2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similarto the mechanism is used by JFFS2.
34 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35 * mutexes defined inside these objects. Since sometimes upper-level code
36 * has to lock the write-buffer (e.g. journal space reservation code), many
37 * functions related to write-buffers have "nolock" suffix which means that the
38 * caller has to lock the write-buffer before calling this function.
40 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41 * aligned, UBIFS starts the next node from the aligned address, and the padded
42 * bytes may contain any rubbish. In other words, UBIFS does not put padding
43 * bytes in those small gaps. Common headers of nodes store real node lengths,
44 * not aligned lengths. Indexing nodes also store real lengths in branches.
46 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47 * uses padding nodes or padding bytes, if the padding node does not fit.
49 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50 * every time they are read from the flash media.
53 #include <linux/crc32.h>
57 * ubifs_ro_mode - switch UBIFS to read read-only mode.
58 * @c: UBIFS file-system description object
59 * @err: error code which is the reason of switching to R/O mode
61 void ubifs_ro_mode(struct ubifs_info
*c
, int err
)
65 ubifs_warn("switched to read-only mode, error %d", err
);
71 * ubifs_check_node - check node.
72 * @c: UBIFS file-system description object
74 * @lnum: logical eraseblock number
75 * @offs: offset within the logical eraseblock
76 * @quiet: print no messages
78 * This function checks node magic number and CRC checksum. This function also
79 * validates node length to prevent UBIFS from becoming crazy when an attacker
80 * feeds it a file-system image with incorrect nodes. For example, too large
81 * node length in the common header could cause UBIFS to read memory outside of
82 * allocated buffer when checking the CRC checksum.
84 * This function returns zero in case of success %-EUCLEAN in case of bad CRC
87 int ubifs_check_node(const struct ubifs_info
*c
, const void *buf
, int lnum
,
90 int err
= -EINVAL
, type
, node_len
;
91 uint32_t crc
, node_crc
, magic
;
92 const struct ubifs_ch
*ch
= buf
;
94 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
95 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
97 magic
= le32_to_cpu(ch
->magic
);
98 if (magic
!= UBIFS_NODE_MAGIC
) {
100 ubifs_err("bad magic %#08x, expected %#08x",
101 magic
, UBIFS_NODE_MAGIC
);
106 type
= ch
->node_type
;
107 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
109 ubifs_err("bad node type %d", type
);
113 node_len
= le32_to_cpu(ch
->len
);
114 if (node_len
+ offs
> c
->leb_size
)
117 if (c
->ranges
[type
].max_len
== 0) {
118 if (node_len
!= c
->ranges
[type
].len
)
120 } else if (node_len
< c
->ranges
[type
].min_len
||
121 node_len
> c
->ranges
[type
].max_len
)
124 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
125 node_crc
= le32_to_cpu(ch
->crc
);
126 if (crc
!= node_crc
) {
128 ubifs_err("bad CRC: calculated %#08x, read %#08x",
138 ubifs_err("bad node length %d", node_len
);
141 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
142 dbg_dump_node(c
, buf
);
149 * ubifs_pad - pad flash space.
150 * @c: UBIFS file-system description object
151 * @buf: buffer to put padding to
152 * @pad: how many bytes to pad
154 * The flash media obliges us to write only in chunks of %c->min_io_size and
155 * when we have to write less data we add padding node to the write-buffer and
156 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
157 * media is being scanned. If the amount of wasted space is not enough to fit a
158 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
159 * pattern (%UBIFS_PADDING_BYTE).
161 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
164 void ubifs_pad(const struct ubifs_info
*c
, void *buf
, int pad
)
168 ubifs_assert(pad
>= 0 && !(pad
& 7));
170 if (pad
>= UBIFS_PAD_NODE_SZ
) {
171 struct ubifs_ch
*ch
= buf
;
172 struct ubifs_pad_node
*pad_node
= buf
;
174 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
175 ch
->node_type
= UBIFS_PAD_NODE
;
176 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
177 ch
->padding
[0] = ch
->padding
[1] = 0;
179 ch
->len
= cpu_to_le32(UBIFS_PAD_NODE_SZ
);
180 pad
-= UBIFS_PAD_NODE_SZ
;
181 pad_node
->pad_len
= cpu_to_le32(pad
);
182 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, UBIFS_PAD_NODE_SZ
- 8);
183 ch
->crc
= cpu_to_le32(crc
);
184 memset(buf
+ UBIFS_PAD_NODE_SZ
, 0, pad
);
186 /* Too little space, padding node won't fit */
187 memset(buf
, UBIFS_PADDING_BYTE
, pad
);
191 * next_sqnum - get next sequence number.
192 * @c: UBIFS file-system description object
194 static unsigned long long next_sqnum(struct ubifs_info
*c
)
196 unsigned long long sqnum
;
198 spin_lock(&c
->cnt_lock
);
199 sqnum
= ++c
->max_sqnum
;
200 spin_unlock(&c
->cnt_lock
);
202 if (unlikely(sqnum
>= SQNUM_WARN_WATERMARK
)) {
203 if (sqnum
>= SQNUM_WATERMARK
) {
204 ubifs_err("sequence number overflow %llu, end of life",
206 ubifs_ro_mode(c
, -EINVAL
);
208 ubifs_warn("running out of sequence numbers, end of life soon");
215 * ubifs_prepare_node - prepare node to be written to flash.
216 * @c: UBIFS file-system description object
217 * @node: the node to pad
219 * @pad: if the buffer has to be padded
221 * This function prepares node at @node to be written to the media - it
222 * calculates node CRC, fills the common header, and adds proper padding up to
223 * the next minimum I/O unit if @pad is not zero.
225 void ubifs_prepare_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
228 struct ubifs_ch
*ch
= node
;
229 unsigned long long sqnum
= next_sqnum(c
);
231 ubifs_assert(len
>= UBIFS_CH_SZ
);
233 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
234 ch
->len
= cpu_to_le32(len
);
235 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
236 ch
->sqnum
= cpu_to_le64(sqnum
);
237 ch
->padding
[0] = ch
->padding
[1] = 0;
238 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
239 ch
->crc
= cpu_to_le32(crc
);
243 pad
= ALIGN(len
, c
->min_io_size
) - len
;
244 ubifs_pad(c
, node
+ len
, pad
);
249 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
250 * @c: UBIFS file-system description object
251 * @node: the node to pad
253 * @last: indicates the last node of the group
255 * This function prepares node at @node to be written to the media - it
256 * calculates node CRC and fills the common header.
258 void ubifs_prep_grp_node(struct ubifs_info
*c
, void *node
, int len
, int last
)
261 struct ubifs_ch
*ch
= node
;
262 unsigned long long sqnum
= next_sqnum(c
);
264 ubifs_assert(len
>= UBIFS_CH_SZ
);
266 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
267 ch
->len
= cpu_to_le32(len
);
269 ch
->group_type
= UBIFS_LAST_OF_NODE_GROUP
;
271 ch
->group_type
= UBIFS_IN_NODE_GROUP
;
272 ch
->sqnum
= cpu_to_le64(sqnum
);
273 ch
->padding
[0] = ch
->padding
[1] = 0;
274 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
275 ch
->crc
= cpu_to_le32(crc
);
279 * wbuf_timer_callback - write-buffer timer callback function.
280 * @data: timer data (write-buffer descriptor)
282 * This function is called when the write-buffer timer expires.
284 static void wbuf_timer_callback_nolock(unsigned long data
)
286 struct ubifs_wbuf
*wbuf
= (struct ubifs_wbuf
*)data
;
289 wbuf
->c
->need_wbuf_sync
= 1;
290 ubifs_wake_up_bgt(wbuf
->c
);
294 * new_wbuf_timer - start new write-buffer timer.
295 * @wbuf: write-buffer descriptor
297 static void new_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
299 ubifs_assert(!timer_pending(&wbuf
->timer
));
304 wbuf
->timer
.expires
= jiffies
+ wbuf
->timeout
;
305 add_timer(&wbuf
->timer
);
309 * cancel_wbuf_timer - cancel write-buffer timer.
310 * @wbuf: write-buffer descriptor
312 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
315 * If the syncer is waiting for the lock (from the background thread's
316 * context) and another task is changing write-buffer then the syncing
317 * should be canceled.
320 del_timer(&wbuf
->timer
);
324 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
325 * @wbuf: write-buffer to synchronize
327 * This function synchronizes write-buffer @buf and returns zero in case of
328 * success or a negative error code in case of failure.
330 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf
*wbuf
)
332 struct ubifs_info
*c
= wbuf
->c
;
335 cancel_wbuf_timer_nolock(wbuf
);
336 if (!wbuf
->used
|| wbuf
->lnum
== -1)
337 /* Write-buffer is empty or not seeked */
340 dbg_io("LEB %d:%d, %d bytes",
341 wbuf
->lnum
, wbuf
->offs
, wbuf
->used
);
342 ubifs_assert(!(c
->vfs_sb
->s_flags
& MS_RDONLY
));
343 ubifs_assert(!(wbuf
->avail
& 7));
344 ubifs_assert(wbuf
->offs
+ c
->min_io_size
<= c
->leb_size
);
349 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
, wbuf
->avail
);
350 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
351 c
->min_io_size
, wbuf
->dtype
);
353 ubifs_err("cannot write %d bytes to LEB %d:%d",
354 c
->min_io_size
, wbuf
->lnum
, wbuf
->offs
);
361 spin_lock(&wbuf
->lock
);
362 wbuf
->offs
+= c
->min_io_size
;
363 wbuf
->avail
= c
->min_io_size
;
366 spin_unlock(&wbuf
->lock
);
368 if (wbuf
->sync_callback
)
369 err
= wbuf
->sync_callback(c
, wbuf
->lnum
,
370 c
->leb_size
- wbuf
->offs
, dirt
);
375 * ubifs_wbuf_seek_nolock - seek write-buffer.
376 * @wbuf: write-buffer
377 * @lnum: logical eraseblock number to seek to
378 * @offs: logical eraseblock offset to seek to
381 * This function targets the write buffer to logical eraseblock @lnum:@offs.
382 * The write-buffer is synchronized if it is not empty. Returns zero in case of
383 * success and a negative error code in case of failure.
385 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf
*wbuf
, int lnum
, int offs
,
388 const struct ubifs_info
*c
= wbuf
->c
;
390 dbg_io("LEB %d:%d", lnum
, offs
);
391 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
);
392 ubifs_assert(offs
>= 0 && offs
<= c
->leb_size
);
393 ubifs_assert(offs
% c
->min_io_size
== 0 && !(offs
& 7));
394 ubifs_assert(lnum
!= wbuf
->lnum
);
396 if (wbuf
->used
> 0) {
397 int err
= ubifs_wbuf_sync_nolock(wbuf
);
403 spin_lock(&wbuf
->lock
);
406 wbuf
->avail
= c
->min_io_size
;
408 spin_unlock(&wbuf
->lock
);
415 * ubifs_bg_wbufs_sync - synchronize write-buffers.
416 * @c: UBIFS file-system description object
418 * This function is called by background thread to synchronize write-buffers.
419 * Returns zero in case of success and a negative error code in case of
422 int ubifs_bg_wbufs_sync(struct ubifs_info
*c
)
426 if (!c
->need_wbuf_sync
)
428 c
->need_wbuf_sync
= 0;
435 dbg_io("synchronize");
436 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
437 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
442 * If the mutex is locked then wbuf is being changed, so
443 * synchronization is not necessary.
445 if (mutex_is_locked(&wbuf
->io_mutex
))
448 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
449 if (!wbuf
->need_sync
) {
450 mutex_unlock(&wbuf
->io_mutex
);
454 err
= ubifs_wbuf_sync_nolock(wbuf
);
455 mutex_unlock(&wbuf
->io_mutex
);
457 ubifs_err("cannot sync write-buffer, error %d", err
);
458 ubifs_ro_mode(c
, err
);
466 /* Cancel all timers to prevent repeated errors */
467 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
468 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
470 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
471 cancel_wbuf_timer_nolock(wbuf
);
472 mutex_unlock(&wbuf
->io_mutex
);
478 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
479 * @wbuf: write-buffer
480 * @buf: node to write
483 * This function writes data to flash via write-buffer @wbuf. This means that
484 * the last piece of the node won't reach the flash media immediately if it
485 * does not take whole minimal I/O unit. Instead, the node will sit in RAM
486 * until the write-buffer is synchronized (e.g., by timer).
488 * This function returns zero in case of success and a negative error code in
489 * case of failure. If the node cannot be written because there is no more
490 * space in this logical eraseblock, %-ENOSPC is returned.
492 int ubifs_wbuf_write_nolock(struct ubifs_wbuf
*wbuf
, void *buf
, int len
)
494 struct ubifs_info
*c
= wbuf
->c
;
495 int err
, written
, n
, aligned_len
= ALIGN(len
, 8), offs
;
497 dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len
,
498 dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), wbuf
->lnum
,
499 wbuf
->offs
+ wbuf
->used
);
500 ubifs_assert(len
> 0 && wbuf
->lnum
>= 0 && wbuf
->lnum
< c
->leb_cnt
);
501 ubifs_assert(wbuf
->offs
>= 0 && wbuf
->offs
% c
->min_io_size
== 0);
502 ubifs_assert(!(wbuf
->offs
& 7) && wbuf
->offs
<= c
->leb_size
);
503 ubifs_assert(wbuf
->avail
> 0 && wbuf
->avail
<= c
->min_io_size
);
504 ubifs_assert(mutex_is_locked(&wbuf
->io_mutex
));
506 if (c
->leb_size
- wbuf
->offs
- wbuf
->used
< aligned_len
) {
511 cancel_wbuf_timer_nolock(wbuf
);
516 if (aligned_len
<= wbuf
->avail
) {
518 * The node is not very large and fits entirely within
521 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, len
);
523 if (aligned_len
== wbuf
->avail
) {
524 dbg_io("flush wbuf to LEB %d:%d", wbuf
->lnum
,
526 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
,
527 wbuf
->offs
, c
->min_io_size
,
532 spin_lock(&wbuf
->lock
);
533 wbuf
->offs
+= c
->min_io_size
;
534 wbuf
->avail
= c
->min_io_size
;
537 spin_unlock(&wbuf
->lock
);
539 spin_lock(&wbuf
->lock
);
540 wbuf
->avail
-= aligned_len
;
541 wbuf
->used
+= aligned_len
;
542 spin_unlock(&wbuf
->lock
);
549 * The node is large enough and does not fit entirely within current
550 * minimal I/O unit. We have to fill and flush write-buffer and switch
551 * to the next min. I/O unit.
553 dbg_io("flush wbuf to LEB %d:%d", wbuf
->lnum
, wbuf
->offs
);
554 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, wbuf
->avail
);
555 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
556 c
->min_io_size
, wbuf
->dtype
);
560 offs
= wbuf
->offs
+ c
->min_io_size
;
562 aligned_len
-= wbuf
->avail
;
563 written
= wbuf
->avail
;
566 * The remaining data may take more whole min. I/O units, so write the
567 * remains multiple to min. I/O unit size directly to the flash media.
568 * We align node length to 8-byte boundary because we anyway flash wbuf
569 * if the remaining space is less than 8 bytes.
571 n
= aligned_len
>> c
->min_io_shift
;
573 n
<<= c
->min_io_shift
;
574 dbg_io("write %d bytes to LEB %d:%d", n
, wbuf
->lnum
, offs
);
575 err
= ubi_leb_write(c
->ubi
, wbuf
->lnum
, buf
+ written
, offs
, n
,
585 spin_lock(&wbuf
->lock
);
588 * And now we have what's left and what does not take whole
589 * min. I/O unit, so write it to the write-buffer and we are
592 memcpy(wbuf
->buf
, buf
+ written
, len
);
595 wbuf
->used
= aligned_len
;
596 wbuf
->avail
= c
->min_io_size
- aligned_len
;
598 spin_unlock(&wbuf
->lock
);
601 if (wbuf
->sync_callback
) {
602 int free
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
604 err
= wbuf
->sync_callback(c
, wbuf
->lnum
, free
, 0);
610 new_wbuf_timer_nolock(wbuf
);
615 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
616 len
, wbuf
->lnum
, wbuf
->offs
, err
);
617 dbg_dump_node(c
, buf
);
619 dbg_dump_leb(c
, wbuf
->lnum
);
624 * ubifs_write_node - write node to the media.
625 * @c: UBIFS file-system description object
626 * @buf: the node to write
628 * @lnum: logical eraseblock number
629 * @offs: offset within the logical eraseblock
630 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
632 * This function automatically fills node magic number, assigns sequence
633 * number, and calculates node CRC checksum. The length of the @buf buffer has
634 * to be aligned to the minimal I/O unit size. This function automatically
635 * appends padding node and padding bytes if needed. Returns zero in case of
636 * success and a negative error code in case of failure.
638 int ubifs_write_node(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
641 int err
, buf_len
= ALIGN(len
, c
->min_io_size
);
643 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
644 lnum
, offs
, dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), len
,
646 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
647 ubifs_assert(offs
% c
->min_io_size
== 0 && offs
< c
->leb_size
);
652 ubifs_prepare_node(c
, buf
, len
, 1);
653 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, buf_len
, dtype
);
655 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
656 buf_len
, lnum
, offs
, err
);
657 dbg_dump_node(c
, buf
);
665 * ubifs_read_node_wbuf - read node from the media or write-buffer.
666 * @wbuf: wbuf to check for un-written data
667 * @buf: buffer to read to
670 * @lnum: logical eraseblock number
671 * @offs: offset within the logical eraseblock
673 * This function reads a node of known type and length, checks it and stores
674 * in @buf. If the node partially or fully sits in the write-buffer, this
675 * function takes data from the buffer, otherwise it reads the flash media.
676 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
677 * error code in case of failure.
679 int ubifs_read_node_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int type
, int len
,
682 const struct ubifs_info
*c
= wbuf
->c
;
683 int err
, rlen
, overlap
;
684 struct ubifs_ch
*ch
= buf
;
686 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
687 ubifs_assert(wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
688 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
689 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
691 spin_lock(&wbuf
->lock
);
692 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
694 /* We may safely unlock the write-buffer and read the data */
695 spin_unlock(&wbuf
->lock
);
696 return ubifs_read_node(c
, buf
, type
, len
, lnum
, offs
);
699 /* Don't read under wbuf */
700 rlen
= wbuf
->offs
- offs
;
704 /* Copy the rest from the write-buffer */
705 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
706 spin_unlock(&wbuf
->lock
);
709 /* Read everything that goes before write-buffer */
710 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, rlen
);
711 if (err
&& err
!= -EBADMSG
) {
712 ubifs_err("failed to read node %d from LEB %d:%d, "
713 "error %d", type
, lnum
, offs
, err
);
719 if (type
!= ch
->node_type
) {
720 ubifs_err("bad node type (%d but expected %d)",
721 ch
->node_type
, type
);
725 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0);
727 ubifs_err("expected node type %d", type
);
731 rlen
= le32_to_cpu(ch
->len
);
733 ubifs_err("bad node length %d, expected %d", rlen
, len
);
740 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
741 dbg_dump_node(c
, buf
);
747 * ubifs_read_node - read node.
748 * @c: UBIFS file-system description object
749 * @buf: buffer to read to
751 * @len: node length (not aligned)
752 * @lnum: logical eraseblock number
753 * @offs: offset within the logical eraseblock
755 * This function reads a node of known type and and length, checks it and
756 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
757 * and a negative error code in case of failure.
759 int ubifs_read_node(const struct ubifs_info
*c
, void *buf
, int type
, int len
,
763 struct ubifs_ch
*ch
= buf
;
765 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
766 ubifs_assert(lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
767 ubifs_assert(len
>= UBIFS_CH_SZ
&& offs
+ len
<= c
->leb_size
);
768 ubifs_assert(!(offs
& 7) && offs
< c
->leb_size
);
769 ubifs_assert(type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
771 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
772 if (err
&& err
!= -EBADMSG
) {
773 ubifs_err("cannot read node %d from LEB %d:%d, error %d",
774 type
, lnum
, offs
, err
);
778 if (type
!= ch
->node_type
) {
779 ubifs_err("bad node type (%d but expected %d)",
780 ch
->node_type
, type
);
784 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0);
786 ubifs_err("expected node type %d", type
);
790 l
= le32_to_cpu(ch
->len
);
792 ubifs_err("bad node length %d, expected %d", l
, len
);
799 ubifs_err("bad node at LEB %d:%d", lnum
, offs
);
800 dbg_dump_node(c
, buf
);
806 * ubifs_wbuf_init - initialize write-buffer.
807 * @c: UBIFS file-system description object
808 * @wbuf: write-buffer to initialize
810 * This function initializes write buffer. Returns zero in case of success
811 * %-ENOMEM in case of failure.
813 int ubifs_wbuf_init(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
817 wbuf
->buf
= kmalloc(c
->min_io_size
, GFP_KERNEL
);
821 size
= (c
->min_io_size
/ UBIFS_CH_SZ
+ 1) * sizeof(ino_t
);
822 wbuf
->inodes
= kmalloc(size
, GFP_KERNEL
);
830 wbuf
->lnum
= wbuf
->offs
= -1;
831 wbuf
->avail
= c
->min_io_size
;
832 wbuf
->dtype
= UBI_UNKNOWN
;
833 wbuf
->sync_callback
= NULL
;
834 mutex_init(&wbuf
->io_mutex
);
835 spin_lock_init(&wbuf
->lock
);
838 init_timer(&wbuf
->timer
);
839 wbuf
->timer
.function
= wbuf_timer_callback_nolock
;
840 wbuf
->timer
.data
= (unsigned long)wbuf
;
841 wbuf
->timeout
= DEFAULT_WBUF_TIMEOUT
;
848 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
849 * @wbuf: the write-buffer whereto add
850 * @inum: the inode number
852 * This function adds an inode number to the inode array of the write-buffer.
854 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf
*wbuf
, ino_t inum
)
857 /* NOR flash or something similar */
860 spin_lock(&wbuf
->lock
);
862 wbuf
->inodes
[wbuf
->next_ino
++] = inum
;
863 spin_unlock(&wbuf
->lock
);
867 * wbuf_has_ino - returns if the wbuf contains data from the inode.
868 * @wbuf: the write-buffer
869 * @inum: the inode number
871 * This function returns with %1 if the write-buffer contains some data from the
872 * given inode otherwise it returns with %0.
874 static int wbuf_has_ino(struct ubifs_wbuf
*wbuf
, ino_t inum
)
878 spin_lock(&wbuf
->lock
);
879 for (i
= 0; i
< wbuf
->next_ino
; i
++)
880 if (inum
== wbuf
->inodes
[i
]) {
884 spin_unlock(&wbuf
->lock
);
890 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
891 * @c: UBIFS file-system description object
892 * @inode: inode to synchronize
894 * This function synchronizes write-buffers which contain nodes belonging to
895 * @inode. Returns zero in case of success and a negative error code in case of
898 int ubifs_sync_wbufs_by_inode(struct ubifs_info
*c
, struct inode
*inode
)
902 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
903 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
907 * GC head is special, do not look at it. Even if the
908 * head contains something related to this inode, it is
909 * a _copy_ of corresponding on-flash node which sits
914 if (!wbuf_has_ino(wbuf
, inode
->i_ino
))
917 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
918 if (wbuf_has_ino(wbuf
, inode
->i_ino
))
919 err
= ubifs_wbuf_sync_nolock(wbuf
);
920 mutex_unlock(&wbuf
->io_mutex
);
923 ubifs_ro_mode(c
, err
);