1 <?xml version=
"1.0" encoding=
"UTF-8"?>
2 <!DOCTYPE book PUBLIC
"-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []
>
5 <!-- ****************************************************** -->
7 <!-- ****************************************************** -->
8 <book id=
"Writing-an-ALSA-Driver">
10 <title>Writing an ALSA Driver
</title>
12 <firstname>Takashi
</firstname>
13 <surname>Iwai
</surname>
16 <email>tiwai@suse.de
</email>
21 <date>Oct
15,
2007</date>
22 <edition>0.3.7</edition>
26 This document describes how to write an ALSA (Advanced Linux
27 Sound Architecture) driver.
33 Copyright (c)
2002-
2005 Takashi Iwai
<email>tiwai@suse.de
</email>
37 This document is free; you can redistribute it and/or modify it
38 under the terms of the GNU General Public License as published by
39 the Free Software Foundation; either version
2 of the License, or
40 (at your option) any later version.
44 This document is distributed in the hope that it will be useful,
45 but
<emphasis>WITHOUT ANY WARRANTY
</emphasis>; without even the
46 implied warranty of
<emphasis>MERCHANTABILITY or FITNESS FOR A
47 PARTICULAR PURPOSE
</emphasis>. See the GNU General Public License
52 You should have received a copy of the GNU General Public
53 License along with this program; if not, write to the Free
54 Software Foundation, Inc.,
59 Temple Place, Suite
330, Boston,
61 <!-- ****************************************************** -->
63 <!-- ****************************************************** -->
64 <preface id=
"preface">
65 <title>Preface
</title>
67 This document describes how to write an
68 <ulink url=
"http://www.alsa-project.org/"><citetitle>
69 ALSA (Advanced Linux Sound Architecture)
</citetitle></ulink>
70 driver. The document focuses mainly on PCI soundcards.
71 In the case of other device types, the API might
72 be different, too. However, at least the ALSA kernel API is
73 consistent, and therefore it would be still a bit help for
78 This document targets people who already have enough
79 C language skills and have basic linux kernel programming
80 knowledge. This document doesn't explain the general
81 topic of linux kernel coding and doesn't cover low-level
82 driver implementation details. It only describes
83 the standard way to write a PCI sound driver on ALSA.
87 If you are already familiar with the older ALSA ver
.0.5.x API, you
88 can check the drivers such as
<filename>sound/pci/es1938.c
</filename> or
89 <filename>sound/pci/maestro3.c
</filename> which have also almost the same
90 code-base in the ALSA
0.5.x tree, so you can compare the differences.
94 This document is still a draft version. Any feedback and
100 <!-- ****************************************************** -->
101 <!-- File Tree Structure -->
102 <!-- ****************************************************** -->
103 <chapter id=
"file-tree">
104 <title>File Tree Structure
</title>
106 <section id=
"file-tree-general">
107 <title>General
</title>
109 The ALSA drivers are provided in two ways.
113 One is the trees provided as a tarball or via cvs from the
114 ALSA's ftp site, and another is the
2.6 (or later) Linux kernel
115 tree. To synchronize both, the ALSA driver tree is split into
116 two different trees: alsa-kernel and alsa-driver. The former
117 contains purely the source code for the Linux
2.6 (or later)
118 tree. This tree is designed only for compilation on
2.6 or
119 later environment. The latter, alsa-driver, contains many subtle
120 files for compiling ALSA drivers outside of the Linux kernel tree,
121 wrapper functions for older
2.2 and
2.4 kernels, to adapt the latest kernel API,
122 and additional drivers which are still in development or in
123 tests. The drivers in alsa-driver tree will be moved to
124 alsa-kernel (and eventually to the
2.6 kernel tree) when they are
125 finished and confirmed to work fine.
129 The file tree structure of ALSA driver is depicted below. Both
130 alsa-kernel and alsa-driver have almost the same file
131 structure, except for
<quote>core
</quote> directory. It's
132 named as
<quote>acore
</quote> in alsa-driver tree.
135 <title>ALSA File Tree Structure
</title>
167 <section id=
"file-tree-core-directory">
168 <title>core directory
</title>
170 This directory contains the middle layer which is the heart
171 of ALSA drivers. In this directory, the native ALSA modules are
172 stored. The sub-directories contain different modules and are
173 dependent upon the kernel config.
176 <section id=
"file-tree-core-directory-oss">
177 <title>core/oss
</title>
180 The codes for PCM and mixer OSS emulation modules are stored
181 in this directory. The rawmidi OSS emulation is included in
182 the ALSA rawmidi code since it's quite small. The sequencer
183 code is stored in
<filename>core/seq/oss
</filename> directory (see
184 <link linkend=
"file-tree-core-directory-seq-oss"><citetitle>
185 below
</citetitle></link>).
189 <section id=
"file-tree-core-directory-ioctl32">
190 <title>core/ioctl32
</title>
193 This directory contains the
32bit-ioctl wrappers for
64bit
194 architectures such like x86-
64, ppc64 and sparc64. For
32bit
195 and alpha architectures, these are not compiled.
199 <section id=
"file-tree-core-directory-seq">
200 <title>core/seq
</title>
202 This directory and its sub-directories are for the ALSA
203 sequencer. This directory contains the sequencer core and
204 primary sequencer modules such like snd-seq-midi,
205 snd-seq-virmidi, etc. They are compiled only when
206 <constant>CONFIG_SND_SEQUENCER
</constant> is set in the kernel
211 <section id=
"file-tree-core-directory-seq-oss">
212 <title>core/seq/oss
</title>
214 This contains the OSS sequencer emulation codes.
218 <section id=
"file-tree-core-directory-deq-instr">
219 <title>core/seq/instr
</title>
221 This directory contains the modules for the sequencer
227 <section id=
"file-tree-include-directory">
228 <title>include directory
</title>
230 This is the place for the public header files of ALSA drivers,
231 which are to be exported to user-space, or included by
232 several files at different directories. Basically, the private
233 header files should not be placed in this directory, but you may
234 still find files there, due to historical reasons :)
238 <section id=
"file-tree-drivers-directory">
239 <title>drivers directory
</title>
241 This directory contains code shared among different drivers
242 on different architectures. They are hence supposed not to be
243 architecture-specific.
244 For example, the dummy pcm driver and the serial MIDI
245 driver are found in this directory. In the sub-directories,
246 there is code for components which are independent from
247 bus and cpu architectures.
250 <section id=
"file-tree-drivers-directory-mpu401">
251 <title>drivers/mpu401
</title>
253 The MPU401 and MPU401-UART modules are stored here.
257 <section id=
"file-tree-drivers-directory-opl3">
258 <title>drivers/opl3 and opl4
</title>
260 The OPL3 and OPL4 FM-synth stuff is found here.
265 <section id=
"file-tree-i2c-directory">
266 <title>i2c directory
</title>
268 This contains the ALSA i2c components.
272 Although there is a standard i2c layer on Linux, ALSA has its
273 own i2c code for some cards, because the soundcard needs only a
274 simple operation and the standard i2c API is too complicated for
278 <section id=
"file-tree-i2c-directory-l3">
279 <title>i2c/l3
</title>
281 This is a sub-directory for ARM L3 i2c.
286 <section id=
"file-tree-synth-directory">
287 <title>synth directory
</title>
289 This contains the synth middle-level modules.
293 So far, there is only Emu8000/Emu10k1 synth driver under
294 the
<filename>synth/emux
</filename> sub-directory.
298 <section id=
"file-tree-pci-directory">
299 <title>pci directory
</title>
301 This directory and its sub-directories hold the top-level card modules
302 for PCI soundcards and the code specific to the PCI BUS.
306 The drivers compiled from a single file are stored directly
307 in the pci directory, while the drivers with several source files are
308 stored on their own sub-directory (e.g. emu10k1, ice1712).
312 <section id=
"file-tree-isa-directory">
313 <title>isa directory
</title>
315 This directory and its sub-directories hold the top-level card modules
320 <section id=
"file-tree-arm-ppc-sparc-directories">
321 <title>arm, ppc, and sparc directories
</title>
323 They are used for top-level card modules which are
324 specific to one of these architectures.
328 <section id=
"file-tree-usb-directory">
329 <title>usb directory
</title>
331 This directory contains the USB-audio driver. In the latest version, the
332 USB MIDI driver is integrated in the usb-audio driver.
336 <section id=
"file-tree-pcmcia-directory">
337 <title>pcmcia directory
</title>
339 The PCMCIA, especially PCCard drivers will go here. CardBus
340 drivers will be in the pci directory, because their API is identical
341 to that of standard PCI cards.
345 <section id=
"file-tree-oss-directory">
346 <title>oss directory
</title>
348 The OSS/Lite source files are stored here in Linux
2.6 (or
349 later) tree. In the ALSA driver tarball, this directory is empty,
356 <!-- ****************************************************** -->
357 <!-- Basic Flow for PCI Drivers -->
358 <!-- ****************************************************** -->
359 <chapter id=
"basic-flow">
360 <title>Basic Flow for PCI Drivers
</title>
362 <section id=
"basic-flow-outline">
363 <title>Outline
</title>
365 The minimum flow for PCI soundcards is as follows:
368 <listitem><para>define the PCI ID table (see the section
369 <link linkend=
"pci-resource-entries"><citetitle>PCI Entries
370 </citetitle></link>).
</para></listitem>
371 <listitem><para>create
<function>probe()
</function> callback.
</para></listitem>
372 <listitem><para>create
<function>remove()
</function> callback.
</para></listitem>
373 <listitem><para>create a
<structname>pci_driver
</structname> structure
374 containing the three pointers above.
</para></listitem>
375 <listitem><para>create an
<function>init()
</function> function just calling
376 the
<function>pci_register_driver()
</function> to register the pci_driver table
377 defined above.
</para></listitem>
378 <listitem><para>create an
<function>exit()
</function> function to call
379 the
<function>pci_unregister_driver()
</function> function.
</para></listitem>
384 <section id=
"basic-flow-example">
385 <title>Full Code Example
</title>
387 The code example is shown below. Some parts are kept
388 unimplemented at this moment but will be filled in the
389 next sections. The numbers in the comment lines of the
390 <function>snd_mychip_probe()
</function> function
391 refer to details explained in the following section.
394 <title>Basic Flow for PCI Drivers - Example
</title>
397 #include
<linux/init.h
>
398 #include
<linux/pci.h
>
399 #include
<linux/slab.h
>
400 #include
<sound/core.h
>
401 #include
<sound/initval.h
>
403 /* module parameters (see
"Module Parameters") */
404 /* SNDRV_CARDS: maximum number of cards supported by this module */
405 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
406 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
407 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
409 /* definition of the chip-specific record */
411 struct snd_card *card;
412 /* the rest of the implementation will be in section
413 *
"PCI Resource Management"
417 /* chip-specific destructor
418 * (see
"PCI Resource Management")
420 static int snd_mychip_free(struct mychip *chip)
422 .... /* will be implemented later... */
425 /* component-destructor
426 * (see
"Management of Cards and Components")
428 static int snd_mychip_dev_free(struct snd_device *device)
430 return snd_mychip_free(device-
>device_data);
433 /* chip-specific constructor
434 * (see
"Management of Cards and Components")
436 static int snd_mychip_create(struct snd_card *card,
438 struct mychip **rchip)
442 static struct snd_device_ops ops = {
443 .dev_free = snd_mychip_dev_free,
448 /* check PCI availability here
449 * (see
"PCI Resource Management")
453 /* allocate a chip-specific data with zero filled */
454 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
460 /* rest of initialization here; will be implemented
461 * later, see
"PCI Resource Management"
465 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
467 snd_mychip_free(chip);
471 snd_card_set_dev(card, &pci-
>dev);
477 /* constructor -- see
"Constructor" sub-section */
478 static int snd_mychip_probe(struct pci_dev *pci,
479 const struct pci_device_id *pci_id)
482 struct snd_card *card;
487 if (dev
>= SNDRV_CARDS)
495 err = snd_card_create(index[dev], id[dev], THIS_MODULE,
0, &card);
500 err = snd_mychip_create(card, pci, &chip);
507 strcpy(card-
>driver,
"My Chip");
508 strcpy(card-
>shortname,
"My Own Chip 123");
509 sprintf(card-
>longname,
"%s at 0x%lx irq %i",
510 card-
>shortname, chip-
>ioport, chip-
>irq);
513 .... /* implemented later */
516 err = snd_card_register(card);
523 pci_set_drvdata(pci, card);
528 /* destructor -- see the
"Destructor" sub-section */
529 static void snd_mychip_remove(struct pci_dev *pci)
531 snd_card_free(pci_get_drvdata(pci));
532 pci_set_drvdata(pci, NULL);
540 <section id=
"basic-flow-constructor">
541 <title>Constructor
</title>
543 The real constructor of PCI drivers is the
<function>probe
</function> callback.
544 The
<function>probe
</function> callback and other component-constructors which are called
545 from the
<function>probe
</function> callback cannot be used with
546 the
<parameter>__init
</parameter> prefix
547 because any PCI device could be a hotplug device.
551 In the
<function>probe
</function> callback, the following scheme is often used.
554 <section id=
"basic-flow-constructor-device-index">
555 <title>1) Check and increment the device index.
</title>
562 if (dev
>= SNDRV_CARDS)
572 where enable[dev] is the module option.
576 Each time the
<function>probe
</function> callback is called, check the
577 availability of the device. If not available, simply increment
578 the device index and returns. dev will be incremented also
580 linkend=
"basic-flow-constructor-set-pci"><citetitle>step
581 7</citetitle></link>).
585 <section id=
"basic-flow-constructor-create-card">
586 <title>2) Create a card instance
</title>
591 struct snd_card *card;
594 err = snd_card_create(index[dev], id[dev], THIS_MODULE,
0, &card);
601 The details will be explained in the section
602 <link linkend=
"card-management-card-instance"><citetitle>
603 Management of Cards and Components
</citetitle></link>.
607 <section id=
"basic-flow-constructor-create-main">
608 <title>3) Create a main component
</title>
610 In this part, the PCI resources are allocated.
617 err = snd_mychip_create(card, pci, &chip);
626 The details will be explained in the section
<link
627 linkend=
"pci-resource"><citetitle>PCI Resource
628 Management
</citetitle></link>.
632 <section id=
"basic-flow-constructor-main-component">
633 <title>4) Set the driver ID and name strings.
</title>
638 strcpy(card-
>driver,
"My Chip");
639 strcpy(card-
>shortname,
"My Own Chip 123");
640 sprintf(card-
>longname,
"%s at 0x%lx irq %i",
641 card-
>shortname, chip-
>ioport, chip-
>irq);
646 The driver field holds the minimal ID string of the
647 chip. This is used by alsa-lib's configurator, so keep it
649 Even the same driver can have different driver IDs to
650 distinguish the functionality of each chip type.
654 The shortname field is a string shown as more verbose
655 name. The longname field contains the information
656 shown in
<filename>/proc/asound/cards
</filename>.
660 <section id=
"basic-flow-constructor-create-other">
661 <title>5) Create other components, such as mixer, MIDI, etc.
</title>
663 Here you define the basic components such as
664 <link linkend=
"pcm-interface"><citetitle>PCM
</citetitle></link>,
665 mixer (e.g.
<link linkend=
"api-ac97"><citetitle>AC97
</citetitle></link>),
666 MIDI (e.g.
<link linkend=
"midi-interface"><citetitle>MPU-
401</citetitle></link>),
667 and other interfaces.
668 Also, if you want a
<link linkend=
"proc-interface"><citetitle>proc
669 file
</citetitle></link>, define it here, too.
673 <section id=
"basic-flow-constructor-register-card">
674 <title>6) Register the card instance.
</title>
679 err = snd_card_register(card);
690 Will be explained in the section
<link
691 linkend=
"card-management-registration"><citetitle>Management
692 of Cards and Components
</citetitle></link>, too.
696 <section id=
"basic-flow-constructor-set-pci">
697 <title>7) Set the PCI driver data and return zero.
</title>
702 pci_set_drvdata(pci, card);
709 In the above, the card record is stored. This pointer is
710 used in the remove callback and power-management
716 <section id=
"basic-flow-destructor">
717 <title>Destructor
</title>
719 The destructor, remove callback, simply releases the card
720 instance. Then the ALSA middle layer will release all the
721 attached components automatically.
725 It would be typically like the following:
730 static void snd_mychip_remove(struct pci_dev *pci)
732 snd_card_free(pci_get_drvdata(pci));
733 pci_set_drvdata(pci, NULL);
739 The above code assumes that the card pointer is set to the PCI
744 <section id=
"basic-flow-header-files">
745 <title>Header Files
</title>
747 For the above example, at least the following include files
753 #include
<linux/init.h
>
754 #include
<linux/pci.h
>
755 #include
<linux/slab.h
>
756 #include
<sound/core.h
>
757 #include
<sound/initval.h
>
762 where the last one is necessary only when module options are
763 defined in the source file. If the code is split into several
764 files, the files without module options don't need them.
768 In addition to these headers, you'll need
769 <filename><linux/interrupt.h
></filename> for interrupt
770 handling, and
<filename><asm/io.h
></filename> for I/O
771 access. If you use the
<function>mdelay()
</function> or
772 <function>udelay()
</function> functions, you'll need to include
773 <filename><linux/delay.h
></filename> too.
777 The ALSA interfaces like the PCM and control APIs are defined in other
778 <filename><sound/xxx.h
></filename> header files.
779 They have to be included after
780 <filename><sound/core.h
></filename>.
787 <!-- ****************************************************** -->
788 <!-- Management of Cards and Components -->
789 <!-- ****************************************************** -->
790 <chapter id=
"card-management">
791 <title>Management of Cards and Components
</title>
793 <section id=
"card-management-card-instance">
794 <title>Card Instance
</title>
796 For each soundcard, a
<quote>card
</quote> record must be allocated.
800 A card record is the headquarters of the soundcard. It manages
801 the whole list of devices (components) on the soundcard, such as
802 PCM, mixers, MIDI, synthesizer, and so on. Also, the card
803 record holds the ID and the name strings of the card, manages
804 the root of proc files, and controls the power-management states
805 and hotplug disconnections. The component list on the card
806 record is used to manage the correct release of resources at
811 As mentioned above, to create a card instance, call
812 <function>snd_card_create()
</function>.
817 struct snd_card *card;
819 err = snd_card_create(index, id, module, extra_size, &card);
826 The function takes five arguments, the card-index number, the
827 id string, the module pointer (usually
828 <constant>THIS_MODULE
</constant>),
829 the size of extra-data space, and the pointer to return the
830 card instance. The extra_size argument is used to
831 allocate card-
>private_data for the
832 chip-specific data. Note that these data
833 are allocated by
<function>snd_card_create()
</function>.
837 <section id=
"card-management-component">
838 <title>Components
</title>
840 After the card is created, you can attach the components
841 (devices) to the card instance. In an ALSA driver, a component is
842 represented as a struct
<structname>snd_device
</structname> object.
843 A component can be a PCM instance, a control interface, a raw
844 MIDI interface, etc. Each such instance has one component
849 A component can be created via
850 <function>snd_device_new()
</function> function.
855 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
862 This takes the card pointer, the device-level
863 (
<constant>SNDRV_DEV_XXX
</constant>), the data pointer, and the
864 callback pointers (
<parameter>&ops
</parameter>). The
865 device-level defines the type of components and the order of
866 registration and de-registration. For most components, the
867 device-level is already defined. For a user-defined component,
868 you can use
<constant>SNDRV_DEV_LOWLEVEL
</constant>.
872 This function itself doesn't allocate the data space. The data
873 must be allocated manually beforehand, and its pointer is passed
874 as the argument. This pointer (
<parameter>chip
</parameter> in the
875 above example) is used as the identifier for the instance.
879 Each pre-defined ALSA component such as ac97 and pcm calls
880 <function>snd_device_new()
</function> inside its
881 constructor. The destructor for each component is defined in the
882 callback pointers. Hence, you don't need to take care of
883 calling a destructor for such a component.
887 If you wish to create your own component, you need to
888 set the destructor function to the dev_free callback in
889 the
<parameter>ops
</parameter>, so that it can be released
890 automatically via
<function>snd_card_free()
</function>.
891 The next example will show an implementation of chip-specific
896 <section id=
"card-management-chip-specific">
897 <title>Chip-Specific Data
</title>
899 Chip-specific information, e.g. the I/O port address, its
900 resource pointer, or the irq number, is stored in the
901 chip-specific record.
915 In general, there are two ways of allocating the chip record.
918 <section id=
"card-management-chip-specific-snd-card-new">
919 <title>1. Allocating via
<function>snd_card_create()
</function>.
</title>
921 As mentioned above, you can pass the extra-data-length
922 to the
4th argument of
<function>snd_card_create()
</function>, i.e.
927 err = snd_card_create(index[dev], id[dev], THIS_MODULE,
928 sizeof(struct mychip), &card);
933 struct
<structname>mychip
</structname> is the type of the chip record.
937 In return, the allocated record can be accessed as
942 struct mychip *chip = card-
>private_data;
947 With this method, you don't have to allocate twice.
948 The record is released together with the card instance.
952 <section id=
"card-management-chip-specific-allocate-extra">
953 <title>2. Allocating an extra device.
</title>
956 After allocating a card instance via
957 <function>snd_card_create()
</function> (with
958 <constant>0</constant> on the
4th arg), call
959 <function>kzalloc()
</function>.
964 struct snd_card *card;
966 err = snd_card_create(index[dev], id[dev], THIS_MODULE,
0, &card);
968 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
975 The chip record should have the field to hold the card
982 struct snd_card *card;
991 Then, set the card pointer in the returned chip instance.
1003 Next, initialize the fields, and register this chip
1004 record as a low-level device with a specified
1005 <parameter>ops
</parameter>,
1010 static struct snd_device_ops ops = {
1011 .dev_free = snd_mychip_dev_free,
1014 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1019 <function>snd_mychip_dev_free()
</function> is the
1020 device-destructor function, which will call the real
1028 static int snd_mychip_dev_free(struct snd_device *device)
1030 return snd_mychip_free(device-
>device_data);
1036 where
<function>snd_mychip_free()
</function> is the real destructor.
1041 <section id=
"card-management-registration">
1042 <title>Registration and Release
</title>
1044 After all components are assigned, register the card instance
1045 by calling
<function>snd_card_register()
</function>. Access
1046 to the device files is enabled at this point. That is, before
1047 <function>snd_card_register()
</function> is called, the
1048 components are safely inaccessible from external side. If this
1049 call fails, exit the probe function after releasing the card via
1050 <function>snd_card_free()
</function>.
1054 For releasing the card instance, you can call simply
1055 <function>snd_card_free()
</function>. As mentioned earlier, all
1056 components are released automatically by this call.
1060 For a device which allows hotplugging, you can use
1061 <function>snd_card_free_when_closed
</function>. This one will
1062 postpone the destruction until all devices are closed.
1070 <!-- ****************************************************** -->
1071 <!-- PCI Resource Management -->
1072 <!-- ****************************************************** -->
1073 <chapter id=
"pci-resource">
1074 <title>PCI Resource Management
</title>
1076 <section id=
"pci-resource-example">
1077 <title>Full Code Example
</title>
1079 In this section, we'll complete the chip-specific constructor,
1080 destructor and PCI entries. Example code is shown first,
1084 <title>PCI Resource Management Example
</title>
1088 struct snd_card *card;
1089 struct pci_dev *pci;
1095 static int snd_mychip_free(struct mychip *chip)
1097 /* disable hardware here if any */
1098 .... /* (not implemented in this document) */
1100 /* release the irq */
1102 free_irq(chip-
>irq, chip);
1103 /* release the I/O ports & memory */
1104 pci_release_regions(chip-
>pci);
1105 /* disable the PCI entry */
1106 pci_disable_device(chip-
>pci);
1107 /* release the data */
1112 /* chip-specific constructor */
1113 static int snd_mychip_create(struct snd_card *card,
1114 struct pci_dev *pci,
1115 struct mychip **rchip)
1117 struct mychip *chip;
1119 static struct snd_device_ops ops = {
1120 .dev_free = snd_mychip_dev_free,
1125 /* initialize the PCI entry */
1126 err = pci_enable_device(pci);
1129 /* check PCI availability (
28bit DMA) */
1130 if (pci_set_dma_mask(pci, DMA_BIT_MASK(
28)) <
0 ||
1131 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(
28)) <
0) {
1132 printk(KERN_ERR
"error to set 28bit mask DMA\n");
1133 pci_disable_device(pci);
1137 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1139 pci_disable_device(pci);
1143 /* initialize the stuff */
1148 /* (
1) PCI resource allocation */
1149 err = pci_request_regions(pci,
"My Chip");
1152 pci_disable_device(pci);
1155 chip-
>port = pci_resource_start(pci,
0);
1156 if (request_irq(pci-
>irq, snd_mychip_interrupt,
1157 IRQF_SHARED, KBUILD_MODNAME, chip)) {
1158 printk(KERN_ERR
"cannot grab irq %d\n", pci-
>irq);
1159 snd_mychip_free(chip);
1162 chip-
>irq = pci-
>irq;
1164 /* (
2) initialization of the chip hardware */
1165 .... /* (not implemented in this document) */
1167 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1169 snd_mychip_free(chip);
1173 snd_card_set_dev(card, &pci-
>dev);
1180 static struct pci_device_id snd_mychip_ids[] = {
1181 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1182 PCI_ANY_ID, PCI_ANY_ID,
0,
0,
0, },
1186 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1188 /* pci_driver definition */
1189 static struct pci_driver driver = {
1190 .name = KBUILD_MODNAME,
1191 .id_table = snd_mychip_ids,
1192 .probe = snd_mychip_probe,
1193 .remove = snd_mychip_remove,
1196 /* module initialization */
1197 static int __init alsa_card_mychip_init(void)
1199 return pci_register_driver(&driver);
1202 /* module clean up */
1203 static void __exit alsa_card_mychip_exit(void)
1205 pci_unregister_driver(&driver);
1208 module_init(alsa_card_mychip_init)
1209 module_exit(alsa_card_mychip_exit)
1211 EXPORT_NO_SYMBOLS; /* for old kernels only */
1218 <section id=
"pci-resource-some-haftas">
1219 <title>Some Hafta's
</title>
1221 The allocation of PCI resources is done in the
1222 <function>probe()
</function> function, and usually an extra
1223 <function>xxx_create()
</function> function is written for this
1228 In the case of PCI devices, you first have to call
1229 the
<function>pci_enable_device()
</function> function before
1230 allocating resources. Also, you need to set the proper PCI DMA
1231 mask to limit the accessed I/O range. In some cases, you might
1232 need to call
<function>pci_set_master()
</function> function,
1237 Suppose the
28bit mask, and the code to be added would be like:
1242 err = pci_enable_device(pci);
1245 if (pci_set_dma_mask(pci, DMA_BIT_MASK(
28)) <
0 ||
1246 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(
28)) <
0) {
1247 printk(KERN_ERR
"error to set 28bit mask DMA\n");
1248 pci_disable_device(pci);
1258 <section id=
"pci-resource-resource-allocation">
1259 <title>Resource Allocation
</title>
1261 The allocation of I/O ports and irqs is done via standard kernel
1262 functions. Unlike ALSA ver
.0.5.x., there are no helpers for
1263 that. And these resources must be released in the destructor
1264 function (see below). Also, on ALSA
0.9.x, you don't need to
1265 allocate (pseudo-)DMA for PCI like in ALSA
0.5.x.
1269 Now assume that the PCI device has an I/O port with
8 bytes
1270 and an interrupt. Then struct
<structname>mychip
</structname> will have the
1277 struct snd_card *card;
1288 For an I/O port (and also a memory region), you need to have
1289 the resource pointer for the standard resource management. For
1290 an irq, you have to keep only the irq number (integer). But you
1291 need to initialize this number as -
1 before actual allocation,
1292 since irq
0 is valid. The port address and its resource pointer
1293 can be initialized as null by
1294 <function>kzalloc()
</function> automatically, so you
1295 don't have to take care of resetting them.
1299 The allocation of an I/O port is done like this:
1304 err = pci_request_regions(pci,
"My Chip");
1307 pci_disable_device(pci);
1310 chip-
>port = pci_resource_start(pci,
0);
1318 It will reserve the I/O port region of
8 bytes of the given
1319 PCI device. The returned value, chip-
>res_port, is allocated
1320 via
<function>kmalloc()
</function> by
1321 <function>request_region()
</function>. The pointer must be
1322 released via
<function>kfree()
</function>, but there is a
1323 problem with this. This issue will be explained later.
1327 The allocation of an interrupt source is done like this:
1332 if (request_irq(pci-
>irq, snd_mychip_interrupt,
1333 IRQF_SHARED, KBUILD_MODNAME, chip)) {
1334 printk(KERN_ERR
"cannot grab irq %d\n", pci-
>irq);
1335 snd_mychip_free(chip);
1338 chip-
>irq = pci-
>irq;
1343 where
<function>snd_mychip_interrupt()
</function> is the
1344 interrupt handler defined
<link
1345 linkend=
"pcm-interface-interrupt-handler"><citetitle>later
</citetitle></link>.
1346 Note that chip-
>irq should be defined
1347 only when
<function>request_irq()
</function> succeeded.
1351 On the PCI bus, interrupts can be shared. Thus,
1352 <constant>IRQF_SHARED
</constant> is used as the interrupt flag of
1353 <function>request_irq()
</function>.
1357 The last argument of
<function>request_irq()
</function> is the
1358 data pointer passed to the interrupt handler. Usually, the
1359 chip-specific record is used for that, but you can use what you
1364 I won't give details about the interrupt handler at this
1365 point, but at least its appearance can be explained now. The
1366 interrupt handler looks usually like the following:
1371 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
1373 struct mychip *chip = dev_id;
1383 Now let's write the corresponding destructor for the resources
1384 above. The role of destructor is simple: disable the hardware
1385 (if already activated) and release the resources. So far, we
1386 have no hardware part, so the disabling code is not written here.
1390 To release the resources, the
<quote>check-and-release
</quote>
1391 method is a safer way. For the interrupt, do like this:
1397 free_irq(chip-
>irq, chip);
1402 Since the irq number can start from
0, you should initialize
1403 chip-
>irq with a negative value (e.g. -
1), so that you can
1404 check the validity of the irq number as above.
1408 When you requested I/O ports or memory regions via
1409 <function>pci_request_region()
</function> or
1410 <function>pci_request_regions()
</function> like in this example,
1411 release the resource(s) using the corresponding function,
1412 <function>pci_release_region()
</function> or
1413 <function>pci_release_regions()
</function>.
1418 pci_release_regions(chip-
>pci);
1425 When you requested manually via
<function>request_region()
</function>
1426 or
<function>request_mem_region
</function>, you can release it via
1427 <function>release_resource()
</function>. Suppose that you keep
1428 the resource pointer returned from
<function>request_region()
</function>
1429 in chip-
>res_port, the release procedure looks like:
1434 release_and_free_resource(chip-
>res_port);
1441 Don't forget to call
<function>pci_disable_device()
</function>
1446 And finally, release the chip-specific record.
1458 We didn't implement the hardware disabling part in the above.
1459 If you need to do this, please note that the destructor may be
1460 called even before the initialization of the chip is completed.
1461 It would be better to have a flag to skip hardware disabling
1462 if the hardware was not initialized yet.
1466 When the chip-data is assigned to the card using
1467 <function>snd_device_new()
</function> with
1468 <constant>SNDRV_DEV_LOWLELVEL
</constant> , its destructor is
1469 called at the last. That is, it is assured that all other
1470 components like PCMs and controls have already been released.
1471 You don't have to stop PCMs, etc. explicitly, but just
1472 call low-level hardware stopping.
1476 The management of a memory-mapped region is almost as same as
1477 the management of an I/O port. You'll need three fields like
1485 unsigned long iobase_phys;
1486 void __iomem *iobase_virt;
1492 and the allocation would be like below:
1497 if ((err = pci_request_regions(pci,
"My Chip")) <
0) {
1501 chip-
>iobase_phys = pci_resource_start(pci,
0);
1502 chip-
>iobase_virt = ioremap_nocache(chip-
>iobase_phys,
1503 pci_resource_len(pci,
0));
1508 and the corresponding destructor would be:
1513 static int snd_mychip_free(struct mychip *chip)
1516 if (chip-
>iobase_virt)
1517 iounmap(chip-
>iobase_virt);
1519 pci_release_regions(chip-
>pci);
1529 <section id=
"pci-resource-device-struct">
1530 <title>Registration of Device Struct
</title>
1532 At some point, typically after calling
<function>snd_device_new()
</function>,
1533 you need to register the struct
<structname>device
</structname> of the chip
1534 you're handling for udev and co. ALSA provides a macro for compatibility with
1535 older kernels. Simply call like the following:
1539 snd_card_set_dev(card, &pci-
>dev);
1543 so that it stores the PCI's device pointer to the card. This will be
1544 referred by ALSA core functions later when the devices are registered.
1547 In the case of non-PCI, pass the proper device struct pointer of the BUS
1548 instead. (In the case of legacy ISA without PnP, you don't have to do
1553 <section id=
"pci-resource-entries">
1554 <title>PCI Entries
</title>
1556 So far, so good. Let's finish the missing PCI
1557 stuff. At first, we need a
1558 <structname>pci_device_id
</structname> table for this
1559 chipset. It's a table of PCI vendor/device ID number, and some
1569 static struct pci_device_id snd_mychip_ids[] = {
1570 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1571 PCI_ANY_ID, PCI_ANY_ID,
0,
0,
0, },
1575 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1582 The first and second fields of
1583 the
<structname>pci_device_id
</structname> structure are the vendor and
1584 device IDs. If you have no reason to filter the matching
1585 devices, you can leave the remaining fields as above. The last
1586 field of the
<structname>pci_device_id
</structname> struct contains
1587 private data for this entry. You can specify any value here, for
1588 example, to define specific operations for supported device IDs.
1589 Such an example is found in the intel8x0 driver.
1593 The last entry of this list is the terminator. You must
1594 specify this all-zero entry.
1598 Then, prepare the
<structname>pci_driver
</structname> record:
1603 static struct pci_driver driver = {
1604 .name = KBUILD_MODNAME,
1605 .id_table = snd_mychip_ids,
1606 .probe = snd_mychip_probe,
1607 .remove = snd_mychip_remove,
1615 The
<structfield>probe
</structfield> and
1616 <structfield>remove
</structfield> functions have already
1617 been defined in the previous sections.
1618 The
<structfield>name
</structfield>
1619 field is the name string of this device. Note that you must not
1620 use a slash
<quote>/
</quote> in this string.
1624 And at last, the module entries:
1629 static int __init alsa_card_mychip_init(void)
1631 return pci_register_driver(&driver);
1634 static void __exit alsa_card_mychip_exit(void)
1636 pci_unregister_driver(&driver);
1639 module_init(alsa_card_mychip_init)
1640 module_exit(alsa_card_mychip_exit)
1647 Note that these module entries are tagged with
1648 <parameter>__init
</parameter> and
1649 <parameter>__exit
</parameter> prefixes.
1653 Oh, one thing was forgotten. If you have no exported symbols,
1654 you need to declare it in
2.2 or
2.4 kernels (it's not necessary in
2.6 kernels).
1670 <!-- ****************************************************** -->
1671 <!-- PCM Interface -->
1672 <!-- ****************************************************** -->
1673 <chapter id=
"pcm-interface">
1674 <title>PCM Interface
</title>
1676 <section id=
"pcm-interface-general">
1677 <title>General
</title>
1679 The PCM middle layer of ALSA is quite powerful and it is only
1680 necessary for each driver to implement the low-level functions
1681 to access its hardware.
1685 For accessing to the PCM layer, you need to include
1686 <filename><sound/pcm.h
></filename> first. In addition,
1687 <filename><sound/pcm_params.h
></filename> might be needed
1688 if you access to some functions related with hw_param.
1692 Each card device can have up to four pcm instances. A pcm
1693 instance corresponds to a pcm device file. The limitation of
1694 number of instances comes only from the available bit size of
1695 the Linux's device numbers. Once when
64bit device number is
1696 used, we'll have more pcm instances available.
1700 A pcm instance consists of pcm playback and capture streams,
1701 and each pcm stream consists of one or more pcm substreams. Some
1702 soundcards support multiple playback functions. For example,
1703 emu10k1 has a PCM playback of
32 stereo substreams. In this case, at
1704 each open, a free substream is (usually) automatically chosen
1705 and opened. Meanwhile, when only one substream exists and it was
1706 already opened, the successful open will either block
1707 or error with
<constant>EAGAIN
</constant> according to the
1708 file open mode. But you don't have to care about such details in your
1709 driver. The PCM middle layer will take care of such work.
1713 <section id=
"pcm-interface-example">
1714 <title>Full Code Example
</title>
1716 The example code below does not include any hardware access
1717 routines but shows only the skeleton, how to build up the PCM
1721 <title>PCM Example Code
</title>
1724 #include
<sound/pcm.h
>
1727 /* hardware definition */
1728 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1729 .info = (SNDRV_PCM_INFO_MMAP |
1730 SNDRV_PCM_INFO_INTERLEAVED |
1731 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1732 SNDRV_PCM_INFO_MMAP_VALID),
1733 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1734 .rates = SNDRV_PCM_RATE_8000_48000,
1739 .buffer_bytes_max =
32768,
1740 .period_bytes_min =
4096,
1741 .period_bytes_max =
32768,
1743 .periods_max =
1024,
1746 /* hardware definition */
1747 static struct snd_pcm_hardware snd_mychip_capture_hw = {
1748 .info = (SNDRV_PCM_INFO_MMAP |
1749 SNDRV_PCM_INFO_INTERLEAVED |
1750 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1751 SNDRV_PCM_INFO_MMAP_VALID),
1752 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1753 .rates = SNDRV_PCM_RATE_8000_48000,
1758 .buffer_bytes_max =
32768,
1759 .period_bytes_min =
4096,
1760 .period_bytes_max =
32768,
1762 .periods_max =
1024,
1766 static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1768 struct mychip *chip = snd_pcm_substream_chip(substream);
1769 struct snd_pcm_runtime *runtime = substream-
>runtime;
1771 runtime-
>hw = snd_mychip_playback_hw;
1772 /* more hardware-initialization will be done here */
1777 /* close callback */
1778 static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1780 struct mychip *chip = snd_pcm_substream_chip(substream);
1781 /* the hardware-specific codes will be here */
1788 static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1790 struct mychip *chip = snd_pcm_substream_chip(substream);
1791 struct snd_pcm_runtime *runtime = substream-
>runtime;
1793 runtime-
>hw = snd_mychip_capture_hw;
1794 /* more hardware-initialization will be done here */
1799 /* close callback */
1800 static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1802 struct mychip *chip = snd_pcm_substream_chip(substream);
1803 /* the hardware-specific codes will be here */
1809 /* hw_params callback */
1810 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1811 struct snd_pcm_hw_params *hw_params)
1813 return snd_pcm_lib_malloc_pages(substream,
1814 params_buffer_bytes(hw_params));
1817 /* hw_free callback */
1818 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1820 return snd_pcm_lib_free_pages(substream);
1823 /* prepare callback */
1824 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1826 struct mychip *chip = snd_pcm_substream_chip(substream);
1827 struct snd_pcm_runtime *runtime = substream-
>runtime;
1829 /* set up the hardware with the current configuration
1832 mychip_set_sample_format(chip, runtime-
>format);
1833 mychip_set_sample_rate(chip, runtime-
>rate);
1834 mychip_set_channels(chip, runtime-
>channels);
1835 mychip_set_dma_setup(chip, runtime-
>dma_addr,
1841 /* trigger callback */
1842 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1846 case SNDRV_PCM_TRIGGER_START:
1847 /* do something to start the PCM engine */
1850 case SNDRV_PCM_TRIGGER_STOP:
1851 /* do something to stop the PCM engine */
1859 /* pointer callback */
1860 static snd_pcm_uframes_t
1861 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1863 struct mychip *chip = snd_pcm_substream_chip(substream);
1864 unsigned int current_ptr;
1866 /* get the current hardware pointer */
1867 current_ptr = mychip_get_hw_pointer(chip);
1872 static struct snd_pcm_ops snd_mychip_playback_ops = {
1873 .open = snd_mychip_playback_open,
1874 .close = snd_mychip_playback_close,
1875 .ioctl = snd_pcm_lib_ioctl,
1876 .hw_params = snd_mychip_pcm_hw_params,
1877 .hw_free = snd_mychip_pcm_hw_free,
1878 .prepare = snd_mychip_pcm_prepare,
1879 .trigger = snd_mychip_pcm_trigger,
1880 .pointer = snd_mychip_pcm_pointer,
1884 static struct snd_pcm_ops snd_mychip_capture_ops = {
1885 .open = snd_mychip_capture_open,
1886 .close = snd_mychip_capture_close,
1887 .ioctl = snd_pcm_lib_ioctl,
1888 .hw_params = snd_mychip_pcm_hw_params,
1889 .hw_free = snd_mychip_pcm_hw_free,
1890 .prepare = snd_mychip_pcm_prepare,
1891 .trigger = snd_mychip_pcm_trigger,
1892 .pointer = snd_mychip_pcm_pointer,
1896 * definitions of capture are omitted here...
1899 /* create a pcm device */
1900 static int snd_mychip_new_pcm(struct mychip *chip)
1902 struct snd_pcm *pcm;
1905 err = snd_pcm_new(chip-
>card,
"My Chip",
0,
1,
1, &pcm);
1908 pcm-
>private_data = chip;
1909 strcpy(pcm-
>name,
"My Chip");
1912 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1913 &snd_mychip_playback_ops);
1914 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1915 &snd_mychip_capture_ops);
1916 /* pre-allocation of buffers */
1917 /* NOTE: this may fail */
1918 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1919 snd_dma_pci_data(chip-
>pci),
1929 <section id=
"pcm-interface-constructor">
1930 <title>Constructor
</title>
1932 A pcm instance is allocated by the
<function>snd_pcm_new()
</function>
1933 function. It would be better to create a constructor for pcm,
1939 static int snd_mychip_new_pcm(struct mychip *chip)
1941 struct snd_pcm *pcm;
1944 err = snd_pcm_new(chip-
>card,
"My Chip",
0,
1,
1, &pcm);
1947 pcm-
>private_data = chip;
1948 strcpy(pcm-
>name,
"My Chip");
1959 The
<function>snd_pcm_new()
</function> function takes four
1960 arguments. The first argument is the card pointer to which this
1961 pcm is assigned, and the second is the ID string.
1965 The third argument (
<parameter>index
</parameter>,
0 in the
1966 above) is the index of this new pcm. It begins from zero. If
1967 you create more than one pcm instances, specify the
1968 different numbers in this argument. For example,
1969 <parameter>index
</parameter> =
1 for the second PCM device.
1973 The fourth and fifth arguments are the number of substreams
1974 for playback and capture, respectively. Here
1 is used for
1975 both arguments. When no playback or capture substreams are available,
1976 pass
0 to the corresponding argument.
1980 If a chip supports multiple playbacks or captures, you can
1981 specify more numbers, but they must be handled properly in
1982 open/close, etc. callbacks. When you need to know which
1983 substream you are referring to, then it can be obtained from
1984 struct
<structname>snd_pcm_substream
</structname> data passed to each callback
1990 struct snd_pcm_substream *substream;
1991 int index = substream-
>number;
1998 After the pcm is created, you need to set operators for each
2004 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
2005 &snd_mychip_playback_ops);
2006 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
2007 &snd_mychip_capture_ops);
2014 The operators are defined typically like this:
2019 static struct snd_pcm_ops snd_mychip_playback_ops = {
2020 .open = snd_mychip_pcm_open,
2021 .close = snd_mychip_pcm_close,
2022 .ioctl = snd_pcm_lib_ioctl,
2023 .hw_params = snd_mychip_pcm_hw_params,
2024 .hw_free = snd_mychip_pcm_hw_free,
2025 .prepare = snd_mychip_pcm_prepare,
2026 .trigger = snd_mychip_pcm_trigger,
2027 .pointer = snd_mychip_pcm_pointer,
2033 All the callbacks are described in the
2034 <link linkend=
"pcm-interface-operators"><citetitle>
2035 Operators
</citetitle></link> subsection.
2039 After setting the operators, you probably will want to
2040 pre-allocate the buffer. For the pre-allocation, simply call
2046 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2047 snd_dma_pci_data(chip-
>pci),
2053 It will allocate a buffer up to
64kB as default.
2054 Buffer management details will be described in the later section
<link
2055 linkend=
"buffer-and-memory"><citetitle>Buffer and Memory
2056 Management
</citetitle></link>.
2060 Additionally, you can set some extra information for this pcm
2061 in pcm-
>info_flags.
2062 The available values are defined as
2063 <constant>SNDRV_PCM_INFO_XXX
</constant> in
2064 <filename><sound/asound.h
></filename>, which is used for
2065 the hardware definition (described later). When your soundchip
2066 supports only half-duplex, specify like this:
2071 pcm-
>info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2078 <section id=
"pcm-interface-destructor">
2079 <title>... And the Destructor?
</title>
2081 The destructor for a pcm instance is not always
2082 necessary. Since the pcm device will be released by the middle
2083 layer code automatically, you don't have to call the destructor
2088 The destructor would be necessary if you created
2089 special records internally and needed to release them. In such a
2090 case, set the destructor function to
2091 pcm-
>private_free:
2094 <title>PCM Instance with a Destructor
</title>
2097 static void mychip_pcm_free(struct snd_pcm *pcm)
2099 struct mychip *chip = snd_pcm_chip(pcm);
2100 /* free your own data */
2101 kfree(chip-
>my_private_pcm_data);
2102 /* do what you like else */
2106 static int snd_mychip_new_pcm(struct mychip *chip)
2108 struct snd_pcm *pcm;
2110 /* allocate your own data */
2111 chip-
>my_private_pcm_data = kmalloc(...);
2112 /* set the destructor */
2113 pcm-
>private_data = chip;
2114 pcm-
>private_free = mychip_pcm_free;
2123 <section id=
"pcm-interface-runtime">
2124 <title>Runtime Pointer - The Chest of PCM Information
</title>
2126 When the PCM substream is opened, a PCM runtime instance is
2127 allocated and assigned to the substream. This pointer is
2128 accessible via
<constant>substream-
>runtime
</constant>.
2129 This runtime pointer holds most information you need
2130 to control the PCM: the copy of hw_params and sw_params configurations, the buffer
2131 pointers, mmap records, spinlocks, etc.
2135 The definition of runtime instance is found in
2136 <filename><sound/pcm.h
></filename>. Here are
2137 the contents of this file:
2141 struct _snd_pcm_runtime {
2143 struct snd_pcm_substream *trigger_master;
2144 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
2146 snd_pcm_uframes_t avail_max;
2147 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
2148 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2150 /* -- HW params -- */
2151 snd_pcm_access_t access; /* access mode */
2152 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
2153 snd_pcm_subformat_t subformat; /* subformat */
2154 unsigned int rate; /* rate in Hz */
2155 unsigned int channels; /* channels */
2156 snd_pcm_uframes_t period_size; /* period size */
2157 unsigned int periods; /* periods */
2158 snd_pcm_uframes_t buffer_size; /* buffer size */
2159 unsigned int tick_time; /* tick time */
2160 snd_pcm_uframes_t min_align; /* Min alignment for the format */
2162 unsigned int frame_bits;
2163 unsigned int sample_bits;
2165 unsigned int rate_num;
2166 unsigned int rate_den;
2168 /* -- SW params -- */
2169 struct timespec tstamp_mode; /* mmap timestamp is updated */
2170 unsigned int period_step;
2171 unsigned int sleep_min; /* min ticks to sleep */
2172 snd_pcm_uframes_t start_threshold;
2173 snd_pcm_uframes_t stop_threshold;
2174 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2175 noise is nearest than this */
2176 snd_pcm_uframes_t silence_size; /* Silence filling size */
2177 snd_pcm_uframes_t boundary; /* pointers wrap point */
2179 snd_pcm_uframes_t silenced_start;
2180 snd_pcm_uframes_t silenced_size;
2182 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
2185 volatile struct snd_pcm_mmap_status *status;
2186 volatile struct snd_pcm_mmap_control *control;
2187 atomic_t mmap_count;
2189 /* -- locking / scheduling -- */
2191 wait_queue_head_t sleep;
2192 struct timer_list tick_timer;
2193 struct fasync_struct *fasync;
2195 /* -- private section -- */
2197 void (*private_free)(struct snd_pcm_runtime *runtime);
2199 /* -- hardware description -- */
2200 struct snd_pcm_hardware hw;
2201 struct snd_pcm_hw_constraints hw_constraints;
2203 /* -- interrupt callbacks -- */
2204 void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
2205 void (*transfer_ack_end)(struct snd_pcm_substream *substream);
2208 unsigned int timer_resolution; /* timer resolution */
2211 unsigned char *dma_area; /* DMA area */
2212 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
2213 size_t dma_bytes; /* size of DMA area */
2215 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
2217 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2218 /* -- OSS things -- */
2219 struct snd_pcm_oss_runtime oss;
2228 For the operators (callbacks) of each sound driver, most of
2229 these records are supposed to be read-only. Only the PCM
2230 middle-layer changes / updates them. The exceptions are
2231 the hardware description (hw), interrupt callbacks
2232 (transfer_ack_xxx), DMA buffer information, and the private
2233 data. Besides, if you use the standard buffer allocation
2234 method via
<function>snd_pcm_lib_malloc_pages()
</function>,
2235 you don't need to set the DMA buffer information by yourself.
2239 In the sections below, important records are explained.
2242 <section id=
"pcm-interface-runtime-hw">
2243 <title>Hardware Description
</title>
2245 The hardware descriptor (struct
<structname>snd_pcm_hardware
</structname>)
2246 contains the definitions of the fundamental hardware
2247 configuration. Above all, you'll need to define this in
2248 <link linkend=
"pcm-interface-operators-open-callback"><citetitle>
2249 the open callback
</citetitle></link>.
2250 Note that the runtime instance holds the copy of the
2251 descriptor, not the pointer to the existing descriptor. That
2252 is, in the open callback, you can modify the copied descriptor
2253 (
<constant>runtime-
>hw
</constant>) as you need. For example, if the maximum
2254 number of channels is
1 only on some chip models, you can
2255 still use the same hardware descriptor and change the
2260 struct snd_pcm_runtime *runtime = substream-
>runtime;
2262 runtime-
>hw = snd_mychip_playback_hw; /* common definition */
2263 if (chip-
>model == VERY_OLD_ONE)
2264 runtime-
>hw.channels_max =
1;
2271 Typically, you'll have a hardware descriptor as below:
2275 static struct snd_pcm_hardware snd_mychip_playback_hw = {
2276 .info = (SNDRV_PCM_INFO_MMAP |
2277 SNDRV_PCM_INFO_INTERLEAVED |
2278 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2279 SNDRV_PCM_INFO_MMAP_VALID),
2280 .formats = SNDRV_PCM_FMTBIT_S16_LE,
2281 .rates = SNDRV_PCM_RATE_8000_48000,
2286 .buffer_bytes_max =
32768,
2287 .period_bytes_min =
4096,
2288 .period_bytes_max =
32768,
2290 .periods_max =
1024,
2300 The
<structfield>info
</structfield> field contains the type and
2301 capabilities of this pcm. The bit flags are defined in
2302 <filename><sound/asound.h
></filename> as
2303 <constant>SNDRV_PCM_INFO_XXX
</constant>. Here, at least, you
2304 have to specify whether the mmap is supported and which
2305 interleaved format is supported.
2306 When the hardware supports mmap, add the
2307 <constant>SNDRV_PCM_INFO_MMAP
</constant> flag here. When the
2308 hardware supports the interleaved or the non-interleaved
2309 formats,
<constant>SNDRV_PCM_INFO_INTERLEAVED
</constant> or
2310 <constant>SNDRV_PCM_INFO_NONINTERLEAVED
</constant> flag must
2311 be set, respectively. If both are supported, you can set both,
2316 In the above example,
<constant>MMAP_VALID
</constant> and
2317 <constant>BLOCK_TRANSFER
</constant> are specified for the OSS mmap
2318 mode. Usually both are set. Of course,
2319 <constant>MMAP_VALID
</constant> is set only if the mmap is
2324 The other possible flags are
2325 <constant>SNDRV_PCM_INFO_PAUSE
</constant> and
2326 <constant>SNDRV_PCM_INFO_RESUME
</constant>. The
2327 <constant>PAUSE
</constant> bit means that the pcm supports the
2328 <quote>pause
</quote> operation, while the
2329 <constant>RESUME
</constant> bit means that the pcm supports
2330 the full
<quote>suspend/resume
</quote> operation.
2331 If the
<constant>PAUSE
</constant> flag is set,
2332 the
<structfield>trigger
</structfield> callback below
2333 must handle the corresponding (pause push/release) commands.
2334 The suspend/resume trigger commands can be defined even without
2335 the
<constant>RESUME
</constant> flag. See
<link
2336 linkend=
"power-management"><citetitle>
2337 Power Management
</citetitle></link> section for details.
2341 When the PCM substreams can be synchronized (typically,
2342 synchronized start/stop of a playback and a capture streams),
2343 you can give
<constant>SNDRV_PCM_INFO_SYNC_START
</constant>,
2344 too. In this case, you'll need to check the linked-list of
2345 PCM substreams in the trigger callback. This will be
2346 described in the later section.
2352 <structfield>formats
</structfield> field contains the bit-flags
2353 of supported formats (
<constant>SNDRV_PCM_FMTBIT_XXX
</constant>).
2354 If the hardware supports more than one format, give all or'ed
2355 bits. In the example above, the signed
16bit little-endian
2356 format is specified.
2362 <structfield>rates
</structfield> field contains the bit-flags of
2363 supported rates (
<constant>SNDRV_PCM_RATE_XXX
</constant>).
2364 When the chip supports continuous rates, pass
2365 <constant>CONTINUOUS
</constant> bit additionally.
2366 The pre-defined rate bits are provided only for typical
2367 rates. If your chip supports unconventional rates, you need to add
2368 the
<constant>KNOT
</constant> bit and set up the hardware
2369 constraint manually (explained later).
2375 <structfield>rate_min
</structfield> and
2376 <structfield>rate_max
</structfield> define the minimum and
2377 maximum sample rate. This should correspond somehow to
2378 <structfield>rates
</structfield> bits.
2384 <structfield>channel_min
</structfield> and
2385 <structfield>channel_max
</structfield>
2386 define, as you might already expected, the minimum and maximum
2393 <structfield>buffer_bytes_max
</structfield> defines the
2394 maximum buffer size in bytes. There is no
2395 <structfield>buffer_bytes_min
</structfield> field, since
2396 it can be calculated from the minimum period size and the
2397 minimum number of periods.
2398 Meanwhile,
<structfield>period_bytes_min
</structfield> and
2399 define the minimum and maximum size of the period in bytes.
2400 <structfield>periods_max
</structfield> and
2401 <structfield>periods_min
</structfield> define the maximum and
2402 minimum number of periods in the buffer.
2406 The
<quote>period
</quote> is a term that corresponds to
2407 a fragment in the OSS world. The period defines the size at
2408 which a PCM interrupt is generated. This size strongly
2409 depends on the hardware.
2410 Generally, the smaller period size will give you more
2411 interrupts, that is, more controls.
2412 In the case of capture, this size defines the input latency.
2413 On the other hand, the whole buffer size defines the
2414 output latency for the playback direction.
2420 There is also a field
<structfield>fifo_size
</structfield>.
2421 This specifies the size of the hardware FIFO, but currently it
2422 is neither used in the driver nor in the alsa-lib. So, you
2423 can ignore this field.
2430 <section id=
"pcm-interface-runtime-config">
2431 <title>PCM Configurations
</title>
2433 Ok, let's go back again to the PCM runtime records.
2434 The most frequently referred records in the runtime instance are
2435 the PCM configurations.
2436 The PCM configurations are stored in the runtime instance
2437 after the application sends
<type>hw_params
</type> data via
2438 alsa-lib. There are many fields copied from hw_params and
2439 sw_params structs. For example,
2440 <structfield>format
</structfield> holds the format type
2441 chosen by the application. This field contains the enum value
2442 <constant>SNDRV_PCM_FORMAT_XXX
</constant>.
2446 One thing to be noted is that the configured buffer and period
2447 sizes are stored in
<quote>frames
</quote> in the runtime.
2448 In the ALSA world,
1 frame = channels * samples-size.
2449 For conversion between frames and bytes, you can use the
2450 <function>frames_to_bytes()
</function> and
2451 <function>bytes_to_frames()
</function> helper functions.
2455 period_bytes = frames_to_bytes(runtime, runtime-
>period_size);
2462 Also, many software parameters (sw_params) are
2463 stored in frames, too. Please check the type of the field.
2464 <type>snd_pcm_uframes_t
</type> is for the frames as unsigned
2465 integer while
<type>snd_pcm_sframes_t
</type> is for the frames
2470 <section id=
"pcm-interface-runtime-dma">
2471 <title>DMA Buffer Information
</title>
2473 The DMA buffer is defined by the following four fields,
2474 <structfield>dma_area
</structfield>,
2475 <structfield>dma_addr
</structfield>,
2476 <structfield>dma_bytes
</structfield> and
2477 <structfield>dma_private
</structfield>.
2478 The
<structfield>dma_area
</structfield> holds the buffer
2479 pointer (the logical address). You can call
2480 <function>memcpy
</function> from/to
2481 this pointer. Meanwhile,
<structfield>dma_addr
</structfield>
2482 holds the physical address of the buffer. This field is
2483 specified only when the buffer is a linear buffer.
2484 <structfield>dma_bytes
</structfield> holds the size of buffer
2485 in bytes.
<structfield>dma_private
</structfield> is used for
2486 the ALSA DMA allocator.
2490 If you use a standard ALSA function,
2491 <function>snd_pcm_lib_malloc_pages()
</function>, for
2492 allocating the buffer, these fields are set by the ALSA middle
2493 layer, and you should
<emphasis>not
</emphasis> change them by
2494 yourself. You can read them but not write them.
2495 On the other hand, if you want to allocate the buffer by
2496 yourself, you'll need to manage it in hw_params callback.
2497 At least,
<structfield>dma_bytes
</structfield> is mandatory.
2498 <structfield>dma_area
</structfield> is necessary when the
2499 buffer is mmapped. If your driver doesn't support mmap, this
2500 field is not necessary.
<structfield>dma_addr
</structfield>
2501 is also optional. You can use
2502 <structfield>dma_private
</structfield> as you like, too.
2506 <section id=
"pcm-interface-runtime-status">
2507 <title>Running Status
</title>
2509 The running status can be referred via
<constant>runtime-
>status
</constant>.
2510 This is the pointer to the struct
<structname>snd_pcm_mmap_status
</structname>
2511 record. For example, you can get the current DMA hardware
2512 pointer via
<constant>runtime-
>status-
>hw_ptr
</constant>.
2516 The DMA application pointer can be referred via
2517 <constant>runtime-
>control
</constant>, which points to the
2518 struct
<structname>snd_pcm_mmap_control
</structname> record.
2519 However, accessing directly to this value is not recommended.
2523 <section id=
"pcm-interface-runtime-private">
2524 <title>Private Data
</title>
2526 You can allocate a record for the substream and store it in
2527 <constant>runtime-
>private_data
</constant>. Usually, this
2529 <link linkend=
"pcm-interface-operators-open-callback"><citetitle>
2530 the open callback
</citetitle></link>.
2531 Don't mix this with
<constant>pcm-
>private_data
</constant>.
2532 The
<constant>pcm-
>private_data
</constant> usually points to the
2533 chip instance assigned statically at the creation of PCM, while the
2534 <constant>runtime-
>private_data
</constant> points to a dynamic
2535 data structure created at the PCM open callback.
2540 static int snd_xxx_open(struct snd_pcm_substream *substream)
2542 struct my_pcm_data *data;
2544 data = kmalloc(sizeof(*data), GFP_KERNEL);
2545 substream-
>runtime-
>private_data = data;
2554 The allocated object must be released in
2555 <link linkend=
"pcm-interface-operators-open-callback"><citetitle>
2556 the close callback
</citetitle></link>.
2560 <section id=
"pcm-interface-runtime-intr">
2561 <title>Interrupt Callbacks
</title>
2563 The field
<structfield>transfer_ack_begin
</structfield> and
2564 <structfield>transfer_ack_end
</structfield> are called at
2565 the beginning and at the end of
2566 <function>snd_pcm_period_elapsed()
</function>, respectively.
2572 <section id=
"pcm-interface-operators">
2573 <title>Operators
</title>
2575 OK, now let me give details about each pcm callback
2576 (
<parameter>ops
</parameter>). In general, every callback must
2577 return
0 if successful, or a negative error number
2578 such as
<constant>-EINVAL
</constant>. To choose an appropriate
2579 error number, it is advised to check what value other parts of
2580 the kernel return when the same kind of request fails.
2584 The callback function takes at least the argument with
2585 <structname>snd_pcm_substream
</structname> pointer. To retrieve
2586 the chip record from the given substream instance, you can use the
2593 struct mychip *chip = snd_pcm_substream_chip(substream);
2600 The macro reads
<constant>substream-
>private_data
</constant>,
2601 which is a copy of
<constant>pcm-
>private_data
</constant>.
2602 You can override the former if you need to assign different data
2603 records per PCM substream. For example, the cmi8330 driver assigns
2604 different private_data for playback and capture directions,
2605 because it uses two different codecs (SB- and AD-compatible) for
2606 different directions.
2609 <section id=
"pcm-interface-operators-open-callback">
2610 <title>open callback
</title>
2615 static int snd_xxx_open(struct snd_pcm_substream *substream);
2620 This is called when a pcm substream is opened.
2624 At least, here you have to initialize the runtime-
>hw
2625 record. Typically, this is done by like this:
2630 static int snd_xxx_open(struct snd_pcm_substream *substream)
2632 struct mychip *chip = snd_pcm_substream_chip(substream);
2633 struct snd_pcm_runtime *runtime = substream-
>runtime;
2635 runtime-
>hw = snd_mychip_playback_hw;
2642 where
<parameter>snd_mychip_playback_hw
</parameter> is the
2643 pre-defined hardware description.
2647 You can allocate a private data in this callback, as described
2648 in
<link linkend=
"pcm-interface-runtime-private"><citetitle>
2649 Private Data
</citetitle></link> section.
2653 If the hardware configuration needs more constraints, set the
2654 hardware constraints here, too.
2655 See
<link linkend=
"pcm-interface-constraints"><citetitle>
2656 Constraints
</citetitle></link> for more details.
2660 <section id=
"pcm-interface-operators-close-callback">
2661 <title>close callback
</title>
2666 static int snd_xxx_close(struct snd_pcm_substream *substream);
2671 Obviously, this is called when a pcm substream is closed.
2675 Any private instance for a pcm substream allocated in the
2676 open callback will be released here.
2681 static int snd_xxx_close(struct snd_pcm_substream *substream)
2684 kfree(substream-
>runtime-
>private_data);
2693 <section id=
"pcm-interface-operators-ioctl-callback">
2694 <title>ioctl callback
</title>
2696 This is used for any special call to pcm ioctls. But
2697 usually you can pass a generic ioctl callback,
2698 <function>snd_pcm_lib_ioctl
</function>.
2702 <section id=
"pcm-interface-operators-hw-params-callback">
2703 <title>hw_params callback
</title>
2708 static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2709 struct snd_pcm_hw_params *hw_params);
2716 This is called when the hardware parameter
2717 (
<structfield>hw_params
</structfield>) is set
2718 up by the application,
2719 that is, once when the buffer size, the period size, the
2720 format, etc. are defined for the pcm substream.
2724 Many hardware setups should be done in this callback,
2725 including the allocation of buffers.
2729 Parameters to be initialized are retrieved by
2730 <function>params_xxx()
</function> macros. To allocate
2731 buffer, you can call a helper function,
2736 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2741 <function>snd_pcm_lib_malloc_pages()
</function> is available
2742 only when the DMA buffers have been pre-allocated.
2743 See the section
<link
2744 linkend=
"buffer-and-memory-buffer-types"><citetitle>
2745 Buffer Types
</citetitle></link> for more details.
2749 Note that this and
<structfield>prepare
</structfield> callbacks
2750 may be called multiple times per initialization.
2751 For example, the OSS emulation may
2752 call these callbacks at each change via its ioctl.
2756 Thus, you need to be careful not to allocate the same buffers
2757 many times, which will lead to memory leaks! Calling the
2758 helper function above many times is OK. It will release the
2759 previous buffer automatically when it was already allocated.
2763 Another note is that this callback is non-atomic
2764 (schedulable). This is important, because the
2765 <structfield>trigger
</structfield> callback
2766 is atomic (non-schedulable). That is, mutexes or any
2767 schedule-related functions are not available in
2768 <structfield>trigger
</structfield> callback.
2769 Please see the subsection
2770 <link linkend=
"pcm-interface-atomicity"><citetitle>
2771 Atomicity
</citetitle></link> for details.
2775 <section id=
"pcm-interface-operators-hw-free-callback">
2776 <title>hw_free callback
</title>
2781 static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
2788 This is called to release the resources allocated via
2789 <structfield>hw_params
</structfield>. For example, releasing the
2791 <function>snd_pcm_lib_malloc_pages()
</function> is done by
2792 calling the following:
2797 snd_pcm_lib_free_pages(substream);
2804 This function is always called before the close callback is called.
2805 Also, the callback may be called multiple times, too.
2806 Keep track whether the resource was already released.
2810 <section id=
"pcm-interface-operators-prepare-callback">
2811 <title>prepare callback
</title>
2816 static int snd_xxx_prepare(struct snd_pcm_substream *substream);
2823 This callback is called when the pcm is
2824 <quote>prepared
</quote>. You can set the format type, sample
2825 rate, etc. here. The difference from
2826 <structfield>hw_params
</structfield> is that the
2827 <structfield>prepare
</structfield> callback will be called each
2829 <function>snd_pcm_prepare()
</function> is called, i.e. when
2830 recovering after underruns, etc.
2834 Note that this callback is now non-atomic.
2835 You can use schedule-related functions safely in this callback.
2839 In this and the following callbacks, you can refer to the
2840 values via the runtime record,
2841 substream-
>runtime.
2842 For example, to get the current
2843 rate, format or channels, access to
2845 runtime-
>format or
2846 runtime-
>channels, respectively.
2847 The physical address of the allocated buffer is set to
2848 runtime-
>dma_area. The buffer and period sizes are
2849 in runtime-
>buffer_size and runtime-
>period_size,
2854 Be careful that this callback will be called many times at
2859 <section id=
"pcm-interface-operators-trigger-callback">
2860 <title>trigger callback
</title>
2865 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
2870 This is called when the pcm is started, stopped or paused.
2874 Which action is specified in the second argument,
2875 <constant>SNDRV_PCM_TRIGGER_XXX
</constant> in
2876 <filename><sound/pcm.h
></filename>. At least,
2877 the
<constant>START
</constant> and
<constant>STOP
</constant>
2878 commands must be defined in this callback.
2884 case SNDRV_PCM_TRIGGER_START:
2885 /* do something to start the PCM engine */
2887 case SNDRV_PCM_TRIGGER_STOP:
2888 /* do something to stop the PCM engine */
2899 When the pcm supports the pause operation (given in the info
2900 field of the hardware table), the
<constant>PAUSE_PUSH
</constant>
2901 and
<constant>PAUSE_RELEASE
</constant> commands must be
2902 handled here, too. The former is the command to pause the pcm,
2903 and the latter to restart the pcm again.
2907 When the pcm supports the suspend/resume operation,
2908 regardless of full or partial suspend/resume support,
2909 the
<constant>SUSPEND
</constant> and
<constant>RESUME
</constant>
2910 commands must be handled, too.
2911 These commands are issued when the power-management status is
2912 changed. Obviously, the
<constant>SUSPEND
</constant> and
2913 <constant>RESUME
</constant> commands
2914 suspend and resume the pcm substream, and usually, they
2915 are identical to the
<constant>STOP
</constant> and
2916 <constant>START
</constant> commands, respectively.
2917 See the
<link linkend=
"power-management"><citetitle>
2918 Power Management
</citetitle></link> section for details.
2922 As mentioned, this callback is atomic. You cannot call
2923 functions which may sleep.
2924 The trigger callback should be as minimal as possible,
2925 just really triggering the DMA. The other stuff should be
2926 initialized hw_params and prepare callbacks properly
2931 <section id=
"pcm-interface-operators-pointer-callback">
2932 <title>pointer callback
</title>
2937 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
2942 This callback is called when the PCM middle layer inquires
2943 the current hardware position on the buffer. The position must
2944 be returned in frames,
2945 ranging from
0 to buffer_size -
1.
2949 This is called usually from the buffer-update routine in the
2950 pcm middle layer, which is invoked when
2951 <function>snd_pcm_period_elapsed()
</function> is called in the
2952 interrupt routine. Then the pcm middle layer updates the
2953 position and calculates the available space, and wakes up the
2954 sleeping poll threads, etc.
2958 This callback is also atomic.
2962 <section id=
"pcm-interface-operators-copy-silence">
2963 <title>copy and silence callbacks
</title>
2965 These callbacks are not mandatory, and can be omitted in
2966 most cases. These callbacks are used when the hardware buffer
2967 cannot be in the normal memory space. Some chips have their
2968 own buffer on the hardware which is not mappable. In such a
2969 case, you have to transfer the data manually from the memory
2970 buffer to the hardware buffer. Or, if the buffer is
2971 non-contiguous on both physical and virtual memory spaces,
2972 these callbacks must be defined, too.
2976 If these two callbacks are defined, copy and set-silence
2977 operations are done by them. The detailed will be described in
2978 the later section
<link
2979 linkend=
"buffer-and-memory"><citetitle>Buffer and Memory
2980 Management
</citetitle></link>.
2984 <section id=
"pcm-interface-operators-ack">
2985 <title>ack callback
</title>
2987 This callback is also not mandatory. This callback is called
2988 when the appl_ptr is updated in read or write operations.
2989 Some drivers like emu10k1-fx and cs46xx need to track the
2990 current appl_ptr for the internal buffer, and this callback
2991 is useful only for such a purpose.
2994 This callback is atomic.
2998 <section id=
"pcm-interface-operators-page-callback">
2999 <title>page callback
</title>
3002 This callback is optional too. This callback is used
3003 mainly for non-contiguous buffers. The mmap calls this
3004 callback to get the page address. Some examples will be
3005 explained in the later section
<link
3006 linkend=
"buffer-and-memory"><citetitle>Buffer and Memory
3007 Management
</citetitle></link>, too.
3012 <section id=
"pcm-interface-interrupt-handler">
3013 <title>Interrupt Handler
</title>
3015 The rest of pcm stuff is the PCM interrupt handler. The
3016 role of PCM interrupt handler in the sound driver is to update
3017 the buffer position and to tell the PCM middle layer when the
3018 buffer position goes across the prescribed period size. To
3019 inform this, call the
<function>snd_pcm_period_elapsed()
</function>
3024 There are several types of sound chips to generate the interrupts.
3027 <section id=
"pcm-interface-interrupt-handler-boundary">
3028 <title>Interrupts at the period (fragment) boundary
</title>
3030 This is the most frequently found type: the hardware
3031 generates an interrupt at each period boundary.
3032 In this case, you can call
3033 <function>snd_pcm_period_elapsed()
</function> at each
3038 <function>snd_pcm_period_elapsed()
</function> takes the
3039 substream pointer as its argument. Thus, you need to keep the
3040 substream pointer accessible from the chip instance. For
3041 example, define substream field in the chip record to hold the
3042 current running substream pointer, and set the pointer value
3043 at open callback (and reset at close callback).
3047 If you acquire a spinlock in the interrupt handler, and the
3048 lock is used in other pcm callbacks, too, then you have to
3049 release the lock before calling
3050 <function>snd_pcm_period_elapsed()
</function>, because
3051 <function>snd_pcm_period_elapsed()
</function> calls other pcm
3056 Typical code would be like:
3059 <title>Interrupt Handler Case #
1</title>
3062 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3064 struct mychip *chip = dev_id;
3065 spin_lock(&chip-
>lock);
3067 if (pcm_irq_invoked(chip)) {
3068 /* call updater, unlock before it */
3069 spin_unlock(&chip-
>lock);
3070 snd_pcm_period_elapsed(chip-
>substream);
3071 spin_lock(&chip-
>lock);
3072 /* acknowledge the interrupt if necessary */
3075 spin_unlock(&chip-
>lock);
3084 <section id=
"pcm-interface-interrupt-handler-timer">
3085 <title>High frequency timer interrupts
</title>
3087 This happens when the hardware doesn't generate interrupts
3088 at the period boundary but issues timer interrupts at a fixed
3089 timer rate (e.g. es1968 or ymfpci drivers).
3090 In this case, you need to check the current hardware
3091 position and accumulate the processed sample length at each
3092 interrupt. When the accumulated size exceeds the period
3094 <function>snd_pcm_period_elapsed()
</function> and reset the
3099 Typical code would be like the following.
3102 <title>Interrupt Handler Case #
2</title>
3105 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3107 struct mychip *chip = dev_id;
3108 spin_lock(&chip-
>lock);
3110 if (pcm_irq_invoked(chip)) {
3111 unsigned int last_ptr, size;
3112 /* get the current hardware pointer (in frames) */
3113 last_ptr = get_hw_ptr(chip);
3114 /* calculate the processed frames since the
3117 if (last_ptr < chip-
>last_ptr)
3118 size = runtime-
>buffer_size + last_ptr
3121 size = last_ptr - chip-
>last_ptr;
3122 /* remember the last updated point */
3123 chip-
>last_ptr = last_ptr;
3124 /* accumulate the size */
3126 /* over the period boundary? */
3127 if (chip-
>size
>= runtime-
>period_size) {
3128 /* reset the accumulator */
3129 chip-
>size %= runtime-
>period_size;
3131 spin_unlock(&chip-
>lock);
3132 snd_pcm_period_elapsed(substream);
3133 spin_lock(&chip-
>lock);
3135 /* acknowledge the interrupt if necessary */
3138 spin_unlock(&chip-
>lock);
3147 <section id=
"pcm-interface-interrupt-handler-both">
3148 <title>On calling
<function>snd_pcm_period_elapsed()
</function></title>
3150 In both cases, even if more than one period are elapsed, you
3152 <function>snd_pcm_period_elapsed()
</function> many times. Call
3153 only once. And the pcm layer will check the current hardware
3154 pointer and update to the latest status.
3159 <section id=
"pcm-interface-atomicity">
3160 <title>Atomicity
</title>
3162 One of the most important (and thus difficult to debug) problems
3163 in kernel programming are race conditions.
3164 In the Linux kernel, they are usually avoided via spin-locks, mutexes
3165 or semaphores. In general, if a race condition can happen
3166 in an interrupt handler, it has to be managed atomically, and you
3167 have to use a spinlock to protect the critical session. If the
3168 critical section is not in interrupt handler code and
3169 if taking a relatively long time to execute is acceptable, you
3170 should use mutexes or semaphores instead.
3174 As already seen, some pcm callbacks are atomic and some are
3175 not. For example, the
<parameter>hw_params
</parameter> callback is
3176 non-atomic, while
<parameter>trigger
</parameter> callback is
3177 atomic. This means, the latter is called already in a spinlock
3178 held by the PCM middle layer. Please take this atomicity into
3179 account when you choose a locking scheme in the callbacks.
3183 In the atomic callbacks, you cannot use functions which may call
3184 <function>schedule
</function> or go to
3185 <function>sleep
</function>. Semaphores and mutexes can sleep,
3186 and hence they cannot be used inside the atomic callbacks
3187 (e.g.
<parameter>trigger
</parameter> callback).
3188 To implement some delay in such a callback, please use
3189 <function>udelay()
</function> or
<function>mdelay()
</function>.
3193 All three atomic callbacks (trigger, pointer, and ack) are
3194 called with local interrupts disabled.
3198 <section id=
"pcm-interface-constraints">
3199 <title>Constraints
</title>
3201 If your chip supports unconventional sample rates, or only the
3202 limited samples, you need to set a constraint for the
3207 For example, in order to restrict the sample rates in the some
3208 supported values, use
3209 <function>snd_pcm_hw_constraint_list()
</function>.
3210 You need to call this function in the open callback.
3213 <title>Example of Hardware Constraints
</title>
3216 static unsigned int rates[] =
3217 {
4000,
10000,
22050,
44100};
3218 static struct snd_pcm_hw_constraint_list constraints_rates = {
3219 .count = ARRAY_SIZE(rates),
3224 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
3228 err = snd_pcm_hw_constraint_list(substream-
>runtime,
0,
3229 SNDRV_PCM_HW_PARAM_RATE,
3230 &constraints_rates);
3241 There are many different constraints.
3242 Look at
<filename>sound/pcm.h
</filename> for a complete list.
3243 You can even define your own constraint rules.
3244 For example, let's suppose my_chip can manage a substream of
1 channel
3245 if and only if the format is S16_LE, otherwise it supports any format
3246 specified in the
<structname>snd_pcm_hardware
</structname> structure (or in any
3247 other constraint_list). You can build a rule like this:
3250 <title>Example of Hardware Constraints for Channels
</title>
3253 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3254 struct snd_pcm_hw_rule *rule)
3256 struct snd_interval *c = hw_param_interval(params,
3257 SNDRV_PCM_HW_PARAM_CHANNELS);
3258 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3259 struct snd_interval ch;
3261 snd_interval_any(&ch);
3262 if (f-
>bits[
0] == SNDRV_PCM_FMTBIT_S16_LE) {
3263 ch.min = ch.max =
1;
3265 return snd_interval_refine(c, &ch);
3275 Then you need to call this function to add your rule:
3280 snd_pcm_hw_rule_add(substream-
>runtime,
0, SNDRV_PCM_HW_PARAM_CHANNELS,
3281 hw_rule_channels_by_format, NULL,
3282 SNDRV_PCM_HW_PARAM_FORMAT, -
1);
3289 The rule function is called when an application sets the PCM
3290 format, and it refines the number of channels accordingly.
3291 But an application may set the number of channels before
3292 setting the format. Thus you also need to define the inverse rule:
3295 <title>Example of Hardware Constraints for Formats
</title>
3298 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3299 struct snd_pcm_hw_rule *rule)
3301 struct snd_interval *c = hw_param_interval(params,
3302 SNDRV_PCM_HW_PARAM_CHANNELS);
3303 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3304 struct snd_mask fmt;
3306 snd_mask_any(&fmt); /* Init the struct */
3308 fmt.bits[
0] &= SNDRV_PCM_FMTBIT_S16_LE;
3309 return snd_mask_refine(f, &fmt);
3319 ...and in the open callback:
3323 snd_pcm_hw_rule_add(substream-
>runtime,
0, SNDRV_PCM_HW_PARAM_FORMAT,
3324 hw_rule_format_by_channels, NULL,
3325 SNDRV_PCM_HW_PARAM_CHANNELS, -
1);
3332 I won't give more details here, rather I
3333 would like to say,
<quote>Luke, use the source.
</quote>
3340 <!-- ****************************************************** -->
3341 <!-- Control Interface -->
3342 <!-- ****************************************************** -->
3343 <chapter id=
"control-interface">
3344 <title>Control Interface
</title>
3346 <section id=
"control-interface-general">
3347 <title>General
</title>
3349 The control interface is used widely for many switches,
3350 sliders, etc. which are accessed from user-space. Its most
3351 important use is the mixer interface. In other words, since ALSA
3352 0.9.x, all the mixer stuff is implemented on the control kernel API.
3356 ALSA has a well-defined AC97 control module. If your chip
3357 supports only the AC97 and nothing else, you can skip this
3362 The control API is defined in
3363 <filename><sound/control.h
></filename>.
3364 Include this file if you want to add your own controls.
3368 <section id=
"control-interface-definition">
3369 <title>Definition of Controls
</title>
3371 To create a new control, you need to define the
3373 callbacks:
<structfield>info
</structfield>,
3374 <structfield>get
</structfield> and
3375 <structfield>put
</structfield>. Then, define a
3376 struct
<structname>snd_kcontrol_new
</structname> record, such as:
3379 <title>Definition of a Control
</title>
3382 static struct snd_kcontrol_new my_control = {
3383 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3384 .name =
"PCM Playback Switch",
3386 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3387 .private_value =
0xffff,
3388 .info = my_control_info,
3389 .get = my_control_get,
3390 .put = my_control_put
3398 The
<structfield>iface
</structfield> field specifies the control
3399 type,
<constant>SNDRV_CTL_ELEM_IFACE_XXX
</constant>, which
3400 is usually
<constant>MIXER
</constant>.
3401 Use
<constant>CARD
</constant> for global controls that are not
3402 logically part of the mixer.
3403 If the control is closely associated with some specific device on
3404 the sound card, use
<constant>HWDEP
</constant>,
3405 <constant>PCM
</constant>,
<constant>RAWMIDI
</constant>,
3406 <constant>TIMER
</constant>, or
<constant>SEQUENCER
</constant>, and
3407 specify the device number with the
3408 <structfield>device
</structfield> and
3409 <structfield>subdevice
</structfield> fields.
3413 The
<structfield>name
</structfield> is the name identifier
3414 string. Since ALSA
0.9.x, the control name is very important,
3415 because its role is classified from its name. There are
3416 pre-defined standard control names. The details are described in
3417 the
<link linkend=
"control-interface-control-names"><citetitle>
3418 Control Names
</citetitle></link> subsection.
3422 The
<structfield>index
</structfield> field holds the index number
3423 of this control. If there are several different controls with
3424 the same name, they can be distinguished by the index
3425 number. This is the case when
3426 several codecs exist on the card. If the index is zero, you can
3427 omit the definition above.
3431 The
<structfield>access
</structfield> field contains the access
3432 type of this control. Give the combination of bit masks,
3433 <constant>SNDRV_CTL_ELEM_ACCESS_XXX
</constant>, there.
3434 The details will be explained in
3435 the
<link linkend=
"control-interface-access-flags"><citetitle>
3436 Access Flags
</citetitle></link> subsection.
3440 The
<structfield>private_value
</structfield> field contains
3441 an arbitrary long integer value for this record. When using
3442 the generic
<structfield>info
</structfield>,
3443 <structfield>get
</structfield> and
3444 <structfield>put
</structfield> callbacks, you can pass a value
3445 through this field. If several small numbers are necessary, you can
3446 combine them in bitwise. Or, it's possible to give a pointer
3447 (casted to unsigned long) of some record to this field, too.
3451 The
<structfield>tlv
</structfield> field can be used to provide
3452 metadata about the control; see the
3453 <link linkend=
"control-interface-tlv">
3454 <citetitle>Metadata
</citetitle></link> subsection.
3459 <link linkend=
"control-interface-callbacks"><citetitle>
3460 callback functions
</citetitle></link>.
3464 <section id=
"control-interface-control-names">
3465 <title>Control Names
</title>
3467 There are some standards to define the control names. A
3468 control is usually defined from the three parts as
3469 <quote>SOURCE DIRECTION FUNCTION
</quote>.
3473 The first,
<constant>SOURCE
</constant>, specifies the source
3474 of the control, and is a string such as
<quote>Master
</quote>,
3475 <quote>PCM
</quote>,
<quote>CD
</quote> and
3476 <quote>Line
</quote>. There are many pre-defined sources.
3480 The second,
<constant>DIRECTION
</constant>, is one of the
3481 following strings according to the direction of the control:
3482 <quote>Playback
</quote>,
<quote>Capture
</quote>,
<quote>Bypass
3483 Playback
</quote> and
<quote>Bypass Capture
</quote>. Or, it can
3484 be omitted, meaning both playback and capture directions.
3488 The third,
<constant>FUNCTION
</constant>, is one of the
3489 following strings according to the function of the control:
3490 <quote>Switch
</quote>,
<quote>Volume
</quote> and
3491 <quote>Route
</quote>.
3495 The example of control names are, thus,
<quote>Master Capture
3496 Switch
</quote> or
<quote>PCM Playback Volume
</quote>.
3500 There are some exceptions:
3503 <section id=
"control-interface-control-names-global">
3504 <title>Global capture and playback
</title>
3506 <quote>Capture Source
</quote>,
<quote>Capture Switch
</quote>
3507 and
<quote>Capture Volume
</quote> are used for the global
3508 capture (input) source, switch and volume. Similarly,
3509 <quote>Playback Switch
</quote> and
<quote>Playback
3510 Volume
</quote> are used for the global output gain switch and
3515 <section id=
"control-interface-control-names-tone">
3516 <title>Tone-controls
</title>
3518 tone-control switch and volumes are specified like
3519 <quote>Tone Control - XXX
</quote>, e.g.
<quote>Tone Control -
3520 Switch
</quote>,
<quote>Tone Control - Bass
</quote>,
3521 <quote>Tone Control - Center
</quote>.
3525 <section id=
"control-interface-control-names-3d">
3526 <title>3D controls
</title>
3528 3D-control switches and volumes are specified like
<quote>3D
3529 Control - XXX
</quote>, e.g.
<quote>3D Control -
3530 Switch
</quote>,
<quote>3D Control - Center
</quote>,
<quote>3D
3531 Control - Space
</quote>.
3535 <section id=
"control-interface-control-names-mic">
3536 <title>Mic boost
</title>
3538 Mic-boost switch is set as
<quote>Mic Boost
</quote> or
3539 <quote>Mic Boost (
6dB)
</quote>.
3543 More precise information can be found in
3544 <filename>Documentation/sound/alsa/ControlNames.txt
</filename>.
3549 <section id=
"control-interface-access-flags">
3550 <title>Access Flags
</title>
3553 The access flag is the bitmask which specifies the access type
3554 of the given control. The default access type is
3555 <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE
</constant>,
3556 which means both read and write are allowed to this control.
3557 When the access flag is omitted (i.e. =
0), it is
3558 considered as
<constant>READWRITE
</constant> access as default.
3562 When the control is read-only, pass
3563 <constant>SNDRV_CTL_ELEM_ACCESS_READ
</constant> instead.
3564 In this case, you don't have to define
3565 the
<structfield>put
</structfield> callback.
3566 Similarly, when the control is write-only (although it's a rare
3567 case), you can use the
<constant>WRITE
</constant> flag instead, and
3568 you don't need the
<structfield>get
</structfield> callback.
3572 If the control value changes frequently (e.g. the VU meter),
3573 <constant>VOLATILE
</constant> flag should be given. This means
3574 that the control may be changed without
3575 <link linkend=
"control-interface-change-notification"><citetitle>
3576 notification
</citetitle></link>. Applications should poll such
3577 a control constantly.
3581 When the control is inactive, set
3582 the
<constant>INACTIVE
</constant> flag, too.
3583 There are
<constant>LOCK
</constant> and
3584 <constant>OWNER
</constant> flags to change the write
3590 <section id=
"control-interface-callbacks">
3591 <title>Callbacks
</title>
3593 <section id=
"control-interface-callbacks-info">
3594 <title>info callback
</title>
3596 The
<structfield>info
</structfield> callback is used to get
3597 detailed information on this control. This must store the
3598 values of the given struct
<structname>snd_ctl_elem_info
</structname>
3599 object. For example, for a boolean control with a single
3603 <title>Example of info callback
</title>
3606 static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
3607 struct snd_ctl_elem_info *uinfo)
3609 uinfo-
>type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3611 uinfo-
>value.integer.min =
0;
3612 uinfo-
>value.integer.max =
1;
3621 The
<structfield>type
</structfield> field specifies the type
3622 of the control. There are
<constant>BOOLEAN
</constant>,
3623 <constant>INTEGER
</constant>,
<constant>ENUMERATED
</constant>,
3624 <constant>BYTES
</constant>,
<constant>IEC958
</constant> and
3625 <constant>INTEGER64
</constant>. The
3626 <structfield>count
</structfield> field specifies the
3627 number of elements in this control. For example, a stereo
3628 volume would have count =
2. The
3629 <structfield>value
</structfield> field is a union, and
3630 the values stored are depending on the type. The boolean and
3631 integer types are identical.
3635 The enumerated type is a bit different from others. You'll
3636 need to set the string for the currently given item index.
3641 static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
3642 struct snd_ctl_elem_info *uinfo)
3644 static char *texts[
4] = {
3645 "First",
"Second",
"Third",
"Fourth"
3647 uinfo-
>type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3649 uinfo-
>value.enumerated.items =
4;
3650 if (uinfo-
>value.enumerated.item
> 3)
3651 uinfo-
>value.enumerated.item =
3;
3652 strcpy(uinfo-
>value.enumerated.name,
3653 texts[uinfo-
>value.enumerated.item]);
3662 Some common info callbacks are available for your convenience:
3663 <function>snd_ctl_boolean_mono_info()
</function> and
3664 <function>snd_ctl_boolean_stereo_info()
</function>.
3665 Obviously, the former is an info callback for a mono channel
3666 boolean item, just like
<function>snd_myctl_mono_info
</function>
3667 above, and the latter is for a stereo channel boolean item.
3672 <section id=
"control-interface-callbacks-get">
3673 <title>get callback
</title>
3676 This callback is used to read the current value of the
3677 control and to return to user-space.
3684 <title>Example of get callback
</title>
3687 static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3688 struct snd_ctl_elem_value *ucontrol)
3690 struct mychip *chip = snd_kcontrol_chip(kcontrol);
3691 ucontrol-
>value.integer.value[
0] = get_some_value(chip);
3700 The
<structfield>value
</structfield> field depends on
3701 the type of control as well as on the info callback. For example,
3702 the sb driver uses this field to store the register offset,
3703 the bit-shift and the bit-mask. The
3704 <structfield>private_value
</structfield> field is set as follows:
3708 .private_value = reg | (shift <<
16) | (mask <<
24)
3712 and is retrieved in callbacks like
3716 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3717 struct snd_ctl_elem_value *ucontrol)
3719 int reg = kcontrol-
>private_value &
0xff;
3720 int shift = (kcontrol-
>private_value
>> 16) &
0xff;
3721 int mask = (kcontrol-
>private_value
>> 24) &
0xff;
3730 In the
<structfield>get
</structfield> callback,
3731 you have to fill all the elements if the
3732 control has more than one elements,
3733 i.e.
<structfield>count
</structfield> > 1.
3734 In the example above, we filled only one element
3735 (
<structfield>value.integer.value[
0]
</structfield>) since it's
3736 assumed as
<structfield>count
</structfield> =
1.
3740 <section id=
"control-interface-callbacks-put">
3741 <title>put callback
</title>
3744 This callback is used to write a value from user-space.
3751 <title>Example of put callback
</title>
3754 static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3755 struct snd_ctl_elem_value *ucontrol)
3757 struct mychip *chip = snd_kcontrol_chip(kcontrol);
3759 if (chip-
>current_value !=
3760 ucontrol-
>value.integer.value[
0]) {
3761 change_current_value(chip,
3762 ucontrol-
>value.integer.value[
0]);
3771 As seen above, you have to return
1 if the value is
3772 changed. If the value is not changed, return
0 instead.
3773 If any fatal error happens, return a negative error code as
3778 As in the
<structfield>get
</structfield> callback,
3779 when the control has more than one elements,
3780 all elements must be evaluated in this callback, too.
3784 <section id=
"control-interface-callbacks-all">
3785 <title>Callbacks are not atomic
</title>
3787 All these three callbacks are basically not atomic.
3792 <section id=
"control-interface-constructor">
3793 <title>Constructor
</title>
3795 When everything is ready, finally we can create a new
3796 control. To create a control, there are two functions to be
3797 called,
<function>snd_ctl_new1()
</function> and
3798 <function>snd_ctl_add()
</function>.
3802 In the simplest way, you can do like this:
3807 err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
3814 where
<parameter>my_control
</parameter> is the
3815 struct
<structname>snd_kcontrol_new
</structname> object defined above, and chip
3816 is the object pointer to be passed to
3817 kcontrol-
>private_data
3818 which can be referred to in callbacks.
3822 <function>snd_ctl_new1()
</function> allocates a new
3823 <structname>snd_kcontrol
</structname> instance,
3824 and
<function>snd_ctl_add
</function> assigns the given
3825 control component to the card.
3829 <section id=
"control-interface-change-notification">
3830 <title>Change Notification
</title>
3832 If you need to change and update a control in the interrupt
3833 routine, you can call
<function>snd_ctl_notify()
</function>. For
3839 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3844 This function takes the card pointer, the event-mask, and the
3845 control id pointer for the notification. The event-mask
3846 specifies the types of notification, for example, in the above
3847 example, the change of control values is notified.
3848 The id pointer is the pointer of struct
<structname>snd_ctl_elem_id
</structname>
3850 You can find some examples in
<filename>es1938.c
</filename> or
3851 <filename>es1968.c
</filename> for hardware volume interrupts.
3855 <section id=
"control-interface-tlv">
3856 <title>Metadata
</title>
3858 To provide information about the dB values of a mixer control, use
3859 on of the
<constant>DECLARE_TLV_xxx
</constant> macros from
3860 <filename><sound/tlv.h
></filename> to define a variable
3861 containing this information, set the
<structfield>tlv.p
3862 </structfield> field to point to this variable, and include the
3863 <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ
</constant> flag in the
3864 <structfield>access
</structfield> field; like this:
3868 static DECLARE_TLV_DB_SCALE(db_scale_my_control, -
4050,
150,
0);
3870 static struct snd_kcontrol_new my_control = {
3872 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
3873 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
3875 .tlv.p = db_scale_my_control,
3883 The
<function>DECLARE_TLV_DB_SCALE
</function> macro defines
3884 information about a mixer control where each step in the control's
3885 value changes the dB value by a constant dB amount.
3886 The first parameter is the name of the variable to be defined.
3887 The second parameter is the minimum value, in units of
0.01 dB.
3888 The third parameter is the step size, in units of
0.01 dB.
3889 Set the fourth parameter to
1 if the minimum value actually mutes
3894 The
<function>DECLARE_TLV_DB_LINEAR
</function> macro defines
3895 information about a mixer control where the control's value affects
3896 the output linearly.
3897 The first parameter is the name of the variable to be defined.
3898 The second parameter is the minimum value, in units of
0.01 dB.
3899 The third parameter is the maximum value, in units of
0.01 dB.
3900 If the minimum value mutes the control, set the second parameter to
3901 <constant>TLV_DB_GAIN_MUTE
</constant>.
3908 <!-- ****************************************************** -->
3909 <!-- API for AC97 Codec -->
3910 <!-- ****************************************************** -->
3911 <chapter id=
"api-ac97">
3912 <title>API for AC97 Codec
</title>
3915 <title>General
</title>
3917 The ALSA AC97 codec layer is a well-defined one, and you don't
3918 have to write much code to control it. Only low-level control
3919 routines are necessary. The AC97 codec API is defined in
3920 <filename><sound/ac97_codec.h
></filename>.
3924 <section id=
"api-ac97-example">
3925 <title>Full Code Example
</title>
3928 <title>Example of AC97 Interface
</title>
3933 struct snd_ac97 *ac97;
3937 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
3940 struct mychip *chip = ac97-
>private_data;
3942 /* read a register value here from the codec */
3943 return the_register_value;
3946 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
3947 unsigned short reg, unsigned short val)
3949 struct mychip *chip = ac97-
>private_data;
3951 /* write the given register value to the codec */
3954 static int snd_mychip_ac97(struct mychip *chip)
3956 struct snd_ac97_bus *bus;
3957 struct snd_ac97_template ac97;
3959 static struct snd_ac97_bus_ops ops = {
3960 .write = snd_mychip_ac97_write,
3961 .read = snd_mychip_ac97_read,
3964 err = snd_ac97_bus(chip-
>card,
0, &ops, NULL, &bus);
3967 memset(&ac97,
0, sizeof(ac97));
3968 ac97.private_data = chip;
3969 return snd_ac97_mixer(bus, &ac97, &chip-
>ac97);
3978 <section id=
"api-ac97-constructor">
3979 <title>Constructor
</title>
3981 To create an ac97 instance, first call
<function>snd_ac97_bus
</function>
3982 with an
<type>ac97_bus_ops_t
</type> record with callback functions.
3987 struct snd_ac97_bus *bus;
3988 static struct snd_ac97_bus_ops ops = {
3989 .write = snd_mychip_ac97_write,
3990 .read = snd_mychip_ac97_read,
3993 snd_ac97_bus(card,
0, &ops, NULL, &pbus);
3998 The bus record is shared among all belonging ac97 instances.
4002 And then call
<function>snd_ac97_mixer()
</function> with an
4003 struct
<structname>snd_ac97_template
</structname>
4004 record together with the bus pointer created above.
4009 struct snd_ac97_template ac97;
4012 memset(&ac97,
0, sizeof(ac97));
4013 ac97.private_data = chip;
4014 snd_ac97_mixer(bus, &ac97, &chip-
>ac97);
4019 where chip-
>ac97 is a pointer to a newly created
4020 <type>ac97_t
</type> instance.
4021 In this case, the chip pointer is set as the private data, so that
4022 the read/write callback functions can refer to this chip instance.
4023 This instance is not necessarily stored in the chip
4024 record. If you need to change the register values from the
4025 driver, or need the suspend/resume of ac97 codecs, keep this
4026 pointer to pass to the corresponding functions.
4030 <section id=
"api-ac97-callbacks">
4031 <title>Callbacks
</title>
4033 The standard callbacks are
<structfield>read
</structfield> and
4034 <structfield>write
</structfield>. Obviously they
4035 correspond to the functions for read and write accesses to the
4036 hardware low-level codes.
4040 The
<structfield>read
</structfield> callback returns the
4041 register value specified in the argument.
4046 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
4049 struct mychip *chip = ac97-
>private_data;
4051 return the_register_value;
4057 Here, the chip can be cast from ac97-
>private_data.
4061 Meanwhile, the
<structfield>write
</structfield> callback is
4062 used to set the register value.
4067 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
4068 unsigned short reg, unsigned short val)
4075 These callbacks are non-atomic like the control API callbacks.
4079 There are also other callbacks:
4080 <structfield>reset
</structfield>,
4081 <structfield>wait
</structfield> and
4082 <structfield>init
</structfield>.
4086 The
<structfield>reset
</structfield> callback is used to reset
4087 the codec. If the chip requires a special kind of reset, you can
4088 define this callback.
4092 The
<structfield>wait
</structfield> callback is used to
4093 add some waiting time in the standard initialization of the codec. If the
4094 chip requires the extra waiting time, define this callback.
4098 The
<structfield>init
</structfield> callback is used for
4099 additional initialization of the codec.
4103 <section id=
"api-ac97-updating-registers">
4104 <title>Updating Registers in The Driver
</title>
4106 If you need to access to the codec from the driver, you can
4107 call the following functions:
4108 <function>snd_ac97_write()
</function>,
4109 <function>snd_ac97_read()
</function>,
4110 <function>snd_ac97_update()
</function> and
4111 <function>snd_ac97_update_bits()
</function>.
4115 Both
<function>snd_ac97_write()
</function> and
4116 <function>snd_ac97_update()
</function> functions are used to
4117 set a value to the given register
4118 (
<constant>AC97_XXX
</constant>). The difference between them is
4119 that
<function>snd_ac97_update()
</function> doesn't write a
4120 value if the given value has been already set, while
4121 <function>snd_ac97_write()
</function> always rewrites the
4127 snd_ac97_write(ac97, AC97_MASTER,
0x8080);
4128 snd_ac97_update(ac97, AC97_MASTER,
0x8080);
4135 <function>snd_ac97_read()
</function> is used to read the value
4136 of the given register. For example,
4141 value = snd_ac97_read(ac97, AC97_MASTER);
4148 <function>snd_ac97_update_bits()
</function> is used to update
4149 some bits in the given register.
4154 snd_ac97_update_bits(ac97, reg, mask, value);
4161 Also, there is a function to change the sample rate (of a
4162 given register such as
4163 <constant>AC97_PCM_FRONT_DAC_RATE
</constant>) when VRA or
4164 DRA is supported by the codec:
4165 <function>snd_ac97_set_rate()
</function>.
4170 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE,
44100);
4177 The following registers are available to set the rate:
4178 <constant>AC97_PCM_MIC_ADC_RATE
</constant>,
4179 <constant>AC97_PCM_FRONT_DAC_RATE
</constant>,
4180 <constant>AC97_PCM_LR_ADC_RATE
</constant>,
4181 <constant>AC97_SPDIF
</constant>. When
4182 <constant>AC97_SPDIF
</constant> is specified, the register is
4183 not really changed but the corresponding IEC958 status bits will
4188 <section id=
"api-ac97-clock-adjustment">
4189 <title>Clock Adjustment
</title>
4191 In some chips, the clock of the codec isn't
48000 but using a
4192 PCI clock (to save a quartz!). In this case, change the field
4193 bus-
>clock to the corresponding
4194 value. For example, intel8x0
4195 and es1968 drivers have their own function to read from the clock.
4199 <section id=
"api-ac97-proc-files">
4200 <title>Proc Files
</title>
4202 The ALSA AC97 interface will create a proc file such as
4203 <filename>/proc/asound/card0/codec97#
0/ac97#
0-
0</filename> and
4204 <filename>ac97#
0-
0+regs
</filename>. You can refer to these files to
4205 see the current status and registers of the codec.
4209 <section id=
"api-ac97-multiple-codecs">
4210 <title>Multiple Codecs
</title>
4212 When there are several codecs on the same card, you need to
4213 call
<function>snd_ac97_mixer()
</function> multiple times with
4214 ac97.num=
1 or greater. The
<structfield>num
</structfield> field
4215 specifies the codec number.
4219 If you set up multiple codecs, you either need to write
4220 different callbacks for each codec or check
4221 ac97-
>num in the callback routines.
4228 <!-- ****************************************************** -->
4229 <!-- MIDI (MPU401-UART) Interface -->
4230 <!-- ****************************************************** -->
4231 <chapter id=
"midi-interface">
4232 <title>MIDI (MPU401-UART) Interface
</title>
4234 <section id=
"midi-interface-general">
4235 <title>General
</title>
4237 Many soundcards have built-in MIDI (MPU401-UART)
4238 interfaces. When the soundcard supports the standard MPU401-UART
4239 interface, most likely you can use the ALSA MPU401-UART API. The
4240 MPU401-UART API is defined in
4241 <filename><sound/mpu401.h
></filename>.
4245 Some soundchips have a similar but slightly different
4246 implementation of mpu401 stuff. For example, emu10k1 has its own
4251 <section id=
"midi-interface-constructor">
4252 <title>Constructor
</title>
4254 To create a rawmidi object, call
4255 <function>snd_mpu401_uart_new()
</function>.
4260 struct snd_rawmidi *rmidi;
4261 snd_mpu401_uart_new(card,
0, MPU401_HW_MPU401, port, info_flags,
4269 The first argument is the card pointer, and the second is the
4270 index of this component. You can create up to
8 rawmidi
4275 The third argument is the type of the hardware,
4276 <constant>MPU401_HW_XXX
</constant>. If it's not a special one,
4277 you can use
<constant>MPU401_HW_MPU401
</constant>.
4281 The
4th argument is the I/O port address. Many
4282 backward-compatible MPU401 have an I/O port such as
0x330. Or, it
4283 might be a part of its own PCI I/O region. It depends on the
4288 The
5th argument is a bitflag for additional information.
4289 When the I/O port address above is part of the PCI I/O
4290 region, the MPU401 I/O port might have been already allocated
4291 (reserved) by the driver itself. In such a case, pass a bit flag
4292 <constant>MPU401_INFO_INTEGRATED
</constant>,
4293 and the mpu401-uart layer will allocate the I/O ports by itself.
4297 When the controller supports only the input or output MIDI stream,
4298 pass the
<constant>MPU401_INFO_INPUT
</constant> or
4299 <constant>MPU401_INFO_OUTPUT
</constant> bitflag, respectively.
4300 Then the rawmidi instance is created as a single stream.
4304 <constant>MPU401_INFO_MMIO
</constant> bitflag is used to change
4305 the access method to MMIO (via readb and writeb) instead of
4306 iob and outb. In this case, you have to pass the iomapped address
4307 to
<function>snd_mpu401_uart_new()
</function>.
4311 When
<constant>MPU401_INFO_TX_IRQ
</constant> is set, the output
4312 stream isn't checked in the default interrupt handler. The driver
4313 needs to call
<function>snd_mpu401_uart_interrupt_tx()
</function>
4314 by itself to start processing the output stream in the irq handler.
4318 If the MPU-
401 interface shares its interrupt with the other logical
4319 devices on the card, set
<constant>MPU401_INFO_IRQ_HOOK
</constant>
4320 (see
<link linkend=
"midi-interface-interrupt-handler"><citetitle>
4321 below
</citetitle></link>).
4325 Usually, the port address corresponds to the command port and
4326 port +
1 corresponds to the data port. If not, you may change
4327 the
<structfield>cport
</structfield> field of
4328 struct
<structname>snd_mpu401
</structname> manually
4329 afterward. However,
<structname>snd_mpu401
</structname> pointer is not
4330 returned explicitly by
4331 <function>snd_mpu401_uart_new()
</function>. You need to cast
4332 rmidi-
>private_data to
4333 <structname>snd_mpu401
</structname> explicitly,
4338 struct snd_mpu401 *mpu;
4339 mpu = rmidi-
>private_data;
4344 and reset the cport as you like:
4349 mpu-
>cport = my_own_control_port;
4356 The
6th argument specifies the ISA irq number that will be
4357 allocated. If no interrupt is to be allocated (because your
4358 code is already allocating a shared interrupt, or because the
4359 device does not use interrupts), pass -
1 instead.
4360 For a MPU-
401 device without an interrupt, a polling timer
4361 will be used instead.
4365 <section id=
"midi-interface-interrupt-handler">
4366 <title>Interrupt Handler
</title>
4368 When the interrupt is allocated in
4369 <function>snd_mpu401_uart_new()
</function>, an exclusive ISA
4370 interrupt handler is automatically used, hence you don't have
4371 anything else to do than creating the mpu401 stuff. Otherwise, you
4372 have to set
<constant>MPU401_INFO_IRQ_HOOK
</constant>, and call
4373 <function>snd_mpu401_uart_interrupt()
</function> explicitly from your
4374 own interrupt handler when it has determined that a UART interrupt
4379 In this case, you need to pass the private_data of the
4380 returned rawmidi object from
4381 <function>snd_mpu401_uart_new()
</function> as the second
4382 argument of
<function>snd_mpu401_uart_interrupt()
</function>.
4387 snd_mpu401_uart_interrupt(irq, rmidi-
>private_data, regs);
4397 <!-- ****************************************************** -->
4398 <!-- RawMIDI Interface -->
4399 <!-- ****************************************************** -->
4400 <chapter id=
"rawmidi-interface">
4401 <title>RawMIDI Interface
</title>
4403 <section id=
"rawmidi-interface-overview">
4404 <title>Overview
</title>
4407 The raw MIDI interface is used for hardware MIDI ports that can
4408 be accessed as a byte stream. It is not used for synthesizer
4409 chips that do not directly understand MIDI.
4413 ALSA handles file and buffer management. All you have to do is
4414 to write some code to move data between the buffer and the
4419 The rawmidi API is defined in
4420 <filename><sound/rawmidi.h
></filename>.
4424 <section id=
"rawmidi-interface-constructor">
4425 <title>Constructor
</title>
4428 To create a rawmidi device, call the
4429 <function>snd_rawmidi_new
</function> function:
4433 struct snd_rawmidi *rmidi;
4434 err = snd_rawmidi_new(chip-
>card,
"MyMIDI",
0, outs, ins, &rmidi);
4437 rmidi-
>private_data = chip;
4438 strcpy(rmidi-
>name,
"My MIDI");
4439 rmidi-
>info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4440 SNDRV_RAWMIDI_INFO_INPUT |
4441 SNDRV_RAWMIDI_INFO_DUPLEX;
4448 The first argument is the card pointer, the second argument is
4453 The third argument is the index of this component. You can
4454 create up to
8 rawmidi devices.
4458 The fourth and fifth arguments are the number of output and
4459 input substreams, respectively, of this device (a substream is
4460 the equivalent of a MIDI port).
4464 Set the
<structfield>info_flags
</structfield> field to specify
4465 the capabilities of the device.
4466 Set
<constant>SNDRV_RAWMIDI_INFO_OUTPUT
</constant> if there is
4467 at least one output port,
4468 <constant>SNDRV_RAWMIDI_INFO_INPUT
</constant> if there is at
4469 least one input port,
4470 and
<constant>SNDRV_RAWMIDI_INFO_DUPLEX
</constant> if the device
4471 can handle output and input at the same time.
4475 After the rawmidi device is created, you need to set the
4476 operators (callbacks) for each substream. There are helper
4477 functions to set the operators for all the substreams of a device:
4481 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4482 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4489 The operators are usually defined like this:
4493 static struct snd_rawmidi_ops snd_mymidi_output_ops = {
4494 .open = snd_mymidi_output_open,
4495 .close = snd_mymidi_output_close,
4496 .trigger = snd_mymidi_output_trigger,
4501 These callbacks are explained in the
<link
4502 linkend=
"rawmidi-interface-callbacks"><citetitle>Callbacks
</citetitle></link>
4507 If there are more than one substream, you should give a
4508 unique name to each of them:
4512 struct snd_rawmidi_substream *substream;
4513 list_for_each_entry(substream,
4514 &rmidi-
>streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
4516 sprintf(substream-
>name,
"My MIDI Port %d", substream-
>number +
1);
4518 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4525 <section id=
"rawmidi-interface-callbacks">
4526 <title>Callbacks
</title>
4529 In all the callbacks, the private data that you've set for the
4530 rawmidi device can be accessed as
4531 substream-
>rmidi-
>private_data.
4532 <!-- <code> isn't available before DocBook 4.3 -->
4536 If there is more than one port, your callbacks can determine the
4537 port index from the struct snd_rawmidi_substream data passed to each
4542 struct snd_rawmidi_substream *substream;
4543 int index = substream-
>number;
4549 <section id=
"rawmidi-interface-op-open">
4550 <title><function>open
</function> callback
</title>
4555 static int snd_xxx_open(struct snd_rawmidi_substream *substream);
4561 This is called when a substream is opened.
4562 You can initialize the hardware here, but you shouldn't
4563 start transmitting/receiving data yet.
4567 <section id=
"rawmidi-interface-op-close">
4568 <title><function>close
</function> callback
</title>
4573 static int snd_xxx_close(struct snd_rawmidi_substream *substream);
4583 The
<function>open
</function> and
<function>close
</function>
4584 callbacks of a rawmidi device are serialized with a mutex,
4589 <section id=
"rawmidi-interface-op-trigger-out">
4590 <title><function>trigger
</function> callback for output
4596 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
4602 This is called with a nonzero
<parameter>up
</parameter>
4603 parameter when there is some data in the substream buffer that
4604 must be transmitted.
4608 To read data from the buffer, call
4609 <function>snd_rawmidi_transmit_peek
</function>. It will
4610 return the number of bytes that have been read; this will be
4611 less than the number of bytes requested when there are no more
4613 After the data have been transmitted successfully, call
4614 <function>snd_rawmidi_transmit_ack
</function> to remove the
4615 data from the substream buffer:
4620 while (snd_rawmidi_transmit_peek(substream, &data,
1) ==
1) {
4621 if (snd_mychip_try_to_transmit(data))
4622 snd_rawmidi_transmit_ack(substream,
1);
4624 break; /* hardware FIFO full */
4632 If you know beforehand that the hardware will accept data, you
4633 can use the
<function>snd_rawmidi_transmit
</function> function
4634 which reads some data and removes them from the buffer at once:
4638 while (snd_mychip_transmit_possible()) {
4640 if (snd_rawmidi_transmit(substream, &data,
1) !=
1)
4641 break; /* no more data */
4642 snd_mychip_transmit(data);
4650 If you know beforehand how many bytes you can accept, you can
4651 use a buffer size greater than one with the
4652 <function>snd_rawmidi_transmit*
</function> functions.
4656 The
<function>trigger
</function> callback must not sleep. If
4657 the hardware FIFO is full before the substream buffer has been
4658 emptied, you have to continue transmitting data later, either
4659 in an interrupt handler, or with a timer if the hardware
4660 doesn't have a MIDI transmit interrupt.
4664 The
<function>trigger
</function> callback is called with a
4665 zero
<parameter>up
</parameter> parameter when the transmission
4666 of data should be aborted.
4670 <section id=
"rawmidi-interface-op-trigger-in">
4671 <title><function>trigger
</function> callback for input
4677 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
4683 This is called with a nonzero
<parameter>up
</parameter>
4684 parameter to enable receiving data, or with a zero
4685 <parameter>up
</parameter> parameter do disable receiving data.
4689 The
<function>trigger
</function> callback must not sleep; the
4690 actual reading of data from the device is usually done in an
4695 When data reception is enabled, your interrupt handler should
4696 call
<function>snd_rawmidi_receive
</function> for all received
4701 void snd_mychip_midi_interrupt(...)
4703 while (mychip_midi_available()) {
4705 data = mychip_midi_read();
4706 snd_rawmidi_receive(substream, &data,
1);
4715 <section id=
"rawmidi-interface-op-drain">
4716 <title><function>drain
</function> callback
</title>
4721 static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
4727 This is only used with output substreams. This function should wait
4728 until all data read from the substream buffer have been transmitted.
4729 This ensures that the device can be closed and the driver unloaded
4730 without losing data.
4734 This callback is optional. If you do not set
4735 <structfield>drain
</structfield> in the struct snd_rawmidi_ops
4736 structure, ALSA will simply wait for
50 milliseconds
4745 <!-- ****************************************************** -->
4746 <!-- Miscellaneous Devices -->
4747 <!-- ****************************************************** -->
4748 <chapter id=
"misc-devices">
4749 <title>Miscellaneous Devices
</title>
4751 <section id=
"misc-devices-opl3">
4752 <title>FM OPL3
</title>
4754 The FM OPL3 is still used in many chips (mainly for backward
4755 compatibility). ALSA has a nice OPL3 FM control layer, too. The
4756 OPL3 API is defined in
4757 <filename><sound/opl3.h
></filename>.
4761 FM registers can be directly accessed through the direct-FM API,
4762 defined in
<filename><sound/asound_fm.h
></filename>. In
4763 ALSA native mode, FM registers are accessed through
4764 the Hardware-Dependent Device direct-FM extension API, whereas in
4765 OSS compatible mode, FM registers can be accessed with the OSS
4766 direct-FM compatible API in
<filename>/dev/dmfmX
</filename> device.
4770 To create the OPL3 component, you have two functions to
4771 call. The first one is a constructor for the
<type>opl3_t
</type>
4777 struct snd_opl3 *opl3;
4778 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4786 The first argument is the card pointer, the second one is the
4787 left port address, and the third is the right port address. In
4788 most cases, the right port is placed at the left port +
2.
4792 The fourth argument is the hardware type.
4796 When the left and right ports have been already allocated by
4797 the card driver, pass non-zero to the fifth argument
4798 (
<parameter>integrated
</parameter>). Otherwise, the opl3 module will
4799 allocate the specified ports by itself.
4803 When the accessing the hardware requires special method
4804 instead of the standard I/O access, you can create opl3 instance
4805 separately with
<function>snd_opl3_new()
</function>.
4810 struct snd_opl3 *opl3;
4811 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4818 Then set
<structfield>command
</structfield>,
4819 <structfield>private_data
</structfield> and
4820 <structfield>private_free
</structfield> for the private
4821 access function, the private data and the destructor.
4822 The l_port and r_port are not necessarily set. Only the
4823 command must be set properly. You can retrieve the data
4824 from the opl3-
>private_data field.
4828 After creating the opl3 instance via
<function>snd_opl3_new()
</function>,
4829 call
<function>snd_opl3_init()
</function> to initialize the chip to the
4830 proper state. Note that
<function>snd_opl3_create()
</function> always
4831 calls it internally.
4835 If the opl3 instance is created successfully, then create a
4836 hwdep device for this opl3.
4841 struct snd_hwdep *opl3hwdep;
4842 snd_opl3_hwdep_new(opl3,
0,
1, &opl3hwdep);
4849 The first argument is the
<type>opl3_t
</type> instance you
4850 created, and the second is the index number, usually
0.
4854 The third argument is the index-offset for the sequencer
4855 client assigned to the OPL3 port. When there is an MPU401-UART,
4856 give
1 for here (UART always takes
0).
4860 <section id=
"misc-devices-hardware-dependent">
4861 <title>Hardware-Dependent Devices
</title>
4863 Some chips need user-space access for special
4864 controls or for loading the micro code. In such a case, you can
4865 create a hwdep (hardware-dependent) device. The hwdep API is
4866 defined in
<filename><sound/hwdep.h
></filename>. You can
4867 find examples in opl3 driver or
4868 <filename>isa/sb/sb16_csp.c
</filename>.
4872 The creation of the
<type>hwdep
</type> instance is done via
4873 <function>snd_hwdep_new()
</function>.
4878 struct snd_hwdep *hw;
4879 snd_hwdep_new(card,
"My HWDEP",
0, &hw);
4884 where the third argument is the index number.
4888 You can then pass any pointer value to the
4889 <parameter>private_data
</parameter>.
4890 If you assign a private data, you should define the
4891 destructor, too. The destructor function is set in
4892 the
<structfield>private_free
</structfield> field.
4897 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
4898 hw-
>private_data = p;
4899 hw-
>private_free = mydata_free;
4904 and the implementation of the destructor would be:
4909 static void mydata_free(struct snd_hwdep *hw)
4911 struct mydata *p = hw-
>private_data;
4920 The arbitrary file operations can be defined for this
4921 instance. The file operators are defined in
4922 the
<parameter>ops
</parameter> table. For example, assume that
4923 this chip needs an ioctl.
4928 hw-
>ops.open = mydata_open;
4929 hw-
>ops.ioctl = mydata_ioctl;
4930 hw-
>ops.release = mydata_release;
4935 And implement the callback functions as you like.
4939 <section id=
"misc-devices-IEC958">
4940 <title>IEC958 (S/PDIF)
</title>
4942 Usually the controls for IEC958 devices are implemented via
4943 the control interface. There is a macro to compose a name string for
4944 IEC958 controls,
<function>SNDRV_CTL_NAME_IEC958()
</function>
4945 defined in
<filename><include/asound.h
></filename>.
4949 There are some standard controls for IEC958 status bits. These
4950 controls use the type
<type>SNDRV_CTL_ELEM_TYPE_IEC958
</type>,
4951 and the size of element is fixed as
4 bytes array
4952 (value.iec958.status[x]). For the
<structfield>info
</structfield>
4953 callback, you don't specify
4954 the value field for this type (the count field must be set,
4959 <quote>IEC958 Playback Con Mask
</quote> is used to return the
4960 bit-mask for the IEC958 status bits of consumer mode. Similarly,
4961 <quote>IEC958 Playback Pro Mask
</quote> returns the bitmask for
4962 professional mode. They are read-only controls, and are defined
4963 as MIXER controls (iface =
4964 <constant>SNDRV_CTL_ELEM_IFACE_MIXER
</constant>).
4968 Meanwhile,
<quote>IEC958 Playback Default
</quote> control is
4969 defined for getting and setting the current default IEC958
4970 bits. Note that this one is usually defined as a PCM control
4971 (iface =
<constant>SNDRV_CTL_ELEM_IFACE_PCM
</constant>),
4972 although in some places it's defined as a MIXER control.
4976 In addition, you can define the control switches to
4977 enable/disable or to set the raw bit mode. The implementation
4978 will depend on the chip, but the control should be named as
4979 <quote>IEC958 xxx
</quote>, preferably using
4980 the
<function>SNDRV_CTL_NAME_IEC958()
</function> macro.
4984 You can find several cases, for example,
4985 <filename>pci/emu10k1
</filename>,
4986 <filename>pci/ice1712
</filename>, or
4987 <filename>pci/cmipci.c
</filename>.
4994 <!-- ****************************************************** -->
4995 <!-- Buffer and Memory Management -->
4996 <!-- ****************************************************** -->
4997 <chapter id=
"buffer-and-memory">
4998 <title>Buffer and Memory Management
</title>
5000 <section id=
"buffer-and-memory-buffer-types">
5001 <title>Buffer Types
</title>
5003 ALSA provides several different buffer allocation functions
5004 depending on the bus and the architecture. All these have a
5005 consistent API. The allocation of physically-contiguous pages is
5007 <function>snd_malloc_xxx_pages()
</function> function, where xxx
5012 The allocation of pages with fallback is
5013 <function>snd_malloc_xxx_pages_fallback()
</function>. This
5014 function tries to allocate the specified pages but if the pages
5015 are not available, it tries to reduce the page sizes until
5016 enough space is found.
5020 The release the pages, call
5021 <function>snd_free_xxx_pages()
</function> function.
5025 Usually, ALSA drivers try to allocate and reserve
5026 a large contiguous physical space
5027 at the time the module is loaded for the later use.
5028 This is called
<quote>pre-allocation
</quote>.
5029 As already written, you can call the following function at
5030 pcm instance construction time (in the case of PCI bus).
5035 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
5036 snd_dma_pci_data(pci), size, max);
5041 where
<parameter>size
</parameter> is the byte size to be
5042 pre-allocated and the
<parameter>max
</parameter> is the maximum
5043 size to be changed via the
<filename>prealloc
</filename> proc file.
5044 The allocator will try to get an area as large as possible
5045 within the given size.
5049 The second argument (type) and the third argument (device pointer)
5050 are dependent on the bus.
5051 In the case of the ISA bus, pass
<function>snd_dma_isa_data()
</function>
5052 as the third argument with
<constant>SNDRV_DMA_TYPE_DEV
</constant> type.
5053 For the continuous buffer unrelated to the bus can be pre-allocated
5054 with
<constant>SNDRV_DMA_TYPE_CONTINUOUS
</constant> type and the
5055 <function>snd_dma_continuous_data(GFP_KERNEL)
</function> device pointer,
5056 where
<constant>GFP_KERNEL
</constant> is the kernel allocation flag to
5058 For the PCI scatter-gather buffers, use
5059 <constant>SNDRV_DMA_TYPE_DEV_SG
</constant> with
5060 <function>snd_dma_pci_data(pci)
</function>
5062 <link linkend=
"buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5063 </citetitle></link> section).
5067 Once the buffer is pre-allocated, you can use the
5068 allocator in the
<structfield>hw_params
</structfield> callback:
5073 snd_pcm_lib_malloc_pages(substream, size);
5078 Note that you have to pre-allocate to use this function.
5082 <section id=
"buffer-and-memory-external-hardware">
5083 <title>External Hardware Buffers
</title>
5085 Some chips have their own hardware buffers and the DMA
5086 transfer from the host memory is not available. In such a case,
5087 you need to either
1) copy/set the audio data directly to the
5088 external hardware buffer, or
2) make an intermediate buffer and
5089 copy/set the data from it to the external hardware buffer in
5090 interrupts (or in tasklets, preferably).
5094 The first case works fine if the external hardware buffer is large
5095 enough. This method doesn't need any extra buffers and thus is
5096 more effective. You need to define the
5097 <structfield>copy
</structfield> and
5098 <structfield>silence
</structfield> callbacks for
5099 the data transfer. However, there is a drawback: it cannot
5100 be mmapped. The examples are GUS's GF1 PCM or emu8000's
5105 The second case allows for mmap on the buffer, although you have
5106 to handle an interrupt or a tasklet to transfer the data
5107 from the intermediate buffer to the hardware buffer. You can find an
5108 example in the vxpocket driver.
5112 Another case is when the chip uses a PCI memory-map
5113 region for the buffer instead of the host memory. In this case,
5114 mmap is available only on certain architectures like the Intel one.
5115 In non-mmap mode, the data cannot be transferred as in the normal
5116 way. Thus you need to define the
<structfield>copy
</structfield> and
5117 <structfield>silence
</structfield> callbacks as well,
5118 as in the cases above. The examples are found in
5119 <filename>rme32.c
</filename> and
<filename>rme96.c
</filename>.
5123 The implementation of the
<structfield>copy
</structfield> and
5124 <structfield>silence
</structfield> callbacks depends upon
5125 whether the hardware supports interleaved or non-interleaved
5126 samples. The
<structfield>copy
</structfield> callback is
5127 defined like below, a bit
5128 differently depending whether the direction is playback or
5134 static int playback_copy(struct snd_pcm_substream *substream, int channel,
5135 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
5136 static int capture_copy(struct snd_pcm_substream *substream, int channel,
5137 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5144 In the case of interleaved samples, the second argument
5145 (
<parameter>channel
</parameter>) is not used. The third argument
5146 (
<parameter>pos
</parameter>) points the
5147 current position offset in frames.
5151 The meaning of the fourth argument is different between
5152 playback and capture. For playback, it holds the source data
5153 pointer, and for capture, it's the destination data pointer.
5157 The last argument is the number of frames to be copied.
5161 What you have to do in this callback is again different
5162 between playback and capture directions. In the
5163 playback case, you copy the given amount of data
5164 (
<parameter>count
</parameter>) at the specified pointer
5165 (
<parameter>src
</parameter>) to the specified offset
5166 (
<parameter>pos
</parameter>) on the hardware buffer. When
5167 coded like memcpy-like way, the copy would be like:
5172 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5173 frames_to_bytes(runtime, count));
5180 For the capture direction, you copy the given amount of
5181 data (
<parameter>count
</parameter>) at the specified offset
5182 (
<parameter>pos
</parameter>) on the hardware buffer to the
5183 specified pointer (
<parameter>dst
</parameter>).
5188 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5189 frames_to_bytes(runtime, count));
5194 Note that both the position and the amount of data are given
5199 In the case of non-interleaved samples, the implementation
5200 will be a bit more complicated.
5204 You need to check the channel argument, and if it's -
1, copy
5205 the whole channels. Otherwise, you have to copy only the
5206 specified channel. Please check
5207 <filename>isa/gus/gus_pcm.c
</filename> as an example.
5211 The
<structfield>silence
</structfield> callback is also
5212 implemented in a similar way.
5217 static int silence(struct snd_pcm_substream *substream, int channel,
5218 snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5225 The meanings of arguments are the same as in the
5226 <structfield>copy
</structfield>
5227 callback, although there is no
<parameter>src/dst
</parameter>
5228 argument. In the case of interleaved samples, the channel
5229 argument has no meaning, as well as on
5230 <structfield>copy
</structfield> callback.
5234 The role of
<structfield>silence
</structfield> callback is to
5235 set the given amount
5236 (
<parameter>count
</parameter>) of silence data at the
5237 specified offset (
<parameter>pos
</parameter>) on the hardware
5238 buffer. Suppose that the data format is signed (that is, the
5239 silent-data is
0), and the implementation using a memset-like
5240 function would be like:
5245 my_memcpy(my_buffer + frames_to_bytes(runtime, pos),
0,
5246 frames_to_bytes(runtime, count));
5253 In the case of non-interleaved samples, again, the
5254 implementation becomes a bit more complicated. See, for example,
5255 <filename>isa/gus/gus_pcm.c
</filename>.
5259 <section id=
"buffer-and-memory-non-contiguous">
5260 <title>Non-Contiguous Buffers
</title>
5262 If your hardware supports the page table as in emu10k1 or the
5263 buffer descriptors as in via82xx, you can use the scatter-gather
5264 (SG) DMA. ALSA provides an interface for handling SG-buffers.
5265 The API is provided in
<filename><sound/pcm.h
></filename>.
5269 For creating the SG-buffer handler, call
5270 <function>snd_pcm_lib_preallocate_pages()
</function> or
5271 <function>snd_pcm_lib_preallocate_pages_for_all()
</function>
5272 with
<constant>SNDRV_DMA_TYPE_DEV_SG
</constant>
5273 in the PCM constructor like other PCI pre-allocator.
5274 You need to pass
<function>snd_dma_pci_data(pci)
</function>,
5275 where pci is the struct
<structname>pci_dev
</structname> pointer
5276 of the chip as well.
5277 The
<type>struct snd_sg_buf
</type> instance is created as
5278 substream-
>dma_private. You can cast
5284 struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream-
>dma_private;
5291 Then call
<function>snd_pcm_lib_malloc_pages()
</function>
5292 in the
<structfield>hw_params
</structfield> callback
5293 as well as in the case of normal PCI buffer.
5294 The SG-buffer handler will allocate the non-contiguous kernel
5295 pages of the given size and map them onto the virtually contiguous
5296 memory. The virtual pointer is addressed in runtime-
>dma_area.
5297 The physical address (runtime-
>dma_addr) is set to zero,
5298 because the buffer is physically non-contiguous.
5299 The physical address table is set up in sgbuf-
>table.
5300 You can get the physical address at a certain offset via
5301 <function>snd_pcm_sgbuf_get_addr()
</function>.
5305 When a SG-handler is used, you need to set
5306 <function>snd_pcm_sgbuf_ops_page
</function> as
5307 the
<structfield>page
</structfield> callback.
5308 (See
<link linkend=
"pcm-interface-operators-page-callback">
5309 <citetitle>page callback section
</citetitle></link>.)
5313 To release the data, call
5314 <function>snd_pcm_lib_free_pages()
</function> in the
5315 <structfield>hw_free
</structfield> callback as usual.
5319 <section id=
"buffer-and-memory-vmalloced">
5320 <title>Vmalloc'ed Buffers
</title>
5322 It's possible to use a buffer allocated via
5323 <function>vmalloc
</function>, for example, for an intermediate
5324 buffer. Since the allocated pages are not contiguous, you need
5325 to set the
<structfield>page
</structfield> callback to obtain
5326 the physical address at every offset.
5330 The implementation of
<structfield>page
</structfield> callback
5336 #include
<linux/vmalloc.h
>
5338 /* get the physical page pointer on the given offset */
5339 static struct page *mychip_page(struct snd_pcm_substream *substream,
5340 unsigned long offset)
5342 void *pageptr = substream-
>runtime-
>dma_area + offset;
5343 return vmalloc_to_page(pageptr);
5354 <!-- ****************************************************** -->
5355 <!-- Proc Interface -->
5356 <!-- ****************************************************** -->
5357 <chapter id=
"proc-interface">
5358 <title>Proc Interface
</title>
5360 ALSA provides an easy interface for procfs. The proc files are
5361 very useful for debugging. I recommend you set up proc files if
5362 you write a driver and want to get a running status or register
5363 dumps. The API is found in
5364 <filename><sound/info.h
></filename>.
5368 To create a proc file, call
5369 <function>snd_card_proc_new()
</function>.
5374 struct snd_info_entry *entry;
5375 int err = snd_card_proc_new(card,
"my-file", &entry);
5380 where the second argument specifies the name of the proc file to be
5381 created. The above example will create a file
5382 <filename>my-file
</filename> under the card directory,
5383 e.g.
<filename>/proc/asound/card0/my-file
</filename>.
5387 Like other components, the proc entry created via
5388 <function>snd_card_proc_new()
</function> will be registered and
5389 released automatically in the card registration and release
5394 When the creation is successful, the function stores a new
5395 instance in the pointer given in the third argument.
5396 It is initialized as a text proc file for read only. To use
5397 this proc file as a read-only text file as it is, set the read
5398 callback with a private data via
5399 <function>snd_info_set_text_ops()
</function>.
5404 snd_info_set_text_ops(entry, chip, my_proc_read);
5409 where the second argument (
<parameter>chip
</parameter>) is the
5410 private data to be used in the callbacks. The third parameter
5411 specifies the read buffer size and the fourth
5412 (
<parameter>my_proc_read
</parameter>) is the callback function, which
5418 static void my_proc_read(struct snd_info_entry *entry,
5419 struct snd_info_buffer *buffer);
5427 In the read callback, use
<function>snd_iprintf()
</function> for
5428 output strings, which works just like normal
5429 <function>printf()
</function>. For example,
5434 static void my_proc_read(struct snd_info_entry *entry,
5435 struct snd_info_buffer *buffer)
5437 struct my_chip *chip = entry-
>private_data;
5439 snd_iprintf(buffer,
"This is my chip!\n");
5440 snd_iprintf(buffer,
"Port = %ld\n", chip-
>port);
5448 The file permissions can be changed afterwards. As default, it's
5449 set as read only for all users. If you want to add write
5450 permission for the user (root as default), do as follows:
5455 entry-
>mode = S_IFREG | S_IRUGO | S_IWUSR;
5460 and set the write buffer size and the callback
5465 entry-
>c.text.write = my_proc_write;
5472 For the write callback, you can use
5473 <function>snd_info_get_line()
</function> to get a text line, and
5474 <function>snd_info_get_str()
</function> to retrieve a string from
5475 the line. Some examples are found in
5476 <filename>core/oss/mixer_oss.c
</filename>, core/oss/and
5477 <filename>pcm_oss.c
</filename>.
5481 For a raw-data proc-file, set the attributes as follows:
5486 static struct snd_info_entry_ops my_file_io_ops = {
5487 .read = my_file_io_read,
5490 entry-
>content = SNDRV_INFO_CONTENT_DATA;
5491 entry-
>private_data = chip;
5492 entry-
>c.ops =
&my_file_io_ops;
5494 entry-
>mode = S_IFREG | S_IRUGO;
5499 For the raw data,
<structfield>size
</structfield> field must be
5500 set properly. This specifies the maximum size of the proc file access.
5504 The read/write callbacks of raw mode are more direct than the text mode.
5505 You need to use a low-level I/O functions such as
5506 <function>copy_from/to_user()
</function> to transfer the
5512 static ssize_t my_file_io_read(struct snd_info_entry *entry,
5513 void *file_private_data,
5519 if (copy_to_user(buf, local_data + pos, count))
5527 If the size of the info entry has been set up properly,
5528 <structfield>count
</structfield> and
<structfield>pos
</structfield> are
5529 guaranteed to fit within
0 and the given size.
5530 You don't have to check the range in the callbacks unless any
5531 other condition is required.
5538 <!-- ****************************************************** -->
5539 <!-- Power Management -->
5540 <!-- ****************************************************** -->
5541 <chapter id=
"power-management">
5542 <title>Power Management
</title>
5544 If the chip is supposed to work with suspend/resume
5545 functions, you need to add power-management code to the
5546 driver. The additional code for power-management should be
5547 <function>ifdef
</function>'ed with
5548 <constant>CONFIG_PM
</constant>.
5552 If the driver
<emphasis>fully
</emphasis> supports suspend/resume
5553 that is, the device can be
5554 properly resumed to its state when suspend was called,
5555 you can set the
<constant>SNDRV_PCM_INFO_RESUME
</constant> flag
5556 in the pcm info field. Usually, this is possible when the
5557 registers of the chip can be safely saved and restored to
5558 RAM. If this is set, the trigger callback is called with
5559 <constant>SNDRV_PCM_TRIGGER_RESUME
</constant> after the resume
5564 Even if the driver doesn't support PM fully but
5565 partial suspend/resume is still possible, it's still worthy to
5566 implement suspend/resume callbacks. In such a case, applications
5567 would reset the status by calling
5568 <function>snd_pcm_prepare()
</function> and restart the stream
5569 appropriately. Hence, you can define suspend/resume callbacks
5570 below but don't set
<constant>SNDRV_PCM_INFO_RESUME
</constant>
5571 info flag to the PCM.
5575 Note that the trigger with SUSPEND can always be called when
5576 <function>snd_pcm_suspend_all
</function> is called,
5577 regardless of the
<constant>SNDRV_PCM_INFO_RESUME
</constant> flag.
5578 The
<constant>RESUME
</constant> flag affects only the behavior
5579 of
<function>snd_pcm_resume()
</function>.
5581 <constant>SNDRV_PCM_TRIGGER_RESUME
</constant> isn't needed
5582 to be handled in the trigger callback when no
5583 <constant>SNDRV_PCM_INFO_RESUME
</constant> flag is set. But,
5584 it's better to keep it for compatibility reasons.)
5587 In the earlier version of ALSA drivers, a common
5588 power-management layer was provided, but it has been removed.
5589 The driver needs to define the suspend/resume hooks according to
5590 the bus the device is connected to. In the case of PCI drivers, the
5591 callbacks look like below:
5597 static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
5599 .... /* do things for suspend */
5602 static int snd_my_resume(struct pci_dev *pci)
5604 .... /* do things for suspend */
5614 The scheme of the real suspend job is as follows.
5617 <listitem><para>Retrieve the card and the chip data.
</para></listitem>
5618 <listitem><para>Call
<function>snd_power_change_state()
</function> with
5619 <constant>SNDRV_CTL_POWER_D3hot
</constant> to change the
5620 power status.
</para></listitem>
5621 <listitem><para>Call
<function>snd_pcm_suspend_all()
</function> to suspend the running PCM streams.
</para></listitem>
5622 <listitem><para>If AC97 codecs are used, call
5623 <function>snd_ac97_suspend()
</function> for each codec.
</para></listitem>
5624 <listitem><para>Save the register values if necessary.
</para></listitem>
5625 <listitem><para>Stop the hardware if necessary.
</para></listitem>
5626 <listitem><para>Disable the PCI device by calling
5627 <function>pci_disable_device()
</function>. Then, call
5628 <function>pci_save_state()
</function> at last.
</para></listitem>
5633 A typical code would be like:
5638 static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
5641 struct snd_card *card = pci_get_drvdata(pci);
5642 struct mychip *chip = card-
>private_data;
5644 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
5646 snd_pcm_suspend_all(chip-
>pcm);
5648 snd_ac97_suspend(chip-
>ac97);
5650 snd_mychip_save_registers(chip);
5652 snd_mychip_stop_hardware(chip);
5654 pci_disable_device(pci);
5655 pci_save_state(pci);
5664 The scheme of the real resume job is as follows.
5667 <listitem><para>Retrieve the card and the chip data.
</para></listitem>
5668 <listitem><para>Set up PCI. First, call
<function>pci_restore_state()
</function>.
5669 Then enable the pci device again by calling
<function>pci_enable_device()
</function>.
5670 Call
<function>pci_set_master()
</function> if necessary, too.
</para></listitem>
5671 <listitem><para>Re-initialize the chip.
</para></listitem>
5672 <listitem><para>Restore the saved registers if necessary.
</para></listitem>
5673 <listitem><para>Resume the mixer, e.g. calling
5674 <function>snd_ac97_resume()
</function>.
</para></listitem>
5675 <listitem><para>Restart the hardware (if any).
</para></listitem>
5676 <listitem><para>Call
<function>snd_power_change_state()
</function> with
5677 <constant>SNDRV_CTL_POWER_D0
</constant> to notify the processes.
</para></listitem>
5682 A typical code would be like:
5687 static int mychip_resume(struct pci_dev *pci)
5690 struct snd_card *card = pci_get_drvdata(pci);
5691 struct mychip *chip = card-
>private_data;
5693 pci_restore_state(pci);
5694 pci_enable_device(pci);
5695 pci_set_master(pci);
5697 snd_mychip_reinit_chip(chip);
5699 snd_mychip_restore_registers(chip);
5701 snd_ac97_resume(chip-
>ac97);
5703 snd_mychip_restart_chip(chip);
5705 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
5714 As shown in the above, it's better to save registers after
5715 suspending the PCM operations via
5716 <function>snd_pcm_suspend_all()
</function> or
5717 <function>snd_pcm_suspend()
</function>. It means that the PCM
5718 streams are already stoppped when the register snapshot is
5719 taken. But, remember that you don't have to restart the PCM
5720 stream in the resume callback. It'll be restarted via
5721 trigger call with
<constant>SNDRV_PCM_TRIGGER_RESUME
</constant>
5726 OK, we have all callbacks now. Let's set them up. In the
5727 initialization of the card, make sure that you can get the chip
5728 data from the card instance, typically via
5729 <structfield>private_data
</structfield> field, in case you
5730 created the chip data individually.
5735 static int snd_mychip_probe(struct pci_dev *pci,
5736 const struct pci_device_id *pci_id)
5739 struct snd_card *card;
5740 struct mychip *chip;
5743 err = snd_card_create(index[dev], id[dev], THIS_MODULE,
0, &card);
5745 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
5747 card-
>private_data = chip;
5754 When you created the chip data with
5755 <function>snd_card_create()
</function>, it's anyway accessible
5756 via
<structfield>private_data
</structfield> field.
5761 static int snd_mychip_probe(struct pci_dev *pci,
5762 const struct pci_device_id *pci_id)
5765 struct snd_card *card;
5766 struct mychip *chip;
5769 err = snd_card_create(index[dev], id[dev], THIS_MODULE,
5770 sizeof(struct mychip), &card);
5772 chip = card-
>private_data;
5782 If you need a space to save the registers, allocate the
5783 buffer for it here, too, since it would be fatal
5784 if you cannot allocate a memory in the suspend phase.
5785 The allocated buffer should be released in the corresponding
5790 And next, set suspend/resume callbacks to the pci_driver.
5795 static struct pci_driver driver = {
5796 .name = KBUILD_MODNAME,
5797 .id_table = snd_my_ids,
5798 .probe = snd_my_probe,
5799 .remove = snd_my_remove,
5801 .suspend = snd_my_suspend,
5802 .resume = snd_my_resume,
5813 <!-- ****************************************************** -->
5814 <!-- Module Parameters -->
5815 <!-- ****************************************************** -->
5816 <chapter id=
"module-parameters">
5817 <title>Module Parameters
</title>
5819 There are standard module options for ALSA. At least, each
5820 module should have the
<parameter>index
</parameter>,
5821 <parameter>id
</parameter> and
<parameter>enable
</parameter>
5826 If the module supports multiple cards (usually up to
5827 8 =
<constant>SNDRV_CARDS
</constant> cards), they should be
5828 arrays. The default initial values are defined already as
5829 constants for easier programming:
5834 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5835 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5836 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5843 If the module supports only a single card, they could be single
5844 variables, instead.
<parameter>enable
</parameter> option is not
5845 always necessary in this case, but it would be better to have a
5846 dummy option for compatibility.
5850 The module parameters must be declared with the standard
5851 <function>module_param()()
</function>,
5852 <function>module_param_array()()
</function> and
5853 <function>MODULE_PARM_DESC()
</function> macros.
5857 The typical coding would be like below:
5862 #define CARD_NAME
"My Chip"
5864 module_param_array(index, int, NULL,
0444);
5865 MODULE_PARM_DESC(index,
"Index value for " CARD_NAME
" soundcard.");
5866 module_param_array(id, charp, NULL,
0444);
5867 MODULE_PARM_DESC(id,
"ID string for " CARD_NAME
" soundcard.");
5868 module_param_array(enable, bool, NULL,
0444);
5869 MODULE_PARM_DESC(enable,
"Enable " CARD_NAME
" soundcard.");
5876 Also, don't forget to define the module description, classes,
5877 license and devices. Especially, the recent modprobe requires to
5878 define the module license as GPL, etc., otherwise the system is
5879 shown as
<quote>tainted
</quote>.
5884 MODULE_DESCRIPTION(
"My Chip");
5885 MODULE_LICENSE(
"GPL");
5886 MODULE_SUPPORTED_DEVICE(
"{{Vendor,My Chip Name}}");
5895 <!-- ****************************************************** -->
5896 <!-- How To Put Your Driver -->
5897 <!-- ****************************************************** -->
5898 <chapter id=
"how-to-put-your-driver">
5899 <title>How To Put Your Driver Into ALSA Tree
</title>
5901 <title>General
</title>
5903 So far, you've learned how to write the driver codes.
5904 And you might have a question now: how to put my own
5905 driver into the ALSA driver tree?
5906 Here (finally :) the standard procedure is described briefly.
5910 Suppose that you create a new PCI driver for the card
5911 <quote>xyz
</quote>. The card module name would be
5912 snd-xyz. The new driver is usually put into the alsa-driver
5913 tree,
<filename>alsa-driver/pci
</filename> directory in
5914 the case of PCI cards.
5915 Then the driver is evaluated, audited and tested
5916 by developers and users. After a certain time, the driver
5917 will go to the alsa-kernel tree (to the corresponding directory,
5918 such as
<filename>alsa-kernel/pci
</filename>) and eventually
5919 will be integrated into the Linux
2.6 tree (the directory would be
5920 <filename>linux/sound/pci
</filename>).
5924 In the following sections, the driver code is supposed
5925 to be put into alsa-driver tree. The two cases are covered:
5926 a driver consisting of a single source file and one consisting
5927 of several source files.
5932 <title>Driver with A Single Source File
</title>
5937 Modify alsa-driver/pci/Makefile
5941 Suppose you have a file xyz.c. Add the following
5946 snd-xyz-objs := xyz.o
5947 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5956 Create the Kconfig entry
5960 Add the new entry of Kconfig for your xyz driver.
5965 tristate
"Foobar XYZ"
5969 Say Y here to include support for Foobar XYZ soundcard.
5971 To compile this driver as a module, choose M here: the module
5972 will be called snd-xyz.
5977 the line, select SND_PCM, specifies that the driver xyz supports
5978 PCM. In addition to SND_PCM, the following components are
5979 supported for select command:
5980 SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5981 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5982 Add the select command for each supported component.
5986 Note that some selections imply the lowlevel selections.
5987 For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
5988 AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
5989 You don't need to give the lowlevel selections again.
5993 For the details of Kconfig script, refer to the kbuild
6001 Run cvscompile script to re-generate the configure script and
6002 build the whole stuff again.
6010 <title>Drivers with Several Source Files
</title>
6012 Suppose that the driver snd-xyz have several source files.
6013 They are located in the new subdirectory,
6019 Add a new directory (
<filename>xyz
</filename>) in
6020 <filename>alsa-driver/pci/Makefile
</filename> as below
6025 obj-$(CONFIG_SND) += xyz/
6034 Under the directory
<filename>xyz
</filename>, create a Makefile
6037 <title>Sample Makefile for a driver xyz
</title>
6044 include $(SND_TOPDIR)/toplevel.config
6045 include $(SND_TOPDIR)/Makefile.conf
6047 snd-xyz-objs := xyz.o abc.o def.o
6049 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
6051 include $(SND_TOPDIR)/Rules.make
6060 Create the Kconfig entry
6064 This procedure is as same as in the last section.
6070 Run cvscompile script to re-generate the configure script and
6071 build the whole stuff again.
6080 <!-- ****************************************************** -->
6081 <!-- Useful Functions -->
6082 <!-- ****************************************************** -->
6083 <chapter id=
"useful-functions">
6084 <title>Useful Functions
</title>
6086 <section id=
"useful-functions-snd-printk">
6087 <title><function>snd_printk()
</function> and friends
</title>
6089 ALSA provides a verbose version of the
6090 <function>printk()
</function> function. If a kernel config
6091 <constant>CONFIG_SND_VERBOSE_PRINTK
</constant> is set, this
6092 function prints the given message together with the file name
6093 and the line of the caller. The
<constant>KERN_XXX
</constant>
6094 prefix is processed as
6095 well as the original
<function>printk()
</function> does, so it's
6096 recommended to add this prefix, e.g.
6101 snd_printk(KERN_ERR
"Oh my, sorry, it's extremely bad!\n");
6108 There are also
<function>printk()
</function>'s for
6109 debugging.
<function>snd_printd()
</function> can be used for
6110 general debugging purposes. If
6111 <constant>CONFIG_SND_DEBUG
</constant> is set, this function is
6112 compiled, and works just like
6113 <function>snd_printk()
</function>. If the ALSA is compiled
6114 without the debugging flag, it's ignored.
6118 <function>snd_printdd()
</function> is compiled in only when
6119 <constant>CONFIG_SND_DEBUG_VERBOSE
</constant> is set. Please note
6120 that
<constant>CONFIG_SND_DEBUG_VERBOSE
</constant> is not set as default
6121 even if you configure the alsa-driver with
6122 <option>--with-debug=full
</option> option. You need to give
6123 explicitly
<option>--with-debug=detect
</option> option instead.
6127 <section id=
"useful-functions-snd-bug">
6128 <title><function>snd_BUG()
</function></title>
6130 It shows the
<computeroutput>BUG?
</computeroutput> message and
6131 stack trace as well as
<function>snd_BUG_ON
</function> at the point.
6132 It's useful to show that a fatal error happens there.
6135 When no debug flag is set, this macro is ignored.
6139 <section id=
"useful-functions-snd-bug-on">
6140 <title><function>snd_BUG_ON()
</function></title>
6142 <function>snd_BUG_ON()
</function> macro is similar with
6143 <function>WARN_ON()
</function> macro. For example,
6148 snd_BUG_ON(!pointer);
6153 or it can be used as the condition,
6157 if (snd_BUG_ON(non_zero_is_bug))
6166 The macro takes an conditional expression to evaluate.
6167 When
<constant>CONFIG_SND_DEBUG
</constant>, is set, if the
6168 expression is non-zero, it shows the warning message such as
6169 <computeroutput>BUG? (xxx)
</computeroutput>
6170 normally followed by stack trace.
6172 In both cases it returns the evaluated value.
6180 <!-- ****************************************************** -->
6181 <!-- Acknowledgments -->
6182 <!-- ****************************************************** -->
6183 <chapter id=
"acknowledgments">
6184 <title>Acknowledgments
</title>
6186 I would like to thank Phil Kerr for his help for improvement and
6187 corrections of this document.
6190 Kevin Conder reformatted the original plain-text to the
6194 Giuliano Pochini corrected typos and contributed the example codes
6195 in the hardware constraints section.