4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <uapi/linux/sched/types.h>
11 #include <linux/sched/loadavg.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/wait_bit.h>
14 #include <linux/cpuset.h>
15 #include <linux/delayacct.h>
16 #include <linux/init_task.h>
17 #include <linux/context_tracking.h>
18 #include <linux/rcupdate_wait.h>
19 #include <linux/compat.h>
21 #include <linux/blkdev.h>
22 #include <linux/kprobes.h>
23 #include <linux/mmu_context.h>
24 #include <linux/module.h>
25 #include <linux/nmi.h>
26 #include <linux/nospec.h>
27 #include <linux/prefetch.h>
28 #include <linux/profile.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/sched/isolation.h>
33 #include <asm/switch_to.h>
35 #ifdef CONFIG_PARAVIRT
36 #include <asm/paravirt.h>
40 #include "../workqueue_internal.h"
41 #include "../smpboot.h"
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/sched.h>
46 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
48 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
50 * Debugging: various feature bits
52 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
53 * sysctl_sched_features, defined in sched.h, to allow constants propagation
54 * at compile time and compiler optimization based on features default.
56 #define SCHED_FEAT(name, enabled) \
57 (1UL << __SCHED_FEAT_##name) * enabled |
58 const_debug
unsigned int sysctl_sched_features
=
65 * Number of tasks to iterate in a single balance run.
66 * Limited because this is done with IRQs disabled.
68 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
71 * period over which we average the RT time consumption, measured
76 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
79 * period over which we measure -rt task CPU usage in us.
82 unsigned int sysctl_sched_rt_period
= 1000000;
84 __read_mostly
int scheduler_running
;
87 * part of the period that we allow rt tasks to run in us.
90 int sysctl_sched_rt_runtime
= 950000;
93 * __task_rq_lock - lock the rq @p resides on.
95 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
100 lockdep_assert_held(&p
->pi_lock
);
104 raw_spin_lock(&rq
->lock
);
105 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
109 raw_spin_unlock(&rq
->lock
);
111 while (unlikely(task_on_rq_migrating(p
)))
117 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
119 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
120 __acquires(p
->pi_lock
)
126 raw_spin_lock_irqsave(&p
->pi_lock
, rf
->flags
);
128 raw_spin_lock(&rq
->lock
);
130 * move_queued_task() task_rq_lock()
133 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
134 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
135 * [S] ->cpu = new_cpu [L] task_rq()
139 * If we observe the old cpu in task_rq_lock, the acquire of
140 * the old rq->lock will fully serialize against the stores.
142 * If we observe the new CPU in task_rq_lock, the acquire will
143 * pair with the WMB to ensure we must then also see migrating.
145 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
149 raw_spin_unlock(&rq
->lock
);
150 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
152 while (unlikely(task_on_rq_migrating(p
)))
158 * RQ-clock updating methods:
161 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
164 * In theory, the compile should just see 0 here, and optimize out the call
165 * to sched_rt_avg_update. But I don't trust it...
167 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
168 s64 steal
= 0, irq_delta
= 0;
170 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
171 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
174 * Since irq_time is only updated on {soft,}irq_exit, we might run into
175 * this case when a previous update_rq_clock() happened inside a
178 * When this happens, we stop ->clock_task and only update the
179 * prev_irq_time stamp to account for the part that fit, so that a next
180 * update will consume the rest. This ensures ->clock_task is
183 * It does however cause some slight miss-attribution of {soft,}irq
184 * time, a more accurate solution would be to update the irq_time using
185 * the current rq->clock timestamp, except that would require using
188 if (irq_delta
> delta
)
191 rq
->prev_irq_time
+= irq_delta
;
194 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
195 if (static_key_false((¶virt_steal_rq_enabled
))) {
196 steal
= paravirt_steal_clock(cpu_of(rq
));
197 steal
-= rq
->prev_steal_time_rq
;
199 if (unlikely(steal
> delta
))
202 rq
->prev_steal_time_rq
+= steal
;
207 rq
->clock_task
+= delta
;
209 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
210 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
211 sched_rt_avg_update(rq
, irq_delta
+ steal
);
215 void update_rq_clock(struct rq
*rq
)
219 lockdep_assert_held(&rq
->lock
);
221 if (rq
->clock_update_flags
& RQCF_ACT_SKIP
)
224 #ifdef CONFIG_SCHED_DEBUG
225 if (sched_feat(WARN_DOUBLE_CLOCK
))
226 SCHED_WARN_ON(rq
->clock_update_flags
& RQCF_UPDATED
);
227 rq
->clock_update_flags
|= RQCF_UPDATED
;
230 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
234 update_rq_clock_task(rq
, delta
);
238 #ifdef CONFIG_SCHED_HRTICK
240 * Use HR-timers to deliver accurate preemption points.
243 static void hrtick_clear(struct rq
*rq
)
245 if (hrtimer_active(&rq
->hrtick_timer
))
246 hrtimer_cancel(&rq
->hrtick_timer
);
250 * High-resolution timer tick.
251 * Runs from hardirq context with interrupts disabled.
253 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
255 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
258 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
262 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
265 return HRTIMER_NORESTART
;
270 static void __hrtick_restart(struct rq
*rq
)
272 struct hrtimer
*timer
= &rq
->hrtick_timer
;
274 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
278 * called from hardirq (IPI) context
280 static void __hrtick_start(void *arg
)
286 __hrtick_restart(rq
);
287 rq
->hrtick_csd_pending
= 0;
292 * Called to set the hrtick timer state.
294 * called with rq->lock held and irqs disabled
296 void hrtick_start(struct rq
*rq
, u64 delay
)
298 struct hrtimer
*timer
= &rq
->hrtick_timer
;
303 * Don't schedule slices shorter than 10000ns, that just
304 * doesn't make sense and can cause timer DoS.
306 delta
= max_t(s64
, delay
, 10000LL);
307 time
= ktime_add_ns(timer
->base
->get_time(), delta
);
309 hrtimer_set_expires(timer
, time
);
311 if (rq
== this_rq()) {
312 __hrtick_restart(rq
);
313 } else if (!rq
->hrtick_csd_pending
) {
314 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
315 rq
->hrtick_csd_pending
= 1;
321 * Called to set the hrtick timer state.
323 * called with rq->lock held and irqs disabled
325 void hrtick_start(struct rq
*rq
, u64 delay
)
328 * Don't schedule slices shorter than 10000ns, that just
329 * doesn't make sense. Rely on vruntime for fairness.
331 delay
= max_t(u64
, delay
, 10000LL);
332 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
),
333 HRTIMER_MODE_REL_PINNED
);
335 #endif /* CONFIG_SMP */
337 static void init_rq_hrtick(struct rq
*rq
)
340 rq
->hrtick_csd_pending
= 0;
342 rq
->hrtick_csd
.flags
= 0;
343 rq
->hrtick_csd
.func
= __hrtick_start
;
344 rq
->hrtick_csd
.info
= rq
;
347 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
348 rq
->hrtick_timer
.function
= hrtick
;
350 #else /* CONFIG_SCHED_HRTICK */
351 static inline void hrtick_clear(struct rq
*rq
)
355 static inline void init_rq_hrtick(struct rq
*rq
)
358 #endif /* CONFIG_SCHED_HRTICK */
361 * cmpxchg based fetch_or, macro so it works for different integer types
363 #define fetch_or(ptr, mask) \
365 typeof(ptr) _ptr = (ptr); \
366 typeof(mask) _mask = (mask); \
367 typeof(*_ptr) _old, _val = *_ptr; \
370 _old = cmpxchg(_ptr, _val, _val | _mask); \
378 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
380 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
381 * this avoids any races wrt polling state changes and thereby avoids
384 static bool set_nr_and_not_polling(struct task_struct
*p
)
386 struct thread_info
*ti
= task_thread_info(p
);
387 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
391 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
393 * If this returns true, then the idle task promises to call
394 * sched_ttwu_pending() and reschedule soon.
396 static bool set_nr_if_polling(struct task_struct
*p
)
398 struct thread_info
*ti
= task_thread_info(p
);
399 typeof(ti
->flags
) old
, val
= READ_ONCE(ti
->flags
);
402 if (!(val
& _TIF_POLLING_NRFLAG
))
404 if (val
& _TIF_NEED_RESCHED
)
406 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
415 static bool set_nr_and_not_polling(struct task_struct
*p
)
417 set_tsk_need_resched(p
);
422 static bool set_nr_if_polling(struct task_struct
*p
)
429 void wake_q_add(struct wake_q_head
*head
, struct task_struct
*task
)
431 struct wake_q_node
*node
= &task
->wake_q
;
434 * Atomically grab the task, if ->wake_q is !nil already it means
435 * its already queued (either by us or someone else) and will get the
436 * wakeup due to that.
438 * This cmpxchg() implies a full barrier, which pairs with the write
439 * barrier implied by the wakeup in wake_up_q().
441 if (cmpxchg(&node
->next
, NULL
, WAKE_Q_TAIL
))
444 get_task_struct(task
);
447 * The head is context local, there can be no concurrency.
450 head
->lastp
= &node
->next
;
453 void wake_up_q(struct wake_q_head
*head
)
455 struct wake_q_node
*node
= head
->first
;
457 while (node
!= WAKE_Q_TAIL
) {
458 struct task_struct
*task
;
460 task
= container_of(node
, struct task_struct
, wake_q
);
462 /* Task can safely be re-inserted now: */
464 task
->wake_q
.next
= NULL
;
467 * wake_up_process() implies a wmb() to pair with the queueing
468 * in wake_q_add() so as not to miss wakeups.
470 wake_up_process(task
);
471 put_task_struct(task
);
476 * resched_curr - mark rq's current task 'to be rescheduled now'.
478 * On UP this means the setting of the need_resched flag, on SMP it
479 * might also involve a cross-CPU call to trigger the scheduler on
482 void resched_curr(struct rq
*rq
)
484 struct task_struct
*curr
= rq
->curr
;
487 lockdep_assert_held(&rq
->lock
);
489 if (test_tsk_need_resched(curr
))
494 if (cpu
== smp_processor_id()) {
495 set_tsk_need_resched(curr
);
496 set_preempt_need_resched();
500 if (set_nr_and_not_polling(curr
))
501 smp_send_reschedule(cpu
);
503 trace_sched_wake_idle_without_ipi(cpu
);
506 void resched_cpu(int cpu
)
508 struct rq
*rq
= cpu_rq(cpu
);
511 raw_spin_lock_irqsave(&rq
->lock
, flags
);
512 if (cpu_online(cpu
) || cpu
== smp_processor_id())
514 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
518 #ifdef CONFIG_NO_HZ_COMMON
520 * In the semi idle case, use the nearest busy CPU for migrating timers
521 * from an idle CPU. This is good for power-savings.
523 * We don't do similar optimization for completely idle system, as
524 * selecting an idle CPU will add more delays to the timers than intended
525 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
527 int get_nohz_timer_target(void)
529 int i
, cpu
= smp_processor_id();
530 struct sched_domain
*sd
;
532 if (!idle_cpu(cpu
) && housekeeping_cpu(cpu
, HK_FLAG_TIMER
))
536 for_each_domain(cpu
, sd
) {
537 for_each_cpu(i
, sched_domain_span(sd
)) {
541 if (!idle_cpu(i
) && housekeeping_cpu(i
, HK_FLAG_TIMER
)) {
548 if (!housekeeping_cpu(cpu
, HK_FLAG_TIMER
))
549 cpu
= housekeeping_any_cpu(HK_FLAG_TIMER
);
556 * When add_timer_on() enqueues a timer into the timer wheel of an
557 * idle CPU then this timer might expire before the next timer event
558 * which is scheduled to wake up that CPU. In case of a completely
559 * idle system the next event might even be infinite time into the
560 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
561 * leaves the inner idle loop so the newly added timer is taken into
562 * account when the CPU goes back to idle and evaluates the timer
563 * wheel for the next timer event.
565 static void wake_up_idle_cpu(int cpu
)
567 struct rq
*rq
= cpu_rq(cpu
);
569 if (cpu
== smp_processor_id())
572 if (set_nr_and_not_polling(rq
->idle
))
573 smp_send_reschedule(cpu
);
575 trace_sched_wake_idle_without_ipi(cpu
);
578 static bool wake_up_full_nohz_cpu(int cpu
)
581 * We just need the target to call irq_exit() and re-evaluate
582 * the next tick. The nohz full kick at least implies that.
583 * If needed we can still optimize that later with an
586 if (cpu_is_offline(cpu
))
587 return true; /* Don't try to wake offline CPUs. */
588 if (tick_nohz_full_cpu(cpu
)) {
589 if (cpu
!= smp_processor_id() ||
590 tick_nohz_tick_stopped())
591 tick_nohz_full_kick_cpu(cpu
);
599 * Wake up the specified CPU. If the CPU is going offline, it is the
600 * caller's responsibility to deal with the lost wakeup, for example,
601 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
603 void wake_up_nohz_cpu(int cpu
)
605 if (!wake_up_full_nohz_cpu(cpu
))
606 wake_up_idle_cpu(cpu
);
609 static inline bool got_nohz_idle_kick(void)
611 int cpu
= smp_processor_id();
613 if (!test_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
)))
616 if (idle_cpu(cpu
) && !need_resched())
620 * We can't run Idle Load Balance on this CPU for this time so we
621 * cancel it and clear NOHZ_BALANCE_KICK
623 clear_bit(NOHZ_BALANCE_KICK
, nohz_flags(cpu
));
627 #else /* CONFIG_NO_HZ_COMMON */
629 static inline bool got_nohz_idle_kick(void)
634 #endif /* CONFIG_NO_HZ_COMMON */
636 #ifdef CONFIG_NO_HZ_FULL
637 bool sched_can_stop_tick(struct rq
*rq
)
641 /* Deadline tasks, even if single, need the tick */
642 if (rq
->dl
.dl_nr_running
)
646 * If there are more than one RR tasks, we need the tick to effect the
647 * actual RR behaviour.
649 if (rq
->rt
.rr_nr_running
) {
650 if (rq
->rt
.rr_nr_running
== 1)
657 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
658 * forced preemption between FIFO tasks.
660 fifo_nr_running
= rq
->rt
.rt_nr_running
- rq
->rt
.rr_nr_running
;
665 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
666 * if there's more than one we need the tick for involuntary
669 if (rq
->nr_running
> 1)
674 #endif /* CONFIG_NO_HZ_FULL */
676 void sched_avg_update(struct rq
*rq
)
678 s64 period
= sched_avg_period();
680 while ((s64
)(rq_clock(rq
) - rq
->age_stamp
) > period
) {
682 * Inline assembly required to prevent the compiler
683 * optimising this loop into a divmod call.
684 * See __iter_div_u64_rem() for another example of this.
686 asm("" : "+rm" (rq
->age_stamp
));
687 rq
->age_stamp
+= period
;
692 #endif /* CONFIG_SMP */
694 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
695 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
697 * Iterate task_group tree rooted at *from, calling @down when first entering a
698 * node and @up when leaving it for the final time.
700 * Caller must hold rcu_lock or sufficient equivalent.
702 int walk_tg_tree_from(struct task_group
*from
,
703 tg_visitor down
, tg_visitor up
, void *data
)
705 struct task_group
*parent
, *child
;
711 ret
= (*down
)(parent
, data
);
714 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
721 ret
= (*up
)(parent
, data
);
722 if (ret
|| parent
== from
)
726 parent
= parent
->parent
;
733 int tg_nop(struct task_group
*tg
, void *data
)
739 static void set_load_weight(struct task_struct
*p
, bool update_load
)
741 int prio
= p
->static_prio
- MAX_RT_PRIO
;
742 struct load_weight
*load
= &p
->se
.load
;
745 * SCHED_IDLE tasks get minimal weight:
747 if (idle_policy(p
->policy
)) {
748 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
749 load
->inv_weight
= WMULT_IDLEPRIO
;
754 * SCHED_OTHER tasks have to update their load when changing their
757 if (update_load
&& p
->sched_class
== &fair_sched_class
) {
758 reweight_task(p
, prio
);
760 load
->weight
= scale_load(sched_prio_to_weight
[prio
]);
761 load
->inv_weight
= sched_prio_to_wmult
[prio
];
765 static inline void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
767 if (!(flags
& ENQUEUE_NOCLOCK
))
770 if (!(flags
& ENQUEUE_RESTORE
))
771 sched_info_queued(rq
, p
);
773 p
->sched_class
->enqueue_task(rq
, p
, flags
);
776 static inline void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
778 if (!(flags
& DEQUEUE_NOCLOCK
))
781 if (!(flags
& DEQUEUE_SAVE
))
782 sched_info_dequeued(rq
, p
);
784 p
->sched_class
->dequeue_task(rq
, p
, flags
);
787 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
789 if (task_contributes_to_load(p
))
790 rq
->nr_uninterruptible
--;
792 enqueue_task(rq
, p
, flags
);
795 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
797 if (task_contributes_to_load(p
))
798 rq
->nr_uninterruptible
++;
800 dequeue_task(rq
, p
, flags
);
804 * __normal_prio - return the priority that is based on the static prio
806 static inline int __normal_prio(struct task_struct
*p
)
808 return p
->static_prio
;
812 * Calculate the expected normal priority: i.e. priority
813 * without taking RT-inheritance into account. Might be
814 * boosted by interactivity modifiers. Changes upon fork,
815 * setprio syscalls, and whenever the interactivity
816 * estimator recalculates.
818 static inline int normal_prio(struct task_struct
*p
)
822 if (task_has_dl_policy(p
))
823 prio
= MAX_DL_PRIO
-1;
824 else if (task_has_rt_policy(p
))
825 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
827 prio
= __normal_prio(p
);
832 * Calculate the current priority, i.e. the priority
833 * taken into account by the scheduler. This value might
834 * be boosted by RT tasks, or might be boosted by
835 * interactivity modifiers. Will be RT if the task got
836 * RT-boosted. If not then it returns p->normal_prio.
838 static int effective_prio(struct task_struct
*p
)
840 p
->normal_prio
= normal_prio(p
);
842 * If we are RT tasks or we were boosted to RT priority,
843 * keep the priority unchanged. Otherwise, update priority
844 * to the normal priority:
846 if (!rt_prio(p
->prio
))
847 return p
->normal_prio
;
852 * task_curr - is this task currently executing on a CPU?
853 * @p: the task in question.
855 * Return: 1 if the task is currently executing. 0 otherwise.
857 inline int task_curr(const struct task_struct
*p
)
859 return cpu_curr(task_cpu(p
)) == p
;
863 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
864 * use the balance_callback list if you want balancing.
866 * this means any call to check_class_changed() must be followed by a call to
867 * balance_callback().
869 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
870 const struct sched_class
*prev_class
,
873 if (prev_class
!= p
->sched_class
) {
874 if (prev_class
->switched_from
)
875 prev_class
->switched_from(rq
, p
);
877 p
->sched_class
->switched_to(rq
, p
);
878 } else if (oldprio
!= p
->prio
|| dl_task(p
))
879 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
882 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
884 const struct sched_class
*class;
886 if (p
->sched_class
== rq
->curr
->sched_class
) {
887 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
889 for_each_class(class) {
890 if (class == rq
->curr
->sched_class
)
892 if (class == p
->sched_class
) {
900 * A queue event has occurred, and we're going to schedule. In
901 * this case, we can save a useless back to back clock update.
903 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
904 rq_clock_skip_update(rq
, true);
909 * This is how migration works:
911 * 1) we invoke migration_cpu_stop() on the target CPU using
913 * 2) stopper starts to run (implicitly forcing the migrated thread
915 * 3) it checks whether the migrated task is still in the wrong runqueue.
916 * 4) if it's in the wrong runqueue then the migration thread removes
917 * it and puts it into the right queue.
918 * 5) stopper completes and stop_one_cpu() returns and the migration
923 * move_queued_task - move a queued task to new rq.
925 * Returns (locked) new rq. Old rq's lock is released.
927 static struct rq
*move_queued_task(struct rq
*rq
, struct rq_flags
*rf
,
928 struct task_struct
*p
, int new_cpu
)
930 lockdep_assert_held(&rq
->lock
);
932 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
933 dequeue_task(rq
, p
, DEQUEUE_NOCLOCK
);
934 set_task_cpu(p
, new_cpu
);
937 rq
= cpu_rq(new_cpu
);
940 BUG_ON(task_cpu(p
) != new_cpu
);
941 enqueue_task(rq
, p
, 0);
942 p
->on_rq
= TASK_ON_RQ_QUEUED
;
943 check_preempt_curr(rq
, p
, 0);
948 struct migration_arg
{
949 struct task_struct
*task
;
954 * Move (not current) task off this CPU, onto the destination CPU. We're doing
955 * this because either it can't run here any more (set_cpus_allowed()
956 * away from this CPU, or CPU going down), or because we're
957 * attempting to rebalance this task on exec (sched_exec).
959 * So we race with normal scheduler movements, but that's OK, as long
960 * as the task is no longer on this CPU.
962 static struct rq
*__migrate_task(struct rq
*rq
, struct rq_flags
*rf
,
963 struct task_struct
*p
, int dest_cpu
)
965 if (p
->flags
& PF_KTHREAD
) {
966 if (unlikely(!cpu_online(dest_cpu
)))
969 if (unlikely(!cpu_active(dest_cpu
)))
973 /* Affinity changed (again). */
974 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
978 rq
= move_queued_task(rq
, rf
, p
, dest_cpu
);
984 * migration_cpu_stop - this will be executed by a highprio stopper thread
985 * and performs thread migration by bumping thread off CPU then
986 * 'pushing' onto another runqueue.
988 static int migration_cpu_stop(void *data
)
990 struct migration_arg
*arg
= data
;
991 struct task_struct
*p
= arg
->task
;
992 struct rq
*rq
= this_rq();
996 * The original target CPU might have gone down and we might
997 * be on another CPU but it doesn't matter.
1001 * We need to explicitly wake pending tasks before running
1002 * __migrate_task() such that we will not miss enforcing cpus_allowed
1003 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1005 sched_ttwu_pending();
1007 raw_spin_lock(&p
->pi_lock
);
1010 * If task_rq(p) != rq, it cannot be migrated here, because we're
1011 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1012 * we're holding p->pi_lock.
1014 if (task_rq(p
) == rq
) {
1015 if (task_on_rq_queued(p
))
1016 rq
= __migrate_task(rq
, &rf
, p
, arg
->dest_cpu
);
1018 p
->wake_cpu
= arg
->dest_cpu
;
1021 raw_spin_unlock(&p
->pi_lock
);
1028 * sched_class::set_cpus_allowed must do the below, but is not required to
1029 * actually call this function.
1031 void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
)
1033 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1034 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
1037 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
1039 struct rq
*rq
= task_rq(p
);
1040 bool queued
, running
;
1042 lockdep_assert_held(&p
->pi_lock
);
1044 queued
= task_on_rq_queued(p
);
1045 running
= task_current(rq
, p
);
1049 * Because __kthread_bind() calls this on blocked tasks without
1052 lockdep_assert_held(&rq
->lock
);
1053 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
1056 put_prev_task(rq
, p
);
1058 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
1061 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
1063 set_curr_task(rq
, p
);
1067 * Change a given task's CPU affinity. Migrate the thread to a
1068 * proper CPU and schedule it away if the CPU it's executing on
1069 * is removed from the allowed bitmask.
1071 * NOTE: the caller must have a valid reference to the task, the
1072 * task must not exit() & deallocate itself prematurely. The
1073 * call is not atomic; no spinlocks may be held.
1075 static int __set_cpus_allowed_ptr(struct task_struct
*p
,
1076 const struct cpumask
*new_mask
, bool check
)
1078 const struct cpumask
*cpu_valid_mask
= cpu_active_mask
;
1079 unsigned int dest_cpu
;
1084 rq
= task_rq_lock(p
, &rf
);
1085 update_rq_clock(rq
);
1087 if (p
->flags
& PF_KTHREAD
) {
1089 * Kernel threads are allowed on online && !active CPUs
1091 cpu_valid_mask
= cpu_online_mask
;
1095 * Must re-check here, to close a race against __kthread_bind(),
1096 * sched_setaffinity() is not guaranteed to observe the flag.
1098 if (check
&& (p
->flags
& PF_NO_SETAFFINITY
)) {
1103 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
1106 if (!cpumask_intersects(new_mask
, cpu_valid_mask
)) {
1111 do_set_cpus_allowed(p
, new_mask
);
1113 if (p
->flags
& PF_KTHREAD
) {
1115 * For kernel threads that do indeed end up on online &&
1116 * !active we want to ensure they are strict per-CPU threads.
1118 WARN_ON(cpumask_intersects(new_mask
, cpu_online_mask
) &&
1119 !cpumask_intersects(new_mask
, cpu_active_mask
) &&
1120 p
->nr_cpus_allowed
!= 1);
1123 /* Can the task run on the task's current CPU? If so, we're done */
1124 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
1127 dest_cpu
= cpumask_any_and(cpu_valid_mask
, new_mask
);
1128 if (task_running(rq
, p
) || p
->state
== TASK_WAKING
) {
1129 struct migration_arg arg
= { p
, dest_cpu
};
1130 /* Need help from migration thread: drop lock and wait. */
1131 task_rq_unlock(rq
, p
, &rf
);
1132 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
1133 tlb_migrate_finish(p
->mm
);
1135 } else if (task_on_rq_queued(p
)) {
1137 * OK, since we're going to drop the lock immediately
1138 * afterwards anyway.
1140 rq
= move_queued_task(rq
, &rf
, p
, dest_cpu
);
1143 task_rq_unlock(rq
, p
, &rf
);
1148 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
1150 return __set_cpus_allowed_ptr(p
, new_mask
, false);
1152 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
1154 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1156 #ifdef CONFIG_SCHED_DEBUG
1158 * We should never call set_task_cpu() on a blocked task,
1159 * ttwu() will sort out the placement.
1161 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1165 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1166 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1167 * time relying on p->on_rq.
1169 WARN_ON_ONCE(p
->state
== TASK_RUNNING
&&
1170 p
->sched_class
== &fair_sched_class
&&
1171 (p
->on_rq
&& !task_on_rq_migrating(p
)));
1173 #ifdef CONFIG_LOCKDEP
1175 * The caller should hold either p->pi_lock or rq->lock, when changing
1176 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1178 * sched_move_task() holds both and thus holding either pins the cgroup,
1181 * Furthermore, all task_rq users should acquire both locks, see
1184 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1185 lockdep_is_held(&task_rq(p
)->lock
)));
1188 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1190 WARN_ON_ONCE(!cpu_online(new_cpu
));
1193 trace_sched_migrate_task(p
, new_cpu
);
1195 if (task_cpu(p
) != new_cpu
) {
1196 if (p
->sched_class
->migrate_task_rq
)
1197 p
->sched_class
->migrate_task_rq(p
);
1198 p
->se
.nr_migrations
++;
1199 perf_event_task_migrate(p
);
1202 __set_task_cpu(p
, new_cpu
);
1205 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1207 if (task_on_rq_queued(p
)) {
1208 struct rq
*src_rq
, *dst_rq
;
1209 struct rq_flags srf
, drf
;
1211 src_rq
= task_rq(p
);
1212 dst_rq
= cpu_rq(cpu
);
1214 rq_pin_lock(src_rq
, &srf
);
1215 rq_pin_lock(dst_rq
, &drf
);
1217 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
1218 deactivate_task(src_rq
, p
, 0);
1219 set_task_cpu(p
, cpu
);
1220 activate_task(dst_rq
, p
, 0);
1221 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1222 check_preempt_curr(dst_rq
, p
, 0);
1224 rq_unpin_lock(dst_rq
, &drf
);
1225 rq_unpin_lock(src_rq
, &srf
);
1229 * Task isn't running anymore; make it appear like we migrated
1230 * it before it went to sleep. This means on wakeup we make the
1231 * previous CPU our target instead of where it really is.
1237 struct migration_swap_arg
{
1238 struct task_struct
*src_task
, *dst_task
;
1239 int src_cpu
, dst_cpu
;
1242 static int migrate_swap_stop(void *data
)
1244 struct migration_swap_arg
*arg
= data
;
1245 struct rq
*src_rq
, *dst_rq
;
1248 if (!cpu_active(arg
->src_cpu
) || !cpu_active(arg
->dst_cpu
))
1251 src_rq
= cpu_rq(arg
->src_cpu
);
1252 dst_rq
= cpu_rq(arg
->dst_cpu
);
1254 double_raw_lock(&arg
->src_task
->pi_lock
,
1255 &arg
->dst_task
->pi_lock
);
1256 double_rq_lock(src_rq
, dst_rq
);
1258 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1261 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1264 if (!cpumask_test_cpu(arg
->dst_cpu
, &arg
->src_task
->cpus_allowed
))
1267 if (!cpumask_test_cpu(arg
->src_cpu
, &arg
->dst_task
->cpus_allowed
))
1270 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1271 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1276 double_rq_unlock(src_rq
, dst_rq
);
1277 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1278 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1284 * Cross migrate two tasks
1286 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
)
1288 struct migration_swap_arg arg
;
1291 arg
= (struct migration_swap_arg
){
1293 .src_cpu
= task_cpu(cur
),
1295 .dst_cpu
= task_cpu(p
),
1298 if (arg
.src_cpu
== arg
.dst_cpu
)
1302 * These three tests are all lockless; this is OK since all of them
1303 * will be re-checked with proper locks held further down the line.
1305 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1308 if (!cpumask_test_cpu(arg
.dst_cpu
, &arg
.src_task
->cpus_allowed
))
1311 if (!cpumask_test_cpu(arg
.src_cpu
, &arg
.dst_task
->cpus_allowed
))
1314 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1315 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1322 * wait_task_inactive - wait for a thread to unschedule.
1324 * If @match_state is nonzero, it's the @p->state value just checked and
1325 * not expected to change. If it changes, i.e. @p might have woken up,
1326 * then return zero. When we succeed in waiting for @p to be off its CPU,
1327 * we return a positive number (its total switch count). If a second call
1328 * a short while later returns the same number, the caller can be sure that
1329 * @p has remained unscheduled the whole time.
1331 * The caller must ensure that the task *will* unschedule sometime soon,
1332 * else this function might spin for a *long* time. This function can't
1333 * be called with interrupts off, or it may introduce deadlock with
1334 * smp_call_function() if an IPI is sent by the same process we are
1335 * waiting to become inactive.
1337 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1339 int running
, queued
;
1346 * We do the initial early heuristics without holding
1347 * any task-queue locks at all. We'll only try to get
1348 * the runqueue lock when things look like they will
1354 * If the task is actively running on another CPU
1355 * still, just relax and busy-wait without holding
1358 * NOTE! Since we don't hold any locks, it's not
1359 * even sure that "rq" stays as the right runqueue!
1360 * But we don't care, since "task_running()" will
1361 * return false if the runqueue has changed and p
1362 * is actually now running somewhere else!
1364 while (task_running(rq
, p
)) {
1365 if (match_state
&& unlikely(p
->state
!= match_state
))
1371 * Ok, time to look more closely! We need the rq
1372 * lock now, to be *sure*. If we're wrong, we'll
1373 * just go back and repeat.
1375 rq
= task_rq_lock(p
, &rf
);
1376 trace_sched_wait_task(p
);
1377 running
= task_running(rq
, p
);
1378 queued
= task_on_rq_queued(p
);
1380 if (!match_state
|| p
->state
== match_state
)
1381 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1382 task_rq_unlock(rq
, p
, &rf
);
1385 * If it changed from the expected state, bail out now.
1387 if (unlikely(!ncsw
))
1391 * Was it really running after all now that we
1392 * checked with the proper locks actually held?
1394 * Oops. Go back and try again..
1396 if (unlikely(running
)) {
1402 * It's not enough that it's not actively running,
1403 * it must be off the runqueue _entirely_, and not
1406 * So if it was still runnable (but just not actively
1407 * running right now), it's preempted, and we should
1408 * yield - it could be a while.
1410 if (unlikely(queued
)) {
1411 ktime_t to
= NSEC_PER_SEC
/ HZ
;
1413 set_current_state(TASK_UNINTERRUPTIBLE
);
1414 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1419 * Ahh, all good. It wasn't running, and it wasn't
1420 * runnable, which means that it will never become
1421 * running in the future either. We're all done!
1430 * kick_process - kick a running thread to enter/exit the kernel
1431 * @p: the to-be-kicked thread
1433 * Cause a process which is running on another CPU to enter
1434 * kernel-mode, without any delay. (to get signals handled.)
1436 * NOTE: this function doesn't have to take the runqueue lock,
1437 * because all it wants to ensure is that the remote task enters
1438 * the kernel. If the IPI races and the task has been migrated
1439 * to another CPU then no harm is done and the purpose has been
1442 void kick_process(struct task_struct
*p
)
1448 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1449 smp_send_reschedule(cpu
);
1452 EXPORT_SYMBOL_GPL(kick_process
);
1455 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1457 * A few notes on cpu_active vs cpu_online:
1459 * - cpu_active must be a subset of cpu_online
1461 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1462 * see __set_cpus_allowed_ptr(). At this point the newly online
1463 * CPU isn't yet part of the sched domains, and balancing will not
1466 * - on CPU-down we clear cpu_active() to mask the sched domains and
1467 * avoid the load balancer to place new tasks on the to be removed
1468 * CPU. Existing tasks will remain running there and will be taken
1471 * This means that fallback selection must not select !active CPUs.
1472 * And can assume that any active CPU must be online. Conversely
1473 * select_task_rq() below may allow selection of !active CPUs in order
1474 * to satisfy the above rules.
1476 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1478 int nid
= cpu_to_node(cpu
);
1479 const struct cpumask
*nodemask
= NULL
;
1480 enum { cpuset
, possible
, fail
} state
= cpuset
;
1484 * If the node that the CPU is on has been offlined, cpu_to_node()
1485 * will return -1. There is no CPU on the node, and we should
1486 * select the CPU on the other node.
1489 nodemask
= cpumask_of_node(nid
);
1491 /* Look for allowed, online CPU in same node. */
1492 for_each_cpu(dest_cpu
, nodemask
) {
1493 if (!cpu_active(dest_cpu
))
1495 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
1501 /* Any allowed, online CPU? */
1502 for_each_cpu(dest_cpu
, &p
->cpus_allowed
) {
1503 if (!(p
->flags
& PF_KTHREAD
) && !cpu_active(dest_cpu
))
1505 if (!cpu_online(dest_cpu
))
1510 /* No more Mr. Nice Guy. */
1513 if (IS_ENABLED(CONFIG_CPUSETS
)) {
1514 cpuset_cpus_allowed_fallback(p
);
1520 do_set_cpus_allowed(p
, cpu_possible_mask
);
1531 if (state
!= cpuset
) {
1533 * Don't tell them about moving exiting tasks or
1534 * kernel threads (both mm NULL), since they never
1537 if (p
->mm
&& printk_ratelimit()) {
1538 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1539 task_pid_nr(p
), p
->comm
, cpu
);
1547 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1550 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1552 lockdep_assert_held(&p
->pi_lock
);
1554 if (p
->nr_cpus_allowed
> 1)
1555 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1557 cpu
= cpumask_any(&p
->cpus_allowed
);
1560 * In order not to call set_task_cpu() on a blocking task we need
1561 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1564 * Since this is common to all placement strategies, this lives here.
1566 * [ this allows ->select_task() to simply return task_cpu(p) and
1567 * not worry about this generic constraint ]
1569 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
1571 cpu
= select_fallback_rq(task_cpu(p
), p
);
1576 static void update_avg(u64
*avg
, u64 sample
)
1578 s64 diff
= sample
- *avg
;
1582 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
1584 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1585 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
1589 * Make it appear like a SCHED_FIFO task, its something
1590 * userspace knows about and won't get confused about.
1592 * Also, it will make PI more or less work without too
1593 * much confusion -- but then, stop work should not
1594 * rely on PI working anyway.
1596 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
1598 stop
->sched_class
= &stop_sched_class
;
1601 cpu_rq(cpu
)->stop
= stop
;
1605 * Reset it back to a normal scheduling class so that
1606 * it can die in pieces.
1608 old_stop
->sched_class
= &rt_sched_class
;
1614 static inline int __set_cpus_allowed_ptr(struct task_struct
*p
,
1615 const struct cpumask
*new_mask
, bool check
)
1617 return set_cpus_allowed_ptr(p
, new_mask
);
1620 #endif /* CONFIG_SMP */
1623 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1627 if (!schedstat_enabled())
1633 if (cpu
== rq
->cpu
) {
1634 __schedstat_inc(rq
->ttwu_local
);
1635 __schedstat_inc(p
->se
.statistics
.nr_wakeups_local
);
1637 struct sched_domain
*sd
;
1639 __schedstat_inc(p
->se
.statistics
.nr_wakeups_remote
);
1641 for_each_domain(rq
->cpu
, sd
) {
1642 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1643 __schedstat_inc(sd
->ttwu_wake_remote
);
1650 if (wake_flags
& WF_MIGRATED
)
1651 __schedstat_inc(p
->se
.statistics
.nr_wakeups_migrate
);
1652 #endif /* CONFIG_SMP */
1654 __schedstat_inc(rq
->ttwu_count
);
1655 __schedstat_inc(p
->se
.statistics
.nr_wakeups
);
1657 if (wake_flags
& WF_SYNC
)
1658 __schedstat_inc(p
->se
.statistics
.nr_wakeups_sync
);
1661 static inline void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1663 activate_task(rq
, p
, en_flags
);
1664 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1666 /* If a worker is waking up, notify the workqueue: */
1667 if (p
->flags
& PF_WQ_WORKER
)
1668 wq_worker_waking_up(p
, cpu_of(rq
));
1672 * Mark the task runnable and perform wakeup-preemption.
1674 static void ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
1675 struct rq_flags
*rf
)
1677 check_preempt_curr(rq
, p
, wake_flags
);
1678 p
->state
= TASK_RUNNING
;
1679 trace_sched_wakeup(p
);
1682 if (p
->sched_class
->task_woken
) {
1684 * Our task @p is fully woken up and running; so its safe to
1685 * drop the rq->lock, hereafter rq is only used for statistics.
1687 rq_unpin_lock(rq
, rf
);
1688 p
->sched_class
->task_woken(rq
, p
);
1689 rq_repin_lock(rq
, rf
);
1692 if (rq
->idle_stamp
) {
1693 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1694 u64 max
= 2*rq
->max_idle_balance_cost
;
1696 update_avg(&rq
->avg_idle
, delta
);
1698 if (rq
->avg_idle
> max
)
1707 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
1708 struct rq_flags
*rf
)
1710 int en_flags
= ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
;
1712 lockdep_assert_held(&rq
->lock
);
1715 if (p
->sched_contributes_to_load
)
1716 rq
->nr_uninterruptible
--;
1718 if (wake_flags
& WF_MIGRATED
)
1719 en_flags
|= ENQUEUE_MIGRATED
;
1722 ttwu_activate(rq
, p
, en_flags
);
1723 ttwu_do_wakeup(rq
, p
, wake_flags
, rf
);
1727 * Called in case the task @p isn't fully descheduled from its runqueue,
1728 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1729 * since all we need to do is flip p->state to TASK_RUNNING, since
1730 * the task is still ->on_rq.
1732 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1738 rq
= __task_rq_lock(p
, &rf
);
1739 if (task_on_rq_queued(p
)) {
1740 /* check_preempt_curr() may use rq clock */
1741 update_rq_clock(rq
);
1742 ttwu_do_wakeup(rq
, p
, wake_flags
, &rf
);
1745 __task_rq_unlock(rq
, &rf
);
1751 void sched_ttwu_pending(void)
1753 struct rq
*rq
= this_rq();
1754 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1755 struct task_struct
*p
, *t
;
1761 rq_lock_irqsave(rq
, &rf
);
1762 update_rq_clock(rq
);
1764 llist_for_each_entry_safe(p
, t
, llist
, wake_entry
)
1765 ttwu_do_activate(rq
, p
, p
->sched_remote_wakeup
? WF_MIGRATED
: 0, &rf
);
1767 rq_unlock_irqrestore(rq
, &rf
);
1770 void scheduler_ipi(void)
1773 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1774 * TIF_NEED_RESCHED remotely (for the first time) will also send
1777 preempt_fold_need_resched();
1779 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1783 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1784 * traditionally all their work was done from the interrupt return
1785 * path. Now that we actually do some work, we need to make sure
1788 * Some archs already do call them, luckily irq_enter/exit nest
1791 * Arguably we should visit all archs and update all handlers,
1792 * however a fair share of IPIs are still resched only so this would
1793 * somewhat pessimize the simple resched case.
1796 sched_ttwu_pending();
1799 * Check if someone kicked us for doing the nohz idle load balance.
1801 if (unlikely(got_nohz_idle_kick())) {
1802 this_rq()->idle_balance
= 1;
1803 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1808 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
, int wake_flags
)
1810 struct rq
*rq
= cpu_rq(cpu
);
1812 p
->sched_remote_wakeup
= !!(wake_flags
& WF_MIGRATED
);
1814 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1815 if (!set_nr_if_polling(rq
->idle
))
1816 smp_send_reschedule(cpu
);
1818 trace_sched_wake_idle_without_ipi(cpu
);
1822 void wake_up_if_idle(int cpu
)
1824 struct rq
*rq
= cpu_rq(cpu
);
1829 if (!is_idle_task(rcu_dereference(rq
->curr
)))
1832 if (set_nr_if_polling(rq
->idle
)) {
1833 trace_sched_wake_idle_without_ipi(cpu
);
1835 rq_lock_irqsave(rq
, &rf
);
1836 if (is_idle_task(rq
->curr
))
1837 smp_send_reschedule(cpu
);
1838 /* Else CPU is not idle, do nothing here: */
1839 rq_unlock_irqrestore(rq
, &rf
);
1846 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1848 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1850 #endif /* CONFIG_SMP */
1852 static void ttwu_queue(struct task_struct
*p
, int cpu
, int wake_flags
)
1854 struct rq
*rq
= cpu_rq(cpu
);
1857 #if defined(CONFIG_SMP)
1858 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1859 sched_clock_cpu(cpu
); /* Sync clocks across CPUs */
1860 ttwu_queue_remote(p
, cpu
, wake_flags
);
1866 update_rq_clock(rq
);
1867 ttwu_do_activate(rq
, p
, wake_flags
, &rf
);
1872 * Notes on Program-Order guarantees on SMP systems.
1876 * The basic program-order guarantee on SMP systems is that when a task [t]
1877 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1878 * execution on its new CPU [c1].
1880 * For migration (of runnable tasks) this is provided by the following means:
1882 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1883 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1884 * rq(c1)->lock (if not at the same time, then in that order).
1885 * C) LOCK of the rq(c1)->lock scheduling in task
1887 * Transitivity guarantees that B happens after A and C after B.
1888 * Note: we only require RCpc transitivity.
1889 * Note: the CPU doing B need not be c0 or c1
1898 * UNLOCK rq(0)->lock
1900 * LOCK rq(0)->lock // orders against CPU0
1902 * UNLOCK rq(0)->lock
1906 * UNLOCK rq(1)->lock
1908 * LOCK rq(1)->lock // orders against CPU2
1911 * UNLOCK rq(1)->lock
1914 * BLOCKING -- aka. SLEEP + WAKEUP
1916 * For blocking we (obviously) need to provide the same guarantee as for
1917 * migration. However the means are completely different as there is no lock
1918 * chain to provide order. Instead we do:
1920 * 1) smp_store_release(X->on_cpu, 0)
1921 * 2) smp_cond_load_acquire(!X->on_cpu)
1925 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1927 * LOCK rq(0)->lock LOCK X->pi_lock
1930 * smp_store_release(X->on_cpu, 0);
1932 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1938 * X->state = RUNNING
1939 * UNLOCK rq(2)->lock
1941 * LOCK rq(2)->lock // orders against CPU1
1944 * UNLOCK rq(2)->lock
1947 * UNLOCK rq(0)->lock
1950 * However; for wakeups there is a second guarantee we must provide, namely we
1951 * must observe the state that lead to our wakeup. That is, not only must our
1952 * task observe its own prior state, it must also observe the stores prior to
1955 * This means that any means of doing remote wakeups must order the CPU doing
1956 * the wakeup against the CPU the task is going to end up running on. This,
1957 * however, is already required for the regular Program-Order guarantee above,
1958 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
1963 * try_to_wake_up - wake up a thread
1964 * @p: the thread to be awakened
1965 * @state: the mask of task states that can be woken
1966 * @wake_flags: wake modifier flags (WF_*)
1968 * If (@state & @p->state) @p->state = TASK_RUNNING.
1970 * If the task was not queued/runnable, also place it back on a runqueue.
1972 * Atomic against schedule() which would dequeue a task, also see
1973 * set_current_state().
1975 * Return: %true if @p->state changes (an actual wakeup was done),
1979 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1981 unsigned long flags
;
1982 int cpu
, success
= 0;
1985 * If we are going to wake up a thread waiting for CONDITION we
1986 * need to ensure that CONDITION=1 done by the caller can not be
1987 * reordered with p->state check below. This pairs with mb() in
1988 * set_current_state() the waiting thread does.
1990 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1991 smp_mb__after_spinlock();
1992 if (!(p
->state
& state
))
1995 trace_sched_waking(p
);
1997 /* We're going to change ->state: */
2002 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2003 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2004 * in smp_cond_load_acquire() below.
2006 * sched_ttwu_pending() try_to_wake_up()
2007 * [S] p->on_rq = 1; [L] P->state
2008 * UNLOCK rq->lock -----.
2012 * LOCK rq->lock -----'
2016 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2018 * Pairs with the UNLOCK+LOCK on rq->lock from the
2019 * last wakeup of our task and the schedule that got our task
2023 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2028 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2029 * possible to, falsely, observe p->on_cpu == 0.
2031 * One must be running (->on_cpu == 1) in order to remove oneself
2032 * from the runqueue.
2034 * [S] ->on_cpu = 1; [L] ->on_rq
2038 * [S] ->on_rq = 0; [L] ->on_cpu
2040 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2041 * from the consecutive calls to schedule(); the first switching to our
2042 * task, the second putting it to sleep.
2047 * If the owning (remote) CPU is still in the middle of schedule() with
2048 * this task as prev, wait until its done referencing the task.
2050 * Pairs with the smp_store_release() in finish_task().
2052 * This ensures that tasks getting woken will be fully ordered against
2053 * their previous state and preserve Program Order.
2055 smp_cond_load_acquire(&p
->on_cpu
, !VAL
);
2057 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2058 p
->state
= TASK_WAKING
;
2061 delayacct_blkio_end(p
);
2062 atomic_dec(&task_rq(p
)->nr_iowait
);
2065 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
2066 if (task_cpu(p
) != cpu
) {
2067 wake_flags
|= WF_MIGRATED
;
2068 set_task_cpu(p
, cpu
);
2071 #else /* CONFIG_SMP */
2074 delayacct_blkio_end(p
);
2075 atomic_dec(&task_rq(p
)->nr_iowait
);
2078 #endif /* CONFIG_SMP */
2080 ttwu_queue(p
, cpu
, wake_flags
);
2082 ttwu_stat(p
, cpu
, wake_flags
);
2084 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2090 * try_to_wake_up_local - try to wake up a local task with rq lock held
2091 * @p: the thread to be awakened
2092 * @rf: request-queue flags for pinning
2094 * Put @p on the run-queue if it's not already there. The caller must
2095 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2098 static void try_to_wake_up_local(struct task_struct
*p
, struct rq_flags
*rf
)
2100 struct rq
*rq
= task_rq(p
);
2102 if (WARN_ON_ONCE(rq
!= this_rq()) ||
2103 WARN_ON_ONCE(p
== current
))
2106 lockdep_assert_held(&rq
->lock
);
2108 if (!raw_spin_trylock(&p
->pi_lock
)) {
2110 * This is OK, because current is on_cpu, which avoids it being
2111 * picked for load-balance and preemption/IRQs are still
2112 * disabled avoiding further scheduler activity on it and we've
2113 * not yet picked a replacement task.
2116 raw_spin_lock(&p
->pi_lock
);
2120 if (!(p
->state
& TASK_NORMAL
))
2123 trace_sched_waking(p
);
2125 if (!task_on_rq_queued(p
)) {
2127 delayacct_blkio_end(p
);
2128 atomic_dec(&rq
->nr_iowait
);
2130 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
);
2133 ttwu_do_wakeup(rq
, p
, 0, rf
);
2134 ttwu_stat(p
, smp_processor_id(), 0);
2136 raw_spin_unlock(&p
->pi_lock
);
2140 * wake_up_process - Wake up a specific process
2141 * @p: The process to be woken up.
2143 * Attempt to wake up the nominated process and move it to the set of runnable
2146 * Return: 1 if the process was woken up, 0 if it was already running.
2148 * It may be assumed that this function implies a write memory barrier before
2149 * changing the task state if and only if any tasks are woken up.
2151 int wake_up_process(struct task_struct
*p
)
2153 return try_to_wake_up(p
, TASK_NORMAL
, 0);
2155 EXPORT_SYMBOL(wake_up_process
);
2157 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2159 return try_to_wake_up(p
, state
, 0);
2163 * Perform scheduler related setup for a newly forked process p.
2164 * p is forked by current.
2166 * __sched_fork() is basic setup used by init_idle() too:
2168 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2173 p
->se
.exec_start
= 0;
2174 p
->se
.sum_exec_runtime
= 0;
2175 p
->se
.prev_sum_exec_runtime
= 0;
2176 p
->se
.nr_migrations
= 0;
2178 INIT_LIST_HEAD(&p
->se
.group_node
);
2180 #ifdef CONFIG_FAIR_GROUP_SCHED
2181 p
->se
.cfs_rq
= NULL
;
2184 #ifdef CONFIG_SCHEDSTATS
2185 /* Even if schedstat is disabled, there should not be garbage */
2186 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2189 RB_CLEAR_NODE(&p
->dl
.rb_node
);
2190 init_dl_task_timer(&p
->dl
);
2191 init_dl_inactive_task_timer(&p
->dl
);
2192 __dl_clear_params(p
);
2194 INIT_LIST_HEAD(&p
->rt
.run_list
);
2196 p
->rt
.time_slice
= sched_rr_timeslice
;
2200 #ifdef CONFIG_PREEMPT_NOTIFIERS
2201 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2204 #ifdef CONFIG_NUMA_BALANCING
2205 if (p
->mm
&& atomic_read(&p
->mm
->mm_users
) == 1) {
2206 p
->mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
2207 p
->mm
->numa_scan_seq
= 0;
2210 if (clone_flags
& CLONE_VM
)
2211 p
->numa_preferred_nid
= current
->numa_preferred_nid
;
2213 p
->numa_preferred_nid
= -1;
2215 p
->node_stamp
= 0ULL;
2216 p
->numa_scan_seq
= p
->mm
? p
->mm
->numa_scan_seq
: 0;
2217 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
2218 p
->numa_work
.next
= &p
->numa_work
;
2219 p
->numa_faults
= NULL
;
2220 p
->last_task_numa_placement
= 0;
2221 p
->last_sum_exec_runtime
= 0;
2223 p
->numa_group
= NULL
;
2224 #endif /* CONFIG_NUMA_BALANCING */
2227 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing
);
2229 #ifdef CONFIG_NUMA_BALANCING
2231 void set_numabalancing_state(bool enabled
)
2234 static_branch_enable(&sched_numa_balancing
);
2236 static_branch_disable(&sched_numa_balancing
);
2239 #ifdef CONFIG_PROC_SYSCTL
2240 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
2241 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2245 int state
= static_branch_likely(&sched_numa_balancing
);
2247 if (write
&& !capable(CAP_SYS_ADMIN
))
2252 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2256 set_numabalancing_state(state
);
2262 #ifdef CONFIG_SCHEDSTATS
2264 DEFINE_STATIC_KEY_FALSE(sched_schedstats
);
2265 static bool __initdata __sched_schedstats
= false;
2267 static void set_schedstats(bool enabled
)
2270 static_branch_enable(&sched_schedstats
);
2272 static_branch_disable(&sched_schedstats
);
2275 void force_schedstat_enabled(void)
2277 if (!schedstat_enabled()) {
2278 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2279 static_branch_enable(&sched_schedstats
);
2283 static int __init
setup_schedstats(char *str
)
2290 * This code is called before jump labels have been set up, so we can't
2291 * change the static branch directly just yet. Instead set a temporary
2292 * variable so init_schedstats() can do it later.
2294 if (!strcmp(str
, "enable")) {
2295 __sched_schedstats
= true;
2297 } else if (!strcmp(str
, "disable")) {
2298 __sched_schedstats
= false;
2303 pr_warn("Unable to parse schedstats=\n");
2307 __setup("schedstats=", setup_schedstats
);
2309 static void __init
init_schedstats(void)
2311 set_schedstats(__sched_schedstats
);
2314 #ifdef CONFIG_PROC_SYSCTL
2315 int sysctl_schedstats(struct ctl_table
*table
, int write
,
2316 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2320 int state
= static_branch_likely(&sched_schedstats
);
2322 if (write
&& !capable(CAP_SYS_ADMIN
))
2327 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2331 set_schedstats(state
);
2334 #endif /* CONFIG_PROC_SYSCTL */
2335 #else /* !CONFIG_SCHEDSTATS */
2336 static inline void init_schedstats(void) {}
2337 #endif /* CONFIG_SCHEDSTATS */
2340 * fork()/clone()-time setup:
2342 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2344 unsigned long flags
;
2345 int cpu
= get_cpu();
2347 __sched_fork(clone_flags
, p
);
2349 * We mark the process as NEW here. This guarantees that
2350 * nobody will actually run it, and a signal or other external
2351 * event cannot wake it up and insert it on the runqueue either.
2353 p
->state
= TASK_NEW
;
2356 * Make sure we do not leak PI boosting priority to the child.
2358 p
->prio
= current
->normal_prio
;
2361 * Revert to default priority/policy on fork if requested.
2363 if (unlikely(p
->sched_reset_on_fork
)) {
2364 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
2365 p
->policy
= SCHED_NORMAL
;
2366 p
->static_prio
= NICE_TO_PRIO(0);
2368 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
2369 p
->static_prio
= NICE_TO_PRIO(0);
2371 p
->prio
= p
->normal_prio
= __normal_prio(p
);
2372 set_load_weight(p
, false);
2375 * We don't need the reset flag anymore after the fork. It has
2376 * fulfilled its duty:
2378 p
->sched_reset_on_fork
= 0;
2381 if (dl_prio(p
->prio
)) {
2384 } else if (rt_prio(p
->prio
)) {
2385 p
->sched_class
= &rt_sched_class
;
2387 p
->sched_class
= &fair_sched_class
;
2390 init_entity_runnable_average(&p
->se
);
2393 * The child is not yet in the pid-hash so no cgroup attach races,
2394 * and the cgroup is pinned to this child due to cgroup_fork()
2395 * is ran before sched_fork().
2397 * Silence PROVE_RCU.
2399 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2401 * We're setting the CPU for the first time, we don't migrate,
2402 * so use __set_task_cpu().
2404 __set_task_cpu(p
, cpu
);
2405 if (p
->sched_class
->task_fork
)
2406 p
->sched_class
->task_fork(p
);
2407 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2409 #ifdef CONFIG_SCHED_INFO
2410 if (likely(sched_info_on()))
2411 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2413 #if defined(CONFIG_SMP)
2416 init_task_preempt_count(p
);
2418 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2419 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
2426 unsigned long to_ratio(u64 period
, u64 runtime
)
2428 if (runtime
== RUNTIME_INF
)
2432 * Doing this here saves a lot of checks in all
2433 * the calling paths, and returning zero seems
2434 * safe for them anyway.
2439 return div64_u64(runtime
<< BW_SHIFT
, period
);
2443 * wake_up_new_task - wake up a newly created task for the first time.
2445 * This function will do some initial scheduler statistics housekeeping
2446 * that must be done for every newly created context, then puts the task
2447 * on the runqueue and wakes it.
2449 void wake_up_new_task(struct task_struct
*p
)
2454 raw_spin_lock_irqsave(&p
->pi_lock
, rf
.flags
);
2455 p
->state
= TASK_RUNNING
;
2458 * Fork balancing, do it here and not earlier because:
2459 * - cpus_allowed can change in the fork path
2460 * - any previously selected CPU might disappear through hotplug
2462 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2463 * as we're not fully set-up yet.
2465 p
->recent_used_cpu
= task_cpu(p
);
2466 __set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2468 rq
= __task_rq_lock(p
, &rf
);
2469 update_rq_clock(rq
);
2470 post_init_entity_util_avg(&p
->se
);
2472 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
2473 p
->on_rq
= TASK_ON_RQ_QUEUED
;
2474 trace_sched_wakeup_new(p
);
2475 check_preempt_curr(rq
, p
, WF_FORK
);
2477 if (p
->sched_class
->task_woken
) {
2479 * Nothing relies on rq->lock after this, so its fine to
2482 rq_unpin_lock(rq
, &rf
);
2483 p
->sched_class
->task_woken(rq
, p
);
2484 rq_repin_lock(rq
, &rf
);
2487 task_rq_unlock(rq
, p
, &rf
);
2490 #ifdef CONFIG_PREEMPT_NOTIFIERS
2492 static struct static_key preempt_notifier_key
= STATIC_KEY_INIT_FALSE
;
2494 void preempt_notifier_inc(void)
2496 static_key_slow_inc(&preempt_notifier_key
);
2498 EXPORT_SYMBOL_GPL(preempt_notifier_inc
);
2500 void preempt_notifier_dec(void)
2502 static_key_slow_dec(&preempt_notifier_key
);
2504 EXPORT_SYMBOL_GPL(preempt_notifier_dec
);
2507 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2508 * @notifier: notifier struct to register
2510 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2512 if (!static_key_false(&preempt_notifier_key
))
2513 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2515 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2517 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2520 * preempt_notifier_unregister - no longer interested in preemption notifications
2521 * @notifier: notifier struct to unregister
2523 * This is *not* safe to call from within a preemption notifier.
2525 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2527 hlist_del(¬ifier
->link
);
2529 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2531 static void __fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2533 struct preempt_notifier
*notifier
;
2535 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2536 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2539 static __always_inline
void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2541 if (static_key_false(&preempt_notifier_key
))
2542 __fire_sched_in_preempt_notifiers(curr
);
2546 __fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2547 struct task_struct
*next
)
2549 struct preempt_notifier
*notifier
;
2551 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2552 notifier
->ops
->sched_out(notifier
, next
);
2555 static __always_inline
void
2556 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2557 struct task_struct
*next
)
2559 if (static_key_false(&preempt_notifier_key
))
2560 __fire_sched_out_preempt_notifiers(curr
, next
);
2563 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2565 static inline void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2570 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2571 struct task_struct
*next
)
2575 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2577 static inline void prepare_task(struct task_struct
*next
)
2581 * Claim the task as running, we do this before switching to it
2582 * such that any running task will have this set.
2588 static inline void finish_task(struct task_struct
*prev
)
2592 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2593 * We must ensure this doesn't happen until the switch is completely
2596 * In particular, the load of prev->state in finish_task_switch() must
2597 * happen before this.
2599 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2601 smp_store_release(&prev
->on_cpu
, 0);
2606 prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
, struct rq_flags
*rf
)
2609 * Since the runqueue lock will be released by the next
2610 * task (which is an invalid locking op but in the case
2611 * of the scheduler it's an obvious special-case), so we
2612 * do an early lockdep release here:
2614 rq_unpin_lock(rq
, rf
);
2615 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2616 #ifdef CONFIG_DEBUG_SPINLOCK
2617 /* this is a valid case when another task releases the spinlock */
2618 rq
->lock
.owner
= next
;
2622 static inline void finish_lock_switch(struct rq
*rq
)
2625 * If we are tracking spinlock dependencies then we have to
2626 * fix up the runqueue lock - which gets 'carried over' from
2627 * prev into current:
2629 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
2630 raw_spin_unlock_irq(&rq
->lock
);
2634 * prepare_task_switch - prepare to switch tasks
2635 * @rq: the runqueue preparing to switch
2636 * @prev: the current task that is being switched out
2637 * @next: the task we are going to switch to.
2639 * This is called with the rq lock held and interrupts off. It must
2640 * be paired with a subsequent finish_task_switch after the context
2643 * prepare_task_switch sets up locking and calls architecture specific
2647 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2648 struct task_struct
*next
)
2650 sched_info_switch(rq
, prev
, next
);
2651 perf_event_task_sched_out(prev
, next
);
2652 fire_sched_out_preempt_notifiers(prev
, next
);
2654 prepare_arch_switch(next
);
2658 * finish_task_switch - clean up after a task-switch
2659 * @prev: the thread we just switched away from.
2661 * finish_task_switch must be called after the context switch, paired
2662 * with a prepare_task_switch call before the context switch.
2663 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2664 * and do any other architecture-specific cleanup actions.
2666 * Note that we may have delayed dropping an mm in context_switch(). If
2667 * so, we finish that here outside of the runqueue lock. (Doing it
2668 * with the lock held can cause deadlocks; see schedule() for
2671 * The context switch have flipped the stack from under us and restored the
2672 * local variables which were saved when this task called schedule() in the
2673 * past. prev == current is still correct but we need to recalculate this_rq
2674 * because prev may have moved to another CPU.
2676 static struct rq
*finish_task_switch(struct task_struct
*prev
)
2677 __releases(rq
->lock
)
2679 struct rq
*rq
= this_rq();
2680 struct mm_struct
*mm
= rq
->prev_mm
;
2684 * The previous task will have left us with a preempt_count of 2
2685 * because it left us after:
2688 * preempt_disable(); // 1
2690 * raw_spin_lock_irq(&rq->lock) // 2
2692 * Also, see FORK_PREEMPT_COUNT.
2694 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET
,
2695 "corrupted preempt_count: %s/%d/0x%x\n",
2696 current
->comm
, current
->pid
, preempt_count()))
2697 preempt_count_set(FORK_PREEMPT_COUNT
);
2702 * A task struct has one reference for the use as "current".
2703 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2704 * schedule one last time. The schedule call will never return, and
2705 * the scheduled task must drop that reference.
2707 * We must observe prev->state before clearing prev->on_cpu (in
2708 * finish_task), otherwise a concurrent wakeup can get prev
2709 * running on another CPU and we could rave with its RUNNING -> DEAD
2710 * transition, resulting in a double drop.
2712 prev_state
= prev
->state
;
2713 vtime_task_switch(prev
);
2714 perf_event_task_sched_in(prev
, current
);
2716 finish_lock_switch(rq
);
2717 finish_arch_post_lock_switch();
2719 fire_sched_in_preempt_notifiers(current
);
2721 * When switching through a kernel thread, the loop in
2722 * membarrier_{private,global}_expedited() may have observed that
2723 * kernel thread and not issued an IPI. It is therefore possible to
2724 * schedule between user->kernel->user threads without passing though
2725 * switch_mm(). Membarrier requires a barrier after storing to
2726 * rq->curr, before returning to userspace, so provide them here:
2728 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2729 * provided by mmdrop(),
2730 * - a sync_core for SYNC_CORE.
2733 membarrier_mm_sync_core_before_usermode(mm
);
2736 if (unlikely(prev_state
== TASK_DEAD
)) {
2737 if (prev
->sched_class
->task_dead
)
2738 prev
->sched_class
->task_dead(prev
);
2741 * Remove function-return probe instances associated with this
2742 * task and put them back on the free list.
2744 kprobe_flush_task(prev
);
2746 /* Task is done with its stack. */
2747 put_task_stack(prev
);
2749 put_task_struct(prev
);
2752 tick_nohz_task_switch();
2758 /* rq->lock is NOT held, but preemption is disabled */
2759 static void __balance_callback(struct rq
*rq
)
2761 struct callback_head
*head
, *next
;
2762 void (*func
)(struct rq
*rq
);
2763 unsigned long flags
;
2765 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2766 head
= rq
->balance_callback
;
2767 rq
->balance_callback
= NULL
;
2769 func
= (void (*)(struct rq
*))head
->func
;
2776 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2779 static inline void balance_callback(struct rq
*rq
)
2781 if (unlikely(rq
->balance_callback
))
2782 __balance_callback(rq
);
2787 static inline void balance_callback(struct rq
*rq
)
2794 * schedule_tail - first thing a freshly forked thread must call.
2795 * @prev: the thread we just switched away from.
2797 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2798 __releases(rq
->lock
)
2803 * New tasks start with FORK_PREEMPT_COUNT, see there and
2804 * finish_task_switch() for details.
2806 * finish_task_switch() will drop rq->lock() and lower preempt_count
2807 * and the preempt_enable() will end up enabling preemption (on
2808 * PREEMPT_COUNT kernels).
2811 rq
= finish_task_switch(prev
);
2812 balance_callback(rq
);
2815 if (current
->set_child_tid
)
2816 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2820 * context_switch - switch to the new MM and the new thread's register state.
2822 static __always_inline
struct rq
*
2823 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2824 struct task_struct
*next
, struct rq_flags
*rf
)
2826 struct mm_struct
*mm
, *oldmm
;
2828 prepare_task_switch(rq
, prev
, next
);
2831 oldmm
= prev
->active_mm
;
2833 * For paravirt, this is coupled with an exit in switch_to to
2834 * combine the page table reload and the switch backend into
2837 arch_start_context_switch(prev
);
2840 * If mm is non-NULL, we pass through switch_mm(). If mm is
2841 * NULL, we will pass through mmdrop() in finish_task_switch().
2842 * Both of these contain the full memory barrier required by
2843 * membarrier after storing to rq->curr, before returning to
2847 next
->active_mm
= oldmm
;
2849 enter_lazy_tlb(oldmm
, next
);
2851 switch_mm_irqs_off(oldmm
, mm
, next
);
2854 prev
->active_mm
= NULL
;
2855 rq
->prev_mm
= oldmm
;
2858 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
2860 prepare_lock_switch(rq
, next
, rf
);
2862 /* Here we just switch the register state and the stack. */
2863 switch_to(prev
, next
, prev
);
2866 return finish_task_switch(prev
);
2870 * nr_running and nr_context_switches:
2872 * externally visible scheduler statistics: current number of runnable
2873 * threads, total number of context switches performed since bootup.
2875 unsigned long nr_running(void)
2877 unsigned long i
, sum
= 0;
2879 for_each_online_cpu(i
)
2880 sum
+= cpu_rq(i
)->nr_running
;
2886 * Check if only the current task is running on the CPU.
2888 * Caution: this function does not check that the caller has disabled
2889 * preemption, thus the result might have a time-of-check-to-time-of-use
2890 * race. The caller is responsible to use it correctly, for example:
2892 * - from a non-preemptable section (of course)
2894 * - from a thread that is bound to a single CPU
2896 * - in a loop with very short iterations (e.g. a polling loop)
2898 bool single_task_running(void)
2900 return raw_rq()->nr_running
== 1;
2902 EXPORT_SYMBOL(single_task_running
);
2904 unsigned long long nr_context_switches(void)
2907 unsigned long long sum
= 0;
2909 for_each_possible_cpu(i
)
2910 sum
+= cpu_rq(i
)->nr_switches
;
2916 * IO-wait accounting, and how its mostly bollocks (on SMP).
2918 * The idea behind IO-wait account is to account the idle time that we could
2919 * have spend running if it were not for IO. That is, if we were to improve the
2920 * storage performance, we'd have a proportional reduction in IO-wait time.
2922 * This all works nicely on UP, where, when a task blocks on IO, we account
2923 * idle time as IO-wait, because if the storage were faster, it could've been
2924 * running and we'd not be idle.
2926 * This has been extended to SMP, by doing the same for each CPU. This however
2929 * Imagine for instance the case where two tasks block on one CPU, only the one
2930 * CPU will have IO-wait accounted, while the other has regular idle. Even
2931 * though, if the storage were faster, both could've ran at the same time,
2932 * utilising both CPUs.
2934 * This means, that when looking globally, the current IO-wait accounting on
2935 * SMP is a lower bound, by reason of under accounting.
2937 * Worse, since the numbers are provided per CPU, they are sometimes
2938 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2939 * associated with any one particular CPU, it can wake to another CPU than it
2940 * blocked on. This means the per CPU IO-wait number is meaningless.
2942 * Task CPU affinities can make all that even more 'interesting'.
2945 unsigned long nr_iowait(void)
2947 unsigned long i
, sum
= 0;
2949 for_each_possible_cpu(i
)
2950 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2956 * Consumers of these two interfaces, like for example the cpufreq menu
2957 * governor are using nonsensical data. Boosting frequency for a CPU that has
2958 * IO-wait which might not even end up running the task when it does become
2962 unsigned long nr_iowait_cpu(int cpu
)
2964 struct rq
*this = cpu_rq(cpu
);
2965 return atomic_read(&this->nr_iowait
);
2968 void get_iowait_load(unsigned long *nr_waiters
, unsigned long *load
)
2970 struct rq
*rq
= this_rq();
2971 *nr_waiters
= atomic_read(&rq
->nr_iowait
);
2972 *load
= rq
->load
.weight
;
2978 * sched_exec - execve() is a valuable balancing opportunity, because at
2979 * this point the task has the smallest effective memory and cache footprint.
2981 void sched_exec(void)
2983 struct task_struct
*p
= current
;
2984 unsigned long flags
;
2987 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2988 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2989 if (dest_cpu
== smp_processor_id())
2992 if (likely(cpu_active(dest_cpu
))) {
2993 struct migration_arg arg
= { p
, dest_cpu
};
2995 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2996 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3000 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3005 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3006 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
3008 EXPORT_PER_CPU_SYMBOL(kstat
);
3009 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
3012 * The function fair_sched_class.update_curr accesses the struct curr
3013 * and its field curr->exec_start; when called from task_sched_runtime(),
3014 * we observe a high rate of cache misses in practice.
3015 * Prefetching this data results in improved performance.
3017 static inline void prefetch_curr_exec_start(struct task_struct
*p
)
3019 #ifdef CONFIG_FAIR_GROUP_SCHED
3020 struct sched_entity
*curr
= (&p
->se
)->cfs_rq
->curr
;
3022 struct sched_entity
*curr
= (&task_rq(p
)->cfs
)->curr
;
3025 prefetch(&curr
->exec_start
);
3029 * Return accounted runtime for the task.
3030 * In case the task is currently running, return the runtime plus current's
3031 * pending runtime that have not been accounted yet.
3033 unsigned long long task_sched_runtime(struct task_struct
*p
)
3039 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3041 * 64-bit doesn't need locks to atomically read a 64bit value.
3042 * So we have a optimization chance when the task's delta_exec is 0.
3043 * Reading ->on_cpu is racy, but this is ok.
3045 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3046 * If we race with it entering CPU, unaccounted time is 0. This is
3047 * indistinguishable from the read occurring a few cycles earlier.
3048 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3049 * been accounted, so we're correct here as well.
3051 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
3052 return p
->se
.sum_exec_runtime
;
3055 rq
= task_rq_lock(p
, &rf
);
3057 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3058 * project cycles that may never be accounted to this
3059 * thread, breaking clock_gettime().
3061 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
3062 prefetch_curr_exec_start(p
);
3063 update_rq_clock(rq
);
3064 p
->sched_class
->update_curr(rq
);
3066 ns
= p
->se
.sum_exec_runtime
;
3067 task_rq_unlock(rq
, p
, &rf
);
3073 * This function gets called by the timer code, with HZ frequency.
3074 * We call it with interrupts disabled.
3076 void scheduler_tick(void)
3078 int cpu
= smp_processor_id();
3079 struct rq
*rq
= cpu_rq(cpu
);
3080 struct task_struct
*curr
= rq
->curr
;
3087 update_rq_clock(rq
);
3088 curr
->sched_class
->task_tick(rq
, curr
, 0);
3089 cpu_load_update_active(rq
);
3090 calc_global_load_tick(rq
);
3094 perf_event_task_tick();
3097 rq
->idle_balance
= idle_cpu(cpu
);
3098 trigger_load_balance(rq
);
3100 rq_last_tick_reset(rq
);
3103 #ifdef CONFIG_NO_HZ_FULL
3105 * scheduler_tick_max_deferment
3107 * Keep at least one tick per second when a single
3108 * active task is running because the scheduler doesn't
3109 * yet completely support full dynticks environment.
3111 * This makes sure that uptime, CFS vruntime, load
3112 * balancing, etc... continue to move forward, even
3113 * with a very low granularity.
3115 * Return: Maximum deferment in nanoseconds.
3117 u64
scheduler_tick_max_deferment(void)
3119 struct rq
*rq
= this_rq();
3120 unsigned long next
, now
= READ_ONCE(jiffies
);
3122 next
= rq
->last_sched_tick
+ HZ
;
3124 if (time_before_eq(next
, now
))
3127 return jiffies_to_nsecs(next
- now
);
3131 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3132 defined(CONFIG_PREEMPT_TRACER))
3134 * If the value passed in is equal to the current preempt count
3135 * then we just disabled preemption. Start timing the latency.
3137 static inline void preempt_latency_start(int val
)
3139 if (preempt_count() == val
) {
3140 unsigned long ip
= get_lock_parent_ip();
3141 #ifdef CONFIG_DEBUG_PREEMPT
3142 current
->preempt_disable_ip
= ip
;
3144 trace_preempt_off(CALLER_ADDR0
, ip
);
3148 void preempt_count_add(int val
)
3150 #ifdef CONFIG_DEBUG_PREEMPT
3154 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3157 __preempt_count_add(val
);
3158 #ifdef CONFIG_DEBUG_PREEMPT
3160 * Spinlock count overflowing soon?
3162 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3165 preempt_latency_start(val
);
3167 EXPORT_SYMBOL(preempt_count_add
);
3168 NOKPROBE_SYMBOL(preempt_count_add
);
3171 * If the value passed in equals to the current preempt count
3172 * then we just enabled preemption. Stop timing the latency.
3174 static inline void preempt_latency_stop(int val
)
3176 if (preempt_count() == val
)
3177 trace_preempt_on(CALLER_ADDR0
, get_lock_parent_ip());
3180 void preempt_count_sub(int val
)
3182 #ifdef CONFIG_DEBUG_PREEMPT
3186 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3189 * Is the spinlock portion underflowing?
3191 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3192 !(preempt_count() & PREEMPT_MASK
)))
3196 preempt_latency_stop(val
);
3197 __preempt_count_sub(val
);
3199 EXPORT_SYMBOL(preempt_count_sub
);
3200 NOKPROBE_SYMBOL(preempt_count_sub
);
3203 static inline void preempt_latency_start(int val
) { }
3204 static inline void preempt_latency_stop(int val
) { }
3207 static inline unsigned long get_preempt_disable_ip(struct task_struct
*p
)
3209 #ifdef CONFIG_DEBUG_PREEMPT
3210 return p
->preempt_disable_ip
;
3217 * Print scheduling while atomic bug:
3219 static noinline
void __schedule_bug(struct task_struct
*prev
)
3221 /* Save this before calling printk(), since that will clobber it */
3222 unsigned long preempt_disable_ip
= get_preempt_disable_ip(current
);
3224 if (oops_in_progress
)
3227 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3228 prev
->comm
, prev
->pid
, preempt_count());
3230 debug_show_held_locks(prev
);
3232 if (irqs_disabled())
3233 print_irqtrace_events(prev
);
3234 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
3235 && in_atomic_preempt_off()) {
3236 pr_err("Preemption disabled at:");
3237 print_ip_sym(preempt_disable_ip
);
3241 panic("scheduling while atomic\n");
3244 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
3248 * Various schedule()-time debugging checks and statistics:
3250 static inline void schedule_debug(struct task_struct
*prev
)
3252 #ifdef CONFIG_SCHED_STACK_END_CHECK
3253 if (task_stack_end_corrupted(prev
))
3254 panic("corrupted stack end detected inside scheduler\n");
3257 if (unlikely(in_atomic_preempt_off())) {
3258 __schedule_bug(prev
);
3259 preempt_count_set(PREEMPT_DISABLED
);
3263 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3265 schedstat_inc(this_rq()->sched_count
);
3269 * Pick up the highest-prio task:
3271 static inline struct task_struct
*
3272 pick_next_task(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
3274 const struct sched_class
*class;
3275 struct task_struct
*p
;
3278 * Optimization: we know that if all tasks are in the fair class we can
3279 * call that function directly, but only if the @prev task wasn't of a
3280 * higher scheduling class, because otherwise those loose the
3281 * opportunity to pull in more work from other CPUs.
3283 if (likely((prev
->sched_class
== &idle_sched_class
||
3284 prev
->sched_class
== &fair_sched_class
) &&
3285 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
3287 p
= fair_sched_class
.pick_next_task(rq
, prev
, rf
);
3288 if (unlikely(p
== RETRY_TASK
))
3291 /* Assumes fair_sched_class->next == idle_sched_class */
3293 p
= idle_sched_class
.pick_next_task(rq
, prev
, rf
);
3299 for_each_class(class) {
3300 p
= class->pick_next_task(rq
, prev
, rf
);
3302 if (unlikely(p
== RETRY_TASK
))
3308 /* The idle class should always have a runnable task: */
3313 * __schedule() is the main scheduler function.
3315 * The main means of driving the scheduler and thus entering this function are:
3317 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3319 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3320 * paths. For example, see arch/x86/entry_64.S.
3322 * To drive preemption between tasks, the scheduler sets the flag in timer
3323 * interrupt handler scheduler_tick().
3325 * 3. Wakeups don't really cause entry into schedule(). They add a
3326 * task to the run-queue and that's it.
3328 * Now, if the new task added to the run-queue preempts the current
3329 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3330 * called on the nearest possible occasion:
3332 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3334 * - in syscall or exception context, at the next outmost
3335 * preempt_enable(). (this might be as soon as the wake_up()'s
3338 * - in IRQ context, return from interrupt-handler to
3339 * preemptible context
3341 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3344 * - cond_resched() call
3345 * - explicit schedule() call
3346 * - return from syscall or exception to user-space
3347 * - return from interrupt-handler to user-space
3349 * WARNING: must be called with preemption disabled!
3351 static void __sched notrace
__schedule(bool preempt
)
3353 struct task_struct
*prev
, *next
;
3354 unsigned long *switch_count
;
3359 cpu
= smp_processor_id();
3363 schedule_debug(prev
);
3365 if (sched_feat(HRTICK
))
3368 local_irq_disable();
3369 rcu_note_context_switch(preempt
);
3372 * Make sure that signal_pending_state()->signal_pending() below
3373 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3374 * done by the caller to avoid the race with signal_wake_up().
3376 * The membarrier system call requires a full memory barrier
3377 * after coming from user-space, before storing to rq->curr.
3380 smp_mb__after_spinlock();
3382 /* Promote REQ to ACT */
3383 rq
->clock_update_flags
<<= 1;
3384 update_rq_clock(rq
);
3386 switch_count
= &prev
->nivcsw
;
3387 if (!preempt
&& prev
->state
) {
3388 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3389 prev
->state
= TASK_RUNNING
;
3391 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
| DEQUEUE_NOCLOCK
);
3394 if (prev
->in_iowait
) {
3395 atomic_inc(&rq
->nr_iowait
);
3396 delayacct_blkio_start();
3400 * If a worker went to sleep, notify and ask workqueue
3401 * whether it wants to wake up a task to maintain
3404 if (prev
->flags
& PF_WQ_WORKER
) {
3405 struct task_struct
*to_wakeup
;
3407 to_wakeup
= wq_worker_sleeping(prev
);
3409 try_to_wake_up_local(to_wakeup
, &rf
);
3412 switch_count
= &prev
->nvcsw
;
3415 next
= pick_next_task(rq
, prev
, &rf
);
3416 clear_tsk_need_resched(prev
);
3417 clear_preempt_need_resched();
3419 if (likely(prev
!= next
)) {
3423 * The membarrier system call requires each architecture
3424 * to have a full memory barrier after updating
3425 * rq->curr, before returning to user-space.
3427 * Here are the schemes providing that barrier on the
3428 * various architectures:
3429 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3430 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3431 * - finish_lock_switch() for weakly-ordered
3432 * architectures where spin_unlock is a full barrier,
3433 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3434 * is a RELEASE barrier),
3438 trace_sched_switch(preempt
, prev
, next
);
3440 /* Also unlocks the rq: */
3441 rq
= context_switch(rq
, prev
, next
, &rf
);
3443 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
3444 rq_unlock_irq(rq
, &rf
);
3447 balance_callback(rq
);
3450 void __noreturn
do_task_dead(void)
3453 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3454 * when the following two conditions become true.
3455 * - There is race condition of mmap_sem (It is acquired by
3457 * - SMI occurs before setting TASK_RUNINNG.
3458 * (or hypervisor of virtual machine switches to other guest)
3459 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3461 * To avoid it, we have to wait for releasing tsk->pi_lock which
3462 * is held by try_to_wake_up()
3464 raw_spin_lock_irq(¤t
->pi_lock
);
3465 raw_spin_unlock_irq(¤t
->pi_lock
);
3467 /* Causes final put_task_struct in finish_task_switch(): */
3468 __set_current_state(TASK_DEAD
);
3470 /* Tell freezer to ignore us: */
3471 current
->flags
|= PF_NOFREEZE
;
3476 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3481 static inline void sched_submit_work(struct task_struct
*tsk
)
3483 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
3486 * If we are going to sleep and we have plugged IO queued,
3487 * make sure to submit it to avoid deadlocks.
3489 if (blk_needs_flush_plug(tsk
))
3490 blk_schedule_flush_plug(tsk
);
3493 asmlinkage __visible
void __sched
schedule(void)
3495 struct task_struct
*tsk
= current
;
3497 sched_submit_work(tsk
);
3501 sched_preempt_enable_no_resched();
3502 } while (need_resched());
3504 EXPORT_SYMBOL(schedule
);
3507 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3508 * state (have scheduled out non-voluntarily) by making sure that all
3509 * tasks have either left the run queue or have gone into user space.
3510 * As idle tasks do not do either, they must not ever be preempted
3511 * (schedule out non-voluntarily).
3513 * schedule_idle() is similar to schedule_preempt_disable() except that it
3514 * never enables preemption because it does not call sched_submit_work().
3516 void __sched
schedule_idle(void)
3519 * As this skips calling sched_submit_work(), which the idle task does
3520 * regardless because that function is a nop when the task is in a
3521 * TASK_RUNNING state, make sure this isn't used someplace that the
3522 * current task can be in any other state. Note, idle is always in the
3523 * TASK_RUNNING state.
3525 WARN_ON_ONCE(current
->state
);
3528 } while (need_resched());
3531 #ifdef CONFIG_CONTEXT_TRACKING
3532 asmlinkage __visible
void __sched
schedule_user(void)
3535 * If we come here after a random call to set_need_resched(),
3536 * or we have been woken up remotely but the IPI has not yet arrived,
3537 * we haven't yet exited the RCU idle mode. Do it here manually until
3538 * we find a better solution.
3540 * NB: There are buggy callers of this function. Ideally we
3541 * should warn if prev_state != CONTEXT_USER, but that will trigger
3542 * too frequently to make sense yet.
3544 enum ctx_state prev_state
= exception_enter();
3546 exception_exit(prev_state
);
3551 * schedule_preempt_disabled - called with preemption disabled
3553 * Returns with preemption disabled. Note: preempt_count must be 1
3555 void __sched
schedule_preempt_disabled(void)
3557 sched_preempt_enable_no_resched();
3562 static void __sched notrace
preempt_schedule_common(void)
3566 * Because the function tracer can trace preempt_count_sub()
3567 * and it also uses preempt_enable/disable_notrace(), if
3568 * NEED_RESCHED is set, the preempt_enable_notrace() called
3569 * by the function tracer will call this function again and
3570 * cause infinite recursion.
3572 * Preemption must be disabled here before the function
3573 * tracer can trace. Break up preempt_disable() into two
3574 * calls. One to disable preemption without fear of being
3575 * traced. The other to still record the preemption latency,
3576 * which can also be traced by the function tracer.
3578 preempt_disable_notrace();
3579 preempt_latency_start(1);
3581 preempt_latency_stop(1);
3582 preempt_enable_no_resched_notrace();
3585 * Check again in case we missed a preemption opportunity
3586 * between schedule and now.
3588 } while (need_resched());
3591 #ifdef CONFIG_PREEMPT
3593 * this is the entry point to schedule() from in-kernel preemption
3594 * off of preempt_enable. Kernel preemptions off return from interrupt
3595 * occur there and call schedule directly.
3597 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
3600 * If there is a non-zero preempt_count or interrupts are disabled,
3601 * we do not want to preempt the current task. Just return..
3603 if (likely(!preemptible()))
3606 preempt_schedule_common();
3608 NOKPROBE_SYMBOL(preempt_schedule
);
3609 EXPORT_SYMBOL(preempt_schedule
);
3612 * preempt_schedule_notrace - preempt_schedule called by tracing
3614 * The tracing infrastructure uses preempt_enable_notrace to prevent
3615 * recursion and tracing preempt enabling caused by the tracing
3616 * infrastructure itself. But as tracing can happen in areas coming
3617 * from userspace or just about to enter userspace, a preempt enable
3618 * can occur before user_exit() is called. This will cause the scheduler
3619 * to be called when the system is still in usermode.
3621 * To prevent this, the preempt_enable_notrace will use this function
3622 * instead of preempt_schedule() to exit user context if needed before
3623 * calling the scheduler.
3625 asmlinkage __visible
void __sched notrace
preempt_schedule_notrace(void)
3627 enum ctx_state prev_ctx
;
3629 if (likely(!preemptible()))
3634 * Because the function tracer can trace preempt_count_sub()
3635 * and it also uses preempt_enable/disable_notrace(), if
3636 * NEED_RESCHED is set, the preempt_enable_notrace() called
3637 * by the function tracer will call this function again and
3638 * cause infinite recursion.
3640 * Preemption must be disabled here before the function
3641 * tracer can trace. Break up preempt_disable() into two
3642 * calls. One to disable preemption without fear of being
3643 * traced. The other to still record the preemption latency,
3644 * which can also be traced by the function tracer.
3646 preempt_disable_notrace();
3647 preempt_latency_start(1);
3649 * Needs preempt disabled in case user_exit() is traced
3650 * and the tracer calls preempt_enable_notrace() causing
3651 * an infinite recursion.
3653 prev_ctx
= exception_enter();
3655 exception_exit(prev_ctx
);
3657 preempt_latency_stop(1);
3658 preempt_enable_no_resched_notrace();
3659 } while (need_resched());
3661 EXPORT_SYMBOL_GPL(preempt_schedule_notrace
);
3663 #endif /* CONFIG_PREEMPT */
3666 * this is the entry point to schedule() from kernel preemption
3667 * off of irq context.
3668 * Note, that this is called and return with irqs disabled. This will
3669 * protect us against recursive calling from irq.
3671 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
3673 enum ctx_state prev_state
;
3675 /* Catch callers which need to be fixed */
3676 BUG_ON(preempt_count() || !irqs_disabled());
3678 prev_state
= exception_enter();
3684 local_irq_disable();
3685 sched_preempt_enable_no_resched();
3686 } while (need_resched());
3688 exception_exit(prev_state
);
3691 int default_wake_function(wait_queue_entry_t
*curr
, unsigned mode
, int wake_flags
,
3694 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3696 EXPORT_SYMBOL(default_wake_function
);
3698 #ifdef CONFIG_RT_MUTEXES
3700 static inline int __rt_effective_prio(struct task_struct
*pi_task
, int prio
)
3703 prio
= min(prio
, pi_task
->prio
);
3708 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
3710 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
3712 return __rt_effective_prio(pi_task
, prio
);
3716 * rt_mutex_setprio - set the current priority of a task
3718 * @pi_task: donor task
3720 * This function changes the 'effective' priority of a task. It does
3721 * not touch ->normal_prio like __setscheduler().
3723 * Used by the rt_mutex code to implement priority inheritance
3724 * logic. Call site only calls if the priority of the task changed.
3726 void rt_mutex_setprio(struct task_struct
*p
, struct task_struct
*pi_task
)
3728 int prio
, oldprio
, queued
, running
, queue_flag
=
3729 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
3730 const struct sched_class
*prev_class
;
3734 /* XXX used to be waiter->prio, not waiter->task->prio */
3735 prio
= __rt_effective_prio(pi_task
, p
->normal_prio
);
3738 * If nothing changed; bail early.
3740 if (p
->pi_top_task
== pi_task
&& prio
== p
->prio
&& !dl_prio(prio
))
3743 rq
= __task_rq_lock(p
, &rf
);
3744 update_rq_clock(rq
);
3746 * Set under pi_lock && rq->lock, such that the value can be used under
3749 * Note that there is loads of tricky to make this pointer cache work
3750 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3751 * ensure a task is de-boosted (pi_task is set to NULL) before the
3752 * task is allowed to run again (and can exit). This ensures the pointer
3753 * points to a blocked task -- which guaratees the task is present.
3755 p
->pi_top_task
= pi_task
;
3758 * For FIFO/RR we only need to set prio, if that matches we're done.
3760 if (prio
== p
->prio
&& !dl_prio(prio
))
3764 * Idle task boosting is a nono in general. There is one
3765 * exception, when PREEMPT_RT and NOHZ is active:
3767 * The idle task calls get_next_timer_interrupt() and holds
3768 * the timer wheel base->lock on the CPU and another CPU wants
3769 * to access the timer (probably to cancel it). We can safely
3770 * ignore the boosting request, as the idle CPU runs this code
3771 * with interrupts disabled and will complete the lock
3772 * protected section without being interrupted. So there is no
3773 * real need to boost.
3775 if (unlikely(p
== rq
->idle
)) {
3776 WARN_ON(p
!= rq
->curr
);
3777 WARN_ON(p
->pi_blocked_on
);
3781 trace_sched_pi_setprio(p
, pi_task
);
3784 if (oldprio
== prio
)
3785 queue_flag
&= ~DEQUEUE_MOVE
;
3787 prev_class
= p
->sched_class
;
3788 queued
= task_on_rq_queued(p
);
3789 running
= task_current(rq
, p
);
3791 dequeue_task(rq
, p
, queue_flag
);
3793 put_prev_task(rq
, p
);
3796 * Boosting condition are:
3797 * 1. -rt task is running and holds mutex A
3798 * --> -dl task blocks on mutex A
3800 * 2. -dl task is running and holds mutex A
3801 * --> -dl task blocks on mutex A and could preempt the
3804 if (dl_prio(prio
)) {
3805 if (!dl_prio(p
->normal_prio
) ||
3806 (pi_task
&& dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
3807 p
->dl
.dl_boosted
= 1;
3808 queue_flag
|= ENQUEUE_REPLENISH
;
3810 p
->dl
.dl_boosted
= 0;
3811 p
->sched_class
= &dl_sched_class
;
3812 } else if (rt_prio(prio
)) {
3813 if (dl_prio(oldprio
))
3814 p
->dl
.dl_boosted
= 0;
3816 queue_flag
|= ENQUEUE_HEAD
;
3817 p
->sched_class
= &rt_sched_class
;
3819 if (dl_prio(oldprio
))
3820 p
->dl
.dl_boosted
= 0;
3821 if (rt_prio(oldprio
))
3823 p
->sched_class
= &fair_sched_class
;
3829 enqueue_task(rq
, p
, queue_flag
);
3831 set_curr_task(rq
, p
);
3833 check_class_changed(rq
, p
, prev_class
, oldprio
);
3835 /* Avoid rq from going away on us: */
3837 __task_rq_unlock(rq
, &rf
);
3839 balance_callback(rq
);
3843 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
3849 void set_user_nice(struct task_struct
*p
, long nice
)
3851 bool queued
, running
;
3852 int old_prio
, delta
;
3856 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3859 * We have to be careful, if called from sys_setpriority(),
3860 * the task might be in the middle of scheduling on another CPU.
3862 rq
= task_rq_lock(p
, &rf
);
3863 update_rq_clock(rq
);
3866 * The RT priorities are set via sched_setscheduler(), but we still
3867 * allow the 'normal' nice value to be set - but as expected
3868 * it wont have any effect on scheduling until the task is
3869 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3871 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3872 p
->static_prio
= NICE_TO_PRIO(nice
);
3875 queued
= task_on_rq_queued(p
);
3876 running
= task_current(rq
, p
);
3878 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
3880 put_prev_task(rq
, p
);
3882 p
->static_prio
= NICE_TO_PRIO(nice
);
3883 set_load_weight(p
, true);
3885 p
->prio
= effective_prio(p
);
3886 delta
= p
->prio
- old_prio
;
3889 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
3891 * If the task increased its priority or is running and
3892 * lowered its priority, then reschedule its CPU:
3894 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3898 set_curr_task(rq
, p
);
3900 task_rq_unlock(rq
, p
, &rf
);
3902 EXPORT_SYMBOL(set_user_nice
);
3905 * can_nice - check if a task can reduce its nice value
3909 int can_nice(const struct task_struct
*p
, const int nice
)
3911 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3912 int nice_rlim
= nice_to_rlimit(nice
);
3914 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3915 capable(CAP_SYS_NICE
));
3918 #ifdef __ARCH_WANT_SYS_NICE
3921 * sys_nice - change the priority of the current process.
3922 * @increment: priority increment
3924 * sys_setpriority is a more generic, but much slower function that
3925 * does similar things.
3927 SYSCALL_DEFINE1(nice
, int, increment
)
3932 * Setpriority might change our priority at the same moment.
3933 * We don't have to worry. Conceptually one call occurs first
3934 * and we have a single winner.
3936 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3937 nice
= task_nice(current
) + increment
;
3939 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
3940 if (increment
< 0 && !can_nice(current
, nice
))
3943 retval
= security_task_setnice(current
, nice
);
3947 set_user_nice(current
, nice
);
3954 * task_prio - return the priority value of a given task.
3955 * @p: the task in question.
3957 * Return: The priority value as seen by users in /proc.
3958 * RT tasks are offset by -200. Normal tasks are centered
3959 * around 0, value goes from -16 to +15.
3961 int task_prio(const struct task_struct
*p
)
3963 return p
->prio
- MAX_RT_PRIO
;
3967 * idle_cpu - is a given CPU idle currently?
3968 * @cpu: the processor in question.
3970 * Return: 1 if the CPU is currently idle. 0 otherwise.
3972 int idle_cpu(int cpu
)
3974 struct rq
*rq
= cpu_rq(cpu
);
3976 if (rq
->curr
!= rq
->idle
)
3983 if (!llist_empty(&rq
->wake_list
))
3991 * idle_task - return the idle task for a given CPU.
3992 * @cpu: the processor in question.
3994 * Return: The idle task for the CPU @cpu.
3996 struct task_struct
*idle_task(int cpu
)
3998 return cpu_rq(cpu
)->idle
;
4002 * find_process_by_pid - find a process with a matching PID value.
4003 * @pid: the pid in question.
4005 * The task of @pid, if found. %NULL otherwise.
4007 static struct task_struct
*find_process_by_pid(pid_t pid
)
4009 return pid
? find_task_by_vpid(pid
) : current
;
4013 * sched_setparam() passes in -1 for its policy, to let the functions
4014 * it calls know not to change it.
4016 #define SETPARAM_POLICY -1
4018 static void __setscheduler_params(struct task_struct
*p
,
4019 const struct sched_attr
*attr
)
4021 int policy
= attr
->sched_policy
;
4023 if (policy
== SETPARAM_POLICY
)
4028 if (dl_policy(policy
))
4029 __setparam_dl(p
, attr
);
4030 else if (fair_policy(policy
))
4031 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
4034 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4035 * !rt_policy. Always setting this ensures that things like
4036 * getparam()/getattr() don't report silly values for !rt tasks.
4038 p
->rt_priority
= attr
->sched_priority
;
4039 p
->normal_prio
= normal_prio(p
);
4040 set_load_weight(p
, true);
4043 /* Actually do priority change: must hold pi & rq lock. */
4044 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
4045 const struct sched_attr
*attr
, bool keep_boost
)
4047 __setscheduler_params(p
, attr
);
4050 * Keep a potential priority boosting if called from
4051 * sched_setscheduler().
4053 p
->prio
= normal_prio(p
);
4055 p
->prio
= rt_effective_prio(p
, p
->prio
);
4057 if (dl_prio(p
->prio
))
4058 p
->sched_class
= &dl_sched_class
;
4059 else if (rt_prio(p
->prio
))
4060 p
->sched_class
= &rt_sched_class
;
4062 p
->sched_class
= &fair_sched_class
;
4066 * Check the target process has a UID that matches the current process's:
4068 static bool check_same_owner(struct task_struct
*p
)
4070 const struct cred
*cred
= current_cred(), *pcred
;
4074 pcred
= __task_cred(p
);
4075 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
4076 uid_eq(cred
->euid
, pcred
->uid
));
4081 static int __sched_setscheduler(struct task_struct
*p
,
4082 const struct sched_attr
*attr
,
4085 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
4086 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
4087 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
4088 int new_effective_prio
, policy
= attr
->sched_policy
;
4089 const struct sched_class
*prev_class
;
4092 int queue_flags
= DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
4095 /* The pi code expects interrupts enabled */
4096 BUG_ON(pi
&& in_interrupt());
4098 /* Double check policy once rq lock held: */
4100 reset_on_fork
= p
->sched_reset_on_fork
;
4101 policy
= oldpolicy
= p
->policy
;
4103 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
4105 if (!valid_policy(policy
))
4109 if (attr
->sched_flags
& ~(SCHED_FLAG_ALL
| SCHED_FLAG_SUGOV
))
4113 * Valid priorities for SCHED_FIFO and SCHED_RR are
4114 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4115 * SCHED_BATCH and SCHED_IDLE is 0.
4117 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4118 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
4120 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
4121 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
4125 * Allow unprivileged RT tasks to decrease priority:
4127 if (user
&& !capable(CAP_SYS_NICE
)) {
4128 if (fair_policy(policy
)) {
4129 if (attr
->sched_nice
< task_nice(p
) &&
4130 !can_nice(p
, attr
->sched_nice
))
4134 if (rt_policy(policy
)) {
4135 unsigned long rlim_rtprio
=
4136 task_rlimit(p
, RLIMIT_RTPRIO
);
4138 /* Can't set/change the rt policy: */
4139 if (policy
!= p
->policy
&& !rlim_rtprio
)
4142 /* Can't increase priority: */
4143 if (attr
->sched_priority
> p
->rt_priority
&&
4144 attr
->sched_priority
> rlim_rtprio
)
4149 * Can't set/change SCHED_DEADLINE policy at all for now
4150 * (safest behavior); in the future we would like to allow
4151 * unprivileged DL tasks to increase their relative deadline
4152 * or reduce their runtime (both ways reducing utilization)
4154 if (dl_policy(policy
))
4158 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4159 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4161 if (idle_policy(p
->policy
) && !idle_policy(policy
)) {
4162 if (!can_nice(p
, task_nice(p
)))
4166 /* Can't change other user's priorities: */
4167 if (!check_same_owner(p
))
4170 /* Normal users shall not reset the sched_reset_on_fork flag: */
4171 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4176 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
4179 retval
= security_task_setscheduler(p
);
4185 * Make sure no PI-waiters arrive (or leave) while we are
4186 * changing the priority of the task:
4188 * To be able to change p->policy safely, the appropriate
4189 * runqueue lock must be held.
4191 rq
= task_rq_lock(p
, &rf
);
4192 update_rq_clock(rq
);
4195 * Changing the policy of the stop threads its a very bad idea:
4197 if (p
== rq
->stop
) {
4198 task_rq_unlock(rq
, p
, &rf
);
4203 * If not changing anything there's no need to proceed further,
4204 * but store a possible modification of reset_on_fork.
4206 if (unlikely(policy
== p
->policy
)) {
4207 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
4209 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
4211 if (dl_policy(policy
) && dl_param_changed(p
, attr
))
4214 p
->sched_reset_on_fork
= reset_on_fork
;
4215 task_rq_unlock(rq
, p
, &rf
);
4221 #ifdef CONFIG_RT_GROUP_SCHED
4223 * Do not allow realtime tasks into groups that have no runtime
4226 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4227 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
4228 !task_group_is_autogroup(task_group(p
))) {
4229 task_rq_unlock(rq
, p
, &rf
);
4234 if (dl_bandwidth_enabled() && dl_policy(policy
) &&
4235 !(attr
->sched_flags
& SCHED_FLAG_SUGOV
)) {
4236 cpumask_t
*span
= rq
->rd
->span
;
4239 * Don't allow tasks with an affinity mask smaller than
4240 * the entire root_domain to become SCHED_DEADLINE. We
4241 * will also fail if there's no bandwidth available.
4243 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
4244 rq
->rd
->dl_bw
.bw
== 0) {
4245 task_rq_unlock(rq
, p
, &rf
);
4252 /* Re-check policy now with rq lock held: */
4253 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4254 policy
= oldpolicy
= -1;
4255 task_rq_unlock(rq
, p
, &rf
);
4260 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4261 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4264 if ((dl_policy(policy
) || dl_task(p
)) && sched_dl_overflow(p
, policy
, attr
)) {
4265 task_rq_unlock(rq
, p
, &rf
);
4269 p
->sched_reset_on_fork
= reset_on_fork
;
4274 * Take priority boosted tasks into account. If the new
4275 * effective priority is unchanged, we just store the new
4276 * normal parameters and do not touch the scheduler class and
4277 * the runqueue. This will be done when the task deboost
4280 new_effective_prio
= rt_effective_prio(p
, newprio
);
4281 if (new_effective_prio
== oldprio
)
4282 queue_flags
&= ~DEQUEUE_MOVE
;
4285 queued
= task_on_rq_queued(p
);
4286 running
= task_current(rq
, p
);
4288 dequeue_task(rq
, p
, queue_flags
);
4290 put_prev_task(rq
, p
);
4292 prev_class
= p
->sched_class
;
4293 __setscheduler(rq
, p
, attr
, pi
);
4297 * We enqueue to tail when the priority of a task is
4298 * increased (user space view).
4300 if (oldprio
< p
->prio
)
4301 queue_flags
|= ENQUEUE_HEAD
;
4303 enqueue_task(rq
, p
, queue_flags
);
4306 set_curr_task(rq
, p
);
4308 check_class_changed(rq
, p
, prev_class
, oldprio
);
4310 /* Avoid rq from going away on us: */
4312 task_rq_unlock(rq
, p
, &rf
);
4315 rt_mutex_adjust_pi(p
);
4317 /* Run balance callbacks after we've adjusted the PI chain: */
4318 balance_callback(rq
);
4324 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
4325 const struct sched_param
*param
, bool check
)
4327 struct sched_attr attr
= {
4328 .sched_policy
= policy
,
4329 .sched_priority
= param
->sched_priority
,
4330 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
4333 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4334 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
4335 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4336 policy
&= ~SCHED_RESET_ON_FORK
;
4337 attr
.sched_policy
= policy
;
4340 return __sched_setscheduler(p
, &attr
, check
, true);
4343 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4344 * @p: the task in question.
4345 * @policy: new policy.
4346 * @param: structure containing the new RT priority.
4348 * Return: 0 on success. An error code otherwise.
4350 * NOTE that the task may be already dead.
4352 int sched_setscheduler(struct task_struct
*p
, int policy
,
4353 const struct sched_param
*param
)
4355 return _sched_setscheduler(p
, policy
, param
, true);
4357 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4359 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
4361 return __sched_setscheduler(p
, attr
, true, true);
4363 EXPORT_SYMBOL_GPL(sched_setattr
);
4365 int sched_setattr_nocheck(struct task_struct
*p
, const struct sched_attr
*attr
)
4367 return __sched_setscheduler(p
, attr
, false, true);
4371 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4372 * @p: the task in question.
4373 * @policy: new policy.
4374 * @param: structure containing the new RT priority.
4376 * Just like sched_setscheduler, only don't bother checking if the
4377 * current context has permission. For example, this is needed in
4378 * stop_machine(): we create temporary high priority worker threads,
4379 * but our caller might not have that capability.
4381 * Return: 0 on success. An error code otherwise.
4383 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4384 const struct sched_param
*param
)
4386 return _sched_setscheduler(p
, policy
, param
, false);
4388 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck
);
4391 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4393 struct sched_param lparam
;
4394 struct task_struct
*p
;
4397 if (!param
|| pid
< 0)
4399 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4404 p
= find_process_by_pid(pid
);
4406 retval
= sched_setscheduler(p
, policy
, &lparam
);
4413 * Mimics kernel/events/core.c perf_copy_attr().
4415 static int sched_copy_attr(struct sched_attr __user
*uattr
, struct sched_attr
*attr
)
4420 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
4423 /* Zero the full structure, so that a short copy will be nice: */
4424 memset(attr
, 0, sizeof(*attr
));
4426 ret
= get_user(size
, &uattr
->size
);
4430 /* Bail out on silly large: */
4431 if (size
> PAGE_SIZE
)
4434 /* ABI compatibility quirk: */
4436 size
= SCHED_ATTR_SIZE_VER0
;
4438 if (size
< SCHED_ATTR_SIZE_VER0
)
4442 * If we're handed a bigger struct than we know of,
4443 * ensure all the unknown bits are 0 - i.e. new
4444 * user-space does not rely on any kernel feature
4445 * extensions we dont know about yet.
4447 if (size
> sizeof(*attr
)) {
4448 unsigned char __user
*addr
;
4449 unsigned char __user
*end
;
4452 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4453 end
= (void __user
*)uattr
+ size
;
4455 for (; addr
< end
; addr
++) {
4456 ret
= get_user(val
, addr
);
4462 size
= sizeof(*attr
);
4465 ret
= copy_from_user(attr
, uattr
, size
);
4470 * XXX: Do we want to be lenient like existing syscalls; or do we want
4471 * to be strict and return an error on out-of-bounds values?
4473 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
4478 put_user(sizeof(*attr
), &uattr
->size
);
4483 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4484 * @pid: the pid in question.
4485 * @policy: new policy.
4486 * @param: structure containing the new RT priority.
4488 * Return: 0 on success. An error code otherwise.
4490 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
, struct sched_param __user
*, param
)
4495 return do_sched_setscheduler(pid
, policy
, param
);
4499 * sys_sched_setparam - set/change the RT priority of a thread
4500 * @pid: the pid in question.
4501 * @param: structure containing the new RT priority.
4503 * Return: 0 on success. An error code otherwise.
4505 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4507 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
4511 * sys_sched_setattr - same as above, but with extended sched_attr
4512 * @pid: the pid in question.
4513 * @uattr: structure containing the extended parameters.
4514 * @flags: for future extension.
4516 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4517 unsigned int, flags
)
4519 struct sched_attr attr
;
4520 struct task_struct
*p
;
4523 if (!uattr
|| pid
< 0 || flags
)
4526 retval
= sched_copy_attr(uattr
, &attr
);
4530 if ((int)attr
.sched_policy
< 0)
4535 p
= find_process_by_pid(pid
);
4537 retval
= sched_setattr(p
, &attr
);
4544 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4545 * @pid: the pid in question.
4547 * Return: On success, the policy of the thread. Otherwise, a negative error
4550 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4552 struct task_struct
*p
;
4560 p
= find_process_by_pid(pid
);
4562 retval
= security_task_getscheduler(p
);
4565 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4572 * sys_sched_getparam - get the RT priority of a thread
4573 * @pid: the pid in question.
4574 * @param: structure containing the RT priority.
4576 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4579 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4581 struct sched_param lp
= { .sched_priority
= 0 };
4582 struct task_struct
*p
;
4585 if (!param
|| pid
< 0)
4589 p
= find_process_by_pid(pid
);
4594 retval
= security_task_getscheduler(p
);
4598 if (task_has_rt_policy(p
))
4599 lp
.sched_priority
= p
->rt_priority
;
4603 * This one might sleep, we cannot do it with a spinlock held ...
4605 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4614 static int sched_read_attr(struct sched_attr __user
*uattr
,
4615 struct sched_attr
*attr
,
4620 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
4624 * If we're handed a smaller struct than we know of,
4625 * ensure all the unknown bits are 0 - i.e. old
4626 * user-space does not get uncomplete information.
4628 if (usize
< sizeof(*attr
)) {
4629 unsigned char *addr
;
4632 addr
= (void *)attr
+ usize
;
4633 end
= (void *)attr
+ sizeof(*attr
);
4635 for (; addr
< end
; addr
++) {
4643 ret
= copy_to_user(uattr
, attr
, attr
->size
);
4651 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4652 * @pid: the pid in question.
4653 * @uattr: structure containing the extended parameters.
4654 * @size: sizeof(attr) for fwd/bwd comp.
4655 * @flags: for future extension.
4657 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4658 unsigned int, size
, unsigned int, flags
)
4660 struct sched_attr attr
= {
4661 .size
= sizeof(struct sched_attr
),
4663 struct task_struct
*p
;
4666 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
4667 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
4671 p
= find_process_by_pid(pid
);
4676 retval
= security_task_getscheduler(p
);
4680 attr
.sched_policy
= p
->policy
;
4681 if (p
->sched_reset_on_fork
)
4682 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4683 if (task_has_dl_policy(p
))
4684 __getparam_dl(p
, &attr
);
4685 else if (task_has_rt_policy(p
))
4686 attr
.sched_priority
= p
->rt_priority
;
4688 attr
.sched_nice
= task_nice(p
);
4692 retval
= sched_read_attr(uattr
, &attr
, size
);
4700 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4702 cpumask_var_t cpus_allowed
, new_mask
;
4703 struct task_struct
*p
;
4708 p
= find_process_by_pid(pid
);
4714 /* Prevent p going away */
4718 if (p
->flags
& PF_NO_SETAFFINITY
) {
4722 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4726 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4728 goto out_free_cpus_allowed
;
4731 if (!check_same_owner(p
)) {
4733 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
4735 goto out_free_new_mask
;
4740 retval
= security_task_setscheduler(p
);
4742 goto out_free_new_mask
;
4745 cpuset_cpus_allowed(p
, cpus_allowed
);
4746 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4749 * Since bandwidth control happens on root_domain basis,
4750 * if admission test is enabled, we only admit -deadline
4751 * tasks allowed to run on all the CPUs in the task's
4755 if (task_has_dl_policy(p
) && dl_bandwidth_enabled()) {
4757 if (!cpumask_subset(task_rq(p
)->rd
->span
, new_mask
)) {
4760 goto out_free_new_mask
;
4766 retval
= __set_cpus_allowed_ptr(p
, new_mask
, true);
4769 cpuset_cpus_allowed(p
, cpus_allowed
);
4770 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4772 * We must have raced with a concurrent cpuset
4773 * update. Just reset the cpus_allowed to the
4774 * cpuset's cpus_allowed
4776 cpumask_copy(new_mask
, cpus_allowed
);
4781 free_cpumask_var(new_mask
);
4782 out_free_cpus_allowed
:
4783 free_cpumask_var(cpus_allowed
);
4789 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4790 struct cpumask
*new_mask
)
4792 if (len
< cpumask_size())
4793 cpumask_clear(new_mask
);
4794 else if (len
> cpumask_size())
4795 len
= cpumask_size();
4797 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4801 * sys_sched_setaffinity - set the CPU affinity of a process
4802 * @pid: pid of the process
4803 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4804 * @user_mask_ptr: user-space pointer to the new CPU mask
4806 * Return: 0 on success. An error code otherwise.
4808 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4809 unsigned long __user
*, user_mask_ptr
)
4811 cpumask_var_t new_mask
;
4814 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4817 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4819 retval
= sched_setaffinity(pid
, new_mask
);
4820 free_cpumask_var(new_mask
);
4824 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4826 struct task_struct
*p
;
4827 unsigned long flags
;
4833 p
= find_process_by_pid(pid
);
4837 retval
= security_task_getscheduler(p
);
4841 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4842 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4843 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4852 * sys_sched_getaffinity - get the CPU affinity of a process
4853 * @pid: pid of the process
4854 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4855 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4857 * Return: size of CPU mask copied to user_mask_ptr on success. An
4858 * error code otherwise.
4860 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4861 unsigned long __user
*, user_mask_ptr
)
4866 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4868 if (len
& (sizeof(unsigned long)-1))
4871 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4874 ret
= sched_getaffinity(pid
, mask
);
4876 unsigned int retlen
= min(len
, cpumask_size());
4878 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4883 free_cpumask_var(mask
);
4889 * sys_sched_yield - yield the current processor to other threads.
4891 * This function yields the current CPU to other tasks. If there are no
4892 * other threads running on this CPU then this function will return.
4896 SYSCALL_DEFINE0(sched_yield
)
4901 local_irq_disable();
4905 schedstat_inc(rq
->yld_count
);
4906 current
->sched_class
->yield_task(rq
);
4909 * Since we are going to call schedule() anyway, there's
4910 * no need to preempt or enable interrupts:
4914 sched_preempt_enable_no_resched();
4921 #ifndef CONFIG_PREEMPT
4922 int __sched
_cond_resched(void)
4924 if (should_resched(0)) {
4925 preempt_schedule_common();
4931 EXPORT_SYMBOL(_cond_resched
);
4935 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4936 * call schedule, and on return reacquire the lock.
4938 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4939 * operations here to prevent schedule() from being called twice (once via
4940 * spin_unlock(), once by hand).
4942 int __cond_resched_lock(spinlock_t
*lock
)
4944 int resched
= should_resched(PREEMPT_LOCK_OFFSET
);
4947 lockdep_assert_held(lock
);
4949 if (spin_needbreak(lock
) || resched
) {
4952 preempt_schedule_common();
4960 EXPORT_SYMBOL(__cond_resched_lock
);
4962 int __sched
__cond_resched_softirq(void)
4964 BUG_ON(!in_softirq());
4966 if (should_resched(SOFTIRQ_DISABLE_OFFSET
)) {
4968 preempt_schedule_common();
4974 EXPORT_SYMBOL(__cond_resched_softirq
);
4977 * yield - yield the current processor to other threads.
4979 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4981 * The scheduler is at all times free to pick the calling task as the most
4982 * eligible task to run, if removing the yield() call from your code breaks
4983 * it, its already broken.
4985 * Typical broken usage is:
4990 * where one assumes that yield() will let 'the other' process run that will
4991 * make event true. If the current task is a SCHED_FIFO task that will never
4992 * happen. Never use yield() as a progress guarantee!!
4994 * If you want to use yield() to wait for something, use wait_event().
4995 * If you want to use yield() to be 'nice' for others, use cond_resched().
4996 * If you still want to use yield(), do not!
4998 void __sched
yield(void)
5000 set_current_state(TASK_RUNNING
);
5003 EXPORT_SYMBOL(yield
);
5006 * yield_to - yield the current processor to another thread in
5007 * your thread group, or accelerate that thread toward the
5008 * processor it's on.
5010 * @preempt: whether task preemption is allowed or not
5012 * It's the caller's job to ensure that the target task struct
5013 * can't go away on us before we can do any checks.
5016 * true (>0) if we indeed boosted the target task.
5017 * false (0) if we failed to boost the target.
5018 * -ESRCH if there's no task to yield to.
5020 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
5022 struct task_struct
*curr
= current
;
5023 struct rq
*rq
, *p_rq
;
5024 unsigned long flags
;
5027 local_irq_save(flags
);
5033 * If we're the only runnable task on the rq and target rq also
5034 * has only one task, there's absolutely no point in yielding.
5036 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
5041 double_rq_lock(rq
, p_rq
);
5042 if (task_rq(p
) != p_rq
) {
5043 double_rq_unlock(rq
, p_rq
);
5047 if (!curr
->sched_class
->yield_to_task
)
5050 if (curr
->sched_class
!= p
->sched_class
)
5053 if (task_running(p_rq
, p
) || p
->state
)
5056 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5058 schedstat_inc(rq
->yld_count
);
5060 * Make p's CPU reschedule; pick_next_entity takes care of
5063 if (preempt
&& rq
!= p_rq
)
5068 double_rq_unlock(rq
, p_rq
);
5070 local_irq_restore(flags
);
5077 EXPORT_SYMBOL_GPL(yield_to
);
5079 int io_schedule_prepare(void)
5081 int old_iowait
= current
->in_iowait
;
5083 current
->in_iowait
= 1;
5084 blk_schedule_flush_plug(current
);
5089 void io_schedule_finish(int token
)
5091 current
->in_iowait
= token
;
5095 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5096 * that process accounting knows that this is a task in IO wait state.
5098 long __sched
io_schedule_timeout(long timeout
)
5103 token
= io_schedule_prepare();
5104 ret
= schedule_timeout(timeout
);
5105 io_schedule_finish(token
);
5109 EXPORT_SYMBOL(io_schedule_timeout
);
5111 void io_schedule(void)
5115 token
= io_schedule_prepare();
5117 io_schedule_finish(token
);
5119 EXPORT_SYMBOL(io_schedule
);
5122 * sys_sched_get_priority_max - return maximum RT priority.
5123 * @policy: scheduling class.
5125 * Return: On success, this syscall returns the maximum
5126 * rt_priority that can be used by a given scheduling class.
5127 * On failure, a negative error code is returned.
5129 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5136 ret
= MAX_USER_RT_PRIO
-1;
5138 case SCHED_DEADLINE
:
5149 * sys_sched_get_priority_min - return minimum RT priority.
5150 * @policy: scheduling class.
5152 * Return: On success, this syscall returns the minimum
5153 * rt_priority that can be used by a given scheduling class.
5154 * On failure, a negative error code is returned.
5156 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5165 case SCHED_DEADLINE
:
5174 static int sched_rr_get_interval(pid_t pid
, struct timespec64
*t
)
5176 struct task_struct
*p
;
5177 unsigned int time_slice
;
5187 p
= find_process_by_pid(pid
);
5191 retval
= security_task_getscheduler(p
);
5195 rq
= task_rq_lock(p
, &rf
);
5197 if (p
->sched_class
->get_rr_interval
)
5198 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5199 task_rq_unlock(rq
, p
, &rf
);
5202 jiffies_to_timespec64(time_slice
, t
);
5211 * sys_sched_rr_get_interval - return the default timeslice of a process.
5212 * @pid: pid of the process.
5213 * @interval: userspace pointer to the timeslice value.
5215 * this syscall writes the default timeslice value of a given process
5216 * into the user-space timespec buffer. A value of '0' means infinity.
5218 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5221 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5222 struct timespec __user
*, interval
)
5224 struct timespec64 t
;
5225 int retval
= sched_rr_get_interval(pid
, &t
);
5228 retval
= put_timespec64(&t
, interval
);
5233 #ifdef CONFIG_COMPAT
5234 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval
,
5236 struct compat_timespec __user
*, interval
)
5238 struct timespec64 t
;
5239 int retval
= sched_rr_get_interval(pid
, &t
);
5242 retval
= compat_put_timespec64(&t
, interval
);
5247 void sched_show_task(struct task_struct
*p
)
5249 unsigned long free
= 0;
5252 if (!try_get_task_stack(p
))
5255 printk(KERN_INFO
"%-15.15s %c", p
->comm
, task_state_to_char(p
));
5257 if (p
->state
== TASK_RUNNING
)
5258 printk(KERN_CONT
" running task ");
5259 #ifdef CONFIG_DEBUG_STACK_USAGE
5260 free
= stack_not_used(p
);
5265 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
5267 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5268 task_pid_nr(p
), ppid
,
5269 (unsigned long)task_thread_info(p
)->flags
);
5271 print_worker_info(KERN_INFO
, p
);
5272 show_stack(p
, NULL
);
5275 EXPORT_SYMBOL_GPL(sched_show_task
);
5278 state_filter_match(unsigned long state_filter
, struct task_struct
*p
)
5280 /* no filter, everything matches */
5284 /* filter, but doesn't match */
5285 if (!(p
->state
& state_filter
))
5289 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5292 if (state_filter
== TASK_UNINTERRUPTIBLE
&& p
->state
== TASK_IDLE
)
5299 void show_state_filter(unsigned long state_filter
)
5301 struct task_struct
*g
, *p
;
5303 #if BITS_PER_LONG == 32
5305 " task PC stack pid father\n");
5308 " task PC stack pid father\n");
5311 for_each_process_thread(g
, p
) {
5313 * reset the NMI-timeout, listing all files on a slow
5314 * console might take a lot of time:
5315 * Also, reset softlockup watchdogs on all CPUs, because
5316 * another CPU might be blocked waiting for us to process
5319 touch_nmi_watchdog();
5320 touch_all_softlockup_watchdogs();
5321 if (state_filter_match(state_filter
, p
))
5325 #ifdef CONFIG_SCHED_DEBUG
5327 sysrq_sched_debug_show();
5331 * Only show locks if all tasks are dumped:
5334 debug_show_all_locks();
5338 * init_idle - set up an idle thread for a given CPU
5339 * @idle: task in question
5340 * @cpu: CPU the idle task belongs to
5342 * NOTE: this function does not set the idle thread's NEED_RESCHED
5343 * flag, to make booting more robust.
5345 void init_idle(struct task_struct
*idle
, int cpu
)
5347 struct rq
*rq
= cpu_rq(cpu
);
5348 unsigned long flags
;
5350 raw_spin_lock_irqsave(&idle
->pi_lock
, flags
);
5351 raw_spin_lock(&rq
->lock
);
5353 __sched_fork(0, idle
);
5354 idle
->state
= TASK_RUNNING
;
5355 idle
->se
.exec_start
= sched_clock();
5356 idle
->flags
|= PF_IDLE
;
5358 kasan_unpoison_task_stack(idle
);
5362 * Its possible that init_idle() gets called multiple times on a task,
5363 * in that case do_set_cpus_allowed() will not do the right thing.
5365 * And since this is boot we can forgo the serialization.
5367 set_cpus_allowed_common(idle
, cpumask_of(cpu
));
5370 * We're having a chicken and egg problem, even though we are
5371 * holding rq->lock, the CPU isn't yet set to this CPU so the
5372 * lockdep check in task_group() will fail.
5374 * Similar case to sched_fork(). / Alternatively we could
5375 * use task_rq_lock() here and obtain the other rq->lock.
5380 __set_task_cpu(idle
, cpu
);
5383 rq
->curr
= rq
->idle
= idle
;
5384 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
5388 raw_spin_unlock(&rq
->lock
);
5389 raw_spin_unlock_irqrestore(&idle
->pi_lock
, flags
);
5391 /* Set the preempt count _outside_ the spinlocks! */
5392 init_idle_preempt_count(idle
, cpu
);
5395 * The idle tasks have their own, simple scheduling class:
5397 idle
->sched_class
= &idle_sched_class
;
5398 ftrace_graph_init_idle_task(idle
, cpu
);
5399 vtime_init_idle(idle
, cpu
);
5401 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
5407 int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
5408 const struct cpumask
*trial
)
5412 if (!cpumask_weight(cur
))
5415 ret
= dl_cpuset_cpumask_can_shrink(cur
, trial
);
5420 int task_can_attach(struct task_struct
*p
,
5421 const struct cpumask
*cs_cpus_allowed
)
5426 * Kthreads which disallow setaffinity shouldn't be moved
5427 * to a new cpuset; we don't want to change their CPU
5428 * affinity and isolating such threads by their set of
5429 * allowed nodes is unnecessary. Thus, cpusets are not
5430 * applicable for such threads. This prevents checking for
5431 * success of set_cpus_allowed_ptr() on all attached tasks
5432 * before cpus_allowed may be changed.
5434 if (p
->flags
& PF_NO_SETAFFINITY
) {
5439 if (dl_task(p
) && !cpumask_intersects(task_rq(p
)->rd
->span
,
5441 ret
= dl_task_can_attach(p
, cs_cpus_allowed
);
5447 bool sched_smp_initialized __read_mostly
;
5449 #ifdef CONFIG_NUMA_BALANCING
5450 /* Migrate current task p to target_cpu */
5451 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
5453 struct migration_arg arg
= { p
, target_cpu
};
5454 int curr_cpu
= task_cpu(p
);
5456 if (curr_cpu
== target_cpu
)
5459 if (!cpumask_test_cpu(target_cpu
, &p
->cpus_allowed
))
5462 /* TODO: This is not properly updating schedstats */
5464 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
5465 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
5469 * Requeue a task on a given node and accurately track the number of NUMA
5470 * tasks on the runqueues
5472 void sched_setnuma(struct task_struct
*p
, int nid
)
5474 bool queued
, running
;
5478 rq
= task_rq_lock(p
, &rf
);
5479 queued
= task_on_rq_queued(p
);
5480 running
= task_current(rq
, p
);
5483 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
5485 put_prev_task(rq
, p
);
5487 p
->numa_preferred_nid
= nid
;
5490 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
5492 set_curr_task(rq
, p
);
5493 task_rq_unlock(rq
, p
, &rf
);
5495 #endif /* CONFIG_NUMA_BALANCING */
5497 #ifdef CONFIG_HOTPLUG_CPU
5499 * Ensure that the idle task is using init_mm right before its CPU goes
5502 void idle_task_exit(void)
5504 struct mm_struct
*mm
= current
->active_mm
;
5506 BUG_ON(cpu_online(smp_processor_id()));
5508 if (mm
!= &init_mm
) {
5509 switch_mm(mm
, &init_mm
, current
);
5510 finish_arch_post_lock_switch();
5516 * Since this CPU is going 'away' for a while, fold any nr_active delta
5517 * we might have. Assumes we're called after migrate_tasks() so that the
5518 * nr_active count is stable. We need to take the teardown thread which
5519 * is calling this into account, so we hand in adjust = 1 to the load
5522 * Also see the comment "Global load-average calculations".
5524 static void calc_load_migrate(struct rq
*rq
)
5526 long delta
= calc_load_fold_active(rq
, 1);
5528 atomic_long_add(delta
, &calc_load_tasks
);
5531 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
5535 static const struct sched_class fake_sched_class
= {
5536 .put_prev_task
= put_prev_task_fake
,
5539 static struct task_struct fake_task
= {
5541 * Avoid pull_{rt,dl}_task()
5543 .prio
= MAX_PRIO
+ 1,
5544 .sched_class
= &fake_sched_class
,
5548 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5549 * try_to_wake_up()->select_task_rq().
5551 * Called with rq->lock held even though we'er in stop_machine() and
5552 * there's no concurrency possible, we hold the required locks anyway
5553 * because of lock validation efforts.
5555 static void migrate_tasks(struct rq
*dead_rq
, struct rq_flags
*rf
)
5557 struct rq
*rq
= dead_rq
;
5558 struct task_struct
*next
, *stop
= rq
->stop
;
5559 struct rq_flags orf
= *rf
;
5563 * Fudge the rq selection such that the below task selection loop
5564 * doesn't get stuck on the currently eligible stop task.
5566 * We're currently inside stop_machine() and the rq is either stuck
5567 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5568 * either way we should never end up calling schedule() until we're
5574 * put_prev_task() and pick_next_task() sched
5575 * class method both need to have an up-to-date
5576 * value of rq->clock[_task]
5578 update_rq_clock(rq
);
5582 * There's this thread running, bail when that's the only
5585 if (rq
->nr_running
== 1)
5589 * pick_next_task() assumes pinned rq->lock:
5591 next
= pick_next_task(rq
, &fake_task
, rf
);
5593 put_prev_task(rq
, next
);
5596 * Rules for changing task_struct::cpus_allowed are holding
5597 * both pi_lock and rq->lock, such that holding either
5598 * stabilizes the mask.
5600 * Drop rq->lock is not quite as disastrous as it usually is
5601 * because !cpu_active at this point, which means load-balance
5602 * will not interfere. Also, stop-machine.
5605 raw_spin_lock(&next
->pi_lock
);
5609 * Since we're inside stop-machine, _nothing_ should have
5610 * changed the task, WARN if weird stuff happened, because in
5611 * that case the above rq->lock drop is a fail too.
5613 if (WARN_ON(task_rq(next
) != rq
|| !task_on_rq_queued(next
))) {
5614 raw_spin_unlock(&next
->pi_lock
);
5618 /* Find suitable destination for @next, with force if needed. */
5619 dest_cpu
= select_fallback_rq(dead_rq
->cpu
, next
);
5620 rq
= __migrate_task(rq
, rf
, next
, dest_cpu
);
5621 if (rq
!= dead_rq
) {
5627 raw_spin_unlock(&next
->pi_lock
);
5632 #endif /* CONFIG_HOTPLUG_CPU */
5634 void set_rq_online(struct rq
*rq
)
5637 const struct sched_class
*class;
5639 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5642 for_each_class(class) {
5643 if (class->rq_online
)
5644 class->rq_online(rq
);
5649 void set_rq_offline(struct rq
*rq
)
5652 const struct sched_class
*class;
5654 for_each_class(class) {
5655 if (class->rq_offline
)
5656 class->rq_offline(rq
);
5659 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5664 static void set_cpu_rq_start_time(unsigned int cpu
)
5666 struct rq
*rq
= cpu_rq(cpu
);
5668 rq
->age_stamp
= sched_clock_cpu(cpu
);
5672 * used to mark begin/end of suspend/resume:
5674 static int num_cpus_frozen
;
5677 * Update cpusets according to cpu_active mask. If cpusets are
5678 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5679 * around partition_sched_domains().
5681 * If we come here as part of a suspend/resume, don't touch cpusets because we
5682 * want to restore it back to its original state upon resume anyway.
5684 static void cpuset_cpu_active(void)
5686 if (cpuhp_tasks_frozen
) {
5688 * num_cpus_frozen tracks how many CPUs are involved in suspend
5689 * resume sequence. As long as this is not the last online
5690 * operation in the resume sequence, just build a single sched
5691 * domain, ignoring cpusets.
5693 partition_sched_domains(1, NULL
, NULL
);
5694 if (--num_cpus_frozen
)
5697 * This is the last CPU online operation. So fall through and
5698 * restore the original sched domains by considering the
5699 * cpuset configurations.
5701 cpuset_force_rebuild();
5703 cpuset_update_active_cpus();
5706 static int cpuset_cpu_inactive(unsigned int cpu
)
5708 if (!cpuhp_tasks_frozen
) {
5709 if (dl_cpu_busy(cpu
))
5711 cpuset_update_active_cpus();
5714 partition_sched_domains(1, NULL
, NULL
);
5719 int sched_cpu_activate(unsigned int cpu
)
5721 struct rq
*rq
= cpu_rq(cpu
);
5724 set_cpu_active(cpu
, true);
5726 if (sched_smp_initialized
) {
5727 sched_domains_numa_masks_set(cpu
);
5728 cpuset_cpu_active();
5732 * Put the rq online, if not already. This happens:
5734 * 1) In the early boot process, because we build the real domains
5735 * after all CPUs have been brought up.
5737 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5740 rq_lock_irqsave(rq
, &rf
);
5742 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5745 rq_unlock_irqrestore(rq
, &rf
);
5747 update_max_interval();
5752 int sched_cpu_deactivate(unsigned int cpu
)
5756 set_cpu_active(cpu
, false);
5758 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5759 * users of this state to go away such that all new such users will
5762 * Do sync before park smpboot threads to take care the rcu boost case.
5764 synchronize_rcu_mult(call_rcu
, call_rcu_sched
);
5766 if (!sched_smp_initialized
)
5769 ret
= cpuset_cpu_inactive(cpu
);
5771 set_cpu_active(cpu
, true);
5774 sched_domains_numa_masks_clear(cpu
);
5778 static void sched_rq_cpu_starting(unsigned int cpu
)
5780 struct rq
*rq
= cpu_rq(cpu
);
5782 rq
->calc_load_update
= calc_load_update
;
5783 update_max_interval();
5786 int sched_cpu_starting(unsigned int cpu
)
5788 set_cpu_rq_start_time(cpu
);
5789 sched_rq_cpu_starting(cpu
);
5793 #ifdef CONFIG_HOTPLUG_CPU
5794 int sched_cpu_dying(unsigned int cpu
)
5796 struct rq
*rq
= cpu_rq(cpu
);
5799 /* Handle pending wakeups and then migrate everything off */
5800 sched_ttwu_pending();
5802 rq_lock_irqsave(rq
, &rf
);
5804 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5807 migrate_tasks(rq
, &rf
);
5808 BUG_ON(rq
->nr_running
!= 1);
5809 rq_unlock_irqrestore(rq
, &rf
);
5811 calc_load_migrate(rq
);
5812 update_max_interval();
5813 nohz_balance_exit_idle(cpu
);
5819 #ifdef CONFIG_SCHED_SMT
5820 DEFINE_STATIC_KEY_FALSE(sched_smt_present
);
5822 static void sched_init_smt(void)
5825 * We've enumerated all CPUs and will assume that if any CPU
5826 * has SMT siblings, CPU0 will too.
5828 if (cpumask_weight(cpu_smt_mask(0)) > 1)
5829 static_branch_enable(&sched_smt_present
);
5832 static inline void sched_init_smt(void) { }
5835 void __init
sched_init_smp(void)
5840 * There's no userspace yet to cause hotplug operations; hence all the
5841 * CPU masks are stable and all blatant races in the below code cannot
5844 mutex_lock(&sched_domains_mutex
);
5845 sched_init_domains(cpu_active_mask
);
5846 mutex_unlock(&sched_domains_mutex
);
5848 /* Move init over to a non-isolated CPU */
5849 if (set_cpus_allowed_ptr(current
, housekeeping_cpumask(HK_FLAG_DOMAIN
)) < 0)
5851 sched_init_granularity();
5853 init_sched_rt_class();
5854 init_sched_dl_class();
5858 sched_smp_initialized
= true;
5861 static int __init
migration_init(void)
5863 sched_rq_cpu_starting(smp_processor_id());
5866 early_initcall(migration_init
);
5869 void __init
sched_init_smp(void)
5871 sched_init_granularity();
5873 #endif /* CONFIG_SMP */
5875 int in_sched_functions(unsigned long addr
)
5877 return in_lock_functions(addr
) ||
5878 (addr
>= (unsigned long)__sched_text_start
5879 && addr
< (unsigned long)__sched_text_end
);
5882 #ifdef CONFIG_CGROUP_SCHED
5884 * Default task group.
5885 * Every task in system belongs to this group at bootup.
5887 struct task_group root_task_group
;
5888 LIST_HEAD(task_groups
);
5890 /* Cacheline aligned slab cache for task_group */
5891 static struct kmem_cache
*task_group_cache __read_mostly
;
5894 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5895 DECLARE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5897 void __init
sched_init(void)
5900 unsigned long alloc_size
= 0, ptr
;
5905 #ifdef CONFIG_FAIR_GROUP_SCHED
5906 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
5908 #ifdef CONFIG_RT_GROUP_SCHED
5909 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
5912 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
5914 #ifdef CONFIG_FAIR_GROUP_SCHED
5915 root_task_group
.se
= (struct sched_entity
**)ptr
;
5916 ptr
+= nr_cpu_ids
* sizeof(void **);
5918 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
5919 ptr
+= nr_cpu_ids
* sizeof(void **);
5921 #endif /* CONFIG_FAIR_GROUP_SCHED */
5922 #ifdef CONFIG_RT_GROUP_SCHED
5923 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
5924 ptr
+= nr_cpu_ids
* sizeof(void **);
5926 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
5927 ptr
+= nr_cpu_ids
* sizeof(void **);
5929 #endif /* CONFIG_RT_GROUP_SCHED */
5931 #ifdef CONFIG_CPUMASK_OFFSTACK
5932 for_each_possible_cpu(i
) {
5933 per_cpu(load_balance_mask
, i
) = (cpumask_var_t
)kzalloc_node(
5934 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
5935 per_cpu(select_idle_mask
, i
) = (cpumask_var_t
)kzalloc_node(
5936 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
5938 #endif /* CONFIG_CPUMASK_OFFSTACK */
5940 init_rt_bandwidth(&def_rt_bandwidth
, global_rt_period(), global_rt_runtime());
5941 init_dl_bandwidth(&def_dl_bandwidth
, global_rt_period(), global_rt_runtime());
5944 init_defrootdomain();
5947 #ifdef CONFIG_RT_GROUP_SCHED
5948 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
5949 global_rt_period(), global_rt_runtime());
5950 #endif /* CONFIG_RT_GROUP_SCHED */
5952 #ifdef CONFIG_CGROUP_SCHED
5953 task_group_cache
= KMEM_CACHE(task_group
, 0);
5955 list_add(&root_task_group
.list
, &task_groups
);
5956 INIT_LIST_HEAD(&root_task_group
.children
);
5957 INIT_LIST_HEAD(&root_task_group
.siblings
);
5958 autogroup_init(&init_task
);
5959 #endif /* CONFIG_CGROUP_SCHED */
5961 for_each_possible_cpu(i
) {
5965 raw_spin_lock_init(&rq
->lock
);
5967 rq
->calc_load_active
= 0;
5968 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
5969 init_cfs_rq(&rq
->cfs
);
5970 init_rt_rq(&rq
->rt
);
5971 init_dl_rq(&rq
->dl
);
5972 #ifdef CONFIG_FAIR_GROUP_SCHED
5973 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
5974 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
5975 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
5977 * How much CPU bandwidth does root_task_group get?
5979 * In case of task-groups formed thr' the cgroup filesystem, it
5980 * gets 100% of the CPU resources in the system. This overall
5981 * system CPU resource is divided among the tasks of
5982 * root_task_group and its child task-groups in a fair manner,
5983 * based on each entity's (task or task-group's) weight
5984 * (se->load.weight).
5986 * In other words, if root_task_group has 10 tasks of weight
5987 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5988 * then A0's share of the CPU resource is:
5990 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
5992 * We achieve this by letting root_task_group's tasks sit
5993 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
5995 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
5996 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
5997 #endif /* CONFIG_FAIR_GROUP_SCHED */
5999 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
6000 #ifdef CONFIG_RT_GROUP_SCHED
6001 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
6004 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6005 rq
->cpu_load
[j
] = 0;
6010 rq
->cpu_capacity
= rq
->cpu_capacity_orig
= SCHED_CAPACITY_SCALE
;
6011 rq
->balance_callback
= NULL
;
6012 rq
->active_balance
= 0;
6013 rq
->next_balance
= jiffies
;
6018 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
6019 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
6021 INIT_LIST_HEAD(&rq
->cfs_tasks
);
6023 rq_attach_root(rq
, &def_root_domain
);
6024 #ifdef CONFIG_NO_HZ_COMMON
6025 rq
->last_load_update_tick
= jiffies
;
6028 #ifdef CONFIG_NO_HZ_FULL
6029 rq
->last_sched_tick
= 0;
6031 #endif /* CONFIG_SMP */
6033 atomic_set(&rq
->nr_iowait
, 0);
6036 set_load_weight(&init_task
, false);
6039 * The boot idle thread does lazy MMU switching as well:
6042 enter_lazy_tlb(&init_mm
, current
);
6045 * Make us the idle thread. Technically, schedule() should not be
6046 * called from this thread, however somewhere below it might be,
6047 * but because we are the idle thread, we just pick up running again
6048 * when this runqueue becomes "idle".
6050 init_idle(current
, smp_processor_id());
6052 calc_load_update
= jiffies
+ LOAD_FREQ
;
6055 idle_thread_set_boot_cpu();
6056 set_cpu_rq_start_time(smp_processor_id());
6058 init_sched_fair_class();
6062 scheduler_running
= 1;
6065 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6066 static inline int preempt_count_equals(int preempt_offset
)
6068 int nested
= preempt_count() + rcu_preempt_depth();
6070 return (nested
== preempt_offset
);
6073 void __might_sleep(const char *file
, int line
, int preempt_offset
)
6076 * Blocking primitives will set (and therefore destroy) current->state,
6077 * since we will exit with TASK_RUNNING make sure we enter with it,
6078 * otherwise we will destroy state.
6080 WARN_ONCE(current
->state
!= TASK_RUNNING
&& current
->task_state_change
,
6081 "do not call blocking ops when !TASK_RUNNING; "
6082 "state=%lx set at [<%p>] %pS\n",
6084 (void *)current
->task_state_change
,
6085 (void *)current
->task_state_change
);
6087 ___might_sleep(file
, line
, preempt_offset
);
6089 EXPORT_SYMBOL(__might_sleep
);
6091 void ___might_sleep(const char *file
, int line
, int preempt_offset
)
6093 /* Ratelimiting timestamp: */
6094 static unsigned long prev_jiffy
;
6096 unsigned long preempt_disable_ip
;
6098 /* WARN_ON_ONCE() by default, no rate limit required: */
6101 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
6102 !is_idle_task(current
)) ||
6103 system_state
== SYSTEM_BOOTING
|| system_state
> SYSTEM_RUNNING
||
6107 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6109 prev_jiffy
= jiffies
;
6111 /* Save this before calling printk(), since that will clobber it: */
6112 preempt_disable_ip
= get_preempt_disable_ip(current
);
6115 "BUG: sleeping function called from invalid context at %s:%d\n",
6118 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6119 in_atomic(), irqs_disabled(),
6120 current
->pid
, current
->comm
);
6122 if (task_stack_end_corrupted(current
))
6123 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
6125 debug_show_held_locks(current
);
6126 if (irqs_disabled())
6127 print_irqtrace_events(current
);
6128 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
6129 && !preempt_count_equals(preempt_offset
)) {
6130 pr_err("Preemption disabled at:");
6131 print_ip_sym(preempt_disable_ip
);
6135 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
6137 EXPORT_SYMBOL(___might_sleep
);
6140 #ifdef CONFIG_MAGIC_SYSRQ
6141 void normalize_rt_tasks(void)
6143 struct task_struct
*g
, *p
;
6144 struct sched_attr attr
= {
6145 .sched_policy
= SCHED_NORMAL
,
6148 read_lock(&tasklist_lock
);
6149 for_each_process_thread(g
, p
) {
6151 * Only normalize user tasks:
6153 if (p
->flags
& PF_KTHREAD
)
6156 p
->se
.exec_start
= 0;
6157 schedstat_set(p
->se
.statistics
.wait_start
, 0);
6158 schedstat_set(p
->se
.statistics
.sleep_start
, 0);
6159 schedstat_set(p
->se
.statistics
.block_start
, 0);
6161 if (!dl_task(p
) && !rt_task(p
)) {
6163 * Renice negative nice level userspace
6166 if (task_nice(p
) < 0)
6167 set_user_nice(p
, 0);
6171 __sched_setscheduler(p
, &attr
, false, false);
6173 read_unlock(&tasklist_lock
);
6176 #endif /* CONFIG_MAGIC_SYSRQ */
6178 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6180 * These functions are only useful for the IA64 MCA handling, or kdb.
6182 * They can only be called when the whole system has been
6183 * stopped - every CPU needs to be quiescent, and no scheduling
6184 * activity can take place. Using them for anything else would
6185 * be a serious bug, and as a result, they aren't even visible
6186 * under any other configuration.
6190 * curr_task - return the current task for a given CPU.
6191 * @cpu: the processor in question.
6193 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6195 * Return: The current task for @cpu.
6197 struct task_struct
*curr_task(int cpu
)
6199 return cpu_curr(cpu
);
6202 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6206 * set_curr_task - set the current task for a given CPU.
6207 * @cpu: the processor in question.
6208 * @p: the task pointer to set.
6210 * Description: This function must only be used when non-maskable interrupts
6211 * are serviced on a separate stack. It allows the architecture to switch the
6212 * notion of the current task on a CPU in a non-blocking manner. This function
6213 * must be called with all CPU's synchronized, and interrupts disabled, the
6214 * and caller must save the original value of the current task (see
6215 * curr_task() above) and restore that value before reenabling interrupts and
6216 * re-starting the system.
6218 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6220 void ia64_set_curr_task(int cpu
, struct task_struct
*p
)
6227 #ifdef CONFIG_CGROUP_SCHED
6228 /* task_group_lock serializes the addition/removal of task groups */
6229 static DEFINE_SPINLOCK(task_group_lock
);
6231 static void sched_free_group(struct task_group
*tg
)
6233 free_fair_sched_group(tg
);
6234 free_rt_sched_group(tg
);
6236 kmem_cache_free(task_group_cache
, tg
);
6239 /* allocate runqueue etc for a new task group */
6240 struct task_group
*sched_create_group(struct task_group
*parent
)
6242 struct task_group
*tg
;
6244 tg
= kmem_cache_alloc(task_group_cache
, GFP_KERNEL
| __GFP_ZERO
);
6246 return ERR_PTR(-ENOMEM
);
6248 if (!alloc_fair_sched_group(tg
, parent
))
6251 if (!alloc_rt_sched_group(tg
, parent
))
6257 sched_free_group(tg
);
6258 return ERR_PTR(-ENOMEM
);
6261 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
6263 unsigned long flags
;
6265 spin_lock_irqsave(&task_group_lock
, flags
);
6266 list_add_rcu(&tg
->list
, &task_groups
);
6268 /* Root should already exist: */
6271 tg
->parent
= parent
;
6272 INIT_LIST_HEAD(&tg
->children
);
6273 list_add_rcu(&tg
->siblings
, &parent
->children
);
6274 spin_unlock_irqrestore(&task_group_lock
, flags
);
6276 online_fair_sched_group(tg
);
6279 /* rcu callback to free various structures associated with a task group */
6280 static void sched_free_group_rcu(struct rcu_head
*rhp
)
6282 /* Now it should be safe to free those cfs_rqs: */
6283 sched_free_group(container_of(rhp
, struct task_group
, rcu
));
6286 void sched_destroy_group(struct task_group
*tg
)
6288 /* Wait for possible concurrent references to cfs_rqs complete: */
6289 call_rcu(&tg
->rcu
, sched_free_group_rcu
);
6292 void sched_offline_group(struct task_group
*tg
)
6294 unsigned long flags
;
6296 /* End participation in shares distribution: */
6297 unregister_fair_sched_group(tg
);
6299 spin_lock_irqsave(&task_group_lock
, flags
);
6300 list_del_rcu(&tg
->list
);
6301 list_del_rcu(&tg
->siblings
);
6302 spin_unlock_irqrestore(&task_group_lock
, flags
);
6305 static void sched_change_group(struct task_struct
*tsk
, int type
)
6307 struct task_group
*tg
;
6310 * All callers are synchronized by task_rq_lock(); we do not use RCU
6311 * which is pointless here. Thus, we pass "true" to task_css_check()
6312 * to prevent lockdep warnings.
6314 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
, true),
6315 struct task_group
, css
);
6316 tg
= autogroup_task_group(tsk
, tg
);
6317 tsk
->sched_task_group
= tg
;
6319 #ifdef CONFIG_FAIR_GROUP_SCHED
6320 if (tsk
->sched_class
->task_change_group
)
6321 tsk
->sched_class
->task_change_group(tsk
, type
);
6324 set_task_rq(tsk
, task_cpu(tsk
));
6328 * Change task's runqueue when it moves between groups.
6330 * The caller of this function should have put the task in its new group by
6331 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6334 void sched_move_task(struct task_struct
*tsk
)
6336 int queued
, running
, queue_flags
=
6337 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
6341 rq
= task_rq_lock(tsk
, &rf
);
6342 update_rq_clock(rq
);
6344 running
= task_current(rq
, tsk
);
6345 queued
= task_on_rq_queued(tsk
);
6348 dequeue_task(rq
, tsk
, queue_flags
);
6350 put_prev_task(rq
, tsk
);
6352 sched_change_group(tsk
, TASK_MOVE_GROUP
);
6355 enqueue_task(rq
, tsk
, queue_flags
);
6357 set_curr_task(rq
, tsk
);
6359 task_rq_unlock(rq
, tsk
, &rf
);
6362 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
6364 return css
? container_of(css
, struct task_group
, css
) : NULL
;
6367 static struct cgroup_subsys_state
*
6368 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
6370 struct task_group
*parent
= css_tg(parent_css
);
6371 struct task_group
*tg
;
6374 /* This is early initialization for the top cgroup */
6375 return &root_task_group
.css
;
6378 tg
= sched_create_group(parent
);
6380 return ERR_PTR(-ENOMEM
);
6385 /* Expose task group only after completing cgroup initialization */
6386 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
6388 struct task_group
*tg
= css_tg(css
);
6389 struct task_group
*parent
= css_tg(css
->parent
);
6392 sched_online_group(tg
, parent
);
6396 static void cpu_cgroup_css_released(struct cgroup_subsys_state
*css
)
6398 struct task_group
*tg
= css_tg(css
);
6400 sched_offline_group(tg
);
6403 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
6405 struct task_group
*tg
= css_tg(css
);
6408 * Relies on the RCU grace period between css_released() and this.
6410 sched_free_group(tg
);
6414 * This is called before wake_up_new_task(), therefore we really only
6415 * have to set its group bits, all the other stuff does not apply.
6417 static void cpu_cgroup_fork(struct task_struct
*task
)
6422 rq
= task_rq_lock(task
, &rf
);
6424 update_rq_clock(rq
);
6425 sched_change_group(task
, TASK_SET_GROUP
);
6427 task_rq_unlock(rq
, task
, &rf
);
6430 static int cpu_cgroup_can_attach(struct cgroup_taskset
*tset
)
6432 struct task_struct
*task
;
6433 struct cgroup_subsys_state
*css
;
6436 cgroup_taskset_for_each(task
, css
, tset
) {
6437 #ifdef CONFIG_RT_GROUP_SCHED
6438 if (!sched_rt_can_attach(css_tg(css
), task
))
6441 /* We don't support RT-tasks being in separate groups */
6442 if (task
->sched_class
!= &fair_sched_class
)
6446 * Serialize against wake_up_new_task() such that if its
6447 * running, we're sure to observe its full state.
6449 raw_spin_lock_irq(&task
->pi_lock
);
6451 * Avoid calling sched_move_task() before wake_up_new_task()
6452 * has happened. This would lead to problems with PELT, due to
6453 * move wanting to detach+attach while we're not attached yet.
6455 if (task
->state
== TASK_NEW
)
6457 raw_spin_unlock_irq(&task
->pi_lock
);
6465 static void cpu_cgroup_attach(struct cgroup_taskset
*tset
)
6467 struct task_struct
*task
;
6468 struct cgroup_subsys_state
*css
;
6470 cgroup_taskset_for_each(task
, css
, tset
)
6471 sched_move_task(task
);
6474 #ifdef CONFIG_FAIR_GROUP_SCHED
6475 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
6476 struct cftype
*cftype
, u64 shareval
)
6478 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
6481 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
6484 struct task_group
*tg
= css_tg(css
);
6486 return (u64
) scale_load_down(tg
->shares
);
6489 #ifdef CONFIG_CFS_BANDWIDTH
6490 static DEFINE_MUTEX(cfs_constraints_mutex
);
6492 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
6493 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
6495 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
6497 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
6499 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
6500 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6502 if (tg
== &root_task_group
)
6506 * Ensure we have at some amount of bandwidth every period. This is
6507 * to prevent reaching a state of large arrears when throttled via
6508 * entity_tick() resulting in prolonged exit starvation.
6510 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
6514 * Likewise, bound things on the otherside by preventing insane quota
6515 * periods. This also allows us to normalize in computing quota
6518 if (period
> max_cfs_quota_period
)
6522 * Prevent race between setting of cfs_rq->runtime_enabled and
6523 * unthrottle_offline_cfs_rqs().
6526 mutex_lock(&cfs_constraints_mutex
);
6527 ret
= __cfs_schedulable(tg
, period
, quota
);
6531 runtime_enabled
= quota
!= RUNTIME_INF
;
6532 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
6534 * If we need to toggle cfs_bandwidth_used, off->on must occur
6535 * before making related changes, and on->off must occur afterwards
6537 if (runtime_enabled
&& !runtime_was_enabled
)
6538 cfs_bandwidth_usage_inc();
6539 raw_spin_lock_irq(&cfs_b
->lock
);
6540 cfs_b
->period
= ns_to_ktime(period
);
6541 cfs_b
->quota
= quota
;
6543 __refill_cfs_bandwidth_runtime(cfs_b
);
6545 /* Restart the period timer (if active) to handle new period expiry: */
6546 if (runtime_enabled
)
6547 start_cfs_bandwidth(cfs_b
);
6549 raw_spin_unlock_irq(&cfs_b
->lock
);
6551 for_each_online_cpu(i
) {
6552 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
6553 struct rq
*rq
= cfs_rq
->rq
;
6556 rq_lock_irq(rq
, &rf
);
6557 cfs_rq
->runtime_enabled
= runtime_enabled
;
6558 cfs_rq
->runtime_remaining
= 0;
6560 if (cfs_rq
->throttled
)
6561 unthrottle_cfs_rq(cfs_rq
);
6562 rq_unlock_irq(rq
, &rf
);
6564 if (runtime_was_enabled
&& !runtime_enabled
)
6565 cfs_bandwidth_usage_dec();
6567 mutex_unlock(&cfs_constraints_mutex
);
6573 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
6577 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
6578 if (cfs_quota_us
< 0)
6579 quota
= RUNTIME_INF
;
6581 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
6583 return tg_set_cfs_bandwidth(tg
, period
, quota
);
6586 long tg_get_cfs_quota(struct task_group
*tg
)
6590 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
6593 quota_us
= tg
->cfs_bandwidth
.quota
;
6594 do_div(quota_us
, NSEC_PER_USEC
);
6599 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
6603 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
6604 quota
= tg
->cfs_bandwidth
.quota
;
6606 return tg_set_cfs_bandwidth(tg
, period
, quota
);
6609 long tg_get_cfs_period(struct task_group
*tg
)
6613 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
6614 do_div(cfs_period_us
, NSEC_PER_USEC
);
6616 return cfs_period_us
;
6619 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
6622 return tg_get_cfs_quota(css_tg(css
));
6625 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
6626 struct cftype
*cftype
, s64 cfs_quota_us
)
6628 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
6631 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
6634 return tg_get_cfs_period(css_tg(css
));
6637 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
6638 struct cftype
*cftype
, u64 cfs_period_us
)
6640 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
6643 struct cfs_schedulable_data
{
6644 struct task_group
*tg
;
6649 * normalize group quota/period to be quota/max_period
6650 * note: units are usecs
6652 static u64
normalize_cfs_quota(struct task_group
*tg
,
6653 struct cfs_schedulable_data
*d
)
6661 period
= tg_get_cfs_period(tg
);
6662 quota
= tg_get_cfs_quota(tg
);
6665 /* note: these should typically be equivalent */
6666 if (quota
== RUNTIME_INF
|| quota
== -1)
6669 return to_ratio(period
, quota
);
6672 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
6674 struct cfs_schedulable_data
*d
= data
;
6675 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6676 s64 quota
= 0, parent_quota
= -1;
6679 quota
= RUNTIME_INF
;
6681 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
6683 quota
= normalize_cfs_quota(tg
, d
);
6684 parent_quota
= parent_b
->hierarchical_quota
;
6687 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6688 * always take the min. On cgroup1, only inherit when no
6691 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys
)) {
6692 quota
= min(quota
, parent_quota
);
6694 if (quota
== RUNTIME_INF
)
6695 quota
= parent_quota
;
6696 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
6700 cfs_b
->hierarchical_quota
= quota
;
6705 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
6708 struct cfs_schedulable_data data
= {
6714 if (quota
!= RUNTIME_INF
) {
6715 do_div(data
.period
, NSEC_PER_USEC
);
6716 do_div(data
.quota
, NSEC_PER_USEC
);
6720 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
6726 static int cpu_cfs_stat_show(struct seq_file
*sf
, void *v
)
6728 struct task_group
*tg
= css_tg(seq_css(sf
));
6729 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6731 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
6732 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
6733 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
6737 #endif /* CONFIG_CFS_BANDWIDTH */
6738 #endif /* CONFIG_FAIR_GROUP_SCHED */
6740 #ifdef CONFIG_RT_GROUP_SCHED
6741 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
6742 struct cftype
*cft
, s64 val
)
6744 return sched_group_set_rt_runtime(css_tg(css
), val
);
6747 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
6750 return sched_group_rt_runtime(css_tg(css
));
6753 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
6754 struct cftype
*cftype
, u64 rt_period_us
)
6756 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
6759 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
6762 return sched_group_rt_period(css_tg(css
));
6764 #endif /* CONFIG_RT_GROUP_SCHED */
6766 static struct cftype cpu_legacy_files
[] = {
6767 #ifdef CONFIG_FAIR_GROUP_SCHED
6770 .read_u64
= cpu_shares_read_u64
,
6771 .write_u64
= cpu_shares_write_u64
,
6774 #ifdef CONFIG_CFS_BANDWIDTH
6776 .name
= "cfs_quota_us",
6777 .read_s64
= cpu_cfs_quota_read_s64
,
6778 .write_s64
= cpu_cfs_quota_write_s64
,
6781 .name
= "cfs_period_us",
6782 .read_u64
= cpu_cfs_period_read_u64
,
6783 .write_u64
= cpu_cfs_period_write_u64
,
6787 .seq_show
= cpu_cfs_stat_show
,
6790 #ifdef CONFIG_RT_GROUP_SCHED
6792 .name
= "rt_runtime_us",
6793 .read_s64
= cpu_rt_runtime_read
,
6794 .write_s64
= cpu_rt_runtime_write
,
6797 .name
= "rt_period_us",
6798 .read_u64
= cpu_rt_period_read_uint
,
6799 .write_u64
= cpu_rt_period_write_uint
,
6805 static int cpu_extra_stat_show(struct seq_file
*sf
,
6806 struct cgroup_subsys_state
*css
)
6808 #ifdef CONFIG_CFS_BANDWIDTH
6810 struct task_group
*tg
= css_tg(css
);
6811 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6814 throttled_usec
= cfs_b
->throttled_time
;
6815 do_div(throttled_usec
, NSEC_PER_USEC
);
6817 seq_printf(sf
, "nr_periods %d\n"
6819 "throttled_usec %llu\n",
6820 cfs_b
->nr_periods
, cfs_b
->nr_throttled
,
6827 #ifdef CONFIG_FAIR_GROUP_SCHED
6828 static u64
cpu_weight_read_u64(struct cgroup_subsys_state
*css
,
6831 struct task_group
*tg
= css_tg(css
);
6832 u64 weight
= scale_load_down(tg
->shares
);
6834 return DIV_ROUND_CLOSEST_ULL(weight
* CGROUP_WEIGHT_DFL
, 1024);
6837 static int cpu_weight_write_u64(struct cgroup_subsys_state
*css
,
6838 struct cftype
*cft
, u64 weight
)
6841 * cgroup weight knobs should use the common MIN, DFL and MAX
6842 * values which are 1, 100 and 10000 respectively. While it loses
6843 * a bit of range on both ends, it maps pretty well onto the shares
6844 * value used by scheduler and the round-trip conversions preserve
6845 * the original value over the entire range.
6847 if (weight
< CGROUP_WEIGHT_MIN
|| weight
> CGROUP_WEIGHT_MAX
)
6850 weight
= DIV_ROUND_CLOSEST_ULL(weight
* 1024, CGROUP_WEIGHT_DFL
);
6852 return sched_group_set_shares(css_tg(css
), scale_load(weight
));
6855 static s64
cpu_weight_nice_read_s64(struct cgroup_subsys_state
*css
,
6858 unsigned long weight
= scale_load_down(css_tg(css
)->shares
);
6859 int last_delta
= INT_MAX
;
6862 /* find the closest nice value to the current weight */
6863 for (prio
= 0; prio
< ARRAY_SIZE(sched_prio_to_weight
); prio
++) {
6864 delta
= abs(sched_prio_to_weight
[prio
] - weight
);
6865 if (delta
>= last_delta
)
6870 return PRIO_TO_NICE(prio
- 1 + MAX_RT_PRIO
);
6873 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state
*css
,
6874 struct cftype
*cft
, s64 nice
)
6876 unsigned long weight
;
6879 if (nice
< MIN_NICE
|| nice
> MAX_NICE
)
6882 idx
= NICE_TO_PRIO(nice
) - MAX_RT_PRIO
;
6883 idx
= array_index_nospec(idx
, 40);
6884 weight
= sched_prio_to_weight
[idx
];
6886 return sched_group_set_shares(css_tg(css
), scale_load(weight
));
6890 static void __maybe_unused
cpu_period_quota_print(struct seq_file
*sf
,
6891 long period
, long quota
)
6894 seq_puts(sf
, "max");
6896 seq_printf(sf
, "%ld", quota
);
6898 seq_printf(sf
, " %ld\n", period
);
6901 /* caller should put the current value in *@periodp before calling */
6902 static int __maybe_unused
cpu_period_quota_parse(char *buf
,
6903 u64
*periodp
, u64
*quotap
)
6905 char tok
[21]; /* U64_MAX */
6907 if (!sscanf(buf
, "%s %llu", tok
, periodp
))
6910 *periodp
*= NSEC_PER_USEC
;
6912 if (sscanf(tok
, "%llu", quotap
))
6913 *quotap
*= NSEC_PER_USEC
;
6914 else if (!strcmp(tok
, "max"))
6915 *quotap
= RUNTIME_INF
;
6922 #ifdef CONFIG_CFS_BANDWIDTH
6923 static int cpu_max_show(struct seq_file
*sf
, void *v
)
6925 struct task_group
*tg
= css_tg(seq_css(sf
));
6927 cpu_period_quota_print(sf
, tg_get_cfs_period(tg
), tg_get_cfs_quota(tg
));
6931 static ssize_t
cpu_max_write(struct kernfs_open_file
*of
,
6932 char *buf
, size_t nbytes
, loff_t off
)
6934 struct task_group
*tg
= css_tg(of_css(of
));
6935 u64 period
= tg_get_cfs_period(tg
);
6939 ret
= cpu_period_quota_parse(buf
, &period
, "a
);
6941 ret
= tg_set_cfs_bandwidth(tg
, period
, quota
);
6942 return ret
?: nbytes
;
6946 static struct cftype cpu_files
[] = {
6947 #ifdef CONFIG_FAIR_GROUP_SCHED
6950 .flags
= CFTYPE_NOT_ON_ROOT
,
6951 .read_u64
= cpu_weight_read_u64
,
6952 .write_u64
= cpu_weight_write_u64
,
6955 .name
= "weight.nice",
6956 .flags
= CFTYPE_NOT_ON_ROOT
,
6957 .read_s64
= cpu_weight_nice_read_s64
,
6958 .write_s64
= cpu_weight_nice_write_s64
,
6961 #ifdef CONFIG_CFS_BANDWIDTH
6964 .flags
= CFTYPE_NOT_ON_ROOT
,
6965 .seq_show
= cpu_max_show
,
6966 .write
= cpu_max_write
,
6972 struct cgroup_subsys cpu_cgrp_subsys
= {
6973 .css_alloc
= cpu_cgroup_css_alloc
,
6974 .css_online
= cpu_cgroup_css_online
,
6975 .css_released
= cpu_cgroup_css_released
,
6976 .css_free
= cpu_cgroup_css_free
,
6977 .css_extra_stat_show
= cpu_extra_stat_show
,
6978 .fork
= cpu_cgroup_fork
,
6979 .can_attach
= cpu_cgroup_can_attach
,
6980 .attach
= cpu_cgroup_attach
,
6981 .legacy_cftypes
= cpu_legacy_files
,
6982 .dfl_cftypes
= cpu_files
,
6987 #endif /* CONFIG_CGROUP_SCHED */
6989 void dump_cpu_task(int cpu
)
6991 pr_info("Task dump for CPU %d:\n", cpu
);
6992 sched_show_task(cpu_curr(cpu
));
6996 * Nice levels are multiplicative, with a gentle 10% change for every
6997 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
6998 * nice 1, it will get ~10% less CPU time than another CPU-bound task
6999 * that remained on nice 0.
7001 * The "10% effect" is relative and cumulative: from _any_ nice level,
7002 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7003 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7004 * If a task goes up by ~10% and another task goes down by ~10% then
7005 * the relative distance between them is ~25%.)
7007 const int sched_prio_to_weight
[40] = {
7008 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7009 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7010 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7011 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7012 /* 0 */ 1024, 820, 655, 526, 423,
7013 /* 5 */ 335, 272, 215, 172, 137,
7014 /* 10 */ 110, 87, 70, 56, 45,
7015 /* 15 */ 36, 29, 23, 18, 15,
7019 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7021 * In cases where the weight does not change often, we can use the
7022 * precalculated inverse to speed up arithmetics by turning divisions
7023 * into multiplications:
7025 const u32 sched_prio_to_wmult
[40] = {
7026 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7027 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7028 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7029 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7030 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7031 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7032 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7033 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,