xfs: make several more functions static
[linux/fpc-iii.git] / arch / powerpc / kernel / time.c
blob9ba2cc88591d66f276eaf81e5f3c31948312731d
1 /*
2 * Common time routines among all ppc machines.
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/perf_event.h>
57 #include <asm/trace.h>
59 #include <asm/io.h>
60 #include <asm/processor.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/machdep.h>
64 #include <asm/uaccess.h>
65 #include <asm/time.h>
66 #include <asm/prom.h>
67 #include <asm/irq.h>
68 #include <asm/div64.h>
69 #include <asm/smp.h>
70 #include <asm/vdso_datapage.h>
71 #include <asm/firmware.h>
72 #include <asm/cputime.h>
73 #ifdef CONFIG_PPC_ISERIES
74 #include <asm/iseries/it_lp_queue.h>
75 #include <asm/iseries/hv_call_xm.h>
76 #endif
78 /* powerpc clocksource/clockevent code */
80 #include <linux/clockchips.h>
81 #include <linux/clocksource.h>
83 static cycle_t rtc_read(struct clocksource *);
84 static struct clocksource clocksource_rtc = {
85 .name = "rtc",
86 .rating = 400,
87 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
88 .mask = CLOCKSOURCE_MASK(64),
89 .shift = 22,
90 .mult = 0, /* To be filled in */
91 .read = rtc_read,
94 static cycle_t timebase_read(struct clocksource *);
95 static struct clocksource clocksource_timebase = {
96 .name = "timebase",
97 .rating = 400,
98 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
99 .mask = CLOCKSOURCE_MASK(64),
100 .shift = 22,
101 .mult = 0, /* To be filled in */
102 .read = timebase_read,
105 #define DECREMENTER_MAX 0x7fffffff
107 static int decrementer_set_next_event(unsigned long evt,
108 struct clock_event_device *dev);
109 static void decrementer_set_mode(enum clock_event_mode mode,
110 struct clock_event_device *dev);
112 static struct clock_event_device decrementer_clockevent = {
113 .name = "decrementer",
114 .rating = 200,
115 .shift = 0, /* To be filled in */
116 .mult = 0, /* To be filled in */
117 .irq = 0,
118 .set_next_event = decrementer_set_next_event,
119 .set_mode = decrementer_set_mode,
120 .features = CLOCK_EVT_FEAT_ONESHOT,
123 struct decrementer_clock {
124 struct clock_event_device event;
125 u64 next_tb;
128 static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
130 #ifdef CONFIG_PPC_ISERIES
131 static unsigned long __initdata iSeries_recal_titan;
132 static signed long __initdata iSeries_recal_tb;
134 /* Forward declaration is only needed for iSereis compiles */
135 static void __init clocksource_init(void);
136 #endif
138 #define XSEC_PER_SEC (1024*1024)
140 #ifdef CONFIG_PPC64
141 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
142 #else
143 /* compute ((xsec << 12) * max) >> 32 */
144 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
145 #endif
147 unsigned long tb_ticks_per_jiffy;
148 unsigned long tb_ticks_per_usec = 100; /* sane default */
149 EXPORT_SYMBOL(tb_ticks_per_usec);
150 unsigned long tb_ticks_per_sec;
151 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
152 u64 tb_to_xs;
153 unsigned tb_to_us;
155 #define TICKLEN_SCALE NTP_SCALE_SHIFT
156 static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
157 static u64 ticklen_to_xs; /* 0.64 fraction */
159 /* If last_tick_len corresponds to about 1/HZ seconds, then
160 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
161 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
163 DEFINE_SPINLOCK(rtc_lock);
164 EXPORT_SYMBOL_GPL(rtc_lock);
166 static u64 tb_to_ns_scale __read_mostly;
167 static unsigned tb_to_ns_shift __read_mostly;
168 static unsigned long boot_tb __read_mostly;
170 extern struct timezone sys_tz;
171 static long timezone_offset;
173 unsigned long ppc_proc_freq;
174 EXPORT_SYMBOL(ppc_proc_freq);
175 unsigned long ppc_tb_freq;
177 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
178 static DEFINE_PER_CPU(u64, last_jiffy);
180 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
182 * Factors for converting from cputime_t (timebase ticks) to
183 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
184 * These are all stored as 0.64 fixed-point binary fractions.
186 u64 __cputime_jiffies_factor;
187 EXPORT_SYMBOL(__cputime_jiffies_factor);
188 u64 __cputime_msec_factor;
189 EXPORT_SYMBOL(__cputime_msec_factor);
190 u64 __cputime_sec_factor;
191 EXPORT_SYMBOL(__cputime_sec_factor);
192 u64 __cputime_clockt_factor;
193 EXPORT_SYMBOL(__cputime_clockt_factor);
194 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
195 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
197 cputime_t cputime_one_jiffy;
199 static void calc_cputime_factors(void)
201 struct div_result res;
203 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
204 __cputime_jiffies_factor = res.result_low;
205 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
206 __cputime_msec_factor = res.result_low;
207 div128_by_32(1, 0, tb_ticks_per_sec, &res);
208 __cputime_sec_factor = res.result_low;
209 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
210 __cputime_clockt_factor = res.result_low;
214 * Read the PURR on systems that have it, otherwise the timebase.
216 static u64 read_purr(void)
218 if (cpu_has_feature(CPU_FTR_PURR))
219 return mfspr(SPRN_PURR);
220 return mftb();
224 * Read the SPURR on systems that have it, otherwise the purr
226 static u64 read_spurr(u64 purr)
229 * cpus without PURR won't have a SPURR
230 * We already know the former when we use this, so tell gcc
232 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
233 return mfspr(SPRN_SPURR);
234 return purr;
238 * Account time for a transition between system, hard irq
239 * or soft irq state.
241 void account_system_vtime(struct task_struct *tsk)
243 u64 now, nowscaled, delta, deltascaled, sys_time;
244 unsigned long flags;
246 local_irq_save(flags);
247 now = read_purr();
248 nowscaled = read_spurr(now);
249 delta = now - get_paca()->startpurr;
250 deltascaled = nowscaled - get_paca()->startspurr;
251 get_paca()->startpurr = now;
252 get_paca()->startspurr = nowscaled;
253 if (!in_interrupt()) {
254 /* deltascaled includes both user and system time.
255 * Hence scale it based on the purr ratio to estimate
256 * the system time */
257 sys_time = get_paca()->system_time;
258 if (get_paca()->user_time)
259 deltascaled = deltascaled * sys_time /
260 (sys_time + get_paca()->user_time);
261 delta += sys_time;
262 get_paca()->system_time = 0;
264 if (in_irq() || idle_task(smp_processor_id()) != tsk)
265 account_system_time(tsk, 0, delta, deltascaled);
266 else
267 account_idle_time(delta);
268 per_cpu(cputime_last_delta, smp_processor_id()) = delta;
269 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
270 local_irq_restore(flags);
272 EXPORT_SYMBOL_GPL(account_system_vtime);
275 * Transfer the user and system times accumulated in the paca
276 * by the exception entry and exit code to the generic process
277 * user and system time records.
278 * Must be called with interrupts disabled.
280 void account_process_tick(struct task_struct *tsk, int user_tick)
282 cputime_t utime, utimescaled;
284 utime = get_paca()->user_time;
285 get_paca()->user_time = 0;
286 utimescaled = cputime_to_scaled(utime);
287 account_user_time(tsk, utime, utimescaled);
291 * Stuff for accounting stolen time.
293 struct cpu_purr_data {
294 int initialized; /* thread is running */
295 u64 tb; /* last TB value read */
296 u64 purr; /* last PURR value read */
297 u64 spurr; /* last SPURR value read */
301 * Each entry in the cpu_purr_data array is manipulated only by its
302 * "owner" cpu -- usually in the timer interrupt but also occasionally
303 * in process context for cpu online. As long as cpus do not touch
304 * each others' cpu_purr_data, disabling local interrupts is
305 * sufficient to serialize accesses.
307 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
309 static void snapshot_tb_and_purr(void *data)
311 unsigned long flags;
312 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
314 local_irq_save(flags);
315 p->tb = get_tb_or_rtc();
316 p->purr = mfspr(SPRN_PURR);
317 wmb();
318 p->initialized = 1;
319 local_irq_restore(flags);
323 * Called during boot when all cpus have come up.
325 void snapshot_timebases(void)
327 if (!cpu_has_feature(CPU_FTR_PURR))
328 return;
329 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
333 * Must be called with interrupts disabled.
335 void calculate_steal_time(void)
337 u64 tb, purr;
338 s64 stolen;
339 struct cpu_purr_data *pme;
341 pme = &__get_cpu_var(cpu_purr_data);
342 if (!pme->initialized)
343 return; /* !CPU_FTR_PURR or early in early boot */
344 tb = mftb();
345 purr = mfspr(SPRN_PURR);
346 stolen = (tb - pme->tb) - (purr - pme->purr);
347 if (stolen > 0) {
348 if (idle_task(smp_processor_id()) != current)
349 account_steal_time(stolen);
350 else
351 account_idle_time(stolen);
353 pme->tb = tb;
354 pme->purr = purr;
357 #ifdef CONFIG_PPC_SPLPAR
359 * Must be called before the cpu is added to the online map when
360 * a cpu is being brought up at runtime.
362 static void snapshot_purr(void)
364 struct cpu_purr_data *pme;
365 unsigned long flags;
367 if (!cpu_has_feature(CPU_FTR_PURR))
368 return;
369 local_irq_save(flags);
370 pme = &__get_cpu_var(cpu_purr_data);
371 pme->tb = mftb();
372 pme->purr = mfspr(SPRN_PURR);
373 pme->initialized = 1;
374 local_irq_restore(flags);
377 #endif /* CONFIG_PPC_SPLPAR */
379 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
380 #define calc_cputime_factors()
381 #define calculate_steal_time() do { } while (0)
382 #endif
384 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
385 #define snapshot_purr() do { } while (0)
386 #endif
389 * Called when a cpu comes up after the system has finished booting,
390 * i.e. as a result of a hotplug cpu action.
392 void snapshot_timebase(void)
394 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
395 snapshot_purr();
398 void __delay(unsigned long loops)
400 unsigned long start;
401 int diff;
403 if (__USE_RTC()) {
404 start = get_rtcl();
405 do {
406 /* the RTCL register wraps at 1000000000 */
407 diff = get_rtcl() - start;
408 if (diff < 0)
409 diff += 1000000000;
410 } while (diff < loops);
411 } else {
412 start = get_tbl();
413 while (get_tbl() - start < loops)
414 HMT_low();
415 HMT_medium();
418 EXPORT_SYMBOL(__delay);
420 void udelay(unsigned long usecs)
422 __delay(tb_ticks_per_usec * usecs);
424 EXPORT_SYMBOL(udelay);
426 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
427 u64 new_tb_to_xs)
430 * tb_update_count is used to allow the userspace gettimeofday code
431 * to assure itself that it sees a consistent view of the tb_to_xs and
432 * stamp_xsec variables. It reads the tb_update_count, then reads
433 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
434 * the two values of tb_update_count match and are even then the
435 * tb_to_xs and stamp_xsec values are consistent. If not, then it
436 * loops back and reads them again until this criteria is met.
437 * We expect the caller to have done the first increment of
438 * vdso_data->tb_update_count already.
440 vdso_data->tb_orig_stamp = new_tb_stamp;
441 vdso_data->stamp_xsec = new_stamp_xsec;
442 vdso_data->tb_to_xs = new_tb_to_xs;
443 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
444 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
445 vdso_data->stamp_xtime = xtime;
446 smp_wmb();
447 ++(vdso_data->tb_update_count);
450 #ifdef CONFIG_SMP
451 unsigned long profile_pc(struct pt_regs *regs)
453 unsigned long pc = instruction_pointer(regs);
455 if (in_lock_functions(pc))
456 return regs->link;
458 return pc;
460 EXPORT_SYMBOL(profile_pc);
461 #endif
463 #ifdef CONFIG_PPC_ISERIES
466 * This function recalibrates the timebase based on the 49-bit time-of-day
467 * value in the Titan chip. The Titan is much more accurate than the value
468 * returned by the service processor for the timebase frequency.
471 static int __init iSeries_tb_recal(void)
473 struct div_result divres;
474 unsigned long titan, tb;
476 /* Make sure we only run on iSeries */
477 if (!firmware_has_feature(FW_FEATURE_ISERIES))
478 return -ENODEV;
480 tb = get_tb();
481 titan = HvCallXm_loadTod();
482 if ( iSeries_recal_titan ) {
483 unsigned long tb_ticks = tb - iSeries_recal_tb;
484 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
485 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
486 unsigned long new_tb_ticks_per_jiffy =
487 DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
488 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
489 char sign = '+';
490 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
491 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
493 if ( tick_diff < 0 ) {
494 tick_diff = -tick_diff;
495 sign = '-';
497 if ( tick_diff ) {
498 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
499 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
500 new_tb_ticks_per_jiffy, sign, tick_diff );
501 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
502 tb_ticks_per_sec = new_tb_ticks_per_sec;
503 calc_cputime_factors();
504 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
505 tb_to_xs = divres.result_low;
506 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
507 vdso_data->tb_to_xs = tb_to_xs;
508 setup_cputime_one_jiffy();
510 else {
511 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
512 " new tb_ticks_per_jiffy = %lu\n"
513 " old tb_ticks_per_jiffy = %lu\n",
514 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
518 iSeries_recal_titan = titan;
519 iSeries_recal_tb = tb;
521 /* Called here as now we know accurate values for the timebase */
522 clocksource_init();
523 return 0;
525 late_initcall(iSeries_tb_recal);
527 /* Called from platform early init */
528 void __init iSeries_time_init_early(void)
530 iSeries_recal_tb = get_tb();
531 iSeries_recal_titan = HvCallXm_loadTod();
533 #endif /* CONFIG_PPC_ISERIES */
535 #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
536 DEFINE_PER_CPU(u8, perf_event_pending);
538 void set_perf_event_pending(void)
540 get_cpu_var(perf_event_pending) = 1;
541 set_dec(1);
542 put_cpu_var(perf_event_pending);
545 #define test_perf_event_pending() __get_cpu_var(perf_event_pending)
546 #define clear_perf_event_pending() __get_cpu_var(perf_event_pending) = 0
548 #else /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
550 #define test_perf_event_pending() 0
551 #define clear_perf_event_pending()
553 #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
556 * For iSeries shared processors, we have to let the hypervisor
557 * set the hardware decrementer. We set a virtual decrementer
558 * in the lppaca and call the hypervisor if the virtual
559 * decrementer is less than the current value in the hardware
560 * decrementer. (almost always the new decrementer value will
561 * be greater than the current hardware decementer so the hypervisor
562 * call will not be needed)
566 * timer_interrupt - gets called when the decrementer overflows,
567 * with interrupts disabled.
569 void timer_interrupt(struct pt_regs * regs)
571 struct pt_regs *old_regs;
572 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
573 struct clock_event_device *evt = &decrementer->event;
574 u64 now;
576 trace_timer_interrupt_entry(regs);
578 /* Ensure a positive value is written to the decrementer, or else
579 * some CPUs will continuue to take decrementer exceptions */
580 set_dec(DECREMENTER_MAX);
582 #ifdef CONFIG_PPC32
583 if (test_perf_event_pending()) {
584 clear_perf_event_pending();
585 perf_event_do_pending();
587 if (atomic_read(&ppc_n_lost_interrupts) != 0)
588 do_IRQ(regs);
589 #endif
591 now = get_tb_or_rtc();
592 if (now < decrementer->next_tb) {
593 /* not time for this event yet */
594 now = decrementer->next_tb - now;
595 if (now <= DECREMENTER_MAX)
596 set_dec((int)now);
597 trace_timer_interrupt_exit(regs);
598 return;
600 old_regs = set_irq_regs(regs);
601 irq_enter();
603 calculate_steal_time();
605 #ifdef CONFIG_PPC_ISERIES
606 if (firmware_has_feature(FW_FEATURE_ISERIES))
607 get_lppaca()->int_dword.fields.decr_int = 0;
608 #endif
610 if (evt->event_handler)
611 evt->event_handler(evt);
613 #ifdef CONFIG_PPC_ISERIES
614 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
615 process_hvlpevents();
616 #endif
618 #ifdef CONFIG_PPC64
619 /* collect purr register values often, for accurate calculations */
620 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
621 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
622 cu->current_tb = mfspr(SPRN_PURR);
624 #endif
626 irq_exit();
627 set_irq_regs(old_regs);
629 trace_timer_interrupt_exit(regs);
632 void wakeup_decrementer(void)
634 unsigned long ticks;
637 * The timebase gets saved on sleep and restored on wakeup,
638 * so all we need to do is to reset the decrementer.
640 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
641 if (ticks < tb_ticks_per_jiffy)
642 ticks = tb_ticks_per_jiffy - ticks;
643 else
644 ticks = 1;
645 set_dec(ticks);
648 #ifdef CONFIG_SUSPEND
649 void generic_suspend_disable_irqs(void)
651 preempt_disable();
653 /* Disable the decrementer, so that it doesn't interfere
654 * with suspending.
657 set_dec(0x7fffffff);
658 local_irq_disable();
659 set_dec(0x7fffffff);
662 void generic_suspend_enable_irqs(void)
664 wakeup_decrementer();
666 local_irq_enable();
667 preempt_enable();
670 /* Overrides the weak version in kernel/power/main.c */
671 void arch_suspend_disable_irqs(void)
673 if (ppc_md.suspend_disable_irqs)
674 ppc_md.suspend_disable_irqs();
675 generic_suspend_disable_irqs();
678 /* Overrides the weak version in kernel/power/main.c */
679 void arch_suspend_enable_irqs(void)
681 generic_suspend_enable_irqs();
682 if (ppc_md.suspend_enable_irqs)
683 ppc_md.suspend_enable_irqs();
685 #endif
687 #ifdef CONFIG_SMP
688 void __init smp_space_timers(unsigned int max_cpus)
690 int i;
691 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
693 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
694 previous_tb -= tb_ticks_per_jiffy;
696 for_each_possible_cpu(i) {
697 if (i == boot_cpuid)
698 continue;
699 per_cpu(last_jiffy, i) = previous_tb;
702 #endif
705 * Scheduler clock - returns current time in nanosec units.
707 * Note: mulhdu(a, b) (multiply high double unsigned) returns
708 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
709 * are 64-bit unsigned numbers.
711 unsigned long long sched_clock(void)
713 if (__USE_RTC())
714 return get_rtc();
715 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
718 static int __init get_freq(char *name, int cells, unsigned long *val)
720 struct device_node *cpu;
721 const unsigned int *fp;
722 int found = 0;
724 /* The cpu node should have timebase and clock frequency properties */
725 cpu = of_find_node_by_type(NULL, "cpu");
727 if (cpu) {
728 fp = of_get_property(cpu, name, NULL);
729 if (fp) {
730 found = 1;
731 *val = of_read_ulong(fp, cells);
734 of_node_put(cpu);
737 return found;
740 /* should become __cpuinit when secondary_cpu_time_init also is */
741 void start_cpu_decrementer(void)
743 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
744 /* Clear any pending timer interrupts */
745 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
747 /* Enable decrementer interrupt */
748 mtspr(SPRN_TCR, TCR_DIE);
749 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
752 void __init generic_calibrate_decr(void)
754 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
756 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
757 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
759 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
760 "(not found)\n");
763 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
765 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
766 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
768 printk(KERN_ERR "WARNING: Estimating processor frequency "
769 "(not found)\n");
773 int update_persistent_clock(struct timespec now)
775 struct rtc_time tm;
777 if (!ppc_md.set_rtc_time)
778 return 0;
780 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
781 tm.tm_year -= 1900;
782 tm.tm_mon -= 1;
784 return ppc_md.set_rtc_time(&tm);
787 static void __read_persistent_clock(struct timespec *ts)
789 struct rtc_time tm;
790 static int first = 1;
792 ts->tv_nsec = 0;
793 /* XXX this is a litle fragile but will work okay in the short term */
794 if (first) {
795 first = 0;
796 if (ppc_md.time_init)
797 timezone_offset = ppc_md.time_init();
799 /* get_boot_time() isn't guaranteed to be safe to call late */
800 if (ppc_md.get_boot_time) {
801 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
802 return;
805 if (!ppc_md.get_rtc_time) {
806 ts->tv_sec = 0;
807 return;
809 ppc_md.get_rtc_time(&tm);
811 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
812 tm.tm_hour, tm.tm_min, tm.tm_sec);
815 void read_persistent_clock(struct timespec *ts)
817 __read_persistent_clock(ts);
819 /* Sanitize it in case real time clock is set below EPOCH */
820 if (ts->tv_sec < 0) {
821 ts->tv_sec = 0;
822 ts->tv_nsec = 0;
827 /* clocksource code */
828 static cycle_t rtc_read(struct clocksource *cs)
830 return (cycle_t)get_rtc();
833 static cycle_t timebase_read(struct clocksource *cs)
835 return (cycle_t)get_tb();
838 void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
839 u32 mult)
841 u64 t2x, stamp_xsec;
843 if (clock != &clocksource_timebase)
844 return;
846 /* Make userspace gettimeofday spin until we're done. */
847 ++vdso_data->tb_update_count;
848 smp_mb();
850 /* XXX this assumes clock->shift == 22 */
851 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
852 t2x = (u64) mult * 4611686018ULL;
853 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
854 do_div(stamp_xsec, 1000000000);
855 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
856 update_gtod(clock->cycle_last, stamp_xsec, t2x);
859 void update_vsyscall_tz(void)
861 /* Make userspace gettimeofday spin until we're done. */
862 ++vdso_data->tb_update_count;
863 smp_mb();
864 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
865 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
866 smp_mb();
867 ++vdso_data->tb_update_count;
870 static void __init clocksource_init(void)
872 struct clocksource *clock;
874 if (__USE_RTC())
875 clock = &clocksource_rtc;
876 else
877 clock = &clocksource_timebase;
879 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
881 if (clocksource_register(clock)) {
882 printk(KERN_ERR "clocksource: %s is already registered\n",
883 clock->name);
884 return;
887 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
888 clock->name, clock->mult, clock->shift);
891 static int decrementer_set_next_event(unsigned long evt,
892 struct clock_event_device *dev)
894 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
895 set_dec(evt);
896 return 0;
899 static void decrementer_set_mode(enum clock_event_mode mode,
900 struct clock_event_device *dev)
902 if (mode != CLOCK_EVT_MODE_ONESHOT)
903 decrementer_set_next_event(DECREMENTER_MAX, dev);
906 static void __init setup_clockevent_multiplier(unsigned long hz)
908 u64 mult, shift = 32;
910 while (1) {
911 mult = div_sc(hz, NSEC_PER_SEC, shift);
912 if (mult && (mult >> 32UL) == 0UL)
913 break;
915 shift--;
918 decrementer_clockevent.shift = shift;
919 decrementer_clockevent.mult = mult;
922 static void register_decrementer_clockevent(int cpu)
924 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
926 *dec = decrementer_clockevent;
927 dec->cpumask = cpumask_of(cpu);
929 printk(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
930 dec->name, dec->mult, dec->shift, cpu);
932 clockevents_register_device(dec);
935 static void __init init_decrementer_clockevent(void)
937 int cpu = smp_processor_id();
939 setup_clockevent_multiplier(ppc_tb_freq);
940 decrementer_clockevent.max_delta_ns =
941 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
942 decrementer_clockevent.min_delta_ns =
943 clockevent_delta2ns(2, &decrementer_clockevent);
945 register_decrementer_clockevent(cpu);
948 void secondary_cpu_time_init(void)
950 /* Start the decrementer on CPUs that have manual control
951 * such as BookE
953 start_cpu_decrementer();
955 /* FIME: Should make unrelatred change to move snapshot_timebase
956 * call here ! */
957 register_decrementer_clockevent(smp_processor_id());
960 /* This function is only called on the boot processor */
961 void __init time_init(void)
963 unsigned long flags;
964 struct div_result res;
965 u64 scale, x;
966 unsigned shift;
968 if (__USE_RTC()) {
969 /* 601 processor: dec counts down by 128 every 128ns */
970 ppc_tb_freq = 1000000000;
971 tb_last_jiffy = get_rtcl();
972 } else {
973 /* Normal PowerPC with timebase register */
974 ppc_md.calibrate_decr();
975 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
976 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
977 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
978 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
979 tb_last_jiffy = get_tb();
982 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
983 tb_ticks_per_sec = ppc_tb_freq;
984 tb_ticks_per_usec = ppc_tb_freq / 1000000;
985 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
986 calc_cputime_factors();
987 setup_cputime_one_jiffy();
990 * Calculate the length of each tick in ns. It will not be
991 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
992 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
993 * rounded up.
995 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
996 do_div(x, ppc_tb_freq);
997 tick_nsec = x;
998 last_tick_len = x << TICKLEN_SCALE;
1001 * Compute ticklen_to_xs, which is a factor which gets multiplied
1002 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
1003 * It is computed as:
1004 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
1005 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
1006 * which turns out to be N = 51 - SHIFT_HZ.
1007 * This gives the result as a 0.64 fixed-point fraction.
1008 * That value is reduced by an offset amounting to 1 xsec per
1009 * 2^31 timebase ticks to avoid problems with time going backwards
1010 * by 1 xsec when we do timer_recalc_offset due to losing the
1011 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
1012 * since there are 2^20 xsec in a second.
1014 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
1015 tb_ticks_per_jiffy << SHIFT_HZ, &res);
1016 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
1017 ticklen_to_xs = res.result_low;
1019 /* Compute tb_to_xs from tick_nsec */
1020 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1023 * Compute scale factor for sched_clock.
1024 * The calibrate_decr() function has set tb_ticks_per_sec,
1025 * which is the timebase frequency.
1026 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1027 * the 128-bit result as a 64.64 fixed-point number.
1028 * We then shift that number right until it is less than 1.0,
1029 * giving us the scale factor and shift count to use in
1030 * sched_clock().
1032 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1033 scale = res.result_low;
1034 for (shift = 0; res.result_high != 0; ++shift) {
1035 scale = (scale >> 1) | (res.result_high << 63);
1036 res.result_high >>= 1;
1038 tb_to_ns_scale = scale;
1039 tb_to_ns_shift = shift;
1040 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1041 boot_tb = get_tb_or_rtc();
1043 write_seqlock_irqsave(&xtime_lock, flags);
1045 /* If platform provided a timezone (pmac), we correct the time */
1046 if (timezone_offset) {
1047 sys_tz.tz_minuteswest = -timezone_offset / 60;
1048 sys_tz.tz_dsttime = 0;
1051 vdso_data->tb_orig_stamp = tb_last_jiffy;
1052 vdso_data->tb_update_count = 0;
1053 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1054 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1055 vdso_data->tb_to_xs = tb_to_xs;
1057 write_sequnlock_irqrestore(&xtime_lock, flags);
1059 /* Start the decrementer on CPUs that have manual control
1060 * such as BookE
1062 start_cpu_decrementer();
1064 /* Register the clocksource, if we're not running on iSeries */
1065 if (!firmware_has_feature(FW_FEATURE_ISERIES))
1066 clocksource_init();
1068 init_decrementer_clockevent();
1072 #define FEBRUARY 2
1073 #define STARTOFTIME 1970
1074 #define SECDAY 86400L
1075 #define SECYR (SECDAY * 365)
1076 #define leapyear(year) ((year) % 4 == 0 && \
1077 ((year) % 100 != 0 || (year) % 400 == 0))
1078 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1079 #define days_in_month(a) (month_days[(a) - 1])
1081 static int month_days[12] = {
1082 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1086 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1088 void GregorianDay(struct rtc_time * tm)
1090 int leapsToDate;
1091 int lastYear;
1092 int day;
1093 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1095 lastYear = tm->tm_year - 1;
1098 * Number of leap corrections to apply up to end of last year
1100 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1103 * This year is a leap year if it is divisible by 4 except when it is
1104 * divisible by 100 unless it is divisible by 400
1106 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1108 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1110 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1111 tm->tm_mday;
1113 tm->tm_wday = day % 7;
1116 void to_tm(int tim, struct rtc_time * tm)
1118 register int i;
1119 register long hms, day;
1121 day = tim / SECDAY;
1122 hms = tim % SECDAY;
1124 /* Hours, minutes, seconds are easy */
1125 tm->tm_hour = hms / 3600;
1126 tm->tm_min = (hms % 3600) / 60;
1127 tm->tm_sec = (hms % 3600) % 60;
1129 /* Number of years in days */
1130 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1131 day -= days_in_year(i);
1132 tm->tm_year = i;
1134 /* Number of months in days left */
1135 if (leapyear(tm->tm_year))
1136 days_in_month(FEBRUARY) = 29;
1137 for (i = 1; day >= days_in_month(i); i++)
1138 day -= days_in_month(i);
1139 days_in_month(FEBRUARY) = 28;
1140 tm->tm_mon = i;
1142 /* Days are what is left over (+1) from all that. */
1143 tm->tm_mday = day + 1;
1146 * Determine the day of week
1148 GregorianDay(tm);
1151 /* Auxiliary function to compute scaling factors */
1152 /* Actually the choice of a timebase running at 1/4 the of the bus
1153 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1154 * It makes this computation very precise (27-28 bits typically) which
1155 * is optimistic considering the stability of most processor clock
1156 * oscillators and the precision with which the timebase frequency
1157 * is measured but does not harm.
1159 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1161 unsigned mlt=0, tmp, err;
1162 /* No concern for performance, it's done once: use a stupid
1163 * but safe and compact method to find the multiplier.
1166 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1167 if (mulhwu(inscale, mlt|tmp) < outscale)
1168 mlt |= tmp;
1171 /* We might still be off by 1 for the best approximation.
1172 * A side effect of this is that if outscale is too large
1173 * the returned value will be zero.
1174 * Many corner cases have been checked and seem to work,
1175 * some might have been forgotten in the test however.
1178 err = inscale * (mlt+1);
1179 if (err <= inscale/2)
1180 mlt++;
1181 return mlt;
1185 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1186 * result.
1188 void div128_by_32(u64 dividend_high, u64 dividend_low,
1189 unsigned divisor, struct div_result *dr)
1191 unsigned long a, b, c, d;
1192 unsigned long w, x, y, z;
1193 u64 ra, rb, rc;
1195 a = dividend_high >> 32;
1196 b = dividend_high & 0xffffffff;
1197 c = dividend_low >> 32;
1198 d = dividend_low & 0xffffffff;
1200 w = a / divisor;
1201 ra = ((u64)(a - (w * divisor)) << 32) + b;
1203 rb = ((u64) do_div(ra, divisor) << 32) + c;
1204 x = ra;
1206 rc = ((u64) do_div(rb, divisor) << 32) + d;
1207 y = rb;
1209 do_div(rc, divisor);
1210 z = rc;
1212 dr->result_high = ((u64)w << 32) + x;
1213 dr->result_low = ((u64)y << 32) + z;
1217 /* We don't need to calibrate delay, we use the CPU timebase for that */
1218 void calibrate_delay(void)
1220 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1221 * as the number of __delay(1) in a jiffy, so make it so
1223 loops_per_jiffy = tb_ticks_per_jiffy;
1226 static int __init rtc_init(void)
1228 struct platform_device *pdev;
1230 if (!ppc_md.get_rtc_time)
1231 return -ENODEV;
1233 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1234 if (IS_ERR(pdev))
1235 return PTR_ERR(pdev);
1237 return 0;
1240 module_init(rtc_init);