Btrfs: fix list transaction->pending_ordered corruption
[linux/fpc-iii.git] / net / mac80211 / rx.c
blob074cdfa04cc47e0a64aa00119d87d9936fc8fde2
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/jiffies.h>
14 #include <linux/slab.h>
15 #include <linux/kernel.h>
16 #include <linux/skbuff.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <asm/unaligned.h>
25 #include "ieee80211_i.h"
26 #include "driver-ops.h"
27 #include "led.h"
28 #include "mesh.h"
29 #include "wep.h"
30 #include "wpa.h"
31 #include "tkip.h"
32 #include "wme.h"
33 #include "rate.h"
36 * monitor mode reception
38 * This function cleans up the SKB, i.e. it removes all the stuff
39 * only useful for monitoring.
41 static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
42 struct sk_buff *skb)
44 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
45 if (likely(skb->len > FCS_LEN))
46 __pskb_trim(skb, skb->len - FCS_LEN);
47 else {
48 /* driver bug */
49 WARN_ON(1);
50 dev_kfree_skb(skb);
51 return NULL;
55 return skb;
58 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len)
60 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
61 struct ieee80211_hdr *hdr = (void *)skb->data;
63 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
64 RX_FLAG_FAILED_PLCP_CRC |
65 RX_FLAG_AMPDU_IS_ZEROLEN))
66 return true;
68 if (unlikely(skb->len < 16 + present_fcs_len))
69 return true;
71 if (ieee80211_is_ctl(hdr->frame_control) &&
72 !ieee80211_is_pspoll(hdr->frame_control) &&
73 !ieee80211_is_back_req(hdr->frame_control))
74 return true;
76 return false;
79 static int
80 ieee80211_rx_radiotap_space(struct ieee80211_local *local,
81 struct ieee80211_rx_status *status)
83 int len;
85 /* always present fields */
86 len = sizeof(struct ieee80211_radiotap_header) + 8;
88 /* allocate extra bitmaps */
89 if (status->chains)
90 len += 4 * hweight8(status->chains);
92 if (ieee80211_have_rx_timestamp(status)) {
93 len = ALIGN(len, 8);
94 len += 8;
96 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
97 len += 1;
99 /* antenna field, if we don't have per-chain info */
100 if (!status->chains)
101 len += 1;
103 /* padding for RX_FLAGS if necessary */
104 len = ALIGN(len, 2);
106 if (status->flag & RX_FLAG_HT) /* HT info */
107 len += 3;
109 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
110 len = ALIGN(len, 4);
111 len += 8;
114 if (status->flag & RX_FLAG_VHT) {
115 len = ALIGN(len, 2);
116 len += 12;
119 if (status->chains) {
120 /* antenna and antenna signal fields */
121 len += 2 * hweight8(status->chains);
124 return len;
128 * ieee80211_add_rx_radiotap_header - add radiotap header
130 * add a radiotap header containing all the fields which the hardware provided.
132 static void
133 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
134 struct sk_buff *skb,
135 struct ieee80211_rate *rate,
136 int rtap_len, bool has_fcs)
138 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
139 struct ieee80211_radiotap_header *rthdr;
140 unsigned char *pos;
141 __le32 *it_present;
142 u32 it_present_val;
143 u16 rx_flags = 0;
144 u16 channel_flags = 0;
145 int mpdulen, chain;
146 unsigned long chains = status->chains;
148 mpdulen = skb->len;
149 if (!(has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)))
150 mpdulen += FCS_LEN;
152 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
153 memset(rthdr, 0, rtap_len);
154 it_present = &rthdr->it_present;
156 /* radiotap header, set always present flags */
157 rthdr->it_len = cpu_to_le16(rtap_len);
158 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
159 BIT(IEEE80211_RADIOTAP_CHANNEL) |
160 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
162 if (!status->chains)
163 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
165 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
166 it_present_val |=
167 BIT(IEEE80211_RADIOTAP_EXT) |
168 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
169 put_unaligned_le32(it_present_val, it_present);
170 it_present++;
171 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
172 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
175 put_unaligned_le32(it_present_val, it_present);
177 pos = (void *)(it_present + 1);
179 /* the order of the following fields is important */
181 /* IEEE80211_RADIOTAP_TSFT */
182 if (ieee80211_have_rx_timestamp(status)) {
183 /* padding */
184 while ((pos - (u8 *)rthdr) & 7)
185 *pos++ = 0;
186 put_unaligned_le64(
187 ieee80211_calculate_rx_timestamp(local, status,
188 mpdulen, 0),
189 pos);
190 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
191 pos += 8;
194 /* IEEE80211_RADIOTAP_FLAGS */
195 if (has_fcs && (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS))
196 *pos |= IEEE80211_RADIOTAP_F_FCS;
197 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
198 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
199 if (status->flag & RX_FLAG_SHORTPRE)
200 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
201 pos++;
203 /* IEEE80211_RADIOTAP_RATE */
204 if (!rate || status->flag & (RX_FLAG_HT | RX_FLAG_VHT)) {
206 * Without rate information don't add it. If we have,
207 * MCS information is a separate field in radiotap,
208 * added below. The byte here is needed as padding
209 * for the channel though, so initialise it to 0.
211 *pos = 0;
212 } else {
213 int shift = 0;
214 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
215 if (status->flag & RX_FLAG_10MHZ)
216 shift = 1;
217 else if (status->flag & RX_FLAG_5MHZ)
218 shift = 2;
219 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
221 pos++;
223 /* IEEE80211_RADIOTAP_CHANNEL */
224 put_unaligned_le16(status->freq, pos);
225 pos += 2;
226 if (status->flag & RX_FLAG_10MHZ)
227 channel_flags |= IEEE80211_CHAN_HALF;
228 else if (status->flag & RX_FLAG_5MHZ)
229 channel_flags |= IEEE80211_CHAN_QUARTER;
231 if (status->band == IEEE80211_BAND_5GHZ)
232 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
233 else if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
234 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
235 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
236 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
237 else if (rate)
238 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
239 else
240 channel_flags |= IEEE80211_CHAN_2GHZ;
241 put_unaligned_le16(channel_flags, pos);
242 pos += 2;
244 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
245 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM &&
246 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
247 *pos = status->signal;
248 rthdr->it_present |=
249 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
250 pos++;
253 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
255 if (!status->chains) {
256 /* IEEE80211_RADIOTAP_ANTENNA */
257 *pos = status->antenna;
258 pos++;
261 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
263 /* IEEE80211_RADIOTAP_RX_FLAGS */
264 /* ensure 2 byte alignment for the 2 byte field as required */
265 if ((pos - (u8 *)rthdr) & 1)
266 *pos++ = 0;
267 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
268 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
269 put_unaligned_le16(rx_flags, pos);
270 pos += 2;
272 if (status->flag & RX_FLAG_HT) {
273 unsigned int stbc;
275 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
276 *pos++ = local->hw.radiotap_mcs_details;
277 *pos = 0;
278 if (status->flag & RX_FLAG_SHORT_GI)
279 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
280 if (status->flag & RX_FLAG_40MHZ)
281 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
282 if (status->flag & RX_FLAG_HT_GF)
283 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
284 if (status->flag & RX_FLAG_LDPC)
285 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
286 stbc = (status->flag & RX_FLAG_STBC_MASK) >> RX_FLAG_STBC_SHIFT;
287 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
288 pos++;
289 *pos++ = status->rate_idx;
292 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
293 u16 flags = 0;
295 /* ensure 4 byte alignment */
296 while ((pos - (u8 *)rthdr) & 3)
297 pos++;
298 rthdr->it_present |=
299 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
300 put_unaligned_le32(status->ampdu_reference, pos);
301 pos += 4;
302 if (status->flag & RX_FLAG_AMPDU_REPORT_ZEROLEN)
303 flags |= IEEE80211_RADIOTAP_AMPDU_REPORT_ZEROLEN;
304 if (status->flag & RX_FLAG_AMPDU_IS_ZEROLEN)
305 flags |= IEEE80211_RADIOTAP_AMPDU_IS_ZEROLEN;
306 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
307 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
308 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
309 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
310 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
311 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
312 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
313 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
314 put_unaligned_le16(flags, pos);
315 pos += 2;
316 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
317 *pos++ = status->ampdu_delimiter_crc;
318 else
319 *pos++ = 0;
320 *pos++ = 0;
323 if (status->flag & RX_FLAG_VHT) {
324 u16 known = local->hw.radiotap_vht_details;
326 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
327 /* known field - how to handle 80+80? */
328 if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
329 known &= ~IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH;
330 put_unaligned_le16(known, pos);
331 pos += 2;
332 /* flags */
333 if (status->flag & RX_FLAG_SHORT_GI)
334 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
335 /* in VHT, STBC is binary */
336 if (status->flag & RX_FLAG_STBC_MASK)
337 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
338 if (status->vht_flag & RX_VHT_FLAG_BF)
339 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
340 pos++;
341 /* bandwidth */
342 if (status->vht_flag & RX_VHT_FLAG_80MHZ)
343 *pos++ = 4;
344 else if (status->vht_flag & RX_VHT_FLAG_80P80MHZ)
345 *pos++ = 0; /* marked not known above */
346 else if (status->vht_flag & RX_VHT_FLAG_160MHZ)
347 *pos++ = 11;
348 else if (status->flag & RX_FLAG_40MHZ)
349 *pos++ = 1;
350 else /* 20 MHz */
351 *pos++ = 0;
352 /* MCS/NSS */
353 *pos = (status->rate_idx << 4) | status->vht_nss;
354 pos += 4;
355 /* coding field */
356 if (status->flag & RX_FLAG_LDPC)
357 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
358 pos++;
359 /* group ID */
360 pos++;
361 /* partial_aid */
362 pos += 2;
365 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
366 *pos++ = status->chain_signal[chain];
367 *pos++ = chain;
372 * This function copies a received frame to all monitor interfaces and
373 * returns a cleaned-up SKB that no longer includes the FCS nor the
374 * radiotap header the driver might have added.
376 static struct sk_buff *
377 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
378 struct ieee80211_rate *rate)
380 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
381 struct ieee80211_sub_if_data *sdata;
382 int needed_headroom;
383 struct sk_buff *skb, *skb2;
384 struct net_device *prev_dev = NULL;
385 int present_fcs_len = 0;
388 * First, we may need to make a copy of the skb because
389 * (1) we need to modify it for radiotap (if not present), and
390 * (2) the other RX handlers will modify the skb we got.
392 * We don't need to, of course, if we aren't going to return
393 * the SKB because it has a bad FCS/PLCP checksum.
396 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
397 present_fcs_len = FCS_LEN;
399 /* ensure hdr->frame_control is in skb head */
400 if (!pskb_may_pull(origskb, 2)) {
401 dev_kfree_skb(origskb);
402 return NULL;
405 if (!local->monitors) {
406 if (should_drop_frame(origskb, present_fcs_len)) {
407 dev_kfree_skb(origskb);
408 return NULL;
411 return remove_monitor_info(local, origskb);
414 /* room for the radiotap header based on driver features */
415 needed_headroom = ieee80211_rx_radiotap_space(local, status);
417 if (should_drop_frame(origskb, present_fcs_len)) {
418 /* only need to expand headroom if necessary */
419 skb = origskb;
420 origskb = NULL;
423 * This shouldn't trigger often because most devices have an
424 * RX header they pull before we get here, and that should
425 * be big enough for our radiotap information. We should
426 * probably export the length to drivers so that we can have
427 * them allocate enough headroom to start with.
429 if (skb_headroom(skb) < needed_headroom &&
430 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
431 dev_kfree_skb(skb);
432 return NULL;
434 } else {
436 * Need to make a copy and possibly remove radiotap header
437 * and FCS from the original.
439 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
441 origskb = remove_monitor_info(local, origskb);
443 if (!skb)
444 return origskb;
447 /* prepend radiotap information */
448 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
449 true);
451 skb_reset_mac_header(skb);
452 skb->ip_summed = CHECKSUM_UNNECESSARY;
453 skb->pkt_type = PACKET_OTHERHOST;
454 skb->protocol = htons(ETH_P_802_2);
456 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
457 if (sdata->vif.type != NL80211_IFTYPE_MONITOR)
458 continue;
460 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
461 continue;
463 if (!ieee80211_sdata_running(sdata))
464 continue;
466 if (prev_dev) {
467 skb2 = skb_clone(skb, GFP_ATOMIC);
468 if (skb2) {
469 skb2->dev = prev_dev;
470 netif_receive_skb(skb2);
474 prev_dev = sdata->dev;
475 sdata->dev->stats.rx_packets++;
476 sdata->dev->stats.rx_bytes += skb->len;
479 if (prev_dev) {
480 skb->dev = prev_dev;
481 netif_receive_skb(skb);
482 } else
483 dev_kfree_skb(skb);
485 return origskb;
488 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
490 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
491 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
492 int tid, seqno_idx, security_idx;
494 /* does the frame have a qos control field? */
495 if (ieee80211_is_data_qos(hdr->frame_control)) {
496 u8 *qc = ieee80211_get_qos_ctl(hdr);
497 /* frame has qos control */
498 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
499 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
500 status->rx_flags |= IEEE80211_RX_AMSDU;
502 seqno_idx = tid;
503 security_idx = tid;
504 } else {
506 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
508 * Sequence numbers for management frames, QoS data
509 * frames with a broadcast/multicast address in the
510 * Address 1 field, and all non-QoS data frames sent
511 * by QoS STAs are assigned using an additional single
512 * modulo-4096 counter, [...]
514 * We also use that counter for non-QoS STAs.
516 seqno_idx = IEEE80211_NUM_TIDS;
517 security_idx = 0;
518 if (ieee80211_is_mgmt(hdr->frame_control))
519 security_idx = IEEE80211_NUM_TIDS;
520 tid = 0;
523 rx->seqno_idx = seqno_idx;
524 rx->security_idx = security_idx;
525 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
526 * For now, set skb->priority to 0 for other cases. */
527 rx->skb->priority = (tid > 7) ? 0 : tid;
531 * DOC: Packet alignment
533 * Drivers always need to pass packets that are aligned to two-byte boundaries
534 * to the stack.
536 * Additionally, should, if possible, align the payload data in a way that
537 * guarantees that the contained IP header is aligned to a four-byte
538 * boundary. In the case of regular frames, this simply means aligning the
539 * payload to a four-byte boundary (because either the IP header is directly
540 * contained, or IV/RFC1042 headers that have a length divisible by four are
541 * in front of it). If the payload data is not properly aligned and the
542 * architecture doesn't support efficient unaligned operations, mac80211
543 * will align the data.
545 * With A-MSDU frames, however, the payload data address must yield two modulo
546 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
547 * push the IP header further back to a multiple of four again. Thankfully, the
548 * specs were sane enough this time around to require padding each A-MSDU
549 * subframe to a length that is a multiple of four.
551 * Padding like Atheros hardware adds which is between the 802.11 header and
552 * the payload is not supported, the driver is required to move the 802.11
553 * header to be directly in front of the payload in that case.
555 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
557 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
558 WARN_ONCE((unsigned long)rx->skb->data & 1,
559 "unaligned packet at 0x%p\n", rx->skb->data);
560 #endif
564 /* rx handlers */
566 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
568 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
570 if (is_multicast_ether_addr(hdr->addr1))
571 return 0;
573 return ieee80211_is_robust_mgmt_frame(skb);
577 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
579 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
581 if (!is_multicast_ether_addr(hdr->addr1))
582 return 0;
584 return ieee80211_is_robust_mgmt_frame(skb);
588 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
589 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
591 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
592 struct ieee80211_mmie *mmie;
594 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
595 return -1;
597 if (!ieee80211_is_robust_mgmt_frame(skb))
598 return -1; /* not a robust management frame */
600 mmie = (struct ieee80211_mmie *)
601 (skb->data + skb->len - sizeof(*mmie));
602 if (mmie->element_id != WLAN_EID_MMIE ||
603 mmie->length != sizeof(*mmie) - 2)
604 return -1;
606 return le16_to_cpu(mmie->key_id);
609 static int iwl80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
610 struct sk_buff *skb)
612 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
613 __le16 fc;
614 int hdrlen;
615 u8 keyid;
617 fc = hdr->frame_control;
618 hdrlen = ieee80211_hdrlen(fc);
620 if (skb->len < hdrlen + cs->hdr_len)
621 return -EINVAL;
623 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
624 keyid &= cs->key_idx_mask;
625 keyid >>= cs->key_idx_shift;
627 return keyid;
630 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
632 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
633 char *dev_addr = rx->sdata->vif.addr;
635 if (ieee80211_is_data(hdr->frame_control)) {
636 if (is_multicast_ether_addr(hdr->addr1)) {
637 if (ieee80211_has_tods(hdr->frame_control) ||
638 !ieee80211_has_fromds(hdr->frame_control))
639 return RX_DROP_MONITOR;
640 if (ether_addr_equal(hdr->addr3, dev_addr))
641 return RX_DROP_MONITOR;
642 } else {
643 if (!ieee80211_has_a4(hdr->frame_control))
644 return RX_DROP_MONITOR;
645 if (ether_addr_equal(hdr->addr4, dev_addr))
646 return RX_DROP_MONITOR;
650 /* If there is not an established peer link and this is not a peer link
651 * establisment frame, beacon or probe, drop the frame.
654 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
655 struct ieee80211_mgmt *mgmt;
657 if (!ieee80211_is_mgmt(hdr->frame_control))
658 return RX_DROP_MONITOR;
660 if (ieee80211_is_action(hdr->frame_control)) {
661 u8 category;
663 /* make sure category field is present */
664 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
665 return RX_DROP_MONITOR;
667 mgmt = (struct ieee80211_mgmt *)hdr;
668 category = mgmt->u.action.category;
669 if (category != WLAN_CATEGORY_MESH_ACTION &&
670 category != WLAN_CATEGORY_SELF_PROTECTED)
671 return RX_DROP_MONITOR;
672 return RX_CONTINUE;
675 if (ieee80211_is_probe_req(hdr->frame_control) ||
676 ieee80211_is_probe_resp(hdr->frame_control) ||
677 ieee80211_is_beacon(hdr->frame_control) ||
678 ieee80211_is_auth(hdr->frame_control))
679 return RX_CONTINUE;
681 return RX_DROP_MONITOR;
684 return RX_CONTINUE;
687 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
688 struct tid_ampdu_rx *tid_agg_rx,
689 int index,
690 struct sk_buff_head *frames)
692 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
693 struct sk_buff *skb;
694 struct ieee80211_rx_status *status;
696 lockdep_assert_held(&tid_agg_rx->reorder_lock);
698 if (skb_queue_empty(skb_list))
699 goto no_frame;
701 if (!ieee80211_rx_reorder_ready(skb_list)) {
702 __skb_queue_purge(skb_list);
703 goto no_frame;
706 /* release frames from the reorder ring buffer */
707 tid_agg_rx->stored_mpdu_num--;
708 while ((skb = __skb_dequeue(skb_list))) {
709 status = IEEE80211_SKB_RXCB(skb);
710 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
711 __skb_queue_tail(frames, skb);
714 no_frame:
715 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
718 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
719 struct tid_ampdu_rx *tid_agg_rx,
720 u16 head_seq_num,
721 struct sk_buff_head *frames)
723 int index;
725 lockdep_assert_held(&tid_agg_rx->reorder_lock);
727 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
728 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
729 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
730 frames);
735 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
736 * the skb was added to the buffer longer than this time ago, the earlier
737 * frames that have not yet been received are assumed to be lost and the skb
738 * can be released for processing. This may also release other skb's from the
739 * reorder buffer if there are no additional gaps between the frames.
741 * Callers must hold tid_agg_rx->reorder_lock.
743 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
745 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
746 struct tid_ampdu_rx *tid_agg_rx,
747 struct sk_buff_head *frames)
749 int index, i, j;
751 lockdep_assert_held(&tid_agg_rx->reorder_lock);
753 /* release the buffer until next missing frame */
754 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
755 if (!ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index]) &&
756 tid_agg_rx->stored_mpdu_num) {
758 * No buffers ready to be released, but check whether any
759 * frames in the reorder buffer have timed out.
761 int skipped = 1;
762 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
763 j = (j + 1) % tid_agg_rx->buf_size) {
764 if (!ieee80211_rx_reorder_ready(
765 &tid_agg_rx->reorder_buf[j])) {
766 skipped++;
767 continue;
769 if (skipped &&
770 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
771 HT_RX_REORDER_BUF_TIMEOUT))
772 goto set_release_timer;
774 /* don't leave incomplete A-MSDUs around */
775 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
776 i = (i + 1) % tid_agg_rx->buf_size)
777 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
779 ht_dbg_ratelimited(sdata,
780 "release an RX reorder frame due to timeout on earlier frames\n");
781 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
782 frames);
785 * Increment the head seq# also for the skipped slots.
787 tid_agg_rx->head_seq_num =
788 (tid_agg_rx->head_seq_num +
789 skipped) & IEEE80211_SN_MASK;
790 skipped = 0;
792 } else while (ieee80211_rx_reorder_ready(
793 &tid_agg_rx->reorder_buf[index])) {
794 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
795 frames);
796 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
799 if (tid_agg_rx->stored_mpdu_num) {
800 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
802 for (; j != (index - 1) % tid_agg_rx->buf_size;
803 j = (j + 1) % tid_agg_rx->buf_size) {
804 if (ieee80211_rx_reorder_ready(
805 &tid_agg_rx->reorder_buf[j]))
806 break;
809 set_release_timer:
811 if (!tid_agg_rx->removed)
812 mod_timer(&tid_agg_rx->reorder_timer,
813 tid_agg_rx->reorder_time[j] + 1 +
814 HT_RX_REORDER_BUF_TIMEOUT);
815 } else {
816 del_timer(&tid_agg_rx->reorder_timer);
821 * As this function belongs to the RX path it must be under
822 * rcu_read_lock protection. It returns false if the frame
823 * can be processed immediately, true if it was consumed.
825 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
826 struct tid_ampdu_rx *tid_agg_rx,
827 struct sk_buff *skb,
828 struct sk_buff_head *frames)
830 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
831 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
832 u16 sc = le16_to_cpu(hdr->seq_ctrl);
833 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
834 u16 head_seq_num, buf_size;
835 int index;
836 bool ret = true;
838 spin_lock(&tid_agg_rx->reorder_lock);
841 * Offloaded BA sessions have no known starting sequence number so pick
842 * one from first Rxed frame for this tid after BA was started.
844 if (unlikely(tid_agg_rx->auto_seq)) {
845 tid_agg_rx->auto_seq = false;
846 tid_agg_rx->ssn = mpdu_seq_num;
847 tid_agg_rx->head_seq_num = mpdu_seq_num;
850 buf_size = tid_agg_rx->buf_size;
851 head_seq_num = tid_agg_rx->head_seq_num;
853 /* frame with out of date sequence number */
854 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
855 dev_kfree_skb(skb);
856 goto out;
860 * If frame the sequence number exceeds our buffering window
861 * size release some previous frames to make room for this one.
863 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
864 head_seq_num = ieee80211_sn_inc(
865 ieee80211_sn_sub(mpdu_seq_num, buf_size));
866 /* release stored frames up to new head to stack */
867 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
868 head_seq_num, frames);
871 /* Now the new frame is always in the range of the reordering buffer */
873 index = mpdu_seq_num % tid_agg_rx->buf_size;
875 /* check if we already stored this frame */
876 if (ieee80211_rx_reorder_ready(&tid_agg_rx->reorder_buf[index])) {
877 dev_kfree_skb(skb);
878 goto out;
882 * If the current MPDU is in the right order and nothing else
883 * is stored we can process it directly, no need to buffer it.
884 * If it is first but there's something stored, we may be able
885 * to release frames after this one.
887 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
888 tid_agg_rx->stored_mpdu_num == 0) {
889 if (!(status->flag & RX_FLAG_AMSDU_MORE))
890 tid_agg_rx->head_seq_num =
891 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
892 ret = false;
893 goto out;
896 /* put the frame in the reordering buffer */
897 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
898 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
899 tid_agg_rx->reorder_time[index] = jiffies;
900 tid_agg_rx->stored_mpdu_num++;
901 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
904 out:
905 spin_unlock(&tid_agg_rx->reorder_lock);
906 return ret;
910 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
911 * true if the MPDU was buffered, false if it should be processed.
913 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
914 struct sk_buff_head *frames)
916 struct sk_buff *skb = rx->skb;
917 struct ieee80211_local *local = rx->local;
918 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
919 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
920 struct sta_info *sta = rx->sta;
921 struct tid_ampdu_rx *tid_agg_rx;
922 u16 sc;
923 u8 tid, ack_policy;
925 if (!ieee80211_is_data_qos(hdr->frame_control) ||
926 is_multicast_ether_addr(hdr->addr1))
927 goto dont_reorder;
930 * filter the QoS data rx stream according to
931 * STA/TID and check if this STA/TID is on aggregation
934 if (!sta)
935 goto dont_reorder;
937 ack_policy = *ieee80211_get_qos_ctl(hdr) &
938 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
939 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
941 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
942 if (!tid_agg_rx)
943 goto dont_reorder;
945 /* qos null data frames are excluded */
946 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
947 goto dont_reorder;
949 /* not part of a BA session */
950 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
951 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
952 goto dont_reorder;
954 /* not actually part of this BA session */
955 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
956 goto dont_reorder;
958 /* new, potentially un-ordered, ampdu frame - process it */
960 /* reset session timer */
961 if (tid_agg_rx->timeout)
962 tid_agg_rx->last_rx = jiffies;
964 /* if this mpdu is fragmented - terminate rx aggregation session */
965 sc = le16_to_cpu(hdr->seq_ctrl);
966 if (sc & IEEE80211_SCTL_FRAG) {
967 skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
968 skb_queue_tail(&rx->sdata->skb_queue, skb);
969 ieee80211_queue_work(&local->hw, &rx->sdata->work);
970 return;
974 * No locking needed -- we will only ever process one
975 * RX packet at a time, and thus own tid_agg_rx. All
976 * other code manipulating it needs to (and does) make
977 * sure that we cannot get to it any more before doing
978 * anything with it.
980 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
981 frames))
982 return;
984 dont_reorder:
985 __skb_queue_tail(frames, skb);
988 static ieee80211_rx_result debug_noinline
989 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
991 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
992 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
995 * Drop duplicate 802.11 retransmissions
996 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
998 if (rx->skb->len >= 24 && rx->sta &&
999 !ieee80211_is_ctl(hdr->frame_control) &&
1000 !ieee80211_is_qos_nullfunc(hdr->frame_control) &&
1001 !is_multicast_ether_addr(hdr->addr1)) {
1002 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1003 rx->sta->last_seq_ctrl[rx->seqno_idx] ==
1004 hdr->seq_ctrl)) {
1005 if (status->rx_flags & IEEE80211_RX_RA_MATCH) {
1006 rx->local->dot11FrameDuplicateCount++;
1007 rx->sta->num_duplicates++;
1009 return RX_DROP_UNUSABLE;
1010 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1011 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1015 if (unlikely(rx->skb->len < 16)) {
1016 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
1017 return RX_DROP_MONITOR;
1020 /* Drop disallowed frame classes based on STA auth/assoc state;
1021 * IEEE 802.11, Chap 5.5.
1023 * mac80211 filters only based on association state, i.e. it drops
1024 * Class 3 frames from not associated stations. hostapd sends
1025 * deauth/disassoc frames when needed. In addition, hostapd is
1026 * responsible for filtering on both auth and assoc states.
1029 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1030 return ieee80211_rx_mesh_check(rx);
1032 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1033 ieee80211_is_pspoll(hdr->frame_control)) &&
1034 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1035 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1036 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1038 * accept port control frames from the AP even when it's not
1039 * yet marked ASSOC to prevent a race where we don't set the
1040 * assoc bit quickly enough before it sends the first frame
1042 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1043 ieee80211_is_data_present(hdr->frame_control)) {
1044 unsigned int hdrlen;
1045 __be16 ethertype;
1047 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1049 if (rx->skb->len < hdrlen + 8)
1050 return RX_DROP_MONITOR;
1052 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1053 if (ethertype == rx->sdata->control_port_protocol)
1054 return RX_CONTINUE;
1057 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1058 cfg80211_rx_spurious_frame(rx->sdata->dev,
1059 hdr->addr2,
1060 GFP_ATOMIC))
1061 return RX_DROP_UNUSABLE;
1063 return RX_DROP_MONITOR;
1066 return RX_CONTINUE;
1070 static ieee80211_rx_result debug_noinline
1071 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1073 struct ieee80211_local *local;
1074 struct ieee80211_hdr *hdr;
1075 struct sk_buff *skb;
1077 local = rx->local;
1078 skb = rx->skb;
1079 hdr = (struct ieee80211_hdr *) skb->data;
1081 if (!local->pspolling)
1082 return RX_CONTINUE;
1084 if (!ieee80211_has_fromds(hdr->frame_control))
1085 /* this is not from AP */
1086 return RX_CONTINUE;
1088 if (!ieee80211_is_data(hdr->frame_control))
1089 return RX_CONTINUE;
1091 if (!ieee80211_has_moredata(hdr->frame_control)) {
1092 /* AP has no more frames buffered for us */
1093 local->pspolling = false;
1094 return RX_CONTINUE;
1097 /* more data bit is set, let's request a new frame from the AP */
1098 ieee80211_send_pspoll(local, rx->sdata);
1100 return RX_CONTINUE;
1103 static void sta_ps_start(struct sta_info *sta)
1105 struct ieee80211_sub_if_data *sdata = sta->sdata;
1106 struct ieee80211_local *local = sdata->local;
1107 struct ps_data *ps;
1109 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1110 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1111 ps = &sdata->bss->ps;
1112 else
1113 return;
1115 atomic_inc(&ps->num_sta_ps);
1116 set_sta_flag(sta, WLAN_STA_PS_STA);
1117 if (!(local->hw.flags & IEEE80211_HW_AP_LINK_PS))
1118 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1119 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1120 sta->sta.addr, sta->sta.aid);
1123 static void sta_ps_end(struct sta_info *sta)
1125 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1126 sta->sta.addr, sta->sta.aid);
1128 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1130 * Clear the flag only if the other one is still set
1131 * so that the TX path won't start TX'ing new frames
1132 * directly ... In the case that the driver flag isn't
1133 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1135 clear_sta_flag(sta, WLAN_STA_PS_STA);
1136 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1137 sta->sta.addr, sta->sta.aid);
1138 return;
1141 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1142 clear_sta_flag(sta, WLAN_STA_PS_STA);
1143 ieee80211_sta_ps_deliver_wakeup(sta);
1146 int ieee80211_sta_ps_transition(struct ieee80211_sta *sta, bool start)
1148 struct sta_info *sta_inf = container_of(sta, struct sta_info, sta);
1149 bool in_ps;
1151 WARN_ON(!(sta_inf->local->hw.flags & IEEE80211_HW_AP_LINK_PS));
1153 /* Don't let the same PS state be set twice */
1154 in_ps = test_sta_flag(sta_inf, WLAN_STA_PS_STA);
1155 if ((start && in_ps) || (!start && !in_ps))
1156 return -EINVAL;
1158 if (start)
1159 sta_ps_start(sta_inf);
1160 else
1161 sta_ps_end(sta_inf);
1163 return 0;
1165 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1167 static ieee80211_rx_result debug_noinline
1168 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1170 struct ieee80211_sub_if_data *sdata = rx->sdata;
1171 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1172 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1173 int tid, ac;
1175 if (!rx->sta || !(status->rx_flags & IEEE80211_RX_RA_MATCH))
1176 return RX_CONTINUE;
1178 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1179 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1180 return RX_CONTINUE;
1183 * The device handles station powersave, so don't do anything about
1184 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1185 * it to mac80211 since they're handled.)
1187 if (sdata->local->hw.flags & IEEE80211_HW_AP_LINK_PS)
1188 return RX_CONTINUE;
1191 * Don't do anything if the station isn't already asleep. In
1192 * the uAPSD case, the station will probably be marked asleep,
1193 * in the PS-Poll case the station must be confused ...
1195 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1196 return RX_CONTINUE;
1198 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1199 if (!test_sta_flag(rx->sta, WLAN_STA_SP)) {
1200 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1201 ieee80211_sta_ps_deliver_poll_response(rx->sta);
1202 else
1203 set_sta_flag(rx->sta, WLAN_STA_PSPOLL);
1206 /* Free PS Poll skb here instead of returning RX_DROP that would
1207 * count as an dropped frame. */
1208 dev_kfree_skb(rx->skb);
1210 return RX_QUEUED;
1211 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1212 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1213 ieee80211_has_pm(hdr->frame_control) &&
1214 (ieee80211_is_data_qos(hdr->frame_control) ||
1215 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1216 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
1217 ac = ieee802_1d_to_ac[tid & 7];
1220 * If this AC is not trigger-enabled do nothing.
1222 * NB: This could/should check a separate bitmap of trigger-
1223 * enabled queues, but for now we only implement uAPSD w/o
1224 * TSPEC changes to the ACs, so they're always the same.
1226 if (!(rx->sta->sta.uapsd_queues & BIT(ac)))
1227 return RX_CONTINUE;
1229 /* if we are in a service period, do nothing */
1230 if (test_sta_flag(rx->sta, WLAN_STA_SP))
1231 return RX_CONTINUE;
1233 if (!test_sta_flag(rx->sta, WLAN_STA_PS_DRIVER))
1234 ieee80211_sta_ps_deliver_uapsd(rx->sta);
1235 else
1236 set_sta_flag(rx->sta, WLAN_STA_UAPSD);
1239 return RX_CONTINUE;
1242 static ieee80211_rx_result debug_noinline
1243 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1245 struct sta_info *sta = rx->sta;
1246 struct sk_buff *skb = rx->skb;
1247 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1248 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1249 int i;
1251 if (!sta)
1252 return RX_CONTINUE;
1255 * Update last_rx only for IBSS packets which are for the current
1256 * BSSID and for station already AUTHORIZED to avoid keeping the
1257 * current IBSS network alive in cases where other STAs start
1258 * using different BSSID. This will also give the station another
1259 * chance to restart the authentication/authorization in case
1260 * something went wrong the first time.
1262 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1263 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1264 NL80211_IFTYPE_ADHOC);
1265 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1266 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1267 sta->last_rx = jiffies;
1268 if (ieee80211_is_data(hdr->frame_control) &&
1269 !is_multicast_ether_addr(hdr->addr1)) {
1270 sta->last_rx_rate_idx = status->rate_idx;
1271 sta->last_rx_rate_flag = status->flag;
1272 sta->last_rx_rate_vht_flag = status->vht_flag;
1273 sta->last_rx_rate_vht_nss = status->vht_nss;
1276 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1278 * Mesh beacons will update last_rx when if they are found to
1279 * match the current local configuration when processed.
1281 sta->last_rx = jiffies;
1282 if (ieee80211_is_data(hdr->frame_control)) {
1283 sta->last_rx_rate_idx = status->rate_idx;
1284 sta->last_rx_rate_flag = status->flag;
1285 sta->last_rx_rate_vht_flag = status->vht_flag;
1286 sta->last_rx_rate_vht_nss = status->vht_nss;
1290 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1291 return RX_CONTINUE;
1293 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1294 ieee80211_sta_rx_notify(rx->sdata, hdr);
1296 sta->rx_fragments++;
1297 sta->rx_bytes += rx->skb->len;
1298 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1299 sta->last_signal = status->signal;
1300 ewma_add(&sta->avg_signal, -status->signal);
1303 if (status->chains) {
1304 sta->chains = status->chains;
1305 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1306 int signal = status->chain_signal[i];
1308 if (!(status->chains & BIT(i)))
1309 continue;
1311 sta->chain_signal_last[i] = signal;
1312 ewma_add(&sta->chain_signal_avg[i], -signal);
1317 * Change STA power saving mode only at the end of a frame
1318 * exchange sequence.
1320 if (!(sta->local->hw.flags & IEEE80211_HW_AP_LINK_PS) &&
1321 !ieee80211_has_morefrags(hdr->frame_control) &&
1322 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1323 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1324 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1325 /* PM bit is only checked in frames where it isn't reserved,
1326 * in AP mode it's reserved in non-bufferable management frames
1327 * (cf. IEEE 802.11-2012 8.2.4.1.7 Power Management field)
1329 (!ieee80211_is_mgmt(hdr->frame_control) ||
1330 ieee80211_is_bufferable_mmpdu(hdr->frame_control))) {
1331 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1332 if (!ieee80211_has_pm(hdr->frame_control))
1333 sta_ps_end(sta);
1334 } else {
1335 if (ieee80211_has_pm(hdr->frame_control))
1336 sta_ps_start(sta);
1340 /* mesh power save support */
1341 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1342 ieee80211_mps_rx_h_sta_process(sta, hdr);
1345 * Drop (qos-)data::nullfunc frames silently, since they
1346 * are used only to control station power saving mode.
1348 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1349 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1350 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1353 * If we receive a 4-addr nullfunc frame from a STA
1354 * that was not moved to a 4-addr STA vlan yet send
1355 * the event to userspace and for older hostapd drop
1356 * the frame to the monitor interface.
1358 if (ieee80211_has_a4(hdr->frame_control) &&
1359 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1360 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1361 !rx->sdata->u.vlan.sta))) {
1362 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1363 cfg80211_rx_unexpected_4addr_frame(
1364 rx->sdata->dev, sta->sta.addr,
1365 GFP_ATOMIC);
1366 return RX_DROP_MONITOR;
1369 * Update counter and free packet here to avoid
1370 * counting this as a dropped packed.
1372 sta->rx_packets++;
1373 dev_kfree_skb(rx->skb);
1374 return RX_QUEUED;
1377 return RX_CONTINUE;
1378 } /* ieee80211_rx_h_sta_process */
1380 static ieee80211_rx_result debug_noinline
1381 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1383 struct sk_buff *skb = rx->skb;
1384 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1385 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1386 int keyidx;
1387 int hdrlen;
1388 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1389 struct ieee80211_key *sta_ptk = NULL;
1390 int mmie_keyidx = -1;
1391 __le16 fc;
1392 const struct ieee80211_cipher_scheme *cs = NULL;
1395 * Key selection 101
1397 * There are four types of keys:
1398 * - GTK (group keys)
1399 * - IGTK (group keys for management frames)
1400 * - PTK (pairwise keys)
1401 * - STK (station-to-station pairwise keys)
1403 * When selecting a key, we have to distinguish between multicast
1404 * (including broadcast) and unicast frames, the latter can only
1405 * use PTKs and STKs while the former always use GTKs and IGTKs.
1406 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1407 * unicast frames can also use key indices like GTKs. Hence, if we
1408 * don't have a PTK/STK we check the key index for a WEP key.
1410 * Note that in a regular BSS, multicast frames are sent by the
1411 * AP only, associated stations unicast the frame to the AP first
1412 * which then multicasts it on their behalf.
1414 * There is also a slight problem in IBSS mode: GTKs are negotiated
1415 * with each station, that is something we don't currently handle.
1416 * The spec seems to expect that one negotiates the same key with
1417 * every station but there's no such requirement; VLANs could be
1418 * possible.
1422 * No point in finding a key and decrypting if the frame is neither
1423 * addressed to us nor a multicast frame.
1425 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
1426 return RX_CONTINUE;
1428 /* start without a key */
1429 rx->key = NULL;
1430 fc = hdr->frame_control;
1432 if (rx->sta) {
1433 int keyid = rx->sta->ptk_idx;
1435 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1436 cs = rx->sta->cipher_scheme;
1437 keyid = iwl80211_get_cs_keyid(cs, rx->skb);
1438 if (unlikely(keyid < 0))
1439 return RX_DROP_UNUSABLE;
1441 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1444 if (!ieee80211_has_protected(fc))
1445 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1447 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1448 rx->key = sta_ptk;
1449 if ((status->flag & RX_FLAG_DECRYPTED) &&
1450 (status->flag & RX_FLAG_IV_STRIPPED))
1451 return RX_CONTINUE;
1452 /* Skip decryption if the frame is not protected. */
1453 if (!ieee80211_has_protected(fc))
1454 return RX_CONTINUE;
1455 } else if (mmie_keyidx >= 0) {
1456 /* Broadcast/multicast robust management frame / BIP */
1457 if ((status->flag & RX_FLAG_DECRYPTED) &&
1458 (status->flag & RX_FLAG_IV_STRIPPED))
1459 return RX_CONTINUE;
1461 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1462 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1463 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1464 if (rx->sta)
1465 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1466 if (!rx->key)
1467 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1468 } else if (!ieee80211_has_protected(fc)) {
1470 * The frame was not protected, so skip decryption. However, we
1471 * need to set rx->key if there is a key that could have been
1472 * used so that the frame may be dropped if encryption would
1473 * have been expected.
1475 struct ieee80211_key *key = NULL;
1476 struct ieee80211_sub_if_data *sdata = rx->sdata;
1477 int i;
1479 if (ieee80211_is_mgmt(fc) &&
1480 is_multicast_ether_addr(hdr->addr1) &&
1481 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1482 rx->key = key;
1483 else {
1484 if (rx->sta) {
1485 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1486 key = rcu_dereference(rx->sta->gtk[i]);
1487 if (key)
1488 break;
1491 if (!key) {
1492 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1493 key = rcu_dereference(sdata->keys[i]);
1494 if (key)
1495 break;
1498 if (key)
1499 rx->key = key;
1501 return RX_CONTINUE;
1502 } else {
1503 u8 keyid;
1506 * The device doesn't give us the IV so we won't be
1507 * able to look up the key. That's ok though, we
1508 * don't need to decrypt the frame, we just won't
1509 * be able to keep statistics accurate.
1510 * Except for key threshold notifications, should
1511 * we somehow allow the driver to tell us which key
1512 * the hardware used if this flag is set?
1514 if ((status->flag & RX_FLAG_DECRYPTED) &&
1515 (status->flag & RX_FLAG_IV_STRIPPED))
1516 return RX_CONTINUE;
1518 hdrlen = ieee80211_hdrlen(fc);
1520 if (cs) {
1521 keyidx = iwl80211_get_cs_keyid(cs, rx->skb);
1523 if (unlikely(keyidx < 0))
1524 return RX_DROP_UNUSABLE;
1525 } else {
1526 if (rx->skb->len < 8 + hdrlen)
1527 return RX_DROP_UNUSABLE; /* TODO: count this? */
1529 * no need to call ieee80211_wep_get_keyidx,
1530 * it verifies a bunch of things we've done already
1532 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1533 keyidx = keyid >> 6;
1536 /* check per-station GTK first, if multicast packet */
1537 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1538 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1540 /* if not found, try default key */
1541 if (!rx->key) {
1542 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1545 * RSNA-protected unicast frames should always be
1546 * sent with pairwise or station-to-station keys,
1547 * but for WEP we allow using a key index as well.
1549 if (rx->key &&
1550 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1551 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1552 !is_multicast_ether_addr(hdr->addr1))
1553 rx->key = NULL;
1557 if (rx->key) {
1558 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1559 return RX_DROP_MONITOR;
1561 rx->key->tx_rx_count++;
1562 /* TODO: add threshold stuff again */
1563 } else {
1564 return RX_DROP_MONITOR;
1567 switch (rx->key->conf.cipher) {
1568 case WLAN_CIPHER_SUITE_WEP40:
1569 case WLAN_CIPHER_SUITE_WEP104:
1570 result = ieee80211_crypto_wep_decrypt(rx);
1571 break;
1572 case WLAN_CIPHER_SUITE_TKIP:
1573 result = ieee80211_crypto_tkip_decrypt(rx);
1574 break;
1575 case WLAN_CIPHER_SUITE_CCMP:
1576 result = ieee80211_crypto_ccmp_decrypt(rx);
1577 break;
1578 case WLAN_CIPHER_SUITE_AES_CMAC:
1579 result = ieee80211_crypto_aes_cmac_decrypt(rx);
1580 break;
1581 default:
1582 result = ieee80211_crypto_hw_decrypt(rx);
1585 /* the hdr variable is invalid after the decrypt handlers */
1587 /* either the frame has been decrypted or will be dropped */
1588 status->flag |= RX_FLAG_DECRYPTED;
1590 return result;
1593 static inline struct ieee80211_fragment_entry *
1594 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
1595 unsigned int frag, unsigned int seq, int rx_queue,
1596 struct sk_buff **skb)
1598 struct ieee80211_fragment_entry *entry;
1600 entry = &sdata->fragments[sdata->fragment_next++];
1601 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
1602 sdata->fragment_next = 0;
1604 if (!skb_queue_empty(&entry->skb_list))
1605 __skb_queue_purge(&entry->skb_list);
1607 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
1608 *skb = NULL;
1609 entry->first_frag_time = jiffies;
1610 entry->seq = seq;
1611 entry->rx_queue = rx_queue;
1612 entry->last_frag = frag;
1613 entry->ccmp = 0;
1614 entry->extra_len = 0;
1616 return entry;
1619 static inline struct ieee80211_fragment_entry *
1620 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
1621 unsigned int frag, unsigned int seq,
1622 int rx_queue, struct ieee80211_hdr *hdr)
1624 struct ieee80211_fragment_entry *entry;
1625 int i, idx;
1627 idx = sdata->fragment_next;
1628 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
1629 struct ieee80211_hdr *f_hdr;
1631 idx--;
1632 if (idx < 0)
1633 idx = IEEE80211_FRAGMENT_MAX - 1;
1635 entry = &sdata->fragments[idx];
1636 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
1637 entry->rx_queue != rx_queue ||
1638 entry->last_frag + 1 != frag)
1639 continue;
1641 f_hdr = (struct ieee80211_hdr *)entry->skb_list.next->data;
1644 * Check ftype and addresses are equal, else check next fragment
1646 if (((hdr->frame_control ^ f_hdr->frame_control) &
1647 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
1648 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
1649 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
1650 continue;
1652 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
1653 __skb_queue_purge(&entry->skb_list);
1654 continue;
1656 return entry;
1659 return NULL;
1662 static ieee80211_rx_result debug_noinline
1663 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
1665 struct ieee80211_hdr *hdr;
1666 u16 sc;
1667 __le16 fc;
1668 unsigned int frag, seq;
1669 struct ieee80211_fragment_entry *entry;
1670 struct sk_buff *skb;
1671 struct ieee80211_rx_status *status;
1673 hdr = (struct ieee80211_hdr *)rx->skb->data;
1674 fc = hdr->frame_control;
1676 if (ieee80211_is_ctl(fc))
1677 return RX_CONTINUE;
1679 sc = le16_to_cpu(hdr->seq_ctrl);
1680 frag = sc & IEEE80211_SCTL_FRAG;
1682 if (is_multicast_ether_addr(hdr->addr1)) {
1683 rx->local->dot11MulticastReceivedFrameCount++;
1684 goto out_no_led;
1687 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
1688 goto out;
1690 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
1692 if (skb_linearize(rx->skb))
1693 return RX_DROP_UNUSABLE;
1696 * skb_linearize() might change the skb->data and
1697 * previously cached variables (in this case, hdr) need to
1698 * be refreshed with the new data.
1700 hdr = (struct ieee80211_hdr *)rx->skb->data;
1701 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
1703 if (frag == 0) {
1704 /* This is the first fragment of a new frame. */
1705 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
1706 rx->seqno_idx, &(rx->skb));
1707 if (rx->key && rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP &&
1708 ieee80211_has_protected(fc)) {
1709 int queue = rx->security_idx;
1710 /* Store CCMP PN so that we can verify that the next
1711 * fragment has a sequential PN value. */
1712 entry->ccmp = 1;
1713 memcpy(entry->last_pn,
1714 rx->key->u.ccmp.rx_pn[queue],
1715 IEEE80211_CCMP_PN_LEN);
1717 return RX_QUEUED;
1720 /* This is a fragment for a frame that should already be pending in
1721 * fragment cache. Add this fragment to the end of the pending entry.
1723 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
1724 rx->seqno_idx, hdr);
1725 if (!entry) {
1726 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1727 return RX_DROP_MONITOR;
1730 /* Verify that MPDUs within one MSDU have sequential PN values.
1731 * (IEEE 802.11i, 8.3.3.4.5) */
1732 if (entry->ccmp) {
1733 int i;
1734 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
1735 int queue;
1736 if (!rx->key || rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP)
1737 return RX_DROP_UNUSABLE;
1738 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
1739 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
1740 pn[i]++;
1741 if (pn[i])
1742 break;
1744 queue = rx->security_idx;
1745 rpn = rx->key->u.ccmp.rx_pn[queue];
1746 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
1747 return RX_DROP_UNUSABLE;
1748 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
1751 skb_pull(rx->skb, ieee80211_hdrlen(fc));
1752 __skb_queue_tail(&entry->skb_list, rx->skb);
1753 entry->last_frag = frag;
1754 entry->extra_len += rx->skb->len;
1755 if (ieee80211_has_morefrags(fc)) {
1756 rx->skb = NULL;
1757 return RX_QUEUED;
1760 rx->skb = __skb_dequeue(&entry->skb_list);
1761 if (skb_tailroom(rx->skb) < entry->extra_len) {
1762 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
1763 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
1764 GFP_ATOMIC))) {
1765 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
1766 __skb_queue_purge(&entry->skb_list);
1767 return RX_DROP_UNUSABLE;
1770 while ((skb = __skb_dequeue(&entry->skb_list))) {
1771 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
1772 dev_kfree_skb(skb);
1775 /* Complete frame has been reassembled - process it now */
1776 status = IEEE80211_SKB_RXCB(rx->skb);
1777 status->rx_flags |= IEEE80211_RX_FRAGMENTED;
1779 out:
1780 ieee80211_led_rx(rx->local);
1781 out_no_led:
1782 if (rx->sta)
1783 rx->sta->rx_packets++;
1784 return RX_CONTINUE;
1787 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1789 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
1790 return -EACCES;
1792 return 0;
1795 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
1797 struct sk_buff *skb = rx->skb;
1798 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1801 * Pass through unencrypted frames if the hardware has
1802 * decrypted them already.
1804 if (status->flag & RX_FLAG_DECRYPTED)
1805 return 0;
1807 /* Drop unencrypted frames if key is set. */
1808 if (unlikely(!ieee80211_has_protected(fc) &&
1809 !ieee80211_is_nullfunc(fc) &&
1810 ieee80211_is_data(fc) &&
1811 (rx->key || rx->sdata->drop_unencrypted)))
1812 return -EACCES;
1814 return 0;
1817 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
1819 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1820 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1821 __le16 fc = hdr->frame_control;
1824 * Pass through unencrypted frames if the hardware has
1825 * decrypted them already.
1827 if (status->flag & RX_FLAG_DECRYPTED)
1828 return 0;
1830 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
1831 if (unlikely(!ieee80211_has_protected(fc) &&
1832 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
1833 rx->key)) {
1834 if (ieee80211_is_deauth(fc) ||
1835 ieee80211_is_disassoc(fc))
1836 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1837 rx->skb->data,
1838 rx->skb->len);
1839 return -EACCES;
1841 /* BIP does not use Protected field, so need to check MMIE */
1842 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
1843 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
1844 if (ieee80211_is_deauth(fc) ||
1845 ieee80211_is_disassoc(fc))
1846 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
1847 rx->skb->data,
1848 rx->skb->len);
1849 return -EACCES;
1852 * When using MFP, Action frames are not allowed prior to
1853 * having configured keys.
1855 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
1856 ieee80211_is_robust_mgmt_frame(rx->skb)))
1857 return -EACCES;
1860 return 0;
1863 static int
1864 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
1866 struct ieee80211_sub_if_data *sdata = rx->sdata;
1867 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1868 bool check_port_control = false;
1869 struct ethhdr *ehdr;
1870 int ret;
1872 *port_control = false;
1873 if (ieee80211_has_a4(hdr->frame_control) &&
1874 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
1875 return -1;
1877 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
1878 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
1880 if (!sdata->u.mgd.use_4addr)
1881 return -1;
1882 else
1883 check_port_control = true;
1886 if (is_multicast_ether_addr(hdr->addr1) &&
1887 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
1888 return -1;
1890 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
1891 if (ret < 0)
1892 return ret;
1894 ehdr = (struct ethhdr *) rx->skb->data;
1895 if (ehdr->h_proto == rx->sdata->control_port_protocol)
1896 *port_control = true;
1897 else if (check_port_control)
1898 return -1;
1900 return 0;
1904 * requires that rx->skb is a frame with ethernet header
1906 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
1908 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1909 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1910 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1913 * Allow EAPOL frames to us/the PAE group address regardless
1914 * of whether the frame was encrypted or not.
1916 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
1917 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
1918 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
1919 return true;
1921 if (ieee80211_802_1x_port_control(rx) ||
1922 ieee80211_drop_unencrypted(rx, fc))
1923 return false;
1925 return true;
1929 * requires that rx->skb is a frame with ethernet header
1931 static void
1932 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1934 struct ieee80211_sub_if_data *sdata = rx->sdata;
1935 struct net_device *dev = sdata->dev;
1936 struct sk_buff *skb, *xmit_skb;
1937 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1938 struct sta_info *dsta;
1939 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1941 skb = rx->skb;
1942 xmit_skb = NULL;
1944 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
1945 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
1946 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
1947 (status->rx_flags & IEEE80211_RX_RA_MATCH) &&
1948 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
1949 if (is_multicast_ether_addr(ehdr->h_dest)) {
1951 * send multicast frames both to higher layers in
1952 * local net stack and back to the wireless medium
1954 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1955 if (!xmit_skb)
1956 net_info_ratelimited("%s: failed to clone multicast frame\n",
1957 dev->name);
1958 } else {
1959 dsta = sta_info_get(sdata, skb->data);
1960 if (dsta) {
1962 * The destination station is associated to
1963 * this AP (in this VLAN), so send the frame
1964 * directly to it and do not pass it to local
1965 * net stack.
1967 xmit_skb = skb;
1968 skb = NULL;
1973 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
1974 if (skb) {
1975 /* 'align' will only take the values 0 or 2 here since all
1976 * frames are required to be aligned to 2-byte boundaries
1977 * when being passed to mac80211; the code here works just
1978 * as well if that isn't true, but mac80211 assumes it can
1979 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
1981 int align;
1983 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
1984 if (align) {
1985 if (WARN_ON(skb_headroom(skb) < 3)) {
1986 dev_kfree_skb(skb);
1987 skb = NULL;
1988 } else {
1989 u8 *data = skb->data;
1990 size_t len = skb_headlen(skb);
1991 skb->data -= align;
1992 memmove(skb->data, data, len);
1993 skb_set_tail_pointer(skb, len);
1997 #endif
1999 if (skb) {
2000 /* deliver to local stack */
2001 skb->protocol = eth_type_trans(skb, dev);
2002 memset(skb->cb, 0, sizeof(skb->cb));
2003 if (!(rx->flags & IEEE80211_RX_REORDER_TIMER) &&
2004 rx->local->napi)
2005 napi_gro_receive(rx->local->napi, skb);
2006 else
2007 netif_receive_skb(skb);
2010 if (xmit_skb) {
2012 * Send to wireless media and increase priority by 256 to
2013 * keep the received priority instead of reclassifying
2014 * the frame (see cfg80211_classify8021d).
2016 xmit_skb->priority += 256;
2017 xmit_skb->protocol = htons(ETH_P_802_3);
2018 skb_reset_network_header(xmit_skb);
2019 skb_reset_mac_header(xmit_skb);
2020 dev_queue_xmit(xmit_skb);
2024 static ieee80211_rx_result debug_noinline
2025 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2027 struct net_device *dev = rx->sdata->dev;
2028 struct sk_buff *skb = rx->skb;
2029 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2030 __le16 fc = hdr->frame_control;
2031 struct sk_buff_head frame_list;
2032 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2034 if (unlikely(!ieee80211_is_data(fc)))
2035 return RX_CONTINUE;
2037 if (unlikely(!ieee80211_is_data_present(fc)))
2038 return RX_DROP_MONITOR;
2040 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2041 return RX_CONTINUE;
2043 if (ieee80211_has_a4(hdr->frame_control) &&
2044 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2045 !rx->sdata->u.vlan.sta)
2046 return RX_DROP_UNUSABLE;
2048 if (is_multicast_ether_addr(hdr->addr1) &&
2049 ((rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2050 rx->sdata->u.vlan.sta) ||
2051 (rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
2052 rx->sdata->u.mgd.use_4addr)))
2053 return RX_DROP_UNUSABLE;
2055 skb->dev = dev;
2056 __skb_queue_head_init(&frame_list);
2058 if (skb_linearize(skb))
2059 return RX_DROP_UNUSABLE;
2061 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2062 rx->sdata->vif.type,
2063 rx->local->hw.extra_tx_headroom, true);
2065 while (!skb_queue_empty(&frame_list)) {
2066 rx->skb = __skb_dequeue(&frame_list);
2068 if (!ieee80211_frame_allowed(rx, fc)) {
2069 dev_kfree_skb(rx->skb);
2070 continue;
2072 dev->stats.rx_packets++;
2073 dev->stats.rx_bytes += rx->skb->len;
2075 ieee80211_deliver_skb(rx);
2078 return RX_QUEUED;
2081 #ifdef CONFIG_MAC80211_MESH
2082 static ieee80211_rx_result
2083 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2085 struct ieee80211_hdr *fwd_hdr, *hdr;
2086 struct ieee80211_tx_info *info;
2087 struct ieee80211s_hdr *mesh_hdr;
2088 struct sk_buff *skb = rx->skb, *fwd_skb;
2089 struct ieee80211_local *local = rx->local;
2090 struct ieee80211_sub_if_data *sdata = rx->sdata;
2091 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2092 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2093 u16 q, hdrlen;
2095 hdr = (struct ieee80211_hdr *) skb->data;
2096 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2098 /* make sure fixed part of mesh header is there, also checks skb len */
2099 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2100 return RX_DROP_MONITOR;
2102 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2104 /* make sure full mesh header is there, also checks skb len */
2105 if (!pskb_may_pull(rx->skb,
2106 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2107 return RX_DROP_MONITOR;
2109 /* reload pointers */
2110 hdr = (struct ieee80211_hdr *) skb->data;
2111 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2113 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2114 return RX_DROP_MONITOR;
2116 /* frame is in RMC, don't forward */
2117 if (ieee80211_is_data(hdr->frame_control) &&
2118 is_multicast_ether_addr(hdr->addr1) &&
2119 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2120 return RX_DROP_MONITOR;
2122 if (!ieee80211_is_data(hdr->frame_control) ||
2123 !(status->rx_flags & IEEE80211_RX_RA_MATCH))
2124 return RX_CONTINUE;
2126 if (!mesh_hdr->ttl)
2127 return RX_DROP_MONITOR;
2129 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2130 struct mesh_path *mppath;
2131 char *proxied_addr;
2132 char *mpp_addr;
2134 if (is_multicast_ether_addr(hdr->addr1)) {
2135 mpp_addr = hdr->addr3;
2136 proxied_addr = mesh_hdr->eaddr1;
2137 } else if (mesh_hdr->flags & MESH_FLAGS_AE_A5_A6) {
2138 /* has_a4 already checked in ieee80211_rx_mesh_check */
2139 mpp_addr = hdr->addr4;
2140 proxied_addr = mesh_hdr->eaddr2;
2141 } else {
2142 return RX_DROP_MONITOR;
2145 rcu_read_lock();
2146 mppath = mpp_path_lookup(sdata, proxied_addr);
2147 if (!mppath) {
2148 mpp_path_add(sdata, proxied_addr, mpp_addr);
2149 } else {
2150 spin_lock_bh(&mppath->state_lock);
2151 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2152 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2153 spin_unlock_bh(&mppath->state_lock);
2155 rcu_read_unlock();
2158 /* Frame has reached destination. Don't forward */
2159 if (!is_multicast_ether_addr(hdr->addr1) &&
2160 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2161 return RX_CONTINUE;
2163 q = ieee80211_select_queue_80211(sdata, skb, hdr);
2164 if (ieee80211_queue_stopped(&local->hw, q)) {
2165 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2166 return RX_DROP_MONITOR;
2168 skb_set_queue_mapping(skb, q);
2170 if (!--mesh_hdr->ttl) {
2171 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2172 goto out;
2175 if (!ifmsh->mshcfg.dot11MeshForwarding)
2176 goto out;
2178 fwd_skb = skb_copy(skb, GFP_ATOMIC);
2179 if (!fwd_skb) {
2180 net_info_ratelimited("%s: failed to clone mesh frame\n",
2181 sdata->name);
2182 goto out;
2185 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2186 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2187 info = IEEE80211_SKB_CB(fwd_skb);
2188 memset(info, 0, sizeof(*info));
2189 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2190 info->control.vif = &rx->sdata->vif;
2191 info->control.jiffies = jiffies;
2192 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2193 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2194 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2195 /* update power mode indication when forwarding */
2196 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2197 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2198 /* mesh power mode flags updated in mesh_nexthop_lookup */
2199 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2200 } else {
2201 /* unable to resolve next hop */
2202 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2203 fwd_hdr->addr3, 0,
2204 WLAN_REASON_MESH_PATH_NOFORWARD,
2205 fwd_hdr->addr2);
2206 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2207 kfree_skb(fwd_skb);
2208 return RX_DROP_MONITOR;
2211 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2212 ieee80211_add_pending_skb(local, fwd_skb);
2213 out:
2214 if (is_multicast_ether_addr(hdr->addr1) ||
2215 sdata->dev->flags & IFF_PROMISC)
2216 return RX_CONTINUE;
2217 else
2218 return RX_DROP_MONITOR;
2220 #endif
2222 static ieee80211_rx_result debug_noinline
2223 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2225 struct ieee80211_sub_if_data *sdata = rx->sdata;
2226 struct ieee80211_local *local = rx->local;
2227 struct net_device *dev = sdata->dev;
2228 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2229 __le16 fc = hdr->frame_control;
2230 bool port_control;
2231 int err;
2233 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2234 return RX_CONTINUE;
2236 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2237 return RX_DROP_MONITOR;
2240 * Send unexpected-4addr-frame event to hostapd. For older versions,
2241 * also drop the frame to cooked monitor interfaces.
2243 if (ieee80211_has_a4(hdr->frame_control) &&
2244 sdata->vif.type == NL80211_IFTYPE_AP) {
2245 if (rx->sta &&
2246 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2247 cfg80211_rx_unexpected_4addr_frame(
2248 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2249 return RX_DROP_MONITOR;
2252 err = __ieee80211_data_to_8023(rx, &port_control);
2253 if (unlikely(err))
2254 return RX_DROP_UNUSABLE;
2256 if (!ieee80211_frame_allowed(rx, fc))
2257 return RX_DROP_MONITOR;
2259 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2260 unlikely(port_control) && sdata->bss) {
2261 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2262 u.ap);
2263 dev = sdata->dev;
2264 rx->sdata = sdata;
2267 rx->skb->dev = dev;
2269 dev->stats.rx_packets++;
2270 dev->stats.rx_bytes += rx->skb->len;
2272 if (local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2273 !is_multicast_ether_addr(
2274 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2275 (!local->scanning &&
2276 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))) {
2277 mod_timer(&local->dynamic_ps_timer, jiffies +
2278 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2281 ieee80211_deliver_skb(rx);
2283 return RX_QUEUED;
2286 static ieee80211_rx_result debug_noinline
2287 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2289 struct sk_buff *skb = rx->skb;
2290 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2291 struct tid_ampdu_rx *tid_agg_rx;
2292 u16 start_seq_num;
2293 u16 tid;
2295 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2296 return RX_CONTINUE;
2298 if (ieee80211_is_back_req(bar->frame_control)) {
2299 struct {
2300 __le16 control, start_seq_num;
2301 } __packed bar_data;
2303 if (!rx->sta)
2304 return RX_DROP_MONITOR;
2306 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2307 &bar_data, sizeof(bar_data)))
2308 return RX_DROP_MONITOR;
2310 tid = le16_to_cpu(bar_data.control) >> 12;
2312 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2313 if (!tid_agg_rx)
2314 return RX_DROP_MONITOR;
2316 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2318 /* reset session timer */
2319 if (tid_agg_rx->timeout)
2320 mod_timer(&tid_agg_rx->session_timer,
2321 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2323 spin_lock(&tid_agg_rx->reorder_lock);
2324 /* release stored frames up to start of BAR */
2325 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2326 start_seq_num, frames);
2327 spin_unlock(&tid_agg_rx->reorder_lock);
2329 kfree_skb(skb);
2330 return RX_QUEUED;
2334 * After this point, we only want management frames,
2335 * so we can drop all remaining control frames to
2336 * cooked monitor interfaces.
2338 return RX_DROP_MONITOR;
2341 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2342 struct ieee80211_mgmt *mgmt,
2343 size_t len)
2345 struct ieee80211_local *local = sdata->local;
2346 struct sk_buff *skb;
2347 struct ieee80211_mgmt *resp;
2349 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2350 /* Not to own unicast address */
2351 return;
2354 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2355 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2356 /* Not from the current AP or not associated yet. */
2357 return;
2360 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2361 /* Too short SA Query request frame */
2362 return;
2365 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2366 if (skb == NULL)
2367 return;
2369 skb_reserve(skb, local->hw.extra_tx_headroom);
2370 resp = (struct ieee80211_mgmt *) skb_put(skb, 24);
2371 memset(resp, 0, 24);
2372 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2373 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2374 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2375 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2376 IEEE80211_STYPE_ACTION);
2377 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2378 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2379 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2380 memcpy(resp->u.action.u.sa_query.trans_id,
2381 mgmt->u.action.u.sa_query.trans_id,
2382 WLAN_SA_QUERY_TR_ID_LEN);
2384 ieee80211_tx_skb(sdata, skb);
2387 static ieee80211_rx_result debug_noinline
2388 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2390 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2391 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2394 * From here on, look only at management frames.
2395 * Data and control frames are already handled,
2396 * and unknown (reserved) frames are useless.
2398 if (rx->skb->len < 24)
2399 return RX_DROP_MONITOR;
2401 if (!ieee80211_is_mgmt(mgmt->frame_control))
2402 return RX_DROP_MONITOR;
2404 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2405 ieee80211_is_beacon(mgmt->frame_control) &&
2406 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2407 int sig = 0;
2409 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2410 sig = status->signal;
2412 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2413 rx->skb->data, rx->skb->len,
2414 status->freq, sig);
2415 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2418 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2419 return RX_DROP_MONITOR;
2421 if (ieee80211_drop_unencrypted_mgmt(rx))
2422 return RX_DROP_UNUSABLE;
2424 return RX_CONTINUE;
2427 static ieee80211_rx_result debug_noinline
2428 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2430 struct ieee80211_local *local = rx->local;
2431 struct ieee80211_sub_if_data *sdata = rx->sdata;
2432 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2433 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2434 int len = rx->skb->len;
2436 if (!ieee80211_is_action(mgmt->frame_control))
2437 return RX_CONTINUE;
2439 /* drop too small frames */
2440 if (len < IEEE80211_MIN_ACTION_SIZE)
2441 return RX_DROP_UNUSABLE;
2443 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
2444 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
2445 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
2446 return RX_DROP_UNUSABLE;
2448 if (!(status->rx_flags & IEEE80211_RX_RA_MATCH))
2449 return RX_DROP_UNUSABLE;
2451 switch (mgmt->u.action.category) {
2452 case WLAN_CATEGORY_HT:
2453 /* reject HT action frames from stations not supporting HT */
2454 if (!rx->sta->sta.ht_cap.ht_supported)
2455 goto invalid;
2457 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2458 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2459 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2460 sdata->vif.type != NL80211_IFTYPE_AP &&
2461 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2462 break;
2464 /* verify action & smps_control/chanwidth are present */
2465 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2466 goto invalid;
2468 switch (mgmt->u.action.u.ht_smps.action) {
2469 case WLAN_HT_ACTION_SMPS: {
2470 struct ieee80211_supported_band *sband;
2471 enum ieee80211_smps_mode smps_mode;
2473 /* convert to HT capability */
2474 switch (mgmt->u.action.u.ht_smps.smps_control) {
2475 case WLAN_HT_SMPS_CONTROL_DISABLED:
2476 smps_mode = IEEE80211_SMPS_OFF;
2477 break;
2478 case WLAN_HT_SMPS_CONTROL_STATIC:
2479 smps_mode = IEEE80211_SMPS_STATIC;
2480 break;
2481 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
2482 smps_mode = IEEE80211_SMPS_DYNAMIC;
2483 break;
2484 default:
2485 goto invalid;
2488 /* if no change do nothing */
2489 if (rx->sta->sta.smps_mode == smps_mode)
2490 goto handled;
2491 rx->sta->sta.smps_mode = smps_mode;
2493 sband = rx->local->hw.wiphy->bands[status->band];
2495 rate_control_rate_update(local, sband, rx->sta,
2496 IEEE80211_RC_SMPS_CHANGED);
2497 goto handled;
2499 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
2500 struct ieee80211_supported_band *sband;
2501 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
2502 enum ieee80211_sta_rx_bandwidth new_bw;
2504 /* If it doesn't support 40 MHz it can't change ... */
2505 if (!(rx->sta->sta.ht_cap.cap &
2506 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
2507 goto handled;
2509 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
2510 new_bw = IEEE80211_STA_RX_BW_20;
2511 else
2512 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
2514 if (rx->sta->sta.bandwidth == new_bw)
2515 goto handled;
2517 sband = rx->local->hw.wiphy->bands[status->band];
2519 rate_control_rate_update(local, sband, rx->sta,
2520 IEEE80211_RC_BW_CHANGED);
2521 goto handled;
2523 default:
2524 goto invalid;
2527 break;
2528 case WLAN_CATEGORY_PUBLIC:
2529 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2530 goto invalid;
2531 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2532 break;
2533 if (!rx->sta)
2534 break;
2535 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
2536 break;
2537 if (mgmt->u.action.u.ext_chan_switch.action_code !=
2538 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
2539 break;
2540 if (len < offsetof(struct ieee80211_mgmt,
2541 u.action.u.ext_chan_switch.variable))
2542 goto invalid;
2543 goto queue;
2544 case WLAN_CATEGORY_VHT:
2545 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2546 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2547 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2548 sdata->vif.type != NL80211_IFTYPE_AP &&
2549 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2550 break;
2552 /* verify action code is present */
2553 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2554 goto invalid;
2556 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
2557 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
2558 u8 opmode;
2560 /* verify opmode is present */
2561 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
2562 goto invalid;
2564 opmode = mgmt->u.action.u.vht_opmode_notif.operating_mode;
2566 ieee80211_vht_handle_opmode(rx->sdata, rx->sta,
2567 opmode, status->band,
2568 false);
2569 goto handled;
2571 default:
2572 break;
2574 break;
2575 case WLAN_CATEGORY_BACK:
2576 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2577 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
2578 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
2579 sdata->vif.type != NL80211_IFTYPE_AP &&
2580 sdata->vif.type != NL80211_IFTYPE_ADHOC)
2581 break;
2583 /* verify action_code is present */
2584 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2585 break;
2587 switch (mgmt->u.action.u.addba_req.action_code) {
2588 case WLAN_ACTION_ADDBA_REQ:
2589 if (len < (IEEE80211_MIN_ACTION_SIZE +
2590 sizeof(mgmt->u.action.u.addba_req)))
2591 goto invalid;
2592 break;
2593 case WLAN_ACTION_ADDBA_RESP:
2594 if (len < (IEEE80211_MIN_ACTION_SIZE +
2595 sizeof(mgmt->u.action.u.addba_resp)))
2596 goto invalid;
2597 break;
2598 case WLAN_ACTION_DELBA:
2599 if (len < (IEEE80211_MIN_ACTION_SIZE +
2600 sizeof(mgmt->u.action.u.delba)))
2601 goto invalid;
2602 break;
2603 default:
2604 goto invalid;
2607 goto queue;
2608 case WLAN_CATEGORY_SPECTRUM_MGMT:
2609 /* verify action_code is present */
2610 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
2611 break;
2613 switch (mgmt->u.action.u.measurement.action_code) {
2614 case WLAN_ACTION_SPCT_MSR_REQ:
2615 if (status->band != IEEE80211_BAND_5GHZ)
2616 break;
2618 if (len < (IEEE80211_MIN_ACTION_SIZE +
2619 sizeof(mgmt->u.action.u.measurement)))
2620 break;
2622 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2623 break;
2625 ieee80211_process_measurement_req(sdata, mgmt, len);
2626 goto handled;
2627 case WLAN_ACTION_SPCT_CHL_SWITCH: {
2628 u8 *bssid;
2629 if (len < (IEEE80211_MIN_ACTION_SIZE +
2630 sizeof(mgmt->u.action.u.chan_switch)))
2631 break;
2633 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
2634 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2635 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2636 break;
2638 if (sdata->vif.type == NL80211_IFTYPE_STATION)
2639 bssid = sdata->u.mgd.bssid;
2640 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
2641 bssid = sdata->u.ibss.bssid;
2642 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
2643 bssid = mgmt->sa;
2644 else
2645 break;
2647 if (!ether_addr_equal(mgmt->bssid, bssid))
2648 break;
2650 goto queue;
2653 break;
2654 case WLAN_CATEGORY_SA_QUERY:
2655 if (len < (IEEE80211_MIN_ACTION_SIZE +
2656 sizeof(mgmt->u.action.u.sa_query)))
2657 break;
2659 switch (mgmt->u.action.u.sa_query.action) {
2660 case WLAN_ACTION_SA_QUERY_REQUEST:
2661 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2662 break;
2663 ieee80211_process_sa_query_req(sdata, mgmt, len);
2664 goto handled;
2666 break;
2667 case WLAN_CATEGORY_SELF_PROTECTED:
2668 if (len < (IEEE80211_MIN_ACTION_SIZE +
2669 sizeof(mgmt->u.action.u.self_prot.action_code)))
2670 break;
2672 switch (mgmt->u.action.u.self_prot.action_code) {
2673 case WLAN_SP_MESH_PEERING_OPEN:
2674 case WLAN_SP_MESH_PEERING_CLOSE:
2675 case WLAN_SP_MESH_PEERING_CONFIRM:
2676 if (!ieee80211_vif_is_mesh(&sdata->vif))
2677 goto invalid;
2678 if (sdata->u.mesh.user_mpm)
2679 /* userspace handles this frame */
2680 break;
2681 goto queue;
2682 case WLAN_SP_MGK_INFORM:
2683 case WLAN_SP_MGK_ACK:
2684 if (!ieee80211_vif_is_mesh(&sdata->vif))
2685 goto invalid;
2686 break;
2688 break;
2689 case WLAN_CATEGORY_MESH_ACTION:
2690 if (len < (IEEE80211_MIN_ACTION_SIZE +
2691 sizeof(mgmt->u.action.u.mesh_action.action_code)))
2692 break;
2694 if (!ieee80211_vif_is_mesh(&sdata->vif))
2695 break;
2696 if (mesh_action_is_path_sel(mgmt) &&
2697 !mesh_path_sel_is_hwmp(sdata))
2698 break;
2699 goto queue;
2702 return RX_CONTINUE;
2704 invalid:
2705 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
2706 /* will return in the next handlers */
2707 return RX_CONTINUE;
2709 handled:
2710 if (rx->sta)
2711 rx->sta->rx_packets++;
2712 dev_kfree_skb(rx->skb);
2713 return RX_QUEUED;
2715 queue:
2716 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2717 skb_queue_tail(&sdata->skb_queue, rx->skb);
2718 ieee80211_queue_work(&local->hw, &sdata->work);
2719 if (rx->sta)
2720 rx->sta->rx_packets++;
2721 return RX_QUEUED;
2724 static ieee80211_rx_result debug_noinline
2725 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
2727 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2728 int sig = 0;
2730 /* skip known-bad action frames and return them in the next handler */
2731 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
2732 return RX_CONTINUE;
2735 * Getting here means the kernel doesn't know how to handle
2736 * it, but maybe userspace does ... include returned frames
2737 * so userspace can register for those to know whether ones
2738 * it transmitted were processed or returned.
2741 if (rx->local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
2742 sig = status->signal;
2744 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
2745 rx->skb->data, rx->skb->len, 0)) {
2746 if (rx->sta)
2747 rx->sta->rx_packets++;
2748 dev_kfree_skb(rx->skb);
2749 return RX_QUEUED;
2752 return RX_CONTINUE;
2755 static ieee80211_rx_result debug_noinline
2756 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
2758 struct ieee80211_local *local = rx->local;
2759 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2760 struct sk_buff *nskb;
2761 struct ieee80211_sub_if_data *sdata = rx->sdata;
2762 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2764 if (!ieee80211_is_action(mgmt->frame_control))
2765 return RX_CONTINUE;
2768 * For AP mode, hostapd is responsible for handling any action
2769 * frames that we didn't handle, including returning unknown
2770 * ones. For all other modes we will return them to the sender,
2771 * setting the 0x80 bit in the action category, as required by
2772 * 802.11-2012 9.24.4.
2773 * Newer versions of hostapd shall also use the management frame
2774 * registration mechanisms, but older ones still use cooked
2775 * monitor interfaces so push all frames there.
2777 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
2778 (sdata->vif.type == NL80211_IFTYPE_AP ||
2779 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
2780 return RX_DROP_MONITOR;
2782 if (is_multicast_ether_addr(mgmt->da))
2783 return RX_DROP_MONITOR;
2785 /* do not return rejected action frames */
2786 if (mgmt->u.action.category & 0x80)
2787 return RX_DROP_UNUSABLE;
2789 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
2790 GFP_ATOMIC);
2791 if (nskb) {
2792 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
2794 nmgmt->u.action.category |= 0x80;
2795 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
2796 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
2798 memset(nskb->cb, 0, sizeof(nskb->cb));
2800 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
2801 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
2803 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
2804 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
2805 IEEE80211_TX_CTL_NO_CCK_RATE;
2806 if (local->hw.flags & IEEE80211_HW_QUEUE_CONTROL)
2807 info->hw_queue =
2808 local->hw.offchannel_tx_hw_queue;
2811 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
2812 status->band);
2814 dev_kfree_skb(rx->skb);
2815 return RX_QUEUED;
2818 static ieee80211_rx_result debug_noinline
2819 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
2821 struct ieee80211_sub_if_data *sdata = rx->sdata;
2822 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2823 __le16 stype;
2825 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
2827 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
2828 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2829 sdata->vif.type != NL80211_IFTYPE_STATION)
2830 return RX_DROP_MONITOR;
2832 switch (stype) {
2833 case cpu_to_le16(IEEE80211_STYPE_AUTH):
2834 case cpu_to_le16(IEEE80211_STYPE_BEACON):
2835 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
2836 /* process for all: mesh, mlme, ibss */
2837 break;
2838 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
2839 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
2840 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
2841 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
2842 if (is_multicast_ether_addr(mgmt->da) &&
2843 !is_broadcast_ether_addr(mgmt->da))
2844 return RX_DROP_MONITOR;
2846 /* process only for station */
2847 if (sdata->vif.type != NL80211_IFTYPE_STATION)
2848 return RX_DROP_MONITOR;
2849 break;
2850 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
2851 /* process only for ibss and mesh */
2852 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
2853 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
2854 return RX_DROP_MONITOR;
2855 break;
2856 default:
2857 return RX_DROP_MONITOR;
2860 /* queue up frame and kick off work to process it */
2861 rx->skb->pkt_type = IEEE80211_SDATA_QUEUE_TYPE_FRAME;
2862 skb_queue_tail(&sdata->skb_queue, rx->skb);
2863 ieee80211_queue_work(&rx->local->hw, &sdata->work);
2864 if (rx->sta)
2865 rx->sta->rx_packets++;
2867 return RX_QUEUED;
2870 /* TODO: use IEEE80211_RX_FRAGMENTED */
2871 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
2872 struct ieee80211_rate *rate)
2874 struct ieee80211_sub_if_data *sdata;
2875 struct ieee80211_local *local = rx->local;
2876 struct sk_buff *skb = rx->skb, *skb2;
2877 struct net_device *prev_dev = NULL;
2878 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2879 int needed_headroom;
2882 * If cooked monitor has been processed already, then
2883 * don't do it again. If not, set the flag.
2885 if (rx->flags & IEEE80211_RX_CMNTR)
2886 goto out_free_skb;
2887 rx->flags |= IEEE80211_RX_CMNTR;
2889 /* If there are no cooked monitor interfaces, just free the SKB */
2890 if (!local->cooked_mntrs)
2891 goto out_free_skb;
2893 /* room for the radiotap header based on driver features */
2894 needed_headroom = ieee80211_rx_radiotap_space(local, status);
2896 if (skb_headroom(skb) < needed_headroom &&
2897 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
2898 goto out_free_skb;
2900 /* prepend radiotap information */
2901 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
2902 false);
2904 skb_set_mac_header(skb, 0);
2905 skb->ip_summed = CHECKSUM_UNNECESSARY;
2906 skb->pkt_type = PACKET_OTHERHOST;
2907 skb->protocol = htons(ETH_P_802_2);
2909 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
2910 if (!ieee80211_sdata_running(sdata))
2911 continue;
2913 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
2914 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
2915 continue;
2917 if (prev_dev) {
2918 skb2 = skb_clone(skb, GFP_ATOMIC);
2919 if (skb2) {
2920 skb2->dev = prev_dev;
2921 netif_receive_skb(skb2);
2925 prev_dev = sdata->dev;
2926 sdata->dev->stats.rx_packets++;
2927 sdata->dev->stats.rx_bytes += skb->len;
2930 if (prev_dev) {
2931 skb->dev = prev_dev;
2932 netif_receive_skb(skb);
2933 return;
2936 out_free_skb:
2937 dev_kfree_skb(skb);
2940 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
2941 ieee80211_rx_result res)
2943 switch (res) {
2944 case RX_DROP_MONITOR:
2945 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2946 if (rx->sta)
2947 rx->sta->rx_dropped++;
2948 /* fall through */
2949 case RX_CONTINUE: {
2950 struct ieee80211_rate *rate = NULL;
2951 struct ieee80211_supported_band *sband;
2952 struct ieee80211_rx_status *status;
2954 status = IEEE80211_SKB_RXCB((rx->skb));
2956 sband = rx->local->hw.wiphy->bands[status->band];
2957 if (!(status->flag & RX_FLAG_HT) &&
2958 !(status->flag & RX_FLAG_VHT))
2959 rate = &sband->bitrates[status->rate_idx];
2961 ieee80211_rx_cooked_monitor(rx, rate);
2962 break;
2964 case RX_DROP_UNUSABLE:
2965 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
2966 if (rx->sta)
2967 rx->sta->rx_dropped++;
2968 dev_kfree_skb(rx->skb);
2969 break;
2970 case RX_QUEUED:
2971 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
2972 break;
2976 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
2977 struct sk_buff_head *frames)
2979 ieee80211_rx_result res = RX_DROP_MONITOR;
2980 struct sk_buff *skb;
2982 #define CALL_RXH(rxh) \
2983 do { \
2984 res = rxh(rx); \
2985 if (res != RX_CONTINUE) \
2986 goto rxh_next; \
2987 } while (0);
2989 spin_lock_bh(&rx->local->rx_path_lock);
2991 while ((skb = __skb_dequeue(frames))) {
2993 * all the other fields are valid across frames
2994 * that belong to an aMPDU since they are on the
2995 * same TID from the same station
2997 rx->skb = skb;
2999 CALL_RXH(ieee80211_rx_h_check_more_data)
3000 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll)
3001 CALL_RXH(ieee80211_rx_h_sta_process)
3002 CALL_RXH(ieee80211_rx_h_decrypt)
3003 CALL_RXH(ieee80211_rx_h_defragment)
3004 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
3005 /* must be after MMIC verify so header is counted in MPDU mic */
3006 #ifdef CONFIG_MAC80211_MESH
3007 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3008 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3009 #endif
3010 CALL_RXH(ieee80211_rx_h_amsdu)
3011 CALL_RXH(ieee80211_rx_h_data)
3013 /* special treatment -- needs the queue */
3014 res = ieee80211_rx_h_ctrl(rx, frames);
3015 if (res != RX_CONTINUE)
3016 goto rxh_next;
3018 CALL_RXH(ieee80211_rx_h_mgmt_check)
3019 CALL_RXH(ieee80211_rx_h_action)
3020 CALL_RXH(ieee80211_rx_h_userspace_mgmt)
3021 CALL_RXH(ieee80211_rx_h_action_return)
3022 CALL_RXH(ieee80211_rx_h_mgmt)
3024 rxh_next:
3025 ieee80211_rx_handlers_result(rx, res);
3027 #undef CALL_RXH
3030 spin_unlock_bh(&rx->local->rx_path_lock);
3033 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3035 struct sk_buff_head reorder_release;
3036 ieee80211_rx_result res = RX_DROP_MONITOR;
3038 __skb_queue_head_init(&reorder_release);
3040 #define CALL_RXH(rxh) \
3041 do { \
3042 res = rxh(rx); \
3043 if (res != RX_CONTINUE) \
3044 goto rxh_next; \
3045 } while (0);
3047 CALL_RXH(ieee80211_rx_h_check)
3049 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3051 ieee80211_rx_handlers(rx, &reorder_release);
3052 return;
3054 rxh_next:
3055 ieee80211_rx_handlers_result(rx, res);
3057 #undef CALL_RXH
3061 * This function makes calls into the RX path, therefore
3062 * it has to be invoked under RCU read lock.
3064 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3066 struct sk_buff_head frames;
3067 struct ieee80211_rx_data rx = {
3068 .sta = sta,
3069 .sdata = sta->sdata,
3070 .local = sta->local,
3071 /* This is OK -- must be QoS data frame */
3072 .security_idx = tid,
3073 .seqno_idx = tid,
3074 .flags = IEEE80211_RX_REORDER_TIMER,
3076 struct tid_ampdu_rx *tid_agg_rx;
3078 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3079 if (!tid_agg_rx)
3080 return;
3082 __skb_queue_head_init(&frames);
3084 spin_lock(&tid_agg_rx->reorder_lock);
3085 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3086 spin_unlock(&tid_agg_rx->reorder_lock);
3088 ieee80211_rx_handlers(&rx, &frames);
3091 /* main receive path */
3093 static bool prepare_for_handlers(struct ieee80211_rx_data *rx,
3094 struct ieee80211_hdr *hdr)
3096 struct ieee80211_sub_if_data *sdata = rx->sdata;
3097 struct sk_buff *skb = rx->skb;
3098 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3099 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3100 int multicast = is_multicast_ether_addr(hdr->addr1);
3102 switch (sdata->vif.type) {
3103 case NL80211_IFTYPE_STATION:
3104 if (!bssid && !sdata->u.mgd.use_4addr)
3105 return false;
3106 if (!multicast &&
3107 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3108 if (!(sdata->dev->flags & IFF_PROMISC) ||
3109 sdata->u.mgd.use_4addr)
3110 return false;
3111 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3113 break;
3114 case NL80211_IFTYPE_ADHOC:
3115 if (!bssid)
3116 return false;
3117 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3118 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3119 return false;
3120 if (ieee80211_is_beacon(hdr->frame_control)) {
3121 return true;
3122 } else if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid)) {
3123 return false;
3124 } else if (!multicast &&
3125 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3126 if (!(sdata->dev->flags & IFF_PROMISC))
3127 return false;
3128 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3129 } else if (!rx->sta) {
3130 int rate_idx;
3131 if (status->flag & (RX_FLAG_HT | RX_FLAG_VHT))
3132 rate_idx = 0; /* TODO: HT/VHT rates */
3133 else
3134 rate_idx = status->rate_idx;
3135 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3136 BIT(rate_idx));
3138 break;
3139 case NL80211_IFTYPE_MESH_POINT:
3140 if (!multicast &&
3141 !ether_addr_equal(sdata->vif.addr, hdr->addr1)) {
3142 if (!(sdata->dev->flags & IFF_PROMISC))
3143 return false;
3145 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3147 break;
3148 case NL80211_IFTYPE_AP_VLAN:
3149 case NL80211_IFTYPE_AP:
3150 if (!bssid) {
3151 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1))
3152 return false;
3153 } else if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3155 * Accept public action frames even when the
3156 * BSSID doesn't match, this is used for P2P
3157 * and location updates. Note that mac80211
3158 * itself never looks at these frames.
3160 if (!multicast &&
3161 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3162 return false;
3163 if (ieee80211_is_public_action(hdr, skb->len))
3164 return true;
3165 if (!ieee80211_is_beacon(hdr->frame_control))
3166 return false;
3167 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3168 } else if (!ieee80211_has_tods(hdr->frame_control)) {
3169 /* ignore data frames to TDLS-peers */
3170 if (ieee80211_is_data(hdr->frame_control))
3171 return false;
3172 /* ignore action frames to TDLS-peers */
3173 if (ieee80211_is_action(hdr->frame_control) &&
3174 !is_broadcast_ether_addr(bssid) &&
3175 !ether_addr_equal(bssid, hdr->addr1))
3176 return false;
3178 break;
3179 case NL80211_IFTYPE_WDS:
3180 if (bssid || !ieee80211_is_data(hdr->frame_control))
3181 return false;
3182 if (!ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2))
3183 return false;
3184 break;
3185 case NL80211_IFTYPE_P2P_DEVICE:
3186 if (!ieee80211_is_public_action(hdr, skb->len) &&
3187 !ieee80211_is_probe_req(hdr->frame_control) &&
3188 !ieee80211_is_probe_resp(hdr->frame_control) &&
3189 !ieee80211_is_beacon(hdr->frame_control))
3190 return false;
3191 if (!ether_addr_equal(sdata->vif.addr, hdr->addr1) &&
3192 !multicast)
3193 status->rx_flags &= ~IEEE80211_RX_RA_MATCH;
3194 break;
3195 default:
3196 /* should never get here */
3197 WARN_ON_ONCE(1);
3198 break;
3201 return true;
3205 * This function returns whether or not the SKB
3206 * was destined for RX processing or not, which,
3207 * if consume is true, is equivalent to whether
3208 * or not the skb was consumed.
3210 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
3211 struct sk_buff *skb, bool consume)
3213 struct ieee80211_local *local = rx->local;
3214 struct ieee80211_sub_if_data *sdata = rx->sdata;
3215 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3216 struct ieee80211_hdr *hdr = (void *)skb->data;
3218 rx->skb = skb;
3219 status->rx_flags |= IEEE80211_RX_RA_MATCH;
3221 if (!prepare_for_handlers(rx, hdr))
3222 return false;
3224 if (!consume) {
3225 skb = skb_copy(skb, GFP_ATOMIC);
3226 if (!skb) {
3227 if (net_ratelimit())
3228 wiphy_debug(local->hw.wiphy,
3229 "failed to copy skb for %s\n",
3230 sdata->name);
3231 return true;
3234 rx->skb = skb;
3237 ieee80211_invoke_rx_handlers(rx);
3238 return true;
3242 * This is the actual Rx frames handler. as it belongs to Rx path it must
3243 * be called with rcu_read_lock protection.
3245 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
3246 struct sk_buff *skb)
3248 struct ieee80211_local *local = hw_to_local(hw);
3249 struct ieee80211_sub_if_data *sdata;
3250 struct ieee80211_hdr *hdr;
3251 __le16 fc;
3252 struct ieee80211_rx_data rx;
3253 struct ieee80211_sub_if_data *prev;
3254 struct sta_info *sta, *tmp, *prev_sta;
3255 int err = 0;
3257 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
3258 memset(&rx, 0, sizeof(rx));
3259 rx.skb = skb;
3260 rx.local = local;
3262 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
3263 local->dot11ReceivedFragmentCount++;
3265 if (ieee80211_is_mgmt(fc)) {
3266 /* drop frame if too short for header */
3267 if (skb->len < ieee80211_hdrlen(fc))
3268 err = -ENOBUFS;
3269 else
3270 err = skb_linearize(skb);
3271 } else {
3272 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
3275 if (err) {
3276 dev_kfree_skb(skb);
3277 return;
3280 hdr = (struct ieee80211_hdr *)skb->data;
3281 ieee80211_parse_qos(&rx);
3282 ieee80211_verify_alignment(&rx);
3284 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
3285 ieee80211_is_beacon(hdr->frame_control)))
3286 ieee80211_scan_rx(local, skb);
3288 if (ieee80211_is_data(fc)) {
3289 prev_sta = NULL;
3291 for_each_sta_info(local, hdr->addr2, sta, tmp) {
3292 if (!prev_sta) {
3293 prev_sta = sta;
3294 continue;
3297 rx.sta = prev_sta;
3298 rx.sdata = prev_sta->sdata;
3299 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3301 prev_sta = sta;
3304 if (prev_sta) {
3305 rx.sta = prev_sta;
3306 rx.sdata = prev_sta->sdata;
3308 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3309 return;
3310 goto out;
3314 prev = NULL;
3316 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3317 if (!ieee80211_sdata_running(sdata))
3318 continue;
3320 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
3321 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
3322 continue;
3325 * frame is destined for this interface, but if it's
3326 * not also for the previous one we handle that after
3327 * the loop to avoid copying the SKB once too much
3330 if (!prev) {
3331 prev = sdata;
3332 continue;
3335 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3336 rx.sdata = prev;
3337 ieee80211_prepare_and_rx_handle(&rx, skb, false);
3339 prev = sdata;
3342 if (prev) {
3343 rx.sta = sta_info_get_bss(prev, hdr->addr2);
3344 rx.sdata = prev;
3346 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
3347 return;
3350 out:
3351 dev_kfree_skb(skb);
3355 * This is the receive path handler. It is called by a low level driver when an
3356 * 802.11 MPDU is received from the hardware.
3358 void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb)
3360 struct ieee80211_local *local = hw_to_local(hw);
3361 struct ieee80211_rate *rate = NULL;
3362 struct ieee80211_supported_band *sband;
3363 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3365 WARN_ON_ONCE(softirq_count() == 0);
3367 if (WARN_ON(status->band >= IEEE80211_NUM_BANDS))
3368 goto drop;
3370 sband = local->hw.wiphy->bands[status->band];
3371 if (WARN_ON(!sband))
3372 goto drop;
3375 * If we're suspending, it is possible although not too likely
3376 * that we'd be receiving frames after having already partially
3377 * quiesced the stack. We can't process such frames then since
3378 * that might, for example, cause stations to be added or other
3379 * driver callbacks be invoked.
3381 if (unlikely(local->quiescing || local->suspended))
3382 goto drop;
3384 /* We might be during a HW reconfig, prevent Rx for the same reason */
3385 if (unlikely(local->in_reconfig))
3386 goto drop;
3389 * The same happens when we're not even started,
3390 * but that's worth a warning.
3392 if (WARN_ON(!local->started))
3393 goto drop;
3395 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
3397 * Validate the rate, unless a PLCP error means that
3398 * we probably can't have a valid rate here anyway.
3401 if (status->flag & RX_FLAG_HT) {
3403 * rate_idx is MCS index, which can be [0-76]
3404 * as documented on:
3406 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
3408 * Anything else would be some sort of driver or
3409 * hardware error. The driver should catch hardware
3410 * errors.
3412 if (WARN(status->rate_idx > 76,
3413 "Rate marked as an HT rate but passed "
3414 "status->rate_idx is not "
3415 "an MCS index [0-76]: %d (0x%02x)\n",
3416 status->rate_idx,
3417 status->rate_idx))
3418 goto drop;
3419 } else if (status->flag & RX_FLAG_VHT) {
3420 if (WARN_ONCE(status->rate_idx > 9 ||
3421 !status->vht_nss ||
3422 status->vht_nss > 8,
3423 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
3424 status->rate_idx, status->vht_nss))
3425 goto drop;
3426 } else {
3427 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
3428 goto drop;
3429 rate = &sband->bitrates[status->rate_idx];
3433 status->rx_flags = 0;
3436 * key references and virtual interfaces are protected using RCU
3437 * and this requires that we are in a read-side RCU section during
3438 * receive processing
3440 rcu_read_lock();
3443 * Frames with failed FCS/PLCP checksum are not returned,
3444 * all other frames are returned without radiotap header
3445 * if it was previously present.
3446 * Also, frames with less than 16 bytes are dropped.
3448 skb = ieee80211_rx_monitor(local, skb, rate);
3449 if (!skb) {
3450 rcu_read_unlock();
3451 return;
3454 ieee80211_tpt_led_trig_rx(local,
3455 ((struct ieee80211_hdr *)skb->data)->frame_control,
3456 skb->len);
3457 __ieee80211_rx_handle_packet(hw, skb);
3459 rcu_read_unlock();
3461 return;
3462 drop:
3463 kfree_skb(skb);
3465 EXPORT_SYMBOL(ieee80211_rx);
3467 /* This is a version of the rx handler that can be called from hard irq
3468 * context. Post the skb on the queue and schedule the tasklet */
3469 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
3471 struct ieee80211_local *local = hw_to_local(hw);
3473 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
3475 skb->pkt_type = IEEE80211_RX_MSG;
3476 skb_queue_tail(&local->skb_queue, skb);
3477 tasklet_schedule(&local->tasklet);
3479 EXPORT_SYMBOL(ieee80211_rx_irqsafe);