2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 int selinux_policycap_netpeer
;
74 int selinux_policycap_openperm
;
75 int selinux_policycap_alwaysnetwork
;
77 static DEFINE_RWLOCK(policy_rwlock
);
79 static struct sidtab sidtab
;
80 struct policydb policydb
;
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
89 static u32 latest_granting
;
91 /* Forward declaration. */
92 static int context_struct_to_string(struct context
*context
, char **scontext
,
95 static void context_struct_compute_av(struct context
*scontext
,
96 struct context
*tcontext
,
98 struct av_decision
*avd
);
100 struct selinux_mapping
{
101 u16 value
; /* policy value */
103 u32 perms
[sizeof(u32
) * 8];
106 static struct selinux_mapping
*current_mapping
;
107 static u16 current_mapping_size
;
109 static int selinux_set_mapping(struct policydb
*pol
,
110 struct security_class_mapping
*map
,
111 struct selinux_mapping
**out_map_p
,
114 struct selinux_mapping
*out_map
= NULL
;
115 size_t size
= sizeof(struct selinux_mapping
);
118 bool print_unknown_handle
= false;
120 /* Find number of classes in the input mapping */
127 /* Allocate space for the class records, plus one for class zero */
128 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
132 /* Store the raw class and permission values */
134 while (map
[j
].name
) {
135 struct security_class_mapping
*p_in
= map
+ (j
++);
136 struct selinux_mapping
*p_out
= out_map
+ j
;
138 /* An empty class string skips ahead */
139 if (!strcmp(p_in
->name
, "")) {
140 p_out
->num_perms
= 0;
144 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
147 "SELinux: Class %s not defined in policy.\n",
149 if (pol
->reject_unknown
)
151 p_out
->num_perms
= 0;
152 print_unknown_handle
= true;
157 while (p_in
->perms
&& p_in
->perms
[k
]) {
158 /* An empty permission string skips ahead */
159 if (!*p_in
->perms
[k
]) {
163 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
165 if (!p_out
->perms
[k
]) {
167 "SELinux: Permission %s in class %s not defined in policy.\n",
168 p_in
->perms
[k
], p_in
->name
);
169 if (pol
->reject_unknown
)
171 print_unknown_handle
= true;
176 p_out
->num_perms
= k
;
179 if (print_unknown_handle
)
180 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
181 pol
->allow_unknown
? "allowed" : "denied");
183 *out_map_p
= out_map
;
192 * Get real, policy values from mapped values
195 static u16
unmap_class(u16 tclass
)
197 if (tclass
< current_mapping_size
)
198 return current_mapping
[tclass
].value
;
204 * Get kernel value for class from its policy value
206 static u16
map_class(u16 pol_value
)
210 for (i
= 1; i
< current_mapping_size
; i
++) {
211 if (current_mapping
[i
].value
== pol_value
)
215 return SECCLASS_NULL
;
218 static void map_decision(u16 tclass
, struct av_decision
*avd
,
221 if (tclass
< current_mapping_size
) {
222 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
225 for (i
= 0, result
= 0; i
< n
; i
++) {
226 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
228 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
231 avd
->allowed
= result
;
233 for (i
= 0, result
= 0; i
< n
; i
++)
234 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
236 avd
->auditallow
= result
;
238 for (i
= 0, result
= 0; i
< n
; i
++) {
239 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
241 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
245 * In case the kernel has a bug and requests a permission
246 * between num_perms and the maximum permission number, we
247 * should audit that denial
249 for (; i
< (sizeof(u32
)*8); i
++)
251 avd
->auditdeny
= result
;
255 int security_mls_enabled(void)
257 return policydb
.mls_enabled
;
261 * Return the boolean value of a constraint expression
262 * when it is applied to the specified source and target
265 * xcontext is a special beast... It is used by the validatetrans rules
266 * only. For these rules, scontext is the context before the transition,
267 * tcontext is the context after the transition, and xcontext is the context
268 * of the process performing the transition. All other callers of
269 * constraint_expr_eval should pass in NULL for xcontext.
271 static int constraint_expr_eval(struct context
*scontext
,
272 struct context
*tcontext
,
273 struct context
*xcontext
,
274 struct constraint_expr
*cexpr
)
278 struct role_datum
*r1
, *r2
;
279 struct mls_level
*l1
, *l2
;
280 struct constraint_expr
*e
;
281 int s
[CEXPR_MAXDEPTH
];
284 for (e
= cexpr
; e
; e
= e
->next
) {
285 switch (e
->expr_type
) {
301 if (sp
== (CEXPR_MAXDEPTH
- 1))
305 val1
= scontext
->user
;
306 val2
= tcontext
->user
;
309 val1
= scontext
->type
;
310 val2
= tcontext
->type
;
313 val1
= scontext
->role
;
314 val2
= tcontext
->role
;
315 r1
= policydb
.role_val_to_struct
[val1
- 1];
316 r2
= policydb
.role_val_to_struct
[val2
- 1];
319 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
323 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
327 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
329 !ebitmap_get_bit(&r2
->dominates
,
337 l1
= &(scontext
->range
.level
[0]);
338 l2
= &(tcontext
->range
.level
[0]);
341 l1
= &(scontext
->range
.level
[0]);
342 l2
= &(tcontext
->range
.level
[1]);
345 l1
= &(scontext
->range
.level
[1]);
346 l2
= &(tcontext
->range
.level
[0]);
349 l1
= &(scontext
->range
.level
[1]);
350 l2
= &(tcontext
->range
.level
[1]);
353 l1
= &(scontext
->range
.level
[0]);
354 l2
= &(scontext
->range
.level
[1]);
357 l1
= &(tcontext
->range
.level
[0]);
358 l2
= &(tcontext
->range
.level
[1]);
363 s
[++sp
] = mls_level_eq(l1
, l2
);
366 s
[++sp
] = !mls_level_eq(l1
, l2
);
369 s
[++sp
] = mls_level_dom(l1
, l2
);
372 s
[++sp
] = mls_level_dom(l2
, l1
);
375 s
[++sp
] = mls_level_incomp(l2
, l1
);
389 s
[++sp
] = (val1
== val2
);
392 s
[++sp
] = (val1
!= val2
);
400 if (sp
== (CEXPR_MAXDEPTH
-1))
403 if (e
->attr
& CEXPR_TARGET
)
405 else if (e
->attr
& CEXPR_XTARGET
) {
412 if (e
->attr
& CEXPR_USER
)
414 else if (e
->attr
& CEXPR_ROLE
)
416 else if (e
->attr
& CEXPR_TYPE
)
425 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
428 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
446 * security_dump_masked_av - dumps masked permissions during
447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
449 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
451 struct perm_datum
*pdatum
= d
;
452 char **permission_names
= args
;
454 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
456 permission_names
[pdatum
->value
- 1] = (char *)k
;
461 static void security_dump_masked_av(struct context
*scontext
,
462 struct context
*tcontext
,
467 struct common_datum
*common_dat
;
468 struct class_datum
*tclass_dat
;
469 struct audit_buffer
*ab
;
471 char *scontext_name
= NULL
;
472 char *tcontext_name
= NULL
;
473 char *permission_names
[32];
476 bool need_comma
= false;
481 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
482 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
483 common_dat
= tclass_dat
->comdatum
;
485 /* init permission_names */
487 hashtab_map(common_dat
->permissions
.table
,
488 dump_masked_av_helper
, permission_names
) < 0)
491 if (hashtab_map(tclass_dat
->permissions
.table
,
492 dump_masked_av_helper
, permission_names
) < 0)
495 /* get scontext/tcontext in text form */
496 if (context_struct_to_string(scontext
,
497 &scontext_name
, &length
) < 0)
500 if (context_struct_to_string(tcontext
,
501 &tcontext_name
, &length
) < 0)
504 /* audit a message */
505 ab
= audit_log_start(current
->audit_context
,
506 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
510 audit_log_format(ab
, "op=security_compute_av reason=%s "
511 "scontext=%s tcontext=%s tclass=%s perms=",
512 reason
, scontext_name
, tcontext_name
, tclass_name
);
514 for (index
= 0; index
< 32; index
++) {
515 u32 mask
= (1 << index
);
517 if ((mask
& permissions
) == 0)
520 audit_log_format(ab
, "%s%s",
521 need_comma
? "," : "",
522 permission_names
[index
]
523 ? permission_names
[index
] : "????");
528 /* release scontext/tcontext */
529 kfree(tcontext_name
);
530 kfree(scontext_name
);
536 * security_boundary_permission - drops violated permissions
537 * on boundary constraint.
539 static void type_attribute_bounds_av(struct context
*scontext
,
540 struct context
*tcontext
,
542 struct av_decision
*avd
)
544 struct context lo_scontext
;
545 struct context lo_tcontext
;
546 struct av_decision lo_avd
;
547 struct type_datum
*source
;
548 struct type_datum
*target
;
551 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
555 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
559 if (source
->bounds
) {
560 memset(&lo_avd
, 0, sizeof(lo_avd
));
562 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
563 lo_scontext
.type
= source
->bounds
;
565 context_struct_compute_av(&lo_scontext
,
569 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
570 return; /* no masked permission */
571 masked
= ~lo_avd
.allowed
& avd
->allowed
;
574 if (target
->bounds
) {
575 memset(&lo_avd
, 0, sizeof(lo_avd
));
577 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
578 lo_tcontext
.type
= target
->bounds
;
580 context_struct_compute_av(scontext
,
584 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
585 return; /* no masked permission */
586 masked
= ~lo_avd
.allowed
& avd
->allowed
;
589 if (source
->bounds
&& target
->bounds
) {
590 memset(&lo_avd
, 0, sizeof(lo_avd
));
592 * lo_scontext and lo_tcontext are already
596 context_struct_compute_av(&lo_scontext
,
600 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
601 return; /* no masked permission */
602 masked
= ~lo_avd
.allowed
& avd
->allowed
;
606 /* mask violated permissions */
607 avd
->allowed
&= ~masked
;
609 /* audit masked permissions */
610 security_dump_masked_av(scontext
, tcontext
,
611 tclass
, masked
, "bounds");
616 * Compute access vectors based on a context structure pair for
617 * the permissions in a particular class.
619 static void context_struct_compute_av(struct context
*scontext
,
620 struct context
*tcontext
,
622 struct av_decision
*avd
)
624 struct constraint_node
*constraint
;
625 struct role_allow
*ra
;
626 struct avtab_key avkey
;
627 struct avtab_node
*node
;
628 struct class_datum
*tclass_datum
;
629 struct ebitmap
*sattr
, *tattr
;
630 struct ebitmap_node
*snode
, *tnode
;
635 avd
->auditdeny
= 0xffffffff;
637 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
638 if (printk_ratelimit())
639 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
643 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
646 * If a specific type enforcement rule was defined for
647 * this permission check, then use it.
649 avkey
.target_class
= tclass
;
650 avkey
.specified
= AVTAB_AV
;
651 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
653 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
655 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
656 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
657 avkey
.source_type
= i
+ 1;
658 avkey
.target_type
= j
+ 1;
659 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
661 node
= avtab_search_node_next(node
, avkey
.specified
)) {
662 if (node
->key
.specified
== AVTAB_ALLOWED
)
663 avd
->allowed
|= node
->datum
.data
;
664 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
665 avd
->auditallow
|= node
->datum
.data
;
666 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
667 avd
->auditdeny
&= node
->datum
.data
;
670 /* Check conditional av table for additional permissions */
671 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
677 * Remove any permissions prohibited by a constraint (this includes
680 constraint
= tclass_datum
->constraints
;
682 if ((constraint
->permissions
& (avd
->allowed
)) &&
683 !constraint_expr_eval(scontext
, tcontext
, NULL
,
685 avd
->allowed
&= ~(constraint
->permissions
);
687 constraint
= constraint
->next
;
691 * If checking process transition permission and the
692 * role is changing, then check the (current_role, new_role)
695 if (tclass
== policydb
.process_class
&&
696 (avd
->allowed
& policydb
.process_trans_perms
) &&
697 scontext
->role
!= tcontext
->role
) {
698 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
699 if (scontext
->role
== ra
->role
&&
700 tcontext
->role
== ra
->new_role
)
704 avd
->allowed
&= ~policydb
.process_trans_perms
;
708 * If the given source and target types have boundary
709 * constraint, lazy checks have to mask any violated
710 * permission and notice it to userspace via audit.
712 type_attribute_bounds_av(scontext
, tcontext
,
716 static int security_validtrans_handle_fail(struct context
*ocontext
,
717 struct context
*ncontext
,
718 struct context
*tcontext
,
721 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
722 u32 olen
, nlen
, tlen
;
724 if (context_struct_to_string(ocontext
, &o
, &olen
))
726 if (context_struct_to_string(ncontext
, &n
, &nlen
))
728 if (context_struct_to_string(tcontext
, &t
, &tlen
))
730 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
731 "op=security_validate_transition seresult=denied"
732 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
733 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
739 if (!selinux_enforcing
)
744 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
747 struct context
*ocontext
;
748 struct context
*ncontext
;
749 struct context
*tcontext
;
750 struct class_datum
*tclass_datum
;
751 struct constraint_node
*constraint
;
758 read_lock(&policy_rwlock
);
760 tclass
= unmap_class(orig_tclass
);
762 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
763 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
768 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
770 ocontext
= sidtab_search(&sidtab
, oldsid
);
772 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
778 ncontext
= sidtab_search(&sidtab
, newsid
);
780 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
786 tcontext
= sidtab_search(&sidtab
, tasksid
);
788 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
794 constraint
= tclass_datum
->validatetrans
;
796 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
798 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
802 constraint
= constraint
->next
;
806 read_unlock(&policy_rwlock
);
811 * security_bounded_transition - check whether the given
812 * transition is directed to bounded, or not.
813 * It returns 0, if @newsid is bounded by @oldsid.
814 * Otherwise, it returns error code.
816 * @oldsid : current security identifier
817 * @newsid : destinated security identifier
819 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
821 struct context
*old_context
, *new_context
;
822 struct type_datum
*type
;
826 read_lock(&policy_rwlock
);
829 old_context
= sidtab_search(&sidtab
, old_sid
);
831 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
837 new_context
= sidtab_search(&sidtab
, new_sid
);
839 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
845 /* type/domain unchanged */
846 if (old_context
->type
== new_context
->type
)
849 index
= new_context
->type
;
851 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
855 /* not bounded anymore */
860 /* @newsid is bounded by @oldsid */
862 if (type
->bounds
== old_context
->type
)
865 index
= type
->bounds
;
869 char *old_name
= NULL
;
870 char *new_name
= NULL
;
873 if (!context_struct_to_string(old_context
,
874 &old_name
, &length
) &&
875 !context_struct_to_string(new_context
,
876 &new_name
, &length
)) {
877 audit_log(current
->audit_context
,
878 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
879 "op=security_bounded_transition "
881 "oldcontext=%s newcontext=%s",
888 read_unlock(&policy_rwlock
);
893 static void avd_init(struct av_decision
*avd
)
897 avd
->auditdeny
= 0xffffffff;
898 avd
->seqno
= latest_granting
;
904 * security_compute_av - Compute access vector decisions.
905 * @ssid: source security identifier
906 * @tsid: target security identifier
907 * @tclass: target security class
908 * @avd: access vector decisions
910 * Compute a set of access vector decisions based on the
911 * SID pair (@ssid, @tsid) for the permissions in @tclass.
913 void security_compute_av(u32 ssid
,
916 struct av_decision
*avd
)
919 struct context
*scontext
= NULL
, *tcontext
= NULL
;
921 read_lock(&policy_rwlock
);
926 scontext
= sidtab_search(&sidtab
, ssid
);
928 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
933 /* permissive domain? */
934 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
935 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
937 tcontext
= sidtab_search(&sidtab
, tsid
);
939 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
944 tclass
= unmap_class(orig_tclass
);
945 if (unlikely(orig_tclass
&& !tclass
)) {
946 if (policydb
.allow_unknown
)
950 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
951 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
953 read_unlock(&policy_rwlock
);
956 avd
->allowed
= 0xffffffff;
960 void security_compute_av_user(u32 ssid
,
963 struct av_decision
*avd
)
965 struct context
*scontext
= NULL
, *tcontext
= NULL
;
967 read_lock(&policy_rwlock
);
972 scontext
= sidtab_search(&sidtab
, ssid
);
974 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
979 /* permissive domain? */
980 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
981 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
983 tcontext
= sidtab_search(&sidtab
, tsid
);
985 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
990 if (unlikely(!tclass
)) {
991 if (policydb
.allow_unknown
)
996 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
);
998 read_unlock(&policy_rwlock
);
1001 avd
->allowed
= 0xffffffff;
1006 * Write the security context string representation of
1007 * the context structure `context' into a dynamically
1008 * allocated string of the correct size. Set `*scontext'
1009 * to point to this string and set `*scontext_len' to
1010 * the length of the string.
1012 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1021 *scontext_len
= context
->len
;
1023 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1030 /* Compute the size of the context. */
1031 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1032 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1033 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1034 *scontext_len
+= mls_compute_context_len(context
);
1039 /* Allocate space for the context; caller must free this space. */
1040 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1043 *scontext
= scontextp
;
1046 * Copy the user name, role name and type name into the context.
1048 sprintf(scontextp
, "%s:%s:%s",
1049 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1050 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1051 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1052 scontextp
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) +
1053 1 + strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) +
1054 1 + strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1056 mls_sid_to_context(context
, &scontextp
);
1063 #include "initial_sid_to_string.h"
1065 const char *security_get_initial_sid_context(u32 sid
)
1067 if (unlikely(sid
> SECINITSID_NUM
))
1069 return initial_sid_to_string
[sid
];
1072 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1073 u32
*scontext_len
, int force
)
1075 struct context
*context
;
1082 if (!ss_initialized
) {
1083 if (sid
<= SECINITSID_NUM
) {
1086 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1089 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1094 strcpy(scontextp
, initial_sid_to_string
[sid
]);
1095 *scontext
= scontextp
;
1098 printk(KERN_ERR
"SELinux: %s: called before initial "
1099 "load_policy on unknown SID %d\n", __func__
, sid
);
1103 read_lock(&policy_rwlock
);
1105 context
= sidtab_search_force(&sidtab
, sid
);
1107 context
= sidtab_search(&sidtab
, sid
);
1109 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1114 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1116 read_unlock(&policy_rwlock
);
1123 * security_sid_to_context - Obtain a context for a given SID.
1124 * @sid: security identifier, SID
1125 * @scontext: security context
1126 * @scontext_len: length in bytes
1128 * Write the string representation of the context associated with @sid
1129 * into a dynamically allocated string of the correct size. Set @scontext
1130 * to point to this string and set @scontext_len to the length of the string.
1132 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1134 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1137 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1139 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1143 * Caveat: Mutates scontext.
1145 static int string_to_context_struct(struct policydb
*pol
,
1146 struct sidtab
*sidtabp
,
1149 struct context
*ctx
,
1152 struct role_datum
*role
;
1153 struct type_datum
*typdatum
;
1154 struct user_datum
*usrdatum
;
1155 char *scontextp
, *p
, oldc
;
1160 /* Parse the security context. */
1163 scontextp
= (char *) scontext
;
1165 /* Extract the user. */
1167 while (*p
&& *p
!= ':')
1175 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1179 ctx
->user
= usrdatum
->value
;
1183 while (*p
&& *p
!= ':')
1191 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1194 ctx
->role
= role
->value
;
1198 while (*p
&& *p
!= ':')
1203 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1204 if (!typdatum
|| typdatum
->attribute
)
1207 ctx
->type
= typdatum
->value
;
1209 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1214 if ((p
- scontext
) < scontext_len
)
1217 /* Check the validity of the new context. */
1218 if (!policydb_context_isvalid(pol
, ctx
))
1223 context_destroy(ctx
);
1227 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1228 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1231 char *scontext2
, *str
= NULL
;
1232 struct context context
;
1235 /* An empty security context is never valid. */
1239 if (!ss_initialized
) {
1242 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1243 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1248 *sid
= SECINITSID_KERNEL
;
1253 /* Copy the string so that we can modify the copy as we parse it. */
1254 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1257 memcpy(scontext2
, scontext
, scontext_len
);
1258 scontext2
[scontext_len
] = 0;
1261 /* Save another copy for storing in uninterpreted form */
1263 str
= kstrdup(scontext2
, gfp_flags
);
1268 read_lock(&policy_rwlock
);
1269 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1270 scontext_len
, &context
, def_sid
);
1271 if (rc
== -EINVAL
&& force
) {
1273 context
.len
= scontext_len
;
1277 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1278 context_destroy(&context
);
1280 read_unlock(&policy_rwlock
);
1288 * security_context_to_sid - Obtain a SID for a given security context.
1289 * @scontext: security context
1290 * @scontext_len: length in bytes
1291 * @sid: security identifier, SID
1292 * @gfp: context for the allocation
1294 * Obtains a SID associated with the security context that
1295 * has the string representation specified by @scontext.
1296 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1297 * memory is available, or 0 on success.
1299 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
,
1302 return security_context_to_sid_core(scontext
, scontext_len
,
1303 sid
, SECSID_NULL
, gfp
, 0);
1307 * security_context_to_sid_default - Obtain a SID for a given security context,
1308 * falling back to specified default if needed.
1310 * @scontext: security context
1311 * @scontext_len: length in bytes
1312 * @sid: security identifier, SID
1313 * @def_sid: default SID to assign on error
1315 * Obtains a SID associated with the security context that
1316 * has the string representation specified by @scontext.
1317 * The default SID is passed to the MLS layer to be used to allow
1318 * kernel labeling of the MLS field if the MLS field is not present
1319 * (for upgrading to MLS without full relabel).
1320 * Implicitly forces adding of the context even if it cannot be mapped yet.
1321 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1322 * memory is available, or 0 on success.
1324 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1325 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1327 return security_context_to_sid_core(scontext
, scontext_len
,
1328 sid
, def_sid
, gfp_flags
, 1);
1331 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1334 return security_context_to_sid_core(scontext
, scontext_len
,
1335 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1338 static int compute_sid_handle_invalid_context(
1339 struct context
*scontext
,
1340 struct context
*tcontext
,
1342 struct context
*newcontext
)
1344 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1345 u32 slen
, tlen
, nlen
;
1347 if (context_struct_to_string(scontext
, &s
, &slen
))
1349 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1351 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1353 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1354 "op=security_compute_sid invalid_context=%s"
1358 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1363 if (!selinux_enforcing
)
1368 static void filename_compute_type(struct policydb
*p
, struct context
*newcontext
,
1369 u32 stype
, u32 ttype
, u16 tclass
,
1370 const char *objname
)
1372 struct filename_trans ft
;
1373 struct filename_trans_datum
*otype
;
1376 * Most filename trans rules are going to live in specific directories
1377 * like /dev or /var/run. This bitmap will quickly skip rule searches
1378 * if the ttype does not contain any rules.
1380 if (!ebitmap_get_bit(&p
->filename_trans_ttypes
, ttype
))
1388 otype
= hashtab_search(p
->filename_trans
, &ft
);
1390 newcontext
->type
= otype
->otype
;
1393 static int security_compute_sid(u32 ssid
,
1397 const char *objname
,
1401 struct class_datum
*cladatum
= NULL
;
1402 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1403 struct role_trans
*roletr
= NULL
;
1404 struct avtab_key avkey
;
1405 struct avtab_datum
*avdatum
;
1406 struct avtab_node
*node
;
1411 if (!ss_initialized
) {
1412 switch (orig_tclass
) {
1413 case SECCLASS_PROCESS
: /* kernel value */
1423 context_init(&newcontext
);
1425 read_lock(&policy_rwlock
);
1428 tclass
= unmap_class(orig_tclass
);
1429 sock
= security_is_socket_class(orig_tclass
);
1431 tclass
= orig_tclass
;
1432 sock
= security_is_socket_class(map_class(tclass
));
1435 scontext
= sidtab_search(&sidtab
, ssid
);
1437 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1442 tcontext
= sidtab_search(&sidtab
, tsid
);
1444 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1450 if (tclass
&& tclass
<= policydb
.p_classes
.nprim
)
1451 cladatum
= policydb
.class_val_to_struct
[tclass
- 1];
1453 /* Set the user identity. */
1454 switch (specified
) {
1455 case AVTAB_TRANSITION
:
1457 if (cladatum
&& cladatum
->default_user
== DEFAULT_TARGET
) {
1458 newcontext
.user
= tcontext
->user
;
1460 /* notice this gets both DEFAULT_SOURCE and unset */
1461 /* Use the process user identity. */
1462 newcontext
.user
= scontext
->user
;
1466 /* Use the related object owner. */
1467 newcontext
.user
= tcontext
->user
;
1471 /* Set the role to default values. */
1472 if (cladatum
&& cladatum
->default_role
== DEFAULT_SOURCE
) {
1473 newcontext
.role
= scontext
->role
;
1474 } else if (cladatum
&& cladatum
->default_role
== DEFAULT_TARGET
) {
1475 newcontext
.role
= tcontext
->role
;
1477 if ((tclass
== policydb
.process_class
) || (sock
== true))
1478 newcontext
.role
= scontext
->role
;
1480 newcontext
.role
= OBJECT_R_VAL
;
1483 /* Set the type to default values. */
1484 if (cladatum
&& cladatum
->default_type
== DEFAULT_SOURCE
) {
1485 newcontext
.type
= scontext
->type
;
1486 } else if (cladatum
&& cladatum
->default_type
== DEFAULT_TARGET
) {
1487 newcontext
.type
= tcontext
->type
;
1489 if ((tclass
== policydb
.process_class
) || (sock
== true)) {
1490 /* Use the type of process. */
1491 newcontext
.type
= scontext
->type
;
1493 /* Use the type of the related object. */
1494 newcontext
.type
= tcontext
->type
;
1498 /* Look for a type transition/member/change rule. */
1499 avkey
.source_type
= scontext
->type
;
1500 avkey
.target_type
= tcontext
->type
;
1501 avkey
.target_class
= tclass
;
1502 avkey
.specified
= specified
;
1503 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1505 /* If no permanent rule, also check for enabled conditional rules */
1507 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1508 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1509 if (node
->key
.specified
& AVTAB_ENABLED
) {
1510 avdatum
= &node
->datum
;
1517 /* Use the type from the type transition/member/change rule. */
1518 newcontext
.type
= avdatum
->data
;
1521 /* if we have a objname this is a file trans check so check those rules */
1523 filename_compute_type(&policydb
, &newcontext
, scontext
->type
,
1524 tcontext
->type
, tclass
, objname
);
1526 /* Check for class-specific changes. */
1527 if (specified
& AVTAB_TRANSITION
) {
1528 /* Look for a role transition rule. */
1529 for (roletr
= policydb
.role_tr
; roletr
; roletr
= roletr
->next
) {
1530 if ((roletr
->role
== scontext
->role
) &&
1531 (roletr
->type
== tcontext
->type
) &&
1532 (roletr
->tclass
== tclass
)) {
1533 /* Use the role transition rule. */
1534 newcontext
.role
= roletr
->new_role
;
1540 /* Set the MLS attributes.
1541 This is done last because it may allocate memory. */
1542 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
,
1547 /* Check the validity of the context. */
1548 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1549 rc
= compute_sid_handle_invalid_context(scontext
,
1556 /* Obtain the sid for the context. */
1557 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1559 read_unlock(&policy_rwlock
);
1560 context_destroy(&newcontext
);
1566 * security_transition_sid - Compute the SID for a new subject/object.
1567 * @ssid: source security identifier
1568 * @tsid: target security identifier
1569 * @tclass: target security class
1570 * @out_sid: security identifier for new subject/object
1572 * Compute a SID to use for labeling a new subject or object in the
1573 * class @tclass based on a SID pair (@ssid, @tsid).
1574 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1575 * if insufficient memory is available, or %0 if the new SID was
1576 * computed successfully.
1578 int security_transition_sid(u32 ssid
, u32 tsid
, u16 tclass
,
1579 const struct qstr
*qstr
, u32
*out_sid
)
1581 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1582 qstr
? qstr
->name
: NULL
, out_sid
, true);
1585 int security_transition_sid_user(u32 ssid
, u32 tsid
, u16 tclass
,
1586 const char *objname
, u32
*out_sid
)
1588 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1589 objname
, out_sid
, false);
1593 * security_member_sid - Compute the SID for member selection.
1594 * @ssid: source security identifier
1595 * @tsid: target security identifier
1596 * @tclass: target security class
1597 * @out_sid: security identifier for selected member
1599 * Compute a SID to use when selecting a member of a polyinstantiated
1600 * object of class @tclass based on a SID pair (@ssid, @tsid).
1601 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1602 * if insufficient memory is available, or %0 if the SID was
1603 * computed successfully.
1605 int security_member_sid(u32 ssid
,
1610 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, NULL
,
1615 * security_change_sid - Compute the SID for object relabeling.
1616 * @ssid: source security identifier
1617 * @tsid: target security identifier
1618 * @tclass: target security class
1619 * @out_sid: security identifier for selected member
1621 * Compute a SID to use for relabeling an object of class @tclass
1622 * based on a SID pair (@ssid, @tsid).
1623 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1624 * if insufficient memory is available, or %0 if the SID was
1625 * computed successfully.
1627 int security_change_sid(u32 ssid
,
1632 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, NULL
,
1636 /* Clone the SID into the new SID table. */
1637 static int clone_sid(u32 sid
,
1638 struct context
*context
,
1641 struct sidtab
*s
= arg
;
1643 if (sid
> SECINITSID_NUM
)
1644 return sidtab_insert(s
, sid
, context
);
1649 static inline int convert_context_handle_invalid_context(struct context
*context
)
1654 if (selinux_enforcing
)
1657 if (!context_struct_to_string(context
, &s
, &len
)) {
1658 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1664 struct convert_context_args
{
1665 struct policydb
*oldp
;
1666 struct policydb
*newp
;
1670 * Convert the values in the security context
1671 * structure `c' from the values specified
1672 * in the policy `p->oldp' to the values specified
1673 * in the policy `p->newp'. Verify that the
1674 * context is valid under the new policy.
1676 static int convert_context(u32 key
,
1680 struct convert_context_args
*args
;
1681 struct context oldc
;
1682 struct ocontext
*oc
;
1683 struct mls_range
*range
;
1684 struct role_datum
*role
;
1685 struct type_datum
*typdatum
;
1686 struct user_datum
*usrdatum
;
1691 if (key
<= SECINITSID_NUM
)
1700 s
= kstrdup(c
->str
, GFP_KERNEL
);
1704 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1705 c
->len
, &ctx
, SECSID_NULL
);
1708 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1710 /* Replace string with mapped representation. */
1712 memcpy(c
, &ctx
, sizeof(*c
));
1714 } else if (rc
== -EINVAL
) {
1715 /* Retain string representation for later mapping. */
1719 /* Other error condition, e.g. ENOMEM. */
1720 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1726 rc
= context_cpy(&oldc
, c
);
1730 /* Convert the user. */
1732 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1733 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1736 c
->user
= usrdatum
->value
;
1738 /* Convert the role. */
1740 role
= hashtab_search(args
->newp
->p_roles
.table
,
1741 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1744 c
->role
= role
->value
;
1746 /* Convert the type. */
1748 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1749 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1752 c
->type
= typdatum
->value
;
1754 /* Convert the MLS fields if dealing with MLS policies */
1755 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1756 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1759 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1761 * Switching between MLS and non-MLS policy:
1762 * free any storage used by the MLS fields in the
1763 * context for all existing entries in the sidtab.
1765 mls_context_destroy(c
);
1766 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1768 * Switching between non-MLS and MLS policy:
1769 * ensure that the MLS fields of the context for all
1770 * existing entries in the sidtab are filled in with a
1771 * suitable default value, likely taken from one of the
1774 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1775 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1779 printk(KERN_ERR
"SELinux: unable to look up"
1780 " the initial SIDs list\n");
1783 range
= &oc
->context
[0].range
;
1784 rc
= mls_range_set(c
, range
);
1789 /* Check the validity of the new context. */
1790 if (!policydb_context_isvalid(args
->newp
, c
)) {
1791 rc
= convert_context_handle_invalid_context(&oldc
);
1796 context_destroy(&oldc
);
1802 /* Map old representation to string and save it. */
1803 rc
= context_struct_to_string(&oldc
, &s
, &len
);
1806 context_destroy(&oldc
);
1810 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
1816 static void security_load_policycaps(void)
1818 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1819 POLICYDB_CAPABILITY_NETPEER
);
1820 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1821 POLICYDB_CAPABILITY_OPENPERM
);
1822 selinux_policycap_alwaysnetwork
= ebitmap_get_bit(&policydb
.policycaps
,
1823 POLICYDB_CAPABILITY_ALWAYSNETWORK
);
1826 static int security_preserve_bools(struct policydb
*p
);
1829 * security_load_policy - Load a security policy configuration.
1830 * @data: binary policy data
1831 * @len: length of data in bytes
1833 * Load a new set of security policy configuration data,
1834 * validate it and convert the SID table as necessary.
1835 * This function will flush the access vector cache after
1836 * loading the new policy.
1838 int security_load_policy(void *data
, size_t len
)
1840 struct policydb
*oldpolicydb
, *newpolicydb
;
1841 struct sidtab oldsidtab
, newsidtab
;
1842 struct selinux_mapping
*oldmap
, *map
= NULL
;
1843 struct convert_context_args args
;
1847 struct policy_file file
= { data
, len
}, *fp
= &file
;
1849 oldpolicydb
= kzalloc(2 * sizeof(*oldpolicydb
), GFP_KERNEL
);
1854 newpolicydb
= oldpolicydb
+ 1;
1856 if (!ss_initialized
) {
1858 rc
= policydb_read(&policydb
, fp
);
1860 avtab_cache_destroy();
1865 rc
= selinux_set_mapping(&policydb
, secclass_map
,
1867 ¤t_mapping_size
);
1869 policydb_destroy(&policydb
);
1870 avtab_cache_destroy();
1874 rc
= policydb_load_isids(&policydb
, &sidtab
);
1876 policydb_destroy(&policydb
);
1877 avtab_cache_destroy();
1881 security_load_policycaps();
1883 seqno
= ++latest_granting
;
1884 selinux_complete_init();
1885 avc_ss_reset(seqno
);
1886 selnl_notify_policyload(seqno
);
1887 selinux_status_update_policyload(seqno
);
1888 selinux_netlbl_cache_invalidate();
1889 selinux_xfrm_notify_policyload();
1894 sidtab_hash_eval(&sidtab
, "sids");
1897 rc
= policydb_read(newpolicydb
, fp
);
1901 newpolicydb
->len
= len
;
1902 /* If switching between different policy types, log MLS status */
1903 if (policydb
.mls_enabled
&& !newpolicydb
->mls_enabled
)
1904 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
1905 else if (!policydb
.mls_enabled
&& newpolicydb
->mls_enabled
)
1906 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
1908 rc
= policydb_load_isids(newpolicydb
, &newsidtab
);
1910 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
1911 policydb_destroy(newpolicydb
);
1915 rc
= selinux_set_mapping(newpolicydb
, secclass_map
, &map
, &map_size
);
1919 rc
= security_preserve_bools(newpolicydb
);
1921 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
1925 /* Clone the SID table. */
1926 sidtab_shutdown(&sidtab
);
1928 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
1933 * Convert the internal representations of contexts
1934 * in the new SID table.
1936 args
.oldp
= &policydb
;
1937 args
.newp
= newpolicydb
;
1938 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
1940 printk(KERN_ERR
"SELinux: unable to convert the internal"
1941 " representation of contexts in the new SID"
1946 /* Save the old policydb and SID table to free later. */
1947 memcpy(oldpolicydb
, &policydb
, sizeof(policydb
));
1948 sidtab_set(&oldsidtab
, &sidtab
);
1950 /* Install the new policydb and SID table. */
1951 write_lock_irq(&policy_rwlock
);
1952 memcpy(&policydb
, newpolicydb
, sizeof(policydb
));
1953 sidtab_set(&sidtab
, &newsidtab
);
1954 security_load_policycaps();
1955 oldmap
= current_mapping
;
1956 current_mapping
= map
;
1957 current_mapping_size
= map_size
;
1958 seqno
= ++latest_granting
;
1959 write_unlock_irq(&policy_rwlock
);
1961 /* Free the old policydb and SID table. */
1962 policydb_destroy(oldpolicydb
);
1963 sidtab_destroy(&oldsidtab
);
1966 avc_ss_reset(seqno
);
1967 selnl_notify_policyload(seqno
);
1968 selinux_status_update_policyload(seqno
);
1969 selinux_netlbl_cache_invalidate();
1970 selinux_xfrm_notify_policyload();
1977 sidtab_destroy(&newsidtab
);
1978 policydb_destroy(newpolicydb
);
1985 size_t security_policydb_len(void)
1989 read_lock(&policy_rwlock
);
1991 read_unlock(&policy_rwlock
);
1997 * security_port_sid - Obtain the SID for a port.
1998 * @protocol: protocol number
1999 * @port: port number
2000 * @out_sid: security identifier
2002 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
2007 read_lock(&policy_rwlock
);
2009 c
= policydb
.ocontexts
[OCON_PORT
];
2011 if (c
->u
.port
.protocol
== protocol
&&
2012 c
->u
.port
.low_port
<= port
&&
2013 c
->u
.port
.high_port
>= port
)
2020 rc
= sidtab_context_to_sid(&sidtab
,
2026 *out_sid
= c
->sid
[0];
2028 *out_sid
= SECINITSID_PORT
;
2032 read_unlock(&policy_rwlock
);
2037 * security_netif_sid - Obtain the SID for a network interface.
2038 * @name: interface name
2039 * @if_sid: interface SID
2041 int security_netif_sid(char *name
, u32
*if_sid
)
2046 read_lock(&policy_rwlock
);
2048 c
= policydb
.ocontexts
[OCON_NETIF
];
2050 if (strcmp(name
, c
->u
.name
) == 0)
2056 if (!c
->sid
[0] || !c
->sid
[1]) {
2057 rc
= sidtab_context_to_sid(&sidtab
,
2062 rc
= sidtab_context_to_sid(&sidtab
,
2068 *if_sid
= c
->sid
[0];
2070 *if_sid
= SECINITSID_NETIF
;
2073 read_unlock(&policy_rwlock
);
2077 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
2081 for (i
= 0; i
< 4; i
++)
2082 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2091 * security_node_sid - Obtain the SID for a node (host).
2092 * @domain: communication domain aka address family
2094 * @addrlen: address length in bytes
2095 * @out_sid: security identifier
2097 int security_node_sid(u16 domain
,
2105 read_lock(&policy_rwlock
);
2112 if (addrlen
!= sizeof(u32
))
2115 addr
= *((u32
*)addrp
);
2117 c
= policydb
.ocontexts
[OCON_NODE
];
2119 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2128 if (addrlen
!= sizeof(u64
) * 2)
2130 c
= policydb
.ocontexts
[OCON_NODE6
];
2132 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2141 *out_sid
= SECINITSID_NODE
;
2147 rc
= sidtab_context_to_sid(&sidtab
,
2153 *out_sid
= c
->sid
[0];
2155 *out_sid
= SECINITSID_NODE
;
2160 read_unlock(&policy_rwlock
);
2167 * security_get_user_sids - Obtain reachable SIDs for a user.
2168 * @fromsid: starting SID
2169 * @username: username
2170 * @sids: array of reachable SIDs for user
2171 * @nel: number of elements in @sids
2173 * Generate the set of SIDs for legal security contexts
2174 * for a given user that can be reached by @fromsid.
2175 * Set *@sids to point to a dynamically allocated
2176 * array containing the set of SIDs. Set *@nel to the
2177 * number of elements in the array.
2180 int security_get_user_sids(u32 fromsid
,
2185 struct context
*fromcon
, usercon
;
2186 u32
*mysids
= NULL
, *mysids2
, sid
;
2187 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2188 struct user_datum
*user
;
2189 struct role_datum
*role
;
2190 struct ebitmap_node
*rnode
, *tnode
;
2196 if (!ss_initialized
)
2199 read_lock(&policy_rwlock
);
2201 context_init(&usercon
);
2204 fromcon
= sidtab_search(&sidtab
, fromsid
);
2209 user
= hashtab_search(policydb
.p_users
.table
, username
);
2213 usercon
.user
= user
->value
;
2216 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2220 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2221 role
= policydb
.role_val_to_struct
[i
];
2222 usercon
.role
= i
+ 1;
2223 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2224 usercon
.type
= j
+ 1;
2226 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2229 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2232 if (mynel
< maxnel
) {
2233 mysids
[mynel
++] = sid
;
2237 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2240 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2243 mysids
[mynel
++] = sid
;
2249 read_unlock(&policy_rwlock
);
2256 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2261 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2262 struct av_decision dummy_avd
;
2263 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2264 SECCLASS_PROCESS
, /* kernel value */
2265 PROCESS__TRANSITION
, AVC_STRICT
,
2268 mysids2
[j
++] = mysids
[i
];
2280 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2281 * @fstype: filesystem type
2282 * @path: path from root of mount
2283 * @sclass: file security class
2284 * @sid: SID for path
2286 * Obtain a SID to use for a file in a filesystem that
2287 * cannot support xattr or use a fixed labeling behavior like
2288 * transition SIDs or task SIDs.
2290 * The caller must acquire the policy_rwlock before calling this function.
2292 static inline int __security_genfs_sid(const char *fstype
,
2299 struct genfs
*genfs
;
2303 while (path
[0] == '/' && path
[1] == '/')
2306 sclass
= unmap_class(orig_sclass
);
2307 *sid
= SECINITSID_UNLABELED
;
2309 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2310 cmp
= strcmp(fstype
, genfs
->fstype
);
2319 for (c
= genfs
->head
; c
; c
= c
->next
) {
2320 len
= strlen(c
->u
.name
);
2321 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2322 (strncmp(c
->u
.name
, path
, len
) == 0))
2331 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2343 * security_genfs_sid - Obtain a SID for a file in a filesystem
2344 * @fstype: filesystem type
2345 * @path: path from root of mount
2346 * @sclass: file security class
2347 * @sid: SID for path
2349 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2352 int security_genfs_sid(const char *fstype
,
2359 read_lock(&policy_rwlock
);
2360 retval
= __security_genfs_sid(fstype
, path
, orig_sclass
, sid
);
2361 read_unlock(&policy_rwlock
);
2366 * security_fs_use - Determine how to handle labeling for a filesystem.
2367 * @sb: superblock in question
2369 int security_fs_use(struct super_block
*sb
)
2373 struct superblock_security_struct
*sbsec
= sb
->s_security
;
2374 const char *fstype
= sb
->s_type
->name
;
2376 read_lock(&policy_rwlock
);
2378 c
= policydb
.ocontexts
[OCON_FSUSE
];
2380 if (strcmp(fstype
, c
->u
.name
) == 0)
2386 sbsec
->behavior
= c
->v
.behavior
;
2388 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2393 sbsec
->sid
= c
->sid
[0];
2395 rc
= __security_genfs_sid(fstype
, "/", SECCLASS_DIR
,
2398 sbsec
->behavior
= SECURITY_FS_USE_NONE
;
2401 sbsec
->behavior
= SECURITY_FS_USE_GENFS
;
2406 read_unlock(&policy_rwlock
);
2410 int security_get_bools(int *len
, char ***names
, int **values
)
2414 read_lock(&policy_rwlock
);
2419 *len
= policydb
.p_bools
.nprim
;
2424 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2429 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2433 for (i
= 0; i
< *len
; i
++) {
2436 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2437 name_len
= strlen(sym_name(&policydb
, SYM_BOOLS
, i
)) + 1;
2440 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
2444 strncpy((*names
)[i
], sym_name(&policydb
, SYM_BOOLS
, i
), name_len
);
2445 (*names
)[i
][name_len
- 1] = 0;
2449 read_unlock(&policy_rwlock
);
2453 for (i
= 0; i
< *len
; i
++)
2461 int security_set_bools(int len
, int *values
)
2464 int lenp
, seqno
= 0;
2465 struct cond_node
*cur
;
2467 write_lock_irq(&policy_rwlock
);
2470 lenp
= policydb
.p_bools
.nprim
;
2474 for (i
= 0; i
< len
; i
++) {
2475 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2476 audit_log(current
->audit_context
, GFP_ATOMIC
,
2477 AUDIT_MAC_CONFIG_CHANGE
,
2478 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2479 sym_name(&policydb
, SYM_BOOLS
, i
),
2481 policydb
.bool_val_to_struct
[i
]->state
,
2482 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
2483 audit_get_sessionid(current
));
2486 policydb
.bool_val_to_struct
[i
]->state
= 1;
2488 policydb
.bool_val_to_struct
[i
]->state
= 0;
2491 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2492 rc
= evaluate_cond_node(&policydb
, cur
);
2497 seqno
= ++latest_granting
;
2500 write_unlock_irq(&policy_rwlock
);
2502 avc_ss_reset(seqno
);
2503 selnl_notify_policyload(seqno
);
2504 selinux_status_update_policyload(seqno
);
2505 selinux_xfrm_notify_policyload();
2510 int security_get_bool_value(int bool)
2515 read_lock(&policy_rwlock
);
2518 len
= policydb
.p_bools
.nprim
;
2522 rc
= policydb
.bool_val_to_struct
[bool]->state
;
2524 read_unlock(&policy_rwlock
);
2528 static int security_preserve_bools(struct policydb
*p
)
2530 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2531 char **bnames
= NULL
;
2532 struct cond_bool_datum
*booldatum
;
2533 struct cond_node
*cur
;
2535 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2538 for (i
= 0; i
< nbools
; i
++) {
2539 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2541 booldatum
->state
= bvalues
[i
];
2543 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2544 rc
= evaluate_cond_node(p
, cur
);
2551 for (i
= 0; i
< nbools
; i
++)
2560 * security_sid_mls_copy() - computes a new sid based on the given
2561 * sid and the mls portion of mls_sid.
2563 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2565 struct context
*context1
;
2566 struct context
*context2
;
2567 struct context newcon
;
2573 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2578 context_init(&newcon
);
2580 read_lock(&policy_rwlock
);
2583 context1
= sidtab_search(&sidtab
, sid
);
2585 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2591 context2
= sidtab_search(&sidtab
, mls_sid
);
2593 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2598 newcon
.user
= context1
->user
;
2599 newcon
.role
= context1
->role
;
2600 newcon
.type
= context1
->type
;
2601 rc
= mls_context_cpy(&newcon
, context2
);
2605 /* Check the validity of the new context. */
2606 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2607 rc
= convert_context_handle_invalid_context(&newcon
);
2609 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2610 audit_log(current
->audit_context
,
2611 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2612 "op=security_sid_mls_copy "
2613 "invalid_context=%s", s
);
2620 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2622 read_unlock(&policy_rwlock
);
2623 context_destroy(&newcon
);
2629 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2630 * @nlbl_sid: NetLabel SID
2631 * @nlbl_type: NetLabel labeling protocol type
2632 * @xfrm_sid: XFRM SID
2635 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2636 * resolved into a single SID it is returned via @peer_sid and the function
2637 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2638 * returns a negative value. A table summarizing the behavior is below:
2640 * | function return | @sid
2641 * ------------------------------+-----------------+-----------------
2642 * no peer labels | 0 | SECSID_NULL
2643 * single peer label | 0 | <peer_label>
2644 * multiple, consistent labels | 0 | <peer_label>
2645 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2648 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2653 struct context
*nlbl_ctx
;
2654 struct context
*xfrm_ctx
;
2656 *peer_sid
= SECSID_NULL
;
2658 /* handle the common (which also happens to be the set of easy) cases
2659 * right away, these two if statements catch everything involving a
2660 * single or absent peer SID/label */
2661 if (xfrm_sid
== SECSID_NULL
) {
2662 *peer_sid
= nlbl_sid
;
2665 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2666 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2668 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2669 *peer_sid
= xfrm_sid
;
2673 /* we don't need to check ss_initialized here since the only way both
2674 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2675 * security server was initialized and ss_initialized was true */
2676 if (!policydb
.mls_enabled
)
2679 read_lock(&policy_rwlock
);
2682 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2684 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2685 __func__
, nlbl_sid
);
2689 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2691 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2692 __func__
, xfrm_sid
);
2695 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2699 /* at present NetLabel SIDs/labels really only carry MLS
2700 * information so if the MLS portion of the NetLabel SID
2701 * matches the MLS portion of the labeled XFRM SID/label
2702 * then pass along the XFRM SID as it is the most
2704 *peer_sid
= xfrm_sid
;
2706 read_unlock(&policy_rwlock
);
2710 static int get_classes_callback(void *k
, void *d
, void *args
)
2712 struct class_datum
*datum
= d
;
2713 char *name
= k
, **classes
= args
;
2714 int value
= datum
->value
- 1;
2716 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2717 if (!classes
[value
])
2723 int security_get_classes(char ***classes
, int *nclasses
)
2727 read_lock(&policy_rwlock
);
2730 *nclasses
= policydb
.p_classes
.nprim
;
2731 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
2735 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2739 for (i
= 0; i
< *nclasses
; i
++)
2740 kfree((*classes
)[i
]);
2745 read_unlock(&policy_rwlock
);
2749 static int get_permissions_callback(void *k
, void *d
, void *args
)
2751 struct perm_datum
*datum
= d
;
2752 char *name
= k
, **perms
= args
;
2753 int value
= datum
->value
- 1;
2755 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2762 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2765 struct class_datum
*match
;
2767 read_lock(&policy_rwlock
);
2770 match
= hashtab_search(policydb
.p_classes
.table
, class);
2772 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2778 *nperms
= match
->permissions
.nprim
;
2779 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
2783 if (match
->comdatum
) {
2784 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2785 get_permissions_callback
, *perms
);
2790 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2796 read_unlock(&policy_rwlock
);
2800 read_unlock(&policy_rwlock
);
2801 for (i
= 0; i
< *nperms
; i
++)
2807 int security_get_reject_unknown(void)
2809 return policydb
.reject_unknown
;
2812 int security_get_allow_unknown(void)
2814 return policydb
.allow_unknown
;
2818 * security_policycap_supported - Check for a specific policy capability
2819 * @req_cap: capability
2822 * This function queries the currently loaded policy to see if it supports the
2823 * capability specified by @req_cap. Returns true (1) if the capability is
2824 * supported, false (0) if it isn't supported.
2827 int security_policycap_supported(unsigned int req_cap
)
2831 read_lock(&policy_rwlock
);
2832 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2833 read_unlock(&policy_rwlock
);
2838 struct selinux_audit_rule
{
2840 struct context au_ctxt
;
2843 void selinux_audit_rule_free(void *vrule
)
2845 struct selinux_audit_rule
*rule
= vrule
;
2848 context_destroy(&rule
->au_ctxt
);
2853 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
2855 struct selinux_audit_rule
*tmprule
;
2856 struct role_datum
*roledatum
;
2857 struct type_datum
*typedatum
;
2858 struct user_datum
*userdatum
;
2859 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
2864 if (!ss_initialized
)
2868 case AUDIT_SUBJ_USER
:
2869 case AUDIT_SUBJ_ROLE
:
2870 case AUDIT_SUBJ_TYPE
:
2871 case AUDIT_OBJ_USER
:
2872 case AUDIT_OBJ_ROLE
:
2873 case AUDIT_OBJ_TYPE
:
2874 /* only 'equals' and 'not equals' fit user, role, and type */
2875 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
2878 case AUDIT_SUBJ_SEN
:
2879 case AUDIT_SUBJ_CLR
:
2880 case AUDIT_OBJ_LEV_LOW
:
2881 case AUDIT_OBJ_LEV_HIGH
:
2882 /* we do not allow a range, indicated by the presence of '-' */
2883 if (strchr(rulestr
, '-'))
2887 /* only the above fields are valid */
2891 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2895 context_init(&tmprule
->au_ctxt
);
2897 read_lock(&policy_rwlock
);
2899 tmprule
->au_seqno
= latest_granting
;
2902 case AUDIT_SUBJ_USER
:
2903 case AUDIT_OBJ_USER
:
2905 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2908 tmprule
->au_ctxt
.user
= userdatum
->value
;
2910 case AUDIT_SUBJ_ROLE
:
2911 case AUDIT_OBJ_ROLE
:
2913 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2916 tmprule
->au_ctxt
.role
= roledatum
->value
;
2918 case AUDIT_SUBJ_TYPE
:
2919 case AUDIT_OBJ_TYPE
:
2921 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2924 tmprule
->au_ctxt
.type
= typedatum
->value
;
2926 case AUDIT_SUBJ_SEN
:
2927 case AUDIT_SUBJ_CLR
:
2928 case AUDIT_OBJ_LEV_LOW
:
2929 case AUDIT_OBJ_LEV_HIGH
:
2930 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2937 read_unlock(&policy_rwlock
);
2940 selinux_audit_rule_free(tmprule
);
2949 /* Check to see if the rule contains any selinux fields */
2950 int selinux_audit_rule_known(struct audit_krule
*rule
)
2954 for (i
= 0; i
< rule
->field_count
; i
++) {
2955 struct audit_field
*f
= &rule
->fields
[i
];
2957 case AUDIT_SUBJ_USER
:
2958 case AUDIT_SUBJ_ROLE
:
2959 case AUDIT_SUBJ_TYPE
:
2960 case AUDIT_SUBJ_SEN
:
2961 case AUDIT_SUBJ_CLR
:
2962 case AUDIT_OBJ_USER
:
2963 case AUDIT_OBJ_ROLE
:
2964 case AUDIT_OBJ_TYPE
:
2965 case AUDIT_OBJ_LEV_LOW
:
2966 case AUDIT_OBJ_LEV_HIGH
:
2974 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
2975 struct audit_context
*actx
)
2977 struct context
*ctxt
;
2978 struct mls_level
*level
;
2979 struct selinux_audit_rule
*rule
= vrule
;
2982 if (unlikely(!rule
)) {
2983 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
2987 read_lock(&policy_rwlock
);
2989 if (rule
->au_seqno
< latest_granting
) {
2994 ctxt
= sidtab_search(&sidtab
, sid
);
2995 if (unlikely(!ctxt
)) {
2996 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3002 /* a field/op pair that is not caught here will simply fall through
3005 case AUDIT_SUBJ_USER
:
3006 case AUDIT_OBJ_USER
:
3009 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
3011 case Audit_not_equal
:
3012 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
3016 case AUDIT_SUBJ_ROLE
:
3017 case AUDIT_OBJ_ROLE
:
3020 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
3022 case Audit_not_equal
:
3023 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
3027 case AUDIT_SUBJ_TYPE
:
3028 case AUDIT_OBJ_TYPE
:
3031 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
3033 case Audit_not_equal
:
3034 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
3038 case AUDIT_SUBJ_SEN
:
3039 case AUDIT_SUBJ_CLR
:
3040 case AUDIT_OBJ_LEV_LOW
:
3041 case AUDIT_OBJ_LEV_HIGH
:
3042 level
= ((field
== AUDIT_SUBJ_SEN
||
3043 field
== AUDIT_OBJ_LEV_LOW
) ?
3044 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
3047 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3050 case Audit_not_equal
:
3051 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3055 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3057 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3061 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3065 match
= (mls_level_dom(level
,
3066 &rule
->au_ctxt
.range
.level
[0]) &&
3067 !mls_level_eq(level
,
3068 &rule
->au_ctxt
.range
.level
[0]));
3071 match
= mls_level_dom(level
,
3072 &rule
->au_ctxt
.range
.level
[0]);
3078 read_unlock(&policy_rwlock
);
3082 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
3084 static int aurule_avc_callback(u32 event
)
3088 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
3089 err
= aurule_callback();
3093 static int __init
aurule_init(void)
3097 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
);
3099 panic("avc_add_callback() failed, error %d\n", err
);
3103 __initcall(aurule_init
);
3105 #ifdef CONFIG_NETLABEL
3107 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3108 * @secattr: the NetLabel packet security attributes
3109 * @sid: the SELinux SID
3112 * Attempt to cache the context in @ctx, which was derived from the packet in
3113 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3114 * already been initialized.
3117 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3122 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3123 if (sid_cache
== NULL
)
3125 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3126 if (secattr
->cache
== NULL
) {
3132 secattr
->cache
->free
= kfree
;
3133 secattr
->cache
->data
= sid_cache
;
3134 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3138 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3139 * @secattr: the NetLabel packet security attributes
3140 * @sid: the SELinux SID
3143 * Convert the given NetLabel security attributes in @secattr into a
3144 * SELinux SID. If the @secattr field does not contain a full SELinux
3145 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3146 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3147 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3148 * conversion for future lookups. Returns zero on success, negative values on
3152 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3156 struct context
*ctx
;
3157 struct context ctx_new
;
3159 if (!ss_initialized
) {
3164 read_lock(&policy_rwlock
);
3166 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3167 *sid
= *(u32
*)secattr
->cache
->data
;
3168 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3169 *sid
= secattr
->attr
.secid
;
3170 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3172 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3176 context_init(&ctx_new
);
3177 ctx_new
.user
= ctx
->user
;
3178 ctx_new
.role
= ctx
->role
;
3179 ctx_new
.type
= ctx
->type
;
3180 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3181 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3182 rc
= ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
3183 secattr
->attr
.mls
.cat
);
3186 memcpy(&ctx_new
.range
.level
[1].cat
,
3187 &ctx_new
.range
.level
[0].cat
,
3188 sizeof(ctx_new
.range
.level
[0].cat
));
3191 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3194 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3198 security_netlbl_cache_add(secattr
, *sid
);
3200 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3204 read_unlock(&policy_rwlock
);
3207 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3209 read_unlock(&policy_rwlock
);
3214 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3215 * @sid: the SELinux SID
3216 * @secattr: the NetLabel packet security attributes
3219 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3220 * Returns zero on success, negative values on failure.
3223 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3226 struct context
*ctx
;
3228 if (!ss_initialized
)
3231 read_lock(&policy_rwlock
);
3234 ctx
= sidtab_search(&sidtab
, sid
);
3239 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3241 if (secattr
->domain
== NULL
)
3244 secattr
->attr
.secid
= sid
;
3245 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3246 mls_export_netlbl_lvl(ctx
, secattr
);
3247 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3249 read_unlock(&policy_rwlock
);
3252 #endif /* CONFIG_NETLABEL */
3255 * security_read_policy - read the policy.
3256 * @data: binary policy data
3257 * @len: length of data in bytes
3260 int security_read_policy(void **data
, size_t *len
)
3263 struct policy_file fp
;
3265 if (!ss_initialized
)
3268 *len
= security_policydb_len();
3270 *data
= vmalloc_user(*len
);
3277 read_lock(&policy_rwlock
);
3278 rc
= policydb_write(&policydb
, &fp
);
3279 read_unlock(&policy_rwlock
);
3284 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;