
5700 * Generic software event infrastructure
5703 struct swevent_htable
{
5704 struct swevent_hlist
*swevent_hlist
;
5705 struct mutex hlist_mutex
;
5708 /* Recursion avoidance in each contexts */
5709 int recursion
[PERF_NR_CONTEXTS
];
5711 /* Keeps track of cpu being initialized/exited */
5715 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
5718 * We directly increment event->count and keep a second value in
5719 * event->hw.period_left to count intervals. This period event
5720 * is kept in the range [-sample_period, 0] so that we can use the
5724 u64
perf_swevent_set_period(struct perf_event
*event
)
5726 struct hw_perf_event
*hwc
= &event
->hw
;
5727 u64 period
= hwc
->last_period
;
5731 hwc
->last_period
= hwc
->sample_period
;
5734 old
= val
= local64_read(&hwc
->period_left
);
5738 nr
= div64_u64(period
+ val
, period
);
5739 offset
= nr
* period
;
5741 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
5747 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
5748 struct perf_sample_data
*data
,
5749 struct pt_regs
*regs
)
5751 struct hw_perf_event
*hwc
= &event
->hw
;
5755 overflow
= perf_swevent_set_period(event
);
5757 if (hwc
->interrupts
== MAX_INTERRUPTS
)
5760 for (; overflow
; overflow
--) {
5761 if (__perf_event_overflow(event
, throttle
,
5764 * We inhibit the overflow from happening when
5765 * hwc->interrupts == MAX_INTERRUPTS.
5773 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
5774 struct perf_sample_data
*data
,
5775 struct pt_regs
*regs
)
5777 struct hw_perf_event
*hwc
= &event
->hw
;
5779 local64_add(nr
, &event
->count
);
5784 if (!is_sampling_event(event
))
5787 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
5789 return perf_swevent_overflow(event
, 1, data
, regs
);
5791 data
->period
= event
->hw
.last_period
;
5793 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
5794 return perf_swevent_overflow(event
, 1, data
, regs
);
5796 if (local64_add_negative(nr
, &hwc
->period_left
))
5799 perf_swevent_overflow(event
, 0, data
, regs
);
5802 static int perf_exclude_event(struct perf_event
*event
,
5803 struct pt_regs
*regs
)
5805 if (event
->hw
.state
& PERF_HES_STOPPED
)
5809 if (event
->attr
.exclude_user
&& user_mode(regs
))
5812 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
5819 static int perf_swevent_match(struct perf_event
*event
,
5820 enum perf_type_id type
,
5822 struct perf_sample_data
*data
,
5823 struct pt_regs
*regs
)
5825 if (event
->attr
.type
!= type
)
5828 if (event
->attr
.config
!= event_id
)
5831 if (perf_exclude_event(event
, regs
))
5837 static inline u64
swevent_hash(u64 type
, u32 event_id
)
5839 u64 val
= event_id
| (type
<< 32);
5841 return hash_64(val
, SWEVENT_HLIST_BITS
);
5844 static inline struct hlist_head
*
5845 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
5847 u64 hash
= swevent_hash(type
, event_id
);
5849 return &hlist
->heads
[hash
];
5852 /* For the read side: events when they trigger */
5853 static inline struct hlist_head
*
5854 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
5856 struct swevent_hlist
*hlist
;
5858 hlist
= rcu_dereference(swhash
->swevent_hlist
);
5862 return __find_swevent_head(hlist
, type
, event_id
);
5865 /* For the event head insertion and removal in the hlist */
5866 static inline struct hlist_head
*
5867 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
5869 struct swevent_hlist
*hlist
;
5870 u32 event_id
= event
->attr
.config
;
5871 u64 type
= event
->attr
.type
;
5874 * Event scheduling is always serialized against hlist allocation
5875 * and release. Which makes the protected version suitable here.
5876 * The context lock guarantees that.
5878 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
5879 lockdep_is_held(&event
->ctx
->lock
));
5883 return __find_swevent_head(hlist
, type
, event_id
);
5886 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
5888 struct perf_sample_data
*data
,
5889 struct pt_regs
*regs
)
5891 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
5892 struct perf_event
*event
;
5893 struct hlist_head
*head
;
5896 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
5900 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
5901 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
5902 perf_swevent_event(event
, nr
, data
, regs
);
5908 int perf_swevent_get_recursion_context(void)
5910 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
5912 return get_recursion_context(swhash
->recursion
);
5914 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
5916 inline void perf_swevent_put_recursion_context(int rctx
)
5918 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
5920 put_recursion_context(swhash
->recursion
, rctx
);
5923 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
5925 struct perf_sample_data data
;
5928 preempt_disable_notrace();
5929 rctx
= perf_swevent_get_recursion_context();
5933 perf_sample_data_init(&data
, addr
, 0);
5935 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
5937 perf_swevent_put_recursion_context(rctx
);
5938 preempt_enable_notrace();
5941 static void perf_swevent_read(struct perf_event
*event
)
5945 static int perf_swevent_add(struct perf_event
*event
, int flags
)
5947 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
5948 struct hw_perf_event
*hwc
= &event
->hw
;
5949 struct hlist_head
*head
;
5951 if (is_sampling_event(event
)) {
5952 hwc
->last_period
= hwc
->sample_period
;
5953 perf_swevent_set_period(event
);
5956 hwc
->state
= !(flags
& PERF_EF_START
);
5958 head
= find_swevent_head(swhash
, event
);
5961 * We can race with cpu hotplug code. Do not
5962 * WARN if the cpu just got unplugged.
5964 WARN_ON_ONCE(swhash
->online
);
5968 hlist_add_head_rcu(&event
->hlist_entry
, head
);
5973 static void perf_swevent_del(struct perf_event
*event
, int flags
)
5975 hlist_del_rcu(&event
->hlist_entry
);
5978 static void perf_swevent_start(struct perf_event
*event
, int flags
)
5980 event
->hw
.state
= 0;
5983 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
5985 event
->hw
.state
= PERF_HES_STOPPED
;
5988 /* Deref the hlist from the update side */
5989 static inline struct swevent_hlist
*
5990 swevent_hlist_deref(struct swevent_htable
*swhash
)
5992 return rcu_dereference_protected(swhash
->swevent_hlist
,
5993 lockdep_is_held(&swhash
->hlist_mutex
));
5996 static void swevent_hlist_release(struct swevent_htable
*swhash
)
5998 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
6003 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
6004 kfree_rcu(hlist
, rcu_head
);
6007 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
6009 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6011 mutex_lock(&swhash
->hlist_mutex
);
6013 if (!--swhash
->hlist_refcount
)
6014 swevent_hlist_release(swhash
);
6016 mutex_unlock(&swhash
->hlist_mutex
);
6019 static void swevent_hlist_put(struct perf_event
*event
)
6023 for_each_possible_cpu(cpu
)
6024 swevent_hlist_put_cpu(event
, cpu
);
6027 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
6029 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6032 mutex_lock(&swhash
->hlist_mutex
);
6034 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
6035 struct swevent_hlist
*hlist
;
6037 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
6042 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6044 swhash
->hlist_refcount
++;
6046 mutex_unlock(&swhash
->hlist_mutex
);
6051 static int swevent_hlist_get(struct perf_event
*event
)
6054 int cpu
, failed_cpu
;
6057 for_each_possible_cpu(cpu
) {
6058 err
= swevent_hlist_get_cpu(event
, cpu
);
6068 for_each_possible_cpu(cpu
) {
6069 if (cpu
== failed_cpu
)
6071 swevent_hlist_put_cpu(event
, cpu
);
6078 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
6080 static void sw_perf_event_destroy(struct perf_event
*event
)
6082 u64 event_id
= event
->attr
.config
;
6084 WARN_ON(event
->parent
);
6086 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
6087 swevent_hlist_put(event
);
6090 static int perf_swevent_init(struct perf_event
*event
)
6092 u64 event_id
= event
->attr
.config
;
6094 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6098 * no branch sampling for software events
6100 if (has_branch_stack(event
))
6104 case PERF_COUNT_SW_CPU_CLOCK
:
6105 case PERF_COUNT_SW_TASK_CLOCK
:
6112 if (event_id
>= PERF_COUNT_SW_MAX
)
6115 if (!event
->parent
) {
6118 err
= swevent_hlist_get(event
);
6122 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
6123 event
->destroy
= sw_perf_event_destroy
;
6129 static struct pmu perf_swevent
= {
6130 .task_ctx_nr
= perf_sw_context
,
6132 .event_init
= perf_swevent_init
,
6133 .add
= perf_swevent_add
,
6134 .del
= perf_swevent_del
,
6135 .start
= perf_swevent_start
,
6136 .stop
= perf_swevent_stop
,
6137 .read
= perf_swevent_read
,
6140 #ifdef CONFIG_EVENT_TRACING
6142 static int perf_tp_filter_match(struct perf_event
*event
,
6143 struct perf_sample_data
*data
)
6145 void *record
= data
->raw
->data
;
6147 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
6152 static int perf_tp_event_match(struct perf_event
*event
,
6153 struct perf_sample_data
*data
,
6154 struct pt_regs
*regs
)
6156 if (event
->hw
.state
& PERF_HES_STOPPED
)
6159 * All tracepoints are from kernel-space.
6161 if (event
->attr
.exclude_kernel
)
6164 if (!perf_tp_filter_match(event
, data
))
6170 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
6171 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
6172 struct task_struct
*task
)
6174 struct perf_sample_data data
;
6175 struct perf_event
*event
;
6177 struct perf_raw_record raw
= {
6182 perf_sample_data_init(&data
, addr
, 0);
6185 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
6186 if (perf_tp_event_match(event
, &data
, regs
))
6187 perf_swevent_event(event
, count
, &data
, regs
);
6191 * If we got specified a target task, also iterate its context and
6192 * deliver this event there too.
6194 if (task
&& task
!= current
) {
6195 struct perf_event_context
*ctx
;
6196 struct trace_entry
*entry
= record
;
6199 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
6203 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6204 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6206 if (event
->attr
.config
!= entry
->type
)
6208 if (perf_tp_event_match(event
, &data
, regs
))
6209 perf_swevent_event(event
, count
, &data
, regs
);
6215 perf_swevent_put_recursion_context(rctx
);
6217 EXPORT_SYMBOL_GPL(perf_tp_event
);
6219 static void tp_perf_event_destroy(struct perf_event
*event
)
6221 perf_trace_destroy(event
);
6224 static int perf_tp_event_init(struct perf_event
*event
)
6228 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6232 * no branch sampling for tracepoint events
6234 if (has_branch_stack(event
))
6237 err
= perf_trace_init(event
);
6241 event
->destroy
= tp_perf_event_destroy
;
6246 static struct pmu perf_tracepoint
= {
6247 .task_ctx_nr
= perf_sw_context
,
6249 .event_init
= perf_tp_event_init
,
6250 .add
= perf_trace_add
,
6251 .del
= perf_trace_del
,
6252 .start
= perf_swevent_start
,
6253 .stop
= perf_swevent_stop
,
6254 .read
= perf_swevent_read
,
6257 static inline void perf_tp_register(void)
6259 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
6262 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
6267 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
6270 filter_str
= strndup_user(arg
, PAGE_SIZE
);
6271 if (IS_ERR(filter_str
))
6272 return PTR_ERR(filter_str
);
6274 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
6280 static void perf_event_free_filter(struct perf_event
*event
)
6282 ftrace_profile_free_filter(event
);
6287 static inline void perf_tp_register(void)
6291 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
6296 static void perf_event_free_filter(struct perf_event
*event
)
6300 #endif /* CONFIG_EVENT_TRACING */
6302 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6303 void perf_bp_event(struct perf_event
*bp
, void *data
)
6305 struct perf_sample_data sample
;
6306 struct pt_regs
*regs
= data
;
6308 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
6310 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
6311 perf_swevent_event(bp
, 1, &sample
, regs
);
6316 * hrtimer based swevent callback
6319 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
6321 enum hrtimer_restart ret
= HRTIMER_RESTART
;
6322 struct perf_sample_data data
;
6323 struct pt_regs
*regs
;
6324 struct perf_event
*event
;
6327 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
6329 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
6330 return HRTIMER_NORESTART
;
6332 event
->pmu
->read(event
);
6334 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
6335 regs
= get_irq_regs();
6337 if (regs
&& !perf_exclude_event(event
, regs
)) {
6338 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
6339 if (__perf_event_overflow(event
, 1, &data
, regs
))
6340 ret
= HRTIMER_NORESTART
;
6343 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
6344 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
6349 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
6351 struct hw_perf_event
*hwc
= &event
->hw
;
6354 if (!is_sampling_event(event
))
6357 period
= local64_read(&hwc
->period_left
);
6362 local64_set(&hwc
->period_left
, 0);
6364 period
= max_t(u64
, 10000, hwc
->sample_period
);
6366 __hrtimer_start_range_ns(&hwc
->hrtimer
,
6367 ns_to_ktime(period
), 0,
6368 HRTIMER_MODE_REL_PINNED
, 0);
6371 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
6373 struct hw_perf_event
*hwc
= &event
->hw
;
6375 if (is_sampling_event(event
)) {
6376 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
6377 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
6379 hrtimer_cancel(&hwc
->hrtimer
);
6383 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
6385 struct hw_perf_event
*hwc
= &event
->hw
;
6387 if (!is_sampling_event(event
))
6390 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
6391 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
6394 * Since hrtimers have a fixed rate, we can do a static freq->period
6395 * mapping and avoid the whole period adjust feedback stuff.
6397 if (event
->attr
.freq
) {
6398 long freq
= event
->attr
.sample_freq
;
6400 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
6401 hwc
->sample_period
= event
->attr
.sample_period
;
6402 local64_set(&hwc
->period_left
, hwc
->sample_period
);
6403 hwc
->last_period
= hwc
->sample_period
;
6404 event
->attr
.freq
= 0;
6409 * Software event: cpu wall time clock
6412 static void cpu_clock_event_update(struct perf_event
*event
)
6417 now
= local_clock();
6418 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
6419 local64_add(now
- prev
, &event
->count
);
6422 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
6424 local64_set(&event
->hw
.prev_count
, local_clock());
6425 perf_swevent_start_hrtimer(event
);
6428 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
6430 perf_swevent_cancel_hrtimer(event
);
6431 cpu_clock_event_update(event
);
6434 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
6436 if (flags
& PERF_EF_START
)
6437 cpu_clock_event_start(event
, flags
);
6442 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
6444 cpu_clock_event_stop(event
, flags
);
6447 static void cpu_clock_event_read(struct perf_event
*event
)
6449 cpu_clock_event_update(event
);
6452 static int cpu_clock_event_init(struct perf_event
*event
)
6454 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6457 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
6461 * no branch sampling for software events
6463 if (has_branch_stack(event
))
6466 perf_swevent_init_hrtimer(event
);
6471 static struct pmu perf_cpu_clock
= {
6472 .task_ctx_nr
= perf_sw_context
,
6474 .event_init
= cpu_clock_event_init
,
6475 .add
= cpu_clock_event_add
,
6476 .del
= cpu_clock_event_del
,
6477 .start
= cpu_clock_event_start
,
6478 .stop
= cpu_clock_event_stop
,
6479 .read
= cpu_clock_event_read
,
6483 * Software event: task time clock
6486 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
6491 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
6493 local64_add(delta
, &event
->count
);
6496 static void task_clock_event_start(struct perf_event
*event
, int flags
)
6498 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
6499 perf_swevent_start_hrtimer(event
);
6502 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
6504 perf_swevent_cancel_hrtimer(event
);
6505 task_clock_event_update(event
, event
->ctx
->time
);
6508 static int task_clock_event_add(struct perf_event
*event
, int flags
)
6510 if (flags
& PERF_EF_START
)
6511 task_clock_event_start(event
, flags
);
6516 static void task_clock_event_del(struct perf_event
*event
, int flags
)
6518 task_clock_event_stop(event
, PERF_EF_UPDATE
);
6521 static void task_clock_event_read(struct perf_event
*event
)
6523 u64 now
= perf_clock();
6524 u64 delta
= now
- event
->ctx
->timestamp
;
6525 u64 time
= event
->ctx
->time
+ delta
;
6527 task_clock_event_update(event
, time
);
6530 static int task_clock_event_init(struct perf_event
*event
)
6532 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
6535 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
6539 * no branch sampling for software events
6541 if (has_branch_stack(event
))
6544 perf_swevent_init_hrtimer(event
);
6549 static struct pmu perf_task_clock
= {
6550 .task_ctx_nr
= perf_sw_context
,
6552 .event_init
= task_clock_event_init
,
6553 .add
= task_clock_event_add
,
6554 .del
= task_clock_event_del
,
6555 .start
= task_clock_event_start
,
6556 .stop
= task_clock_event_stop
,
6557 .read
= task_clock_event_read
,
6560 static void perf_pmu_nop_void(struct pmu
*pmu
)
6564 static int perf_pmu_nop_int(struct pmu
*pmu
)
6569 static void perf_pmu_start_txn(struct pmu
*pmu
)
6571 perf_pmu_disable(pmu
);
6574 static int perf_pmu_commit_txn(struct pmu
*pmu
)
6576 perf_pmu_enable(pmu
);
6580 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
6582 perf_pmu_enable(pmu
);
6585 static int perf_event_idx_default(struct perf_event
*event
)
6591 * Ensures all contexts with the same task_ctx_nr have the same
6592 * pmu_cpu_context too.
6594 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
6601 list_for_each_entry(pmu
, &pmus
, entry
) {
6602 if (pmu
->task_ctx_nr
== ctxn
)
6603 return pmu
->pmu_cpu_context
;
6609 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
6613 for_each_possible_cpu(cpu
) {
6614 struct perf_cpu_context
*cpuctx
;
6616 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6618 if (cpuctx
->unique_pmu
== old_pmu
)
6619 cpuctx
->unique_pmu
= pmu
;
6623 static void free_pmu_context(struct pmu
*pmu
)
6627 mutex_lock(&pmus_lock
);
6629 * Like a real lame refcount.
6631 list_for_each_entry(i
, &pmus
, entry
) {
6632 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
6633 update_pmu_context(i
, pmu
);
6638 free_percpu(pmu
->pmu_cpu_context
);
6640 mutex_unlock(&pmus_lock
);
6642 static struct idr pmu_idr
;
6645 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
6647 struct pmu
*pmu
= dev_get_drvdata(dev
);
6649 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
6651 static DEVICE_ATTR_RO(type
);
6654 perf_event_mux_interval_ms_show(struct device
*dev
,
6655 struct device_attribute
*attr
,
6658 struct pmu
*pmu
= dev_get_drvdata(dev
);
6660 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
6664 perf_event_mux_interval_ms_store(struct device
*dev
,
6665 struct device_attribute
*attr
,
6666 const char *buf
, size_t count
)
6668 struct pmu
*pmu
= dev_get_drvdata(dev
);
6669 int timer
, cpu
, ret
;
6671 ret
= kstrtoint(buf
, 0, &timer
);
6678 /* same value, noting to do */
6679 if (timer
== pmu
->hrtimer_interval_ms
)
6682 pmu
->hrtimer_interval_ms
= timer
;
6684 /* update all cpuctx for this PMU */
6685 for_each_possible_cpu(cpu
) {
6686 struct perf_cpu_context
*cpuctx
;
6687 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6688 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
6690 if (hrtimer_active(&cpuctx
->hrtimer
))
6691 hrtimer_forward_now(&cpuctx
->hrtimer
, cpuctx
->hrtimer_interval
);
6696 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
6698 static struct attribute
*pmu_dev_attrs
[] = {
6699 &dev_attr_type
.attr
,
6700 &dev_attr_perf_event_mux_interval_ms
.attr
,
6703 ATTRIBUTE_GROUPS(pmu_dev
);
6705 static int pmu_bus_running
;
6706 static struct bus_type pmu_bus
= {
6707 .name
= "event_source",
6708 .dev_groups
= pmu_dev_groups
,
6711 static void pmu_dev_release(struct device
*dev
)
6716 static int pmu_dev_alloc(struct pmu
*pmu
)
6720 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
6724 pmu
->dev
->groups
= pmu
->attr_groups
;
6725 device_initialize(pmu
->dev
);
6726 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
6730 dev_set_drvdata(pmu
->dev
, pmu
);
6731 pmu
->dev
->bus
= &pmu_bus
;
6732 pmu
->dev
->release
= pmu_dev_release
;
6733 ret
= device_add(pmu
->dev
);
6741 put_device(pmu
->dev
);
6745 static struct lock_class_key cpuctx_mutex
;
6746 static struct lock_class_key cpuctx_lock
;
6748 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
6752 mutex_lock(&pmus_lock
);
6754 pmu
->pmu_disable_count
= alloc_percpu(int);
6755 if (!pmu
->pmu_disable_count
)
6764 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
6772 if (pmu_bus_running
) {
6773 ret
= pmu_dev_alloc(pmu
);
6779 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
6780 if (pmu
->pmu_cpu_context
)
6781 goto got_cpu_context
;
6784 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
6785 if (!pmu
->pmu_cpu_context
)
6788 for_each_possible_cpu(cpu
) {
6789 struct perf_cpu_context
*cpuctx
;
6791 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
6792 __perf_event_init_context(&cpuctx
->ctx
);
6793 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
6794 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
6795 cpuctx
->ctx
.type
= cpu_context
;
6796 cpuctx
->ctx
.pmu
= pmu
;
6798 __perf_cpu_hrtimer_init(cpuctx
, cpu
);
6800 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
6801 cpuctx
->unique_pmu
= pmu
;
6805 if (!pmu
->start_txn
) {
6806 if (pmu
->pmu_enable
) {
6808 * If we have pmu_enable/pmu_disable calls, install
6809 * transaction stubs that use that to try and batch
6810 * hardware accesses.
6812 pmu
->start_txn
= perf_pmu_start_txn
;
6813 pmu
->commit_txn
= perf_pmu_commit_txn
;
6814 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
6816 pmu
->start_txn
= perf_pmu_nop_void
;
6817 pmu
->commit_txn
= perf_pmu_nop_int
;
6818 pmu
->cancel_txn
= perf_pmu_nop_void
;
6822 if (!pmu
->pmu_enable
) {
6823 pmu
->pmu_enable
= perf_pmu_nop_void
;
6824 pmu
->pmu_disable
= perf_pmu_nop_void
;
6827 if (!pmu
->event_idx
)
6828 pmu
->event_idx
= perf_event_idx_default
;
6830 list_add_rcu(&pmu
->entry
, &pmus
);
6833 mutex_unlock(&pmus_lock
);
6838 device_del(pmu
->dev
);
6839 put_device(pmu
->dev
);
6842 if (pmu
->type
>= PERF_TYPE_MAX
)
6843 idr_remove(&pmu_idr
, pmu
->type
);
6846 free_percpu(pmu
->pmu_disable_count
);
6849 EXPORT_SYMBOL_GPL(perf_pmu_register
);
6851 void perf_pmu_unregister(struct pmu
*pmu
)
6853 mutex_lock(&pmus_lock
);
6854 list_del_rcu(&pmu
->entry
);
6855 mutex_unlock(&pmus_lock
);
6858 * We dereference the pmu list under both SRCU and regular RCU, so
6859 * synchronize against both of those.
6861 synchronize_srcu(&pmus_srcu
);
6864 free_percpu(pmu
->pmu_disable_count
);
6865 if (pmu
->type
>= PERF_TYPE_MAX
)
6866 idr_remove(&pmu_idr
, pmu
->type
);
6867 device_del(pmu
->dev
);
6868 put_device(pmu
->dev
);
6869 free_pmu_context(pmu
);
6871 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
6873 struct pmu
*perf_init_event(struct perf_event
*event
)
6875 struct pmu
*pmu
= NULL
;
6879 idx
= srcu_read_lock(&pmus_srcu
);
6882 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
6885 if (!try_module_get(pmu
->module
)) {
6886 pmu
= ERR_PTR(-ENODEV
);
6890 ret
= pmu
->event_init(event
);
6896 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6897 if (!try_module_get(pmu
->module
)) {
6898 pmu
= ERR_PTR(-ENODEV
);
6902 ret
= pmu
->event_init(event
);
6906 if (ret
!= -ENOENT
) {
6911 pmu
= ERR_PTR(-ENOENT
);
6913 srcu_read_unlock(&pmus_srcu
, idx
);
6918 static void account_event_cpu(struct perf_event
*event
, int cpu
)
6923 if (has_branch_stack(event
)) {
6924 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
6925 atomic_inc(&per_cpu(perf_branch_stack_events
, cpu
));
6927 if (is_cgroup_event(event
))
6928 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
6931 static void account_event(struct perf_event
*event
)
6936 if (event
->attach_state
& PERF_ATTACH_TASK
)
6937 static_key_slow_inc(&perf_sched_events
.key
);
6938 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
6939 atomic_inc(&nr_mmap_events
);
6940 if (event
->attr
.comm
)
6941 atomic_inc(&nr_comm_events
);
6942 if (event
->attr
.task
)
6943 atomic_inc(&nr_task_events
);
6944 if (event
->attr
.freq
) {
6945 if (atomic_inc_return(&nr_freq_events
) == 1)
6946 tick_nohz_full_kick_all();
6948 if (has_branch_stack(event
))
6949 static_key_slow_inc(&perf_sched_events
.key
);
6950 if (is_cgroup_event(event
))
6951 static_key_slow_inc(&perf_sched_events
.key
);
6953 account_event_cpu(event
, event
->cpu
);
6957 * Allocate and initialize a event structure
6959 static struct perf_event
*
6960 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
6961 struct task_struct
*task
,
6962 struct perf_event
*group_leader
,
6963 struct perf_event
*parent_event
,
6964 perf_overflow_handler_t overflow_handler
,
6968 struct perf_event
*event
;
6969 struct hw_perf_event
*hwc
;
6972 if ((unsigned)cpu
>= nr_cpu_ids
) {
6973 if (!task
|| cpu
!= -1)
6974 return ERR_PTR(-EINVAL
);
6977 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
6979 return ERR_PTR(-ENOMEM
);
6982 * Single events are their own group leaders, with an
6983 * empty sibling list:
6986 group_leader
= event
;
6988 mutex_init(&event
->child_mutex
);
6989 INIT_LIST_HEAD(&event
->child_list
);
6991 INIT_LIST_HEAD(&event
->group_entry
);
6992 INIT_LIST_HEAD(&event
->event_entry
);
6993 INIT_LIST_HEAD(&event
->sibling_list
);
6994 INIT_LIST_HEAD(&event
->rb_entry
);
6995 INIT_LIST_HEAD(&event
->active_entry
);
6996 INIT_HLIST_NODE(&event
->hlist_entry
);
6999 init_waitqueue_head(&event
->waitq
);
7000 init_irq_work(&event
->pending
, perf_pending_event
);
7002 mutex_init(&event
->mmap_mutex
);
7004 atomic_long_set(&event
->refcount
, 1);
7006 event
->attr
= *attr
;
7007 event
->group_leader
= group_leader
;
7011 event
->parent
= parent_event
;
7013 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
7014 event
->id
= atomic64_inc_return(&perf_event_id
);
7016 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7019 event
->attach_state
= PERF_ATTACH_TASK
;
7021 if (attr
->type
== PERF_TYPE_TRACEPOINT
)
7022 event
->hw
.tp_target
= task
;
7023 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7025 * hw_breakpoint is a bit difficult here..
7027 else if (attr
->type
== PERF_TYPE_BREAKPOINT
)
7028 event
->hw
.bp_target
= task
;
7032 if (!overflow_handler
&& parent_event
) {
7033 overflow_handler
= parent_event
->overflow_handler
;
7034 context
= parent_event
->overflow_handler_context
;
7037 event
->overflow_handler
= overflow_handler
;
7038 event
->overflow_handler_context
= context
;
7040 perf_event__state_init(event
);
7045 hwc
->sample_period
= attr
->sample_period
;
7046 if (attr
->freq
&& attr
->sample_freq
)
7047 hwc
->sample_period
= 1;
7048 hwc
->last_period
= hwc
->sample_period
;
7050 local64_set(&hwc
->period_left
, hwc
->sample_period
);
7053 * we currently do not support PERF_FORMAT_GROUP on inherited events
7055 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
7058 pmu
= perf_init_event(event
);
7061 else if (IS_ERR(pmu
)) {
7066 if (!event
->parent
) {
7067 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
7068 err
= get_callchain_buffers();
7078 event
->destroy(event
);
7079 module_put(pmu
->module
);
7082 put_pid_ns(event
->ns
);
7085 return ERR_PTR(err
);
7088 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
7089 struct perf_event_attr
*attr
)
7094 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
7098 * zero the full structure, so that a short copy will be nice.
7100 memset(attr
, 0, sizeof(*attr
));
7102 ret
= get_user(size
, &uattr
->size
);
7106 if (size
> PAGE_SIZE
) /* silly large */
7109 if (!size
) /* abi compat */
7110 size
= PERF_ATTR_SIZE_VER0
;
7112 if (size
< PERF_ATTR_SIZE_VER0
)
7116 * If we're handed a bigger struct than we know of,
7117 * ensure all the unknown bits are 0 - i.e. new
7118 * user-space does not rely on any kernel feature
7119 * extensions we dont know about yet.
7121 if (size
> sizeof(*attr
)) {
7122 unsigned char __user
*addr
;
7123 unsigned char __user
*end
;
7126 addr
= (void __user
*)uattr
+ sizeof(*attr
);
7127 end
= (void __user
*)uattr
+ size
;
7129 for (; addr
< end
; addr
++) {
7130 ret
= get_user(val
, addr
);
7136 size
= sizeof(*attr
);
7139 ret
= copy_from_user(attr
, uattr
, size
);
7143 if (attr
->__reserved_1
)
7146 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
7149 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
7152 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
7153 u64 mask
= attr
->branch_sample_type
;
7155 /* only using defined bits */
7156 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
7159 /* at least one branch bit must be set */
7160 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
7163 /* propagate priv level, when not set for branch */
7164 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
7166 /* exclude_kernel checked on syscall entry */
7167 if (!attr
->exclude_kernel
)
7168 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
7170 if (!attr
->exclude_user
)
7171 mask
|= PERF_SAMPLE_BRANCH_USER
;
7173 if (!attr
->exclude_hv
)
7174 mask
|= PERF_SAMPLE_BRANCH_HV
;
7176 * adjust user setting (for HW filter setup)
7178 attr
->branch_sample_type
= mask
;
7180 /* privileged levels capture (kernel, hv): check permissions */
7181 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
7182 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
7186 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
7187 ret
= perf_reg_validate(attr
->sample_regs_user
);
7192 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
7193 if (!arch_perf_have_user_stack_dump())
7197 * We have __u32 type for the size, but so far
7198 * we can only use __u16 as maximum due to the
7199 * __u16 sample size limit.
7201 if (attr
->sample_stack_user
>= USHRT_MAX
)
7203 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
7211 put_user(sizeof(*attr
), &uattr
->size
);
7217 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
7219 struct ring_buffer
*rb
= NULL
;
7225 /* don't allow circular references */
7226 if (event
== output_event
)
7230 * Don't allow cross-cpu buffers
7232 if (output_event
->cpu
!= event
->cpu
)
7236 * If its not a per-cpu rb, it must be the same task.
7238 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
7242 mutex_lock(&event
->mmap_mutex
);
7243 /* Can't redirect output if we've got an active mmap() */
7244 if (atomic_read(&event
->mmap_count
))
7248 /* get the rb we want to redirect to */
7249 rb
= ring_buffer_get(output_event
);
7254 ring_buffer_attach(event
, rb
);
7258 mutex_unlock(&event
->mmap_mutex
);
7265 * sys_perf_event_open - open a performance event, associate it to a task/cpu
7267 * @attr_uptr: event_id type attributes for monitoring/sampling
7270 * @group_fd: group leader event fd
7272 SYSCALL_DEFINE5(perf_event_open
,
7273 struct perf_event_attr __user
*, attr_uptr
,
7274 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
7276 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
7277 struct perf_event
*event
, *sibling
;
7278 struct perf_event_attr attr
;
7279 struct perf_event_context
*ctx
;
7280 struct file
*event_file
= NULL
;
7281 struct fd group
= {NULL
, 0};
7282 struct task_struct
*task
= NULL
;
7287 int f_flags
= O_RDWR
;
7289 /* for future expandability... */
7290 if (flags
& ~PERF_FLAG_ALL
)
7293 err
= perf_copy_attr(attr_uptr
, &attr
);
7297 if (!attr
.exclude_kernel
) {
7298 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
7303 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
7306 if (attr
.sample_period
& (1ULL << 63))
7311 * In cgroup mode, the pid argument is used to pass the fd
7312 * opened to the cgroup directory in cgroupfs. The cpu argument
7313 * designates the cpu on which to monitor threads from that
7316 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
7319 if (flags
& PERF_FLAG_FD_CLOEXEC
)
7320 f_flags
|= O_CLOEXEC
;
7322 event_fd
= get_unused_fd_flags(f_flags
);
7326 if (group_fd
!= -1) {
7327 err
= perf_fget_light(group_fd
, &group
);
7330 group_leader
= group
.file
->private_data
;
7331 if (flags
& PERF_FLAG_FD_OUTPUT
)
7332 output_event
= group_leader
;
7333 if (flags
& PERF_FLAG_FD_NO_GROUP
)
7334 group_leader
= NULL
;
7337 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
7338 task
= find_lively_task_by_vpid(pid
);
7340 err
= PTR_ERR(task
);
7345 if (task
&& group_leader
&&
7346 group_leader
->attr
.inherit
!= attr
.inherit
) {
7353 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
7355 if (IS_ERR(event
)) {
7356 err
= PTR_ERR(event
);
7360 if (flags
& PERF_FLAG_PID_CGROUP
) {
7361 err
= perf_cgroup_connect(pid
, event
, &attr
, group_leader
);
7363 __free_event(event
);
7368 if (is_sampling_event(event
)) {
7369 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
7375 account_event(event
);
7378 * Special case software events and allow them to be part of
7379 * any hardware group.
7384 (is_software_event(event
) != is_software_event(group_leader
))) {
7385 if (is_software_event(event
)) {
7387 * If event and group_leader are not both a software
7388 * event, and event is, then group leader is not.
7390 * Allow the addition of software events to !software
7391 * groups, this is safe because software events never
7394 pmu
= group_leader
->pmu
;
7395 } else if (is_software_event(group_leader
) &&
7396 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
7398 * In case the group is a pure software group, and we
7399 * try to add a hardware event, move the whole group to
7400 * the hardware context.
7407 * Get the target context (task or percpu):
7409 ctx
= find_get_context(pmu
, task
, event
->cpu
);
7416 put_task_struct(task
);
7421 * Look up the group leader (we will attach this event to it):
7427 * Do not allow a recursive hierarchy (this new sibling
7428 * becoming part of another group-sibling):
7430 if (group_leader
->group_leader
!= group_leader
)
7433 * Do not allow to attach to a group in a different
7434 * task or CPU context:
7437 if (group_leader
->ctx
->type
!= ctx
->type
)
7440 if (group_leader
->ctx
!= ctx
)
7445 * Only a group leader can be exclusive or pinned
7447 if (attr
.exclusive
|| attr
.pinned
)
7452 err
= perf_event_set_output(event
, output_event
);
7457 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
7459 if (IS_ERR(event_file
)) {
7460 err
= PTR_ERR(event_file
);
7465 struct perf_event_context
*gctx
= group_leader
->ctx
;
7467 mutex_lock(&gctx
->mutex
);
7468 perf_remove_from_context(group_leader
, false);
7471 * Removing from the context ends up with disabled
7472 * event. What we want here is event in the initial
7473 * startup state, ready to be add into new context.
7475 perf_event__state_init(group_leader
);
7476 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
7478 perf_remove_from_context(sibling
, false);
7479 perf_event__state_init(sibling
);
7482 mutex_unlock(&gctx
->mutex
);
7486 WARN_ON_ONCE(ctx
->parent_ctx
);
7487 mutex_lock(&ctx
->mutex
);
7491 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
7493 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
7495 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
7500 perf_install_in_context(ctx
, event
, event
->cpu
);
7501 perf_unpin_context(ctx
);
7502 mutex_unlock(&ctx
->mutex
);
7506 event
->owner
= current
;
7508 mutex_lock(¤t
->perf_event_mutex
);
7509 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
7510 mutex_unlock(¤t
->perf_event_mutex
);
7513 * Precalculate sample_data sizes
7515 perf_event__header_size(event
);
7516 perf_event__id_header_size(event
);
7519 * Drop the reference on the group_event after placing the
7520 * new event on the sibling_list. This ensures destruction
7521 * of the group leader will find the pointer to itself in
7522 * perf_group_detach().
7525 fd_install(event_fd
, event_file
);
7529 perf_unpin_context(ctx
);
7537 put_task_struct(task
);
7541 put_unused_fd(event_fd
);
7546 * perf_event_create_kernel_counter
7548 * @attr: attributes of the counter to create
7549 * @cpu: cpu in which the counter is bound
7550 * @task: task to profile (NULL for percpu)
7553 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
7554 struct task_struct
*task
,
7555 perf_overflow_handler_t overflow_handler
,
7558 struct perf_event_context
*ctx
;
7559 struct perf_event
*event
;
7563 * Get the target context (task or percpu):
7566 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
7567 overflow_handler
, context
);
7568 if (IS_ERR(event
)) {
7569 err
= PTR_ERR(event
);
7573 /* Mark owner so we could distinguish it from user events. */
7574 event
->owner
= EVENT_OWNER_KERNEL
;
7576 account_event(event
);
7578 ctx
= find_get_context(event
->pmu
, task
, cpu
);
7584 WARN_ON_ONCE(ctx
->parent_ctx
);
7585 mutex_lock(&ctx
->mutex
);
7586 perf_install_in_context(ctx
, event
, cpu
);
7587 perf_unpin_context(ctx
);
7588 mutex_unlock(&ctx
->mutex
);
7595 return ERR_PTR(err
);
7597 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
7599 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
7601 struct perf_event_context
*src_ctx
;
7602 struct perf_event_context
*dst_ctx
;
7603 struct perf_event
*event
, *tmp
;
7606 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
7607 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
7609 mutex_lock(&src_ctx
->mutex
);
7610 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
7612 perf_remove_from_context(event
, false);
7613 unaccount_event_cpu(event
, src_cpu
);
7615 list_add(&event
->migrate_entry
, &events
);
7617 mutex_unlock(&src_ctx
->mutex
);
7621 mutex_lock(&dst_ctx
->mutex
);
7622 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
7623 list_del(&event
->migrate_entry
);
7624 if (event
->state
>= PERF_EVENT_STATE_OFF
)
7625 event
->state
= PERF_EVENT_STATE_INACTIVE
;
7626 account_event_cpu(event
, dst_cpu
);
7627 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
7630 mutex_unlock(&dst_ctx
->mutex
);
7632 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
7634 static void sync_child_event(struct perf_event
*child_event
,
7635 struct task_struct
*child
)
7637 struct perf_event
*parent_event
= child_event
->parent
;
7640 if (child_event
->attr
.inherit_stat
)
7641 perf_event_read_event(child_event
, child
);
7643 child_val
= perf_event_count(child_event
);
7646 * Add back the child's count to the parent's count:
7648 atomic64_add(child_val
, &parent_event
->child_count
);
7649 atomic64_add(child_event
->total_time_enabled
,
7650 &parent_event
->child_total_time_enabled
);
7651 atomic64_add(child_event
->total_time_running
,
7652 &parent_event
->child_total_time_running
);
7655 * Remove this event from the parent's list
7657 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
7658 mutex_lock(&parent_event
->child_mutex
);
7659 list_del_init(&child_event
->child_list
);
7660 mutex_unlock(&parent_event
->child_mutex
);
7663 * Make sure user/parent get notified, that we just
7666 perf_event_wakeup(parent_event
);
7669 * Release the parent event, if this was the last
7672 put_event(parent_event
);
7676 __perf_event_exit_task(struct perf_event
*child_event
,
7677 struct perf_event_context
*child_ctx
,
7678 struct task_struct
*child
)
7681 * Do not destroy the 'original' grouping; because of the context
7682 * switch optimization the original events could've ended up in a
7683 * random child task.
7685 * If we were to destroy the original group, all group related
7686 * operations would cease to function properly after this random
7689 * Do destroy all inherited groups, we don't care about those
7690 * and being thorough is better.
7692 perf_remove_from_context(child_event
, !!child_event
->parent
);
7695 * It can happen that the parent exits first, and has events
7696 * that are still around due to the child reference. These
7697 * events need to be zapped.
7699 if (child_event
->parent
) {
7700 sync_child_event(child_event
, child
);
7701 free_event(child_event
);
7703 child_event
->state
= PERF_EVENT_STATE_EXIT
;
7704 perf_event_wakeup(child_event
);
7708 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
7710 struct perf_event
*child_event
, *next
;
7711 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
7712 unsigned long flags
;
7714 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
7715 perf_event_task(child
, NULL
, 0);
7719 local_irq_save(flags
);
7721 * We can't reschedule here because interrupts are disabled,
7722 * and either child is current or it is a task that can't be
7723 * scheduled, so we are now safe from rescheduling changing
7726 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
7729 * Take the context lock here so that if find_get_context is
7730 * reading child->perf_event_ctxp, we wait until it has
7731 * incremented the context's refcount before we do put_ctx below.
7733 raw_spin_lock(&child_ctx
->lock
);
7734 task_ctx_sched_out(child_ctx
);
7735 child
->perf_event_ctxp
[ctxn
] = NULL
;
7738 * If this context is a clone; unclone it so it can't get
7739 * swapped to another process while we're removing all
7740 * the events from it.
7742 clone_ctx
= unclone_ctx(child_ctx
);
7743 update_context_time(child_ctx
);
7744 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
7750 * Report the task dead after unscheduling the events so that we
7751 * won't get any samples after PERF_RECORD_EXIT. We can however still
7752 * get a few PERF_RECORD_READ events.
7754 perf_event_task(child
, child_ctx
, 0);
7757 * We can recurse on the same lock type through:
7759 * __perf_event_exit_task()
7760 * sync_child_event()
7762 * mutex_lock(&ctx->mutex)
7764 * But since its the parent context it won't be the same instance.
7766 mutex_lock(&child_ctx
->mutex
);
7768 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
7769 __perf_event_exit_task(child_event
, child_ctx
, child
);
7771 mutex_unlock(&child_ctx
->mutex
);
7777 * When a child task exits, feed back event values to parent events.
7779 void perf_event_exit_task(struct task_struct
*child
)
7781 struct perf_event
*event
, *tmp
;
7784 mutex_lock(&child
->perf_event_mutex
);
7785 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
7787 list_del_init(&event
->owner_entry
);
7790 * Ensure the list deletion is visible before we clear
7791 * the owner, closes a race against perf_release() where
7792 * we need to serialize on the owner->perf_event_mutex.
7795 event
->owner
= NULL
;
7797 mutex_unlock(&child
->perf_event_mutex
);
7799 for_each_task_context_nr(ctxn
)
7800 perf_event_exit_task_context(child
, ctxn
);
7803 static void perf_free_event(struct perf_event
*event
,
7804 struct perf_event_context
*ctx
)
7806 struct perf_event
*parent
= event
->parent
;
7808 if (WARN_ON_ONCE(!parent
))
7811 mutex_lock(&parent
->child_mutex
);
7812 list_del_init(&event
->child_list
);
7813 mutex_unlock(&parent
->child_mutex
);
7817 perf_group_detach(event
);
7818 list_del_event(event
, ctx
);
7823 * free an unexposed, unused context as created by inheritance by
7824 * perf_event_init_task below, used by fork() in case of fail.
7826 void perf_event_free_task(struct task_struct
*task
)
7828 struct perf_event_context
*ctx
;
7829 struct perf_event
*event
, *tmp
;
7832 for_each_task_context_nr(ctxn
) {
7833 ctx
= task
->perf_event_ctxp
[ctxn
];
7837 mutex_lock(&ctx
->mutex
);
7839 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
7841 perf_free_event(event
, ctx
);
7843 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
7845 perf_free_event(event
, ctx
);
7847 if (!list_empty(&ctx
->pinned_groups
) ||
7848 !list_empty(&ctx
->flexible_groups
))
7851 mutex_unlock(&ctx
->mutex
);
7857 void perf_event_delayed_put(struct task_struct
*task
)
7861 for_each_task_context_nr(ctxn
)
7862 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
7866 * inherit a event from parent task to child task:
7868 static struct perf_event
*
7869 inherit_event(struct perf_event
*parent_event
,
7870 struct task_struct
*parent
,
7871 struct perf_event_context
*parent_ctx
,
7872 struct task_struct
*child
,
7873 struct perf_event
*group_leader
,
7874 struct perf_event_context
*child_ctx
)
7876 enum perf_event_active_state parent_state
= parent_event
->state
;
7877 struct perf_event
*child_event
;
7878 unsigned long flags
;
7881 * Instead of creating recursive hierarchies of events,
7882 * we link inherited events back to the original parent,
7883 * which has a filp for sure, which we use as the reference
7886 if (parent_event
->parent
)
7887 parent_event
= parent_event
->parent
;
7889 child_event
= perf_event_alloc(&parent_event
->attr
,
7892 group_leader
, parent_event
,
7894 if (IS_ERR(child_event
))
7897 if (is_orphaned_event(parent_event
) ||
7898 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
7899 free_event(child_event
);
7906 * Make the child state follow the state of the parent event,
7907 * not its attr.disabled bit. We hold the parent's mutex,
7908 * so we won't race with perf_event_{en, dis}able_family.
7910 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
7911 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
7913 child_event
->state
= PERF_EVENT_STATE_OFF
;
7915 if (parent_event
->attr
.freq
) {
7916 u64 sample_period
= parent_event
->hw
.sample_period
;
7917 struct hw_perf_event
*hwc
= &child_event
->hw
;
7919 hwc
->sample_period
= sample_period
;
7920 hwc
->last_period
= sample_period
;
7922 local64_set(&hwc
->period_left
, sample_period
);
7925 child_event
->ctx
= child_ctx
;
7926 child_event
->overflow_handler
= parent_event
->overflow_handler
;
7927 child_event
->overflow_handler_context
7928 = parent_event
->overflow_handler_context
;
7931 * Precalculate sample_data sizes
7933 perf_event__header_size(child_event
);
7934 perf_event__id_header_size(child_event
);
7937 * Link it up in the child's context:
7939 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
7940 add_event_to_ctx(child_event
, child_ctx
);
7941 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
7944 * Link this into the parent event's child list
7946 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
7947 mutex_lock(&parent_event
->child_mutex
);
7948 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
7949 mutex_unlock(&parent_event
->child_mutex
);
7954 static int inherit_group(struct perf_event
*parent_event
,
7955 struct task_struct
*parent
,
7956 struct perf_event_context
*parent_ctx
,
7957 struct task_struct
*child
,
7958 struct perf_event_context
*child_ctx
)
7960 struct perf_event
*leader
;
7961 struct perf_event
*sub
;
7962 struct perf_event
*child_ctr
;
7964 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
7965 child
, NULL
, child_ctx
);
7967 return PTR_ERR(leader
);
7968 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
7969 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
7970 child
, leader
, child_ctx
);
7971 if (IS_ERR(child_ctr
))
7972 return PTR_ERR(child_ctr
);
7978 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
7979 struct perf_event_context
*parent_ctx
,
7980 struct task_struct
*child
, int ctxn
,
7984 struct perf_event_context
*child_ctx
;
7986 if (!event
->attr
.inherit
) {
7991 child_ctx
= child
->perf_event_ctxp
[ctxn
];
7994 * This is executed from the parent task context, so
7995 * inherit events that have been marked for cloning.
7996 * First allocate and initialize a context for the
8000 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
8004 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
8007 ret
= inherit_group(event
, parent
, parent_ctx
,
8017 * Initialize the perf_event context in task_struct
8019 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
8021 struct perf_event_context
*child_ctx
, *parent_ctx
;
8022 struct perf_event_context
*cloned_ctx
;
8023 struct perf_event
*event
;
8024 struct task_struct
*parent
= current
;
8025 int inherited_all
= 1;
8026 unsigned long flags
;
8029 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
8033 * If the parent's context is a clone, pin it so it won't get
8036 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
8041 * No need to check if parent_ctx != NULL here; since we saw
8042 * it non-NULL earlier, the only reason for it to become NULL
8043 * is if we exit, and since we're currently in the middle of
8044 * a fork we can't be exiting at the same time.
8048 * Lock the parent list. No need to lock the child - not PID
8049 * hashed yet and not running, so nobody can access it.
8051 mutex_lock(&parent_ctx
->mutex
);
8054 * We dont have to disable NMIs - we are only looking at
8055 * the list, not manipulating it:
8057 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
8058 ret
= inherit_task_group(event
, parent
, parent_ctx
,
8059 child
, ctxn
, &inherited_all
);
8065 * We can't hold ctx->lock when iterating the ->flexible_group list due
8066 * to allocations, but we need to prevent rotation because
8067 * rotate_ctx() will change the list from interrupt context.
8069 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
8070 parent_ctx
->rotate_disable
= 1;
8071 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
8073 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
8074 ret
= inherit_task_group(event
, parent
, parent_ctx
,
8075 child
, ctxn
, &inherited_all
);
8080 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
8081 parent_ctx
->rotate_disable
= 0;
8083 child_ctx
= child
->perf_event_ctxp
[ctxn
];
8085 if (child_ctx
&& inherited_all
) {
8087 * Mark the child context as a clone of the parent
8088 * context, or of whatever the parent is a clone of.
8090 * Note that if the parent is a clone, the holding of
8091 * parent_ctx->lock avoids it from being uncloned.
8093 cloned_ctx
= parent_ctx
->parent_ctx
;
8095 child_ctx
->parent_ctx
= cloned_ctx
;
8096 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
8098 child_ctx
->parent_ctx
= parent_ctx
;
8099 child_ctx
->parent_gen
= parent_ctx
->generation
;
8101 get_ctx(child_ctx
->parent_ctx
);
8104 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
8105 mutex_unlock(&parent_ctx
->mutex
);
8107 perf_unpin_context(parent_ctx
);
8108 put_ctx(parent_ctx
);
8114 * Initialize the perf_event context in task_struct
8116 int perf_event_init_task(struct task_struct
*child
)
8120 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
8121 mutex_init(&child
->perf_event_mutex
);
8122 INIT_LIST_HEAD(&child
->perf_event_list
);
8124 for_each_task_context_nr(ctxn
) {
8125 ret
= perf_event_init_context(child
, ctxn
);
8127 perf_event_free_task(child
);
8135 static void __init
perf_event_init_all_cpus(void)
8137 struct swevent_htable
*swhash
;
8140 for_each_possible_cpu(cpu
) {
8141 swhash
= &per_cpu(swevent_htable
, cpu
);
8142 mutex_init(&swhash
->hlist_mutex
);
8143 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
8147 static void perf_event_init_cpu(int cpu
)
8149 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8151 mutex_lock(&swhash
->hlist_mutex
);
8152 swhash
->online
= true;
8153 if (swhash
->hlist_refcount
> 0) {
8154 struct swevent_hlist
*hlist
;
8156 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
8158 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
8160 mutex_unlock(&swhash
->hlist_mutex
);
8163 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
8164 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
8166 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
8168 WARN_ON(!irqs_disabled());
8170 list_del_init(&cpuctx
->rotation_list
);
8173 static void __perf_event_exit_context(void *__info
)
8175 struct remove_event re
= { .detach_group
= true };
8176 struct perf_event_context
*ctx
= __info
;
8178 perf_pmu_rotate_stop(ctx
->pmu
);
8181 list_for_each_entry_rcu(re
.event
, &ctx
->event_list
, event_entry
)
8182 __perf_remove_from_context(&re
);
8186 static void perf_event_exit_cpu_context(int cpu
)
8188 struct perf_event_context
*ctx
;
8192 idx
= srcu_read_lock(&pmus_srcu
);
8193 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
8194 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
8196 mutex_lock(&ctx
->mutex
);
8197 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
8198 mutex_unlock(&ctx
->mutex
);
8200 srcu_read_unlock(&pmus_srcu
, idx
);
8203 static void perf_event_exit_cpu(int cpu
)
8205 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8207 perf_event_exit_cpu_context(cpu
);
8209 mutex_lock(&swhash
->hlist_mutex
);
8210 swhash
->online
= false;
8211 swevent_hlist_release(swhash
);
8212 mutex_unlock(&swhash
->hlist_mutex
);
8215 static inline void perf_event_exit_cpu(int cpu
) { }
8219 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
8223 for_each_online_cpu(cpu
)
8224 perf_event_exit_cpu(cpu
);
8230 * Run the perf reboot notifier at the very last possible moment so that
8231 * the generic watchdog code runs as long as possible.
8233 static struct notifier_block perf_reboot_notifier
= {
8234 .notifier_call
= perf_reboot
,
8235 .priority
= INT_MIN
,
8239 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
8241 unsigned int cpu
= (long)hcpu
;
8243 switch (action
& ~CPU_TASKS_FROZEN
) {
8245 case CPU_UP_PREPARE
:
8246 case CPU_DOWN_FAILED
:
8247 perf_event_init_cpu(cpu
);
8250 case CPU_UP_CANCELED
:
8251 case CPU_DOWN_PREPARE
:
8252 perf_event_exit_cpu(cpu
);
8261 void __init
perf_event_init(void)
8267 perf_event_init_all_cpus();
8268 init_srcu_struct(&pmus_srcu
);
8269 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
8270 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
8271 perf_pmu_register(&perf_task_clock
, NULL
, -1);
8273 perf_cpu_notifier(perf_cpu_notify
);
8274 register_reboot_notifier(&perf_reboot_notifier
);
8276 ret
= init_hw_breakpoint();
8277 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
8279 /* do not patch jump label more than once per second */
8280 jump_label_rate_limit(&perf_sched_events
, HZ
);
8283 * Build time assertion that we keep the data_head at the intended
8284 * location. IOW, validation we got the __reserved[] size right.
8286 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
8290 static int __init
perf_event_sysfs_init(void)
8295 mutex_lock(&pmus_lock
);
8297 ret
= bus_register(&pmu_bus
);
8301 list_for_each_entry(pmu
, &pmus
, entry
) {
8302 if (!pmu
->name
|| pmu
->type
< 0)
8305 ret
= pmu_dev_alloc(pmu
);
8306 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
8308 pmu_bus_running
= 1;
8312 mutex_unlock(&pmus_lock
);
8316 device_initcall(perf_event_sysfs_init
);
8318 #ifdef CONFIG_CGROUP_PERF
8319 static struct cgroup_subsys_state
*
8320 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
8322 struct perf_cgroup
*jc
;
8324 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
8326 return ERR_PTR(-ENOMEM
);
8328 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
8331 return ERR_PTR(-ENOMEM
);
8337 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
8339 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
8341 free_percpu(jc
->info
);
8345 static int __perf_cgroup_move(void *info
)
8347 struct task_struct
*task
= info
;
8348 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
8352 static void perf_cgroup_attach(struct cgroup_subsys_state
*css
,
8353 struct cgroup_taskset
*tset
)
8355 struct task_struct
*task
;
8357 cgroup_taskset_for_each(task
, tset
)
8358 task_function_call(task
, __perf_cgroup_move
, task
);
8361 static void perf_cgroup_exit(struct cgroup_subsys_state
*css
,
8362 struct cgroup_subsys_state
*old_css
,
8363 struct task_struct
*task
)
8366 * cgroup_exit() is called in the copy_process() failure path.
8367 * Ignore this case since the task hasn't ran yet, this avoids
8368 * trying to poke a half freed task state from generic code.
8370 if (!(task
->flags
& PF_EXITING
))
8373 task_function_call(task
, __perf_cgroup_move
, task
);
8376 struct cgroup_subsys perf_event_cgrp_subsys
= {
8377 .css_alloc
= perf_cgroup_css_alloc
,
8378 .css_free
= perf_cgroup_css_free
,
8379 .exit
= perf_cgroup_exit
,
8380 .attach
= perf_cgroup_attach
,
8382 #endif /* CONFIG_CGROUP_PERF */