Btrfs: raid56: iterate raid56 internal bio with bio_for_each_segment_all
[linux/fpc-iii.git] / mm / percpu.c
blob50e7fdf84055151d8c7e8bb220f7a73e96b7f3e4
1 /*
2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * Copyright (C) 2017 Facebook Inc.
8 * Copyright (C) 2017 Dennis Zhou <dennisszhou@gmail.com>
10 * This file is released under the GPLv2 license.
12 * The percpu allocator handles both static and dynamic areas. Percpu
13 * areas are allocated in chunks which are divided into units. There is
14 * a 1-to-1 mapping for units to possible cpus. These units are grouped
15 * based on NUMA properties of the machine.
17 * c0 c1 c2
18 * ------------------- ------------------- ------------
19 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
20 * ------------------- ...... ------------------- .... ------------
22 * Allocation is done by offsets into a unit's address space. Ie., an
23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
24 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
25 * and even sparse. Access is handled by configuring percpu base
26 * registers according to the cpu to unit mappings and offsetting the
27 * base address using pcpu_unit_size.
29 * There is special consideration for the first chunk which must handle
30 * the static percpu variables in the kernel image as allocation services
31 * are not online yet. In short, the first chunk is structured like so:
33 * <Static | [Reserved] | Dynamic>
35 * The static data is copied from the original section managed by the
36 * linker. The reserved section, if non-zero, primarily manages static
37 * percpu variables from kernel modules. Finally, the dynamic section
38 * takes care of normal allocations.
40 * The allocator organizes chunks into lists according to free size and
41 * tries to allocate from the fullest chunk first. Each chunk is managed
42 * by a bitmap with metadata blocks. The allocation map is updated on
43 * every allocation and free to reflect the current state while the boundary
44 * map is only updated on allocation. Each metadata block contains
45 * information to help mitigate the need to iterate over large portions
46 * of the bitmap. The reverse mapping from page to chunk is stored in
47 * the page's index. Lastly, units are lazily backed and grow in unison.
49 * There is a unique conversion that goes on here between bytes and bits.
50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
51 * tracks the number of pages it is responsible for in nr_pages. Helper
52 * functions are used to convert from between the bytes, bits, and blocks.
53 * All hints are managed in bits unless explicitly stated.
55 * To use this allocator, arch code should do the following:
57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 * regular address to percpu pointer and back if they need to be
59 * different from the default
61 * - use pcpu_setup_first_chunk() during percpu area initialization to
62 * setup the first chunk containing the kernel static percpu area
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
67 #include <linux/bitmap.h>
68 #include <linux/bootmem.h>
69 #include <linux/err.h>
70 #include <linux/lcm.h>
71 #include <linux/list.h>
72 #include <linux/log2.h>
73 #include <linux/mm.h>
74 #include <linux/module.h>
75 #include <linux/mutex.h>
76 #include <linux/percpu.h>
77 #include <linux/pfn.h>
78 #include <linux/slab.h>
79 #include <linux/spinlock.h>
80 #include <linux/vmalloc.h>
81 #include <linux/workqueue.h>
82 #include <linux/kmemleak.h>
84 #include <asm/cacheflush.h>
85 #include <asm/sections.h>
86 #include <asm/tlbflush.h>
87 #include <asm/io.h>
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/percpu.h>
92 #include "percpu-internal.h"
94 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
95 #define PCPU_SLOT_BASE_SHIFT 5
97 #define PCPU_EMPTY_POP_PAGES_LOW 2
98 #define PCPU_EMPTY_POP_PAGES_HIGH 4
100 #ifdef CONFIG_SMP
101 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
102 #ifndef __addr_to_pcpu_ptr
103 #define __addr_to_pcpu_ptr(addr) \
104 (void __percpu *)((unsigned long)(addr) - \
105 (unsigned long)pcpu_base_addr + \
106 (unsigned long)__per_cpu_start)
107 #endif
108 #ifndef __pcpu_ptr_to_addr
109 #define __pcpu_ptr_to_addr(ptr) \
110 (void __force *)((unsigned long)(ptr) + \
111 (unsigned long)pcpu_base_addr - \
112 (unsigned long)__per_cpu_start)
113 #endif
114 #else /* CONFIG_SMP */
115 /* on UP, it's always identity mapped */
116 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
117 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
118 #endif /* CONFIG_SMP */
120 static int pcpu_unit_pages __ro_after_init;
121 static int pcpu_unit_size __ro_after_init;
122 static int pcpu_nr_units __ro_after_init;
123 static int pcpu_atom_size __ro_after_init;
124 int pcpu_nr_slots __ro_after_init;
125 static size_t pcpu_chunk_struct_size __ro_after_init;
127 /* cpus with the lowest and highest unit addresses */
128 static unsigned int pcpu_low_unit_cpu __ro_after_init;
129 static unsigned int pcpu_high_unit_cpu __ro_after_init;
131 /* the address of the first chunk which starts with the kernel static area */
132 void *pcpu_base_addr __ro_after_init;
133 EXPORT_SYMBOL_GPL(pcpu_base_addr);
135 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
136 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
138 /* group information, used for vm allocation */
139 static int pcpu_nr_groups __ro_after_init;
140 static const unsigned long *pcpu_group_offsets __ro_after_init;
141 static const size_t *pcpu_group_sizes __ro_after_init;
144 * The first chunk which always exists. Note that unlike other
145 * chunks, this one can be allocated and mapped in several different
146 * ways and thus often doesn't live in the vmalloc area.
148 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
151 * Optional reserved chunk. This chunk reserves part of the first
152 * chunk and serves it for reserved allocations. When the reserved
153 * region doesn't exist, the following variable is NULL.
155 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
157 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
158 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
160 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
162 /* chunks which need their map areas extended, protected by pcpu_lock */
163 static LIST_HEAD(pcpu_map_extend_chunks);
166 * The number of empty populated pages, protected by pcpu_lock. The
167 * reserved chunk doesn't contribute to the count.
169 int pcpu_nr_empty_pop_pages;
172 * Balance work is used to populate or destroy chunks asynchronously. We
173 * try to keep the number of populated free pages between
174 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
175 * empty chunk.
177 static void pcpu_balance_workfn(struct work_struct *work);
178 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
179 static bool pcpu_async_enabled __read_mostly;
180 static bool pcpu_atomic_alloc_failed;
182 static void pcpu_schedule_balance_work(void)
184 if (pcpu_async_enabled)
185 schedule_work(&pcpu_balance_work);
189 * pcpu_addr_in_chunk - check if the address is served from this chunk
190 * @chunk: chunk of interest
191 * @addr: percpu address
193 * RETURNS:
194 * True if the address is served from this chunk.
196 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
198 void *start_addr, *end_addr;
200 if (!chunk)
201 return false;
203 start_addr = chunk->base_addr + chunk->start_offset;
204 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
205 chunk->end_offset;
207 return addr >= start_addr && addr < end_addr;
210 static int __pcpu_size_to_slot(int size)
212 int highbit = fls(size); /* size is in bytes */
213 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
216 static int pcpu_size_to_slot(int size)
218 if (size == pcpu_unit_size)
219 return pcpu_nr_slots - 1;
220 return __pcpu_size_to_slot(size);
223 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
225 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
226 return 0;
228 return pcpu_size_to_slot(chunk->free_bytes);
231 /* set the pointer to a chunk in a page struct */
232 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
234 page->index = (unsigned long)pcpu;
237 /* obtain pointer to a chunk from a page struct */
238 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
240 return (struct pcpu_chunk *)page->index;
243 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
245 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
248 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
250 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
253 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
254 unsigned int cpu, int page_idx)
256 return (unsigned long)chunk->base_addr +
257 pcpu_unit_page_offset(cpu, page_idx);
260 static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
262 *rs = find_next_zero_bit(bitmap, end, *rs);
263 *re = find_next_bit(bitmap, end, *rs + 1);
266 static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
268 *rs = find_next_bit(bitmap, end, *rs);
269 *re = find_next_zero_bit(bitmap, end, *rs + 1);
273 * Bitmap region iterators. Iterates over the bitmap between
274 * [@start, @end) in @chunk. @rs and @re should be integer variables
275 * and will be set to start and end index of the current free region.
277 #define pcpu_for_each_unpop_region(bitmap, rs, re, start, end) \
278 for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
279 (rs) < (re); \
280 (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
282 #define pcpu_for_each_pop_region(bitmap, rs, re, start, end) \
283 for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end)); \
284 (rs) < (re); \
285 (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
288 * The following are helper functions to help access bitmaps and convert
289 * between bitmap offsets to address offsets.
291 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
293 return chunk->alloc_map +
294 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
297 static unsigned long pcpu_off_to_block_index(int off)
299 return off / PCPU_BITMAP_BLOCK_BITS;
302 static unsigned long pcpu_off_to_block_off(int off)
304 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
307 static unsigned long pcpu_block_off_to_off(int index, int off)
309 return index * PCPU_BITMAP_BLOCK_BITS + off;
313 * pcpu_next_md_free_region - finds the next hint free area
314 * @chunk: chunk of interest
315 * @bit_off: chunk offset
316 * @bits: size of free area
318 * Helper function for pcpu_for_each_md_free_region. It checks
319 * block->contig_hint and performs aggregation across blocks to find the
320 * next hint. It modifies bit_off and bits in-place to be consumed in the
321 * loop.
323 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
324 int *bits)
326 int i = pcpu_off_to_block_index(*bit_off);
327 int block_off = pcpu_off_to_block_off(*bit_off);
328 struct pcpu_block_md *block;
330 *bits = 0;
331 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
332 block++, i++) {
333 /* handles contig area across blocks */
334 if (*bits) {
335 *bits += block->left_free;
336 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
337 continue;
338 return;
342 * This checks three things. First is there a contig_hint to
343 * check. Second, have we checked this hint before by
344 * comparing the block_off. Third, is this the same as the
345 * right contig hint. In the last case, it spills over into
346 * the next block and should be handled by the contig area
347 * across blocks code.
349 *bits = block->contig_hint;
350 if (*bits && block->contig_hint_start >= block_off &&
351 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
352 *bit_off = pcpu_block_off_to_off(i,
353 block->contig_hint_start);
354 return;
356 /* reset to satisfy the second predicate above */
357 block_off = 0;
359 *bits = block->right_free;
360 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
365 * pcpu_next_fit_region - finds fit areas for a given allocation request
366 * @chunk: chunk of interest
367 * @alloc_bits: size of allocation
368 * @align: alignment of area (max PAGE_SIZE)
369 * @bit_off: chunk offset
370 * @bits: size of free area
372 * Finds the next free region that is viable for use with a given size and
373 * alignment. This only returns if there is a valid area to be used for this
374 * allocation. block->first_free is returned if the allocation request fits
375 * within the block to see if the request can be fulfilled prior to the contig
376 * hint.
378 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
379 int align, int *bit_off, int *bits)
381 int i = pcpu_off_to_block_index(*bit_off);
382 int block_off = pcpu_off_to_block_off(*bit_off);
383 struct pcpu_block_md *block;
385 *bits = 0;
386 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
387 block++, i++) {
388 /* handles contig area across blocks */
389 if (*bits) {
390 *bits += block->left_free;
391 if (*bits >= alloc_bits)
392 return;
393 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
394 continue;
397 /* check block->contig_hint */
398 *bits = ALIGN(block->contig_hint_start, align) -
399 block->contig_hint_start;
401 * This uses the block offset to determine if this has been
402 * checked in the prior iteration.
404 if (block->contig_hint &&
405 block->contig_hint_start >= block_off &&
406 block->contig_hint >= *bits + alloc_bits) {
407 *bits += alloc_bits + block->contig_hint_start -
408 block->first_free;
409 *bit_off = pcpu_block_off_to_off(i, block->first_free);
410 return;
412 /* reset to satisfy the second predicate above */
413 block_off = 0;
415 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
416 align);
417 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
418 *bit_off = pcpu_block_off_to_off(i, *bit_off);
419 if (*bits >= alloc_bits)
420 return;
423 /* no valid offsets were found - fail condition */
424 *bit_off = pcpu_chunk_map_bits(chunk);
428 * Metadata free area iterators. These perform aggregation of free areas
429 * based on the metadata blocks and return the offset @bit_off and size in
430 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
431 * a fit is found for the allocation request.
433 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
434 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
435 (bit_off) < pcpu_chunk_map_bits((chunk)); \
436 (bit_off) += (bits) + 1, \
437 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
439 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
440 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
441 &(bits)); \
442 (bit_off) < pcpu_chunk_map_bits((chunk)); \
443 (bit_off) += (bits), \
444 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
445 &(bits)))
448 * pcpu_mem_zalloc - allocate memory
449 * @size: bytes to allocate
451 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
452 * kzalloc() is used; otherwise, vzalloc() is used. The returned
453 * memory is always zeroed.
455 * CONTEXT:
456 * Does GFP_KERNEL allocation.
458 * RETURNS:
459 * Pointer to the allocated area on success, NULL on failure.
461 static void *pcpu_mem_zalloc(size_t size)
463 if (WARN_ON_ONCE(!slab_is_available()))
464 return NULL;
466 if (size <= PAGE_SIZE)
467 return kzalloc(size, GFP_KERNEL);
468 else
469 return vzalloc(size);
473 * pcpu_mem_free - free memory
474 * @ptr: memory to free
476 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
478 static void pcpu_mem_free(void *ptr)
480 kvfree(ptr);
484 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
485 * @chunk: chunk of interest
486 * @oslot: the previous slot it was on
488 * This function is called after an allocation or free changed @chunk.
489 * New slot according to the changed state is determined and @chunk is
490 * moved to the slot. Note that the reserved chunk is never put on
491 * chunk slots.
493 * CONTEXT:
494 * pcpu_lock.
496 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
498 int nslot = pcpu_chunk_slot(chunk);
500 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
501 if (oslot < nslot)
502 list_move(&chunk->list, &pcpu_slot[nslot]);
503 else
504 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
509 * pcpu_cnt_pop_pages- counts populated backing pages in range
510 * @chunk: chunk of interest
511 * @bit_off: start offset
512 * @bits: size of area to check
514 * Calculates the number of populated pages in the region
515 * [page_start, page_end). This keeps track of how many empty populated
516 * pages are available and decide if async work should be scheduled.
518 * RETURNS:
519 * The nr of populated pages.
521 static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
522 int bits)
524 int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
525 int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
527 if (page_start >= page_end)
528 return 0;
531 * bitmap_weight counts the number of bits set in a bitmap up to
532 * the specified number of bits. This is counting the populated
533 * pages up to page_end and then subtracting the populated pages
534 * up to page_start to count the populated pages in
535 * [page_start, page_end).
537 return bitmap_weight(chunk->populated, page_end) -
538 bitmap_weight(chunk->populated, page_start);
542 * pcpu_chunk_update - updates the chunk metadata given a free area
543 * @chunk: chunk of interest
544 * @bit_off: chunk offset
545 * @bits: size of free area
547 * This updates the chunk's contig hint and starting offset given a free area.
548 * Choose the best starting offset if the contig hint is equal.
550 static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
552 if (bits > chunk->contig_bits) {
553 chunk->contig_bits_start = bit_off;
554 chunk->contig_bits = bits;
555 } else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
556 (!bit_off ||
557 __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
558 /* use the start with the best alignment */
559 chunk->contig_bits_start = bit_off;
564 * pcpu_chunk_refresh_hint - updates metadata about a chunk
565 * @chunk: chunk of interest
567 * Iterates over the metadata blocks to find the largest contig area.
568 * It also counts the populated pages and uses the delta to update the
569 * global count.
571 * Updates:
572 * chunk->contig_bits
573 * chunk->contig_bits_start
574 * nr_empty_pop_pages (chunk and global)
576 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
578 int bit_off, bits, nr_empty_pop_pages;
580 /* clear metadata */
581 chunk->contig_bits = 0;
583 bit_off = chunk->first_bit;
584 bits = nr_empty_pop_pages = 0;
585 pcpu_for_each_md_free_region(chunk, bit_off, bits) {
586 pcpu_chunk_update(chunk, bit_off, bits);
588 nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
592 * Keep track of nr_empty_pop_pages.
594 * The chunk maintains the previous number of free pages it held,
595 * so the delta is used to update the global counter. The reserved
596 * chunk is not part of the free page count as they are populated
597 * at init and are special to serving reserved allocations.
599 if (chunk != pcpu_reserved_chunk)
600 pcpu_nr_empty_pop_pages +=
601 (nr_empty_pop_pages - chunk->nr_empty_pop_pages);
603 chunk->nr_empty_pop_pages = nr_empty_pop_pages;
607 * pcpu_block_update - updates a block given a free area
608 * @block: block of interest
609 * @start: start offset in block
610 * @end: end offset in block
612 * Updates a block given a known free area. The region [start, end) is
613 * expected to be the entirety of the free area within a block. Chooses
614 * the best starting offset if the contig hints are equal.
616 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
618 int contig = end - start;
620 block->first_free = min(block->first_free, start);
621 if (start == 0)
622 block->left_free = contig;
624 if (end == PCPU_BITMAP_BLOCK_BITS)
625 block->right_free = contig;
627 if (contig > block->contig_hint) {
628 block->contig_hint_start = start;
629 block->contig_hint = contig;
630 } else if (block->contig_hint_start && contig == block->contig_hint &&
631 (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
632 /* use the start with the best alignment */
633 block->contig_hint_start = start;
638 * pcpu_block_refresh_hint
639 * @chunk: chunk of interest
640 * @index: index of the metadata block
642 * Scans over the block beginning at first_free and updates the block
643 * metadata accordingly.
645 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
647 struct pcpu_block_md *block = chunk->md_blocks + index;
648 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
649 int rs, re; /* region start, region end */
651 /* clear hints */
652 block->contig_hint = 0;
653 block->left_free = block->right_free = 0;
655 /* iterate over free areas and update the contig hints */
656 pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
657 PCPU_BITMAP_BLOCK_BITS) {
658 pcpu_block_update(block, rs, re);
663 * pcpu_block_update_hint_alloc - update hint on allocation path
664 * @chunk: chunk of interest
665 * @bit_off: chunk offset
666 * @bits: size of request
668 * Updates metadata for the allocation path. The metadata only has to be
669 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
670 * scans are required if the block's contig hint is broken.
672 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
673 int bits)
675 struct pcpu_block_md *s_block, *e_block, *block;
676 int s_index, e_index; /* block indexes of the freed allocation */
677 int s_off, e_off; /* block offsets of the freed allocation */
680 * Calculate per block offsets.
681 * The calculation uses an inclusive range, but the resulting offsets
682 * are [start, end). e_index always points to the last block in the
683 * range.
685 s_index = pcpu_off_to_block_index(bit_off);
686 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
687 s_off = pcpu_off_to_block_off(bit_off);
688 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
690 s_block = chunk->md_blocks + s_index;
691 e_block = chunk->md_blocks + e_index;
694 * Update s_block.
695 * block->first_free must be updated if the allocation takes its place.
696 * If the allocation breaks the contig_hint, a scan is required to
697 * restore this hint.
699 if (s_off == s_block->first_free)
700 s_block->first_free = find_next_zero_bit(
701 pcpu_index_alloc_map(chunk, s_index),
702 PCPU_BITMAP_BLOCK_BITS,
703 s_off + bits);
705 if (s_off >= s_block->contig_hint_start &&
706 s_off < s_block->contig_hint_start + s_block->contig_hint) {
707 /* block contig hint is broken - scan to fix it */
708 pcpu_block_refresh_hint(chunk, s_index);
709 } else {
710 /* update left and right contig manually */
711 s_block->left_free = min(s_block->left_free, s_off);
712 if (s_index == e_index)
713 s_block->right_free = min_t(int, s_block->right_free,
714 PCPU_BITMAP_BLOCK_BITS - e_off);
715 else
716 s_block->right_free = 0;
720 * Update e_block.
722 if (s_index != e_index) {
724 * When the allocation is across blocks, the end is along
725 * the left part of the e_block.
727 e_block->first_free = find_next_zero_bit(
728 pcpu_index_alloc_map(chunk, e_index),
729 PCPU_BITMAP_BLOCK_BITS, e_off);
731 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
732 /* reset the block */
733 e_block++;
734 } else {
735 if (e_off > e_block->contig_hint_start) {
736 /* contig hint is broken - scan to fix it */
737 pcpu_block_refresh_hint(chunk, e_index);
738 } else {
739 e_block->left_free = 0;
740 e_block->right_free =
741 min_t(int, e_block->right_free,
742 PCPU_BITMAP_BLOCK_BITS - e_off);
746 /* update in-between md_blocks */
747 for (block = s_block + 1; block < e_block; block++) {
748 block->contig_hint = 0;
749 block->left_free = 0;
750 block->right_free = 0;
755 * The only time a full chunk scan is required is if the chunk
756 * contig hint is broken. Otherwise, it means a smaller space
757 * was used and therefore the chunk contig hint is still correct.
759 if (bit_off >= chunk->contig_bits_start &&
760 bit_off < chunk->contig_bits_start + chunk->contig_bits)
761 pcpu_chunk_refresh_hint(chunk);
765 * pcpu_block_update_hint_free - updates the block hints on the free path
766 * @chunk: chunk of interest
767 * @bit_off: chunk offset
768 * @bits: size of request
770 * Updates metadata for the allocation path. This avoids a blind block
771 * refresh by making use of the block contig hints. If this fails, it scans
772 * forward and backward to determine the extent of the free area. This is
773 * capped at the boundary of blocks.
775 * A chunk update is triggered if a page becomes free, a block becomes free,
776 * or the free spans across blocks. This tradeoff is to minimize iterating
777 * over the block metadata to update chunk->contig_bits. chunk->contig_bits
778 * may be off by up to a page, but it will never be more than the available
779 * space. If the contig hint is contained in one block, it will be accurate.
781 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
782 int bits)
784 struct pcpu_block_md *s_block, *e_block, *block;
785 int s_index, e_index; /* block indexes of the freed allocation */
786 int s_off, e_off; /* block offsets of the freed allocation */
787 int start, end; /* start and end of the whole free area */
790 * Calculate per block offsets.
791 * The calculation uses an inclusive range, but the resulting offsets
792 * are [start, end). e_index always points to the last block in the
793 * range.
795 s_index = pcpu_off_to_block_index(bit_off);
796 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
797 s_off = pcpu_off_to_block_off(bit_off);
798 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
800 s_block = chunk->md_blocks + s_index;
801 e_block = chunk->md_blocks + e_index;
804 * Check if the freed area aligns with the block->contig_hint.
805 * If it does, then the scan to find the beginning/end of the
806 * larger free area can be avoided.
808 * start and end refer to beginning and end of the free area
809 * within each their respective blocks. This is not necessarily
810 * the entire free area as it may span blocks past the beginning
811 * or end of the block.
813 start = s_off;
814 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
815 start = s_block->contig_hint_start;
816 } else {
818 * Scan backwards to find the extent of the free area.
819 * find_last_bit returns the starting bit, so if the start bit
820 * is returned, that means there was no last bit and the
821 * remainder of the chunk is free.
823 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
824 start);
825 start = (start == l_bit) ? 0 : l_bit + 1;
828 end = e_off;
829 if (e_off == e_block->contig_hint_start)
830 end = e_block->contig_hint_start + e_block->contig_hint;
831 else
832 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
833 PCPU_BITMAP_BLOCK_BITS, end);
835 /* update s_block */
836 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
837 pcpu_block_update(s_block, start, e_off);
839 /* freeing in the same block */
840 if (s_index != e_index) {
841 /* update e_block */
842 pcpu_block_update(e_block, 0, end);
844 /* reset md_blocks in the middle */
845 for (block = s_block + 1; block < e_block; block++) {
846 block->first_free = 0;
847 block->contig_hint_start = 0;
848 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
849 block->left_free = PCPU_BITMAP_BLOCK_BITS;
850 block->right_free = PCPU_BITMAP_BLOCK_BITS;
855 * Refresh chunk metadata when the free makes a page free, a block
856 * free, or spans across blocks. The contig hint may be off by up to
857 * a page, but if the hint is contained in a block, it will be accurate
858 * with the else condition below.
860 if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
861 ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
862 s_index != e_index)
863 pcpu_chunk_refresh_hint(chunk);
864 else
865 pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
866 s_block->contig_hint);
870 * pcpu_is_populated - determines if the region is populated
871 * @chunk: chunk of interest
872 * @bit_off: chunk offset
873 * @bits: size of area
874 * @next_off: return value for the next offset to start searching
876 * For atomic allocations, check if the backing pages are populated.
878 * RETURNS:
879 * Bool if the backing pages are populated.
880 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
882 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
883 int *next_off)
885 int page_start, page_end, rs, re;
887 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
888 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
890 rs = page_start;
891 pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
892 if (rs >= page_end)
893 return true;
895 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
896 return false;
900 * pcpu_find_block_fit - finds the block index to start searching
901 * @chunk: chunk of interest
902 * @alloc_bits: size of request in allocation units
903 * @align: alignment of area (max PAGE_SIZE bytes)
904 * @pop_only: use populated regions only
906 * Given a chunk and an allocation spec, find the offset to begin searching
907 * for a free region. This iterates over the bitmap metadata blocks to
908 * find an offset that will be guaranteed to fit the requirements. It is
909 * not quite first fit as if the allocation does not fit in the contig hint
910 * of a block or chunk, it is skipped. This errs on the side of caution
911 * to prevent excess iteration. Poor alignment can cause the allocator to
912 * skip over blocks and chunks that have valid free areas.
914 * RETURNS:
915 * The offset in the bitmap to begin searching.
916 * -1 if no offset is found.
918 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
919 size_t align, bool pop_only)
921 int bit_off, bits, next_off;
924 * Check to see if the allocation can fit in the chunk's contig hint.
925 * This is an optimization to prevent scanning by assuming if it
926 * cannot fit in the global hint, there is memory pressure and creating
927 * a new chunk would happen soon.
929 bit_off = ALIGN(chunk->contig_bits_start, align) -
930 chunk->contig_bits_start;
931 if (bit_off + alloc_bits > chunk->contig_bits)
932 return -1;
934 bit_off = chunk->first_bit;
935 bits = 0;
936 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
937 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
938 &next_off))
939 break;
941 bit_off = next_off;
942 bits = 0;
945 if (bit_off == pcpu_chunk_map_bits(chunk))
946 return -1;
948 return bit_off;
952 * pcpu_alloc_area - allocates an area from a pcpu_chunk
953 * @chunk: chunk of interest
954 * @alloc_bits: size of request in allocation units
955 * @align: alignment of area (max PAGE_SIZE)
956 * @start: bit_off to start searching
958 * This function takes in a @start offset to begin searching to fit an
959 * allocation of @alloc_bits with alignment @align. It needs to scan
960 * the allocation map because if it fits within the block's contig hint,
961 * @start will be block->first_free. This is an attempt to fill the
962 * allocation prior to breaking the contig hint. The allocation and
963 * boundary maps are updated accordingly if it confirms a valid
964 * free area.
966 * RETURNS:
967 * Allocated addr offset in @chunk on success.
968 * -1 if no matching area is found.
970 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
971 size_t align, int start)
973 size_t align_mask = (align) ? (align - 1) : 0;
974 int bit_off, end, oslot;
976 lockdep_assert_held(&pcpu_lock);
978 oslot = pcpu_chunk_slot(chunk);
981 * Search to find a fit.
983 end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
984 bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
985 alloc_bits, align_mask);
986 if (bit_off >= end)
987 return -1;
989 /* update alloc map */
990 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
992 /* update boundary map */
993 set_bit(bit_off, chunk->bound_map);
994 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
995 set_bit(bit_off + alloc_bits, chunk->bound_map);
997 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
999 /* update first free bit */
1000 if (bit_off == chunk->first_bit)
1001 chunk->first_bit = find_next_zero_bit(
1002 chunk->alloc_map,
1003 pcpu_chunk_map_bits(chunk),
1004 bit_off + alloc_bits);
1006 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1008 pcpu_chunk_relocate(chunk, oslot);
1010 return bit_off * PCPU_MIN_ALLOC_SIZE;
1014 * pcpu_free_area - frees the corresponding offset
1015 * @chunk: chunk of interest
1016 * @off: addr offset into chunk
1018 * This function determines the size of an allocation to free using
1019 * the boundary bitmap and clears the allocation map.
1021 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1023 int bit_off, bits, end, oslot;
1025 lockdep_assert_held(&pcpu_lock);
1026 pcpu_stats_area_dealloc(chunk);
1028 oslot = pcpu_chunk_slot(chunk);
1030 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1032 /* find end index */
1033 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1034 bit_off + 1);
1035 bits = end - bit_off;
1036 bitmap_clear(chunk->alloc_map, bit_off, bits);
1038 /* update metadata */
1039 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1041 /* update first free bit */
1042 chunk->first_bit = min(chunk->first_bit, bit_off);
1044 pcpu_block_update_hint_free(chunk, bit_off, bits);
1046 pcpu_chunk_relocate(chunk, oslot);
1049 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1051 struct pcpu_block_md *md_block;
1053 for (md_block = chunk->md_blocks;
1054 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1055 md_block++) {
1056 md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1057 md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1058 md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1063 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1064 * @tmp_addr: the start of the region served
1065 * @map_size: size of the region served
1067 * This is responsible for creating the chunks that serve the first chunk. The
1068 * base_addr is page aligned down of @tmp_addr while the region end is page
1069 * aligned up. Offsets are kept track of to determine the region served. All
1070 * this is done to appease the bitmap allocator in avoiding partial blocks.
1072 * RETURNS:
1073 * Chunk serving the region at @tmp_addr of @map_size.
1075 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1076 int map_size)
1078 struct pcpu_chunk *chunk;
1079 unsigned long aligned_addr, lcm_align;
1080 int start_offset, offset_bits, region_size, region_bits;
1082 /* region calculations */
1083 aligned_addr = tmp_addr & PAGE_MASK;
1085 start_offset = tmp_addr - aligned_addr;
1088 * Align the end of the region with the LCM of PAGE_SIZE and
1089 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1090 * the other.
1092 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1093 region_size = ALIGN(start_offset + map_size, lcm_align);
1095 /* allocate chunk */
1096 chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1097 BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1100 INIT_LIST_HEAD(&chunk->list);
1102 chunk->base_addr = (void *)aligned_addr;
1103 chunk->start_offset = start_offset;
1104 chunk->end_offset = region_size - chunk->start_offset - map_size;
1106 chunk->nr_pages = region_size >> PAGE_SHIFT;
1107 region_bits = pcpu_chunk_map_bits(chunk);
1109 chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1110 sizeof(chunk->alloc_map[0]), 0);
1111 chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1112 sizeof(chunk->bound_map[0]), 0);
1113 chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1114 sizeof(chunk->md_blocks[0]), 0);
1115 pcpu_init_md_blocks(chunk);
1117 /* manage populated page bitmap */
1118 chunk->immutable = true;
1119 bitmap_fill(chunk->populated, chunk->nr_pages);
1120 chunk->nr_populated = chunk->nr_pages;
1121 chunk->nr_empty_pop_pages =
1122 pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1123 map_size / PCPU_MIN_ALLOC_SIZE);
1125 chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1126 chunk->free_bytes = map_size;
1128 if (chunk->start_offset) {
1129 /* hide the beginning of the bitmap */
1130 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1131 bitmap_set(chunk->alloc_map, 0, offset_bits);
1132 set_bit(0, chunk->bound_map);
1133 set_bit(offset_bits, chunk->bound_map);
1135 chunk->first_bit = offset_bits;
1137 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1140 if (chunk->end_offset) {
1141 /* hide the end of the bitmap */
1142 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1143 bitmap_set(chunk->alloc_map,
1144 pcpu_chunk_map_bits(chunk) - offset_bits,
1145 offset_bits);
1146 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1147 chunk->bound_map);
1148 set_bit(region_bits, chunk->bound_map);
1150 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1151 - offset_bits, offset_bits);
1154 return chunk;
1157 static struct pcpu_chunk *pcpu_alloc_chunk(void)
1159 struct pcpu_chunk *chunk;
1160 int region_bits;
1162 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
1163 if (!chunk)
1164 return NULL;
1166 INIT_LIST_HEAD(&chunk->list);
1167 chunk->nr_pages = pcpu_unit_pages;
1168 region_bits = pcpu_chunk_map_bits(chunk);
1170 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1171 sizeof(chunk->alloc_map[0]));
1172 if (!chunk->alloc_map)
1173 goto alloc_map_fail;
1175 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1176 sizeof(chunk->bound_map[0]));
1177 if (!chunk->bound_map)
1178 goto bound_map_fail;
1180 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1181 sizeof(chunk->md_blocks[0]));
1182 if (!chunk->md_blocks)
1183 goto md_blocks_fail;
1185 pcpu_init_md_blocks(chunk);
1187 /* init metadata */
1188 chunk->contig_bits = region_bits;
1189 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1191 return chunk;
1193 md_blocks_fail:
1194 pcpu_mem_free(chunk->bound_map);
1195 bound_map_fail:
1196 pcpu_mem_free(chunk->alloc_map);
1197 alloc_map_fail:
1198 pcpu_mem_free(chunk);
1200 return NULL;
1203 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1205 if (!chunk)
1206 return;
1207 pcpu_mem_free(chunk->bound_map);
1208 pcpu_mem_free(chunk->alloc_map);
1209 pcpu_mem_free(chunk);
1213 * pcpu_chunk_populated - post-population bookkeeping
1214 * @chunk: pcpu_chunk which got populated
1215 * @page_start: the start page
1216 * @page_end: the end page
1217 * @for_alloc: if this is to populate for allocation
1219 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1220 * the bookkeeping information accordingly. Must be called after each
1221 * successful population.
1223 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1224 * is to serve an allocation in that area.
1226 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1227 int page_end, bool for_alloc)
1229 int nr = page_end - page_start;
1231 lockdep_assert_held(&pcpu_lock);
1233 bitmap_set(chunk->populated, page_start, nr);
1234 chunk->nr_populated += nr;
1236 if (!for_alloc) {
1237 chunk->nr_empty_pop_pages += nr;
1238 pcpu_nr_empty_pop_pages += nr;
1243 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1244 * @chunk: pcpu_chunk which got depopulated
1245 * @page_start: the start page
1246 * @page_end: the end page
1248 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1249 * Update the bookkeeping information accordingly. Must be called after
1250 * each successful depopulation.
1252 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1253 int page_start, int page_end)
1255 int nr = page_end - page_start;
1257 lockdep_assert_held(&pcpu_lock);
1259 bitmap_clear(chunk->populated, page_start, nr);
1260 chunk->nr_populated -= nr;
1261 chunk->nr_empty_pop_pages -= nr;
1262 pcpu_nr_empty_pop_pages -= nr;
1266 * Chunk management implementation.
1268 * To allow different implementations, chunk alloc/free and
1269 * [de]population are implemented in a separate file which is pulled
1270 * into this file and compiled together. The following functions
1271 * should be implemented.
1273 * pcpu_populate_chunk - populate the specified range of a chunk
1274 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1275 * pcpu_create_chunk - create a new chunk
1276 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1277 * pcpu_addr_to_page - translate address to physical address
1278 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1280 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
1281 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
1282 static struct pcpu_chunk *pcpu_create_chunk(void);
1283 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1284 static struct page *pcpu_addr_to_page(void *addr);
1285 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1287 #ifdef CONFIG_NEED_PER_CPU_KM
1288 #include "percpu-km.c"
1289 #else
1290 #include "percpu-vm.c"
1291 #endif
1294 * pcpu_chunk_addr_search - determine chunk containing specified address
1295 * @addr: address for which the chunk needs to be determined.
1297 * This is an internal function that handles all but static allocations.
1298 * Static percpu address values should never be passed into the allocator.
1300 * RETURNS:
1301 * The address of the found chunk.
1303 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1305 /* is it in the dynamic region (first chunk)? */
1306 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1307 return pcpu_first_chunk;
1309 /* is it in the reserved region? */
1310 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1311 return pcpu_reserved_chunk;
1314 * The address is relative to unit0 which might be unused and
1315 * thus unmapped. Offset the address to the unit space of the
1316 * current processor before looking it up in the vmalloc
1317 * space. Note that any possible cpu id can be used here, so
1318 * there's no need to worry about preemption or cpu hotplug.
1320 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1321 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1325 * pcpu_alloc - the percpu allocator
1326 * @size: size of area to allocate in bytes
1327 * @align: alignment of area (max PAGE_SIZE)
1328 * @reserved: allocate from the reserved chunk if available
1329 * @gfp: allocation flags
1331 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1332 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1333 * then no warning will be triggered on invalid or failed allocation
1334 * requests.
1336 * RETURNS:
1337 * Percpu pointer to the allocated area on success, NULL on failure.
1339 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1340 gfp_t gfp)
1342 bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1343 bool do_warn = !(gfp & __GFP_NOWARN);
1344 static int warn_limit = 10;
1345 struct pcpu_chunk *chunk;
1346 const char *err;
1347 int slot, off, cpu, ret;
1348 unsigned long flags;
1349 void __percpu *ptr;
1350 size_t bits, bit_align;
1353 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1354 * therefore alignment must be a minimum of that many bytes.
1355 * An allocation may have internal fragmentation from rounding up
1356 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1358 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1359 align = PCPU_MIN_ALLOC_SIZE;
1361 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1362 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1363 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1365 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1366 !is_power_of_2(align))) {
1367 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1368 size, align);
1369 return NULL;
1372 if (!is_atomic)
1373 mutex_lock(&pcpu_alloc_mutex);
1375 spin_lock_irqsave(&pcpu_lock, flags);
1377 /* serve reserved allocations from the reserved chunk if available */
1378 if (reserved && pcpu_reserved_chunk) {
1379 chunk = pcpu_reserved_chunk;
1381 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1382 if (off < 0) {
1383 err = "alloc from reserved chunk failed";
1384 goto fail_unlock;
1387 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1388 if (off >= 0)
1389 goto area_found;
1391 err = "alloc from reserved chunk failed";
1392 goto fail_unlock;
1395 restart:
1396 /* search through normal chunks */
1397 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1398 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1399 off = pcpu_find_block_fit(chunk, bits, bit_align,
1400 is_atomic);
1401 if (off < 0)
1402 continue;
1404 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1405 if (off >= 0)
1406 goto area_found;
1411 spin_unlock_irqrestore(&pcpu_lock, flags);
1414 * No space left. Create a new chunk. We don't want multiple
1415 * tasks to create chunks simultaneously. Serialize and create iff
1416 * there's still no empty chunk after grabbing the mutex.
1418 if (is_atomic) {
1419 err = "atomic alloc failed, no space left";
1420 goto fail;
1423 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1424 chunk = pcpu_create_chunk();
1425 if (!chunk) {
1426 err = "failed to allocate new chunk";
1427 goto fail;
1430 spin_lock_irqsave(&pcpu_lock, flags);
1431 pcpu_chunk_relocate(chunk, -1);
1432 } else {
1433 spin_lock_irqsave(&pcpu_lock, flags);
1436 goto restart;
1438 area_found:
1439 pcpu_stats_area_alloc(chunk, size);
1440 spin_unlock_irqrestore(&pcpu_lock, flags);
1442 /* populate if not all pages are already there */
1443 if (!is_atomic) {
1444 int page_start, page_end, rs, re;
1446 page_start = PFN_DOWN(off);
1447 page_end = PFN_UP(off + size);
1449 pcpu_for_each_unpop_region(chunk->populated, rs, re,
1450 page_start, page_end) {
1451 WARN_ON(chunk->immutable);
1453 ret = pcpu_populate_chunk(chunk, rs, re);
1455 spin_lock_irqsave(&pcpu_lock, flags);
1456 if (ret) {
1457 pcpu_free_area(chunk, off);
1458 err = "failed to populate";
1459 goto fail_unlock;
1461 pcpu_chunk_populated(chunk, rs, re, true);
1462 spin_unlock_irqrestore(&pcpu_lock, flags);
1465 mutex_unlock(&pcpu_alloc_mutex);
1468 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1469 pcpu_schedule_balance_work();
1471 /* clear the areas and return address relative to base address */
1472 for_each_possible_cpu(cpu)
1473 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1475 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1476 kmemleak_alloc_percpu(ptr, size, gfp);
1478 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1479 chunk->base_addr, off, ptr);
1481 return ptr;
1483 fail_unlock:
1484 spin_unlock_irqrestore(&pcpu_lock, flags);
1485 fail:
1486 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1488 if (!is_atomic && do_warn && warn_limit) {
1489 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1490 size, align, is_atomic, err);
1491 dump_stack();
1492 if (!--warn_limit)
1493 pr_info("limit reached, disable warning\n");
1495 if (is_atomic) {
1496 /* see the flag handling in pcpu_blance_workfn() */
1497 pcpu_atomic_alloc_failed = true;
1498 pcpu_schedule_balance_work();
1499 } else {
1500 mutex_unlock(&pcpu_alloc_mutex);
1502 return NULL;
1506 * __alloc_percpu_gfp - allocate dynamic percpu area
1507 * @size: size of area to allocate in bytes
1508 * @align: alignment of area (max PAGE_SIZE)
1509 * @gfp: allocation flags
1511 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1512 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1513 * be called from any context but is a lot more likely to fail. If @gfp
1514 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1515 * allocation requests.
1517 * RETURNS:
1518 * Percpu pointer to the allocated area on success, NULL on failure.
1520 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1522 return pcpu_alloc(size, align, false, gfp);
1524 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1527 * __alloc_percpu - allocate dynamic percpu area
1528 * @size: size of area to allocate in bytes
1529 * @align: alignment of area (max PAGE_SIZE)
1531 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1533 void __percpu *__alloc_percpu(size_t size, size_t align)
1535 return pcpu_alloc(size, align, false, GFP_KERNEL);
1537 EXPORT_SYMBOL_GPL(__alloc_percpu);
1540 * __alloc_reserved_percpu - allocate reserved percpu area
1541 * @size: size of area to allocate in bytes
1542 * @align: alignment of area (max PAGE_SIZE)
1544 * Allocate zero-filled percpu area of @size bytes aligned at @align
1545 * from reserved percpu area if arch has set it up; otherwise,
1546 * allocation is served from the same dynamic area. Might sleep.
1547 * Might trigger writeouts.
1549 * CONTEXT:
1550 * Does GFP_KERNEL allocation.
1552 * RETURNS:
1553 * Percpu pointer to the allocated area on success, NULL on failure.
1555 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1557 return pcpu_alloc(size, align, true, GFP_KERNEL);
1561 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1562 * @work: unused
1564 * Reclaim all fully free chunks except for the first one.
1566 static void pcpu_balance_workfn(struct work_struct *work)
1568 LIST_HEAD(to_free);
1569 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1570 struct pcpu_chunk *chunk, *next;
1571 int slot, nr_to_pop, ret;
1574 * There's no reason to keep around multiple unused chunks and VM
1575 * areas can be scarce. Destroy all free chunks except for one.
1577 mutex_lock(&pcpu_alloc_mutex);
1578 spin_lock_irq(&pcpu_lock);
1580 list_for_each_entry_safe(chunk, next, free_head, list) {
1581 WARN_ON(chunk->immutable);
1583 /* spare the first one */
1584 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1585 continue;
1587 list_move(&chunk->list, &to_free);
1590 spin_unlock_irq(&pcpu_lock);
1592 list_for_each_entry_safe(chunk, next, &to_free, list) {
1593 int rs, re;
1595 pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1596 chunk->nr_pages) {
1597 pcpu_depopulate_chunk(chunk, rs, re);
1598 spin_lock_irq(&pcpu_lock);
1599 pcpu_chunk_depopulated(chunk, rs, re);
1600 spin_unlock_irq(&pcpu_lock);
1602 pcpu_destroy_chunk(chunk);
1606 * Ensure there are certain number of free populated pages for
1607 * atomic allocs. Fill up from the most packed so that atomic
1608 * allocs don't increase fragmentation. If atomic allocation
1609 * failed previously, always populate the maximum amount. This
1610 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1611 * failing indefinitely; however, large atomic allocs are not
1612 * something we support properly and can be highly unreliable and
1613 * inefficient.
1615 retry_pop:
1616 if (pcpu_atomic_alloc_failed) {
1617 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1618 /* best effort anyway, don't worry about synchronization */
1619 pcpu_atomic_alloc_failed = false;
1620 } else {
1621 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1622 pcpu_nr_empty_pop_pages,
1623 0, PCPU_EMPTY_POP_PAGES_HIGH);
1626 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1627 int nr_unpop = 0, rs, re;
1629 if (!nr_to_pop)
1630 break;
1632 spin_lock_irq(&pcpu_lock);
1633 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1634 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1635 if (nr_unpop)
1636 break;
1638 spin_unlock_irq(&pcpu_lock);
1640 if (!nr_unpop)
1641 continue;
1643 /* @chunk can't go away while pcpu_alloc_mutex is held */
1644 pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1645 chunk->nr_pages) {
1646 int nr = min(re - rs, nr_to_pop);
1648 ret = pcpu_populate_chunk(chunk, rs, rs + nr);
1649 if (!ret) {
1650 nr_to_pop -= nr;
1651 spin_lock_irq(&pcpu_lock);
1652 pcpu_chunk_populated(chunk, rs, rs + nr, false);
1653 spin_unlock_irq(&pcpu_lock);
1654 } else {
1655 nr_to_pop = 0;
1658 if (!nr_to_pop)
1659 break;
1663 if (nr_to_pop) {
1664 /* ran out of chunks to populate, create a new one and retry */
1665 chunk = pcpu_create_chunk();
1666 if (chunk) {
1667 spin_lock_irq(&pcpu_lock);
1668 pcpu_chunk_relocate(chunk, -1);
1669 spin_unlock_irq(&pcpu_lock);
1670 goto retry_pop;
1674 mutex_unlock(&pcpu_alloc_mutex);
1678 * free_percpu - free percpu area
1679 * @ptr: pointer to area to free
1681 * Free percpu area @ptr.
1683 * CONTEXT:
1684 * Can be called from atomic context.
1686 void free_percpu(void __percpu *ptr)
1688 void *addr;
1689 struct pcpu_chunk *chunk;
1690 unsigned long flags;
1691 int off;
1693 if (!ptr)
1694 return;
1696 kmemleak_free_percpu(ptr);
1698 addr = __pcpu_ptr_to_addr(ptr);
1700 spin_lock_irqsave(&pcpu_lock, flags);
1702 chunk = pcpu_chunk_addr_search(addr);
1703 off = addr - chunk->base_addr;
1705 pcpu_free_area(chunk, off);
1707 /* if there are more than one fully free chunks, wake up grim reaper */
1708 if (chunk->free_bytes == pcpu_unit_size) {
1709 struct pcpu_chunk *pos;
1711 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1712 if (pos != chunk) {
1713 pcpu_schedule_balance_work();
1714 break;
1718 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1720 spin_unlock_irqrestore(&pcpu_lock, flags);
1722 EXPORT_SYMBOL_GPL(free_percpu);
1724 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1726 #ifdef CONFIG_SMP
1727 const size_t static_size = __per_cpu_end - __per_cpu_start;
1728 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1729 unsigned int cpu;
1731 for_each_possible_cpu(cpu) {
1732 void *start = per_cpu_ptr(base, cpu);
1733 void *va = (void *)addr;
1735 if (va >= start && va < start + static_size) {
1736 if (can_addr) {
1737 *can_addr = (unsigned long) (va - start);
1738 *can_addr += (unsigned long)
1739 per_cpu_ptr(base, get_boot_cpu_id());
1741 return true;
1744 #endif
1745 /* on UP, can't distinguish from other static vars, always false */
1746 return false;
1750 * is_kernel_percpu_address - test whether address is from static percpu area
1751 * @addr: address to test
1753 * Test whether @addr belongs to in-kernel static percpu area. Module
1754 * static percpu areas are not considered. For those, use
1755 * is_module_percpu_address().
1757 * RETURNS:
1758 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1760 bool is_kernel_percpu_address(unsigned long addr)
1762 return __is_kernel_percpu_address(addr, NULL);
1766 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1767 * @addr: the address to be converted to physical address
1769 * Given @addr which is dereferenceable address obtained via one of
1770 * percpu access macros, this function translates it into its physical
1771 * address. The caller is responsible for ensuring @addr stays valid
1772 * until this function finishes.
1774 * percpu allocator has special setup for the first chunk, which currently
1775 * supports either embedding in linear address space or vmalloc mapping,
1776 * and, from the second one, the backing allocator (currently either vm or
1777 * km) provides translation.
1779 * The addr can be translated simply without checking if it falls into the
1780 * first chunk. But the current code reflects better how percpu allocator
1781 * actually works, and the verification can discover both bugs in percpu
1782 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1783 * code.
1785 * RETURNS:
1786 * The physical address for @addr.
1788 phys_addr_t per_cpu_ptr_to_phys(void *addr)
1790 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1791 bool in_first_chunk = false;
1792 unsigned long first_low, first_high;
1793 unsigned int cpu;
1796 * The following test on unit_low/high isn't strictly
1797 * necessary but will speed up lookups of addresses which
1798 * aren't in the first chunk.
1800 * The address check is against full chunk sizes. pcpu_base_addr
1801 * points to the beginning of the first chunk including the
1802 * static region. Assumes good intent as the first chunk may
1803 * not be full (ie. < pcpu_unit_pages in size).
1805 first_low = (unsigned long)pcpu_base_addr +
1806 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1807 first_high = (unsigned long)pcpu_base_addr +
1808 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1809 if ((unsigned long)addr >= first_low &&
1810 (unsigned long)addr < first_high) {
1811 for_each_possible_cpu(cpu) {
1812 void *start = per_cpu_ptr(base, cpu);
1814 if (addr >= start && addr < start + pcpu_unit_size) {
1815 in_first_chunk = true;
1816 break;
1821 if (in_first_chunk) {
1822 if (!is_vmalloc_addr(addr))
1823 return __pa(addr);
1824 else
1825 return page_to_phys(vmalloc_to_page(addr)) +
1826 offset_in_page(addr);
1827 } else
1828 return page_to_phys(pcpu_addr_to_page(addr)) +
1829 offset_in_page(addr);
1833 * pcpu_alloc_alloc_info - allocate percpu allocation info
1834 * @nr_groups: the number of groups
1835 * @nr_units: the number of units
1837 * Allocate ai which is large enough for @nr_groups groups containing
1838 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1839 * cpu_map array which is long enough for @nr_units and filled with
1840 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1841 * pointer of other groups.
1843 * RETURNS:
1844 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1845 * failure.
1847 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1848 int nr_units)
1850 struct pcpu_alloc_info *ai;
1851 size_t base_size, ai_size;
1852 void *ptr;
1853 int unit;
1855 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1856 __alignof__(ai->groups[0].cpu_map[0]));
1857 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1859 ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1860 if (!ptr)
1861 return NULL;
1862 ai = ptr;
1863 ptr += base_size;
1865 ai->groups[0].cpu_map = ptr;
1867 for (unit = 0; unit < nr_units; unit++)
1868 ai->groups[0].cpu_map[unit] = NR_CPUS;
1870 ai->nr_groups = nr_groups;
1871 ai->__ai_size = PFN_ALIGN(ai_size);
1873 return ai;
1877 * pcpu_free_alloc_info - free percpu allocation info
1878 * @ai: pcpu_alloc_info to free
1880 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1882 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1884 memblock_free_early(__pa(ai), ai->__ai_size);
1888 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1889 * @lvl: loglevel
1890 * @ai: allocation info to dump
1892 * Print out information about @ai using loglevel @lvl.
1894 static void pcpu_dump_alloc_info(const char *lvl,
1895 const struct pcpu_alloc_info *ai)
1897 int group_width = 1, cpu_width = 1, width;
1898 char empty_str[] = "--------";
1899 int alloc = 0, alloc_end = 0;
1900 int group, v;
1901 int upa, apl; /* units per alloc, allocs per line */
1903 v = ai->nr_groups;
1904 while (v /= 10)
1905 group_width++;
1907 v = num_possible_cpus();
1908 while (v /= 10)
1909 cpu_width++;
1910 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1912 upa = ai->alloc_size / ai->unit_size;
1913 width = upa * (cpu_width + 1) + group_width + 3;
1914 apl = rounddown_pow_of_two(max(60 / width, 1));
1916 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1917 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1918 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1920 for (group = 0; group < ai->nr_groups; group++) {
1921 const struct pcpu_group_info *gi = &ai->groups[group];
1922 int unit = 0, unit_end = 0;
1924 BUG_ON(gi->nr_units % upa);
1925 for (alloc_end += gi->nr_units / upa;
1926 alloc < alloc_end; alloc++) {
1927 if (!(alloc % apl)) {
1928 pr_cont("\n");
1929 printk("%spcpu-alloc: ", lvl);
1931 pr_cont("[%0*d] ", group_width, group);
1933 for (unit_end += upa; unit < unit_end; unit++)
1934 if (gi->cpu_map[unit] != NR_CPUS)
1935 pr_cont("%0*d ",
1936 cpu_width, gi->cpu_map[unit]);
1937 else
1938 pr_cont("%s ", empty_str);
1941 pr_cont("\n");
1945 * pcpu_setup_first_chunk - initialize the first percpu chunk
1946 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1947 * @base_addr: mapped address
1949 * Initialize the first percpu chunk which contains the kernel static
1950 * perpcu area. This function is to be called from arch percpu area
1951 * setup path.
1953 * @ai contains all information necessary to initialize the first
1954 * chunk and prime the dynamic percpu allocator.
1956 * @ai->static_size is the size of static percpu area.
1958 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1959 * reserve after the static area in the first chunk. This reserves
1960 * the first chunk such that it's available only through reserved
1961 * percpu allocation. This is primarily used to serve module percpu
1962 * static areas on architectures where the addressing model has
1963 * limited offset range for symbol relocations to guarantee module
1964 * percpu symbols fall inside the relocatable range.
1966 * @ai->dyn_size determines the number of bytes available for dynamic
1967 * allocation in the first chunk. The area between @ai->static_size +
1968 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1970 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1971 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1972 * @ai->dyn_size.
1974 * @ai->atom_size is the allocation atom size and used as alignment
1975 * for vm areas.
1977 * @ai->alloc_size is the allocation size and always multiple of
1978 * @ai->atom_size. This is larger than @ai->atom_size if
1979 * @ai->unit_size is larger than @ai->atom_size.
1981 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1982 * percpu areas. Units which should be colocated are put into the
1983 * same group. Dynamic VM areas will be allocated according to these
1984 * groupings. If @ai->nr_groups is zero, a single group containing
1985 * all units is assumed.
1987 * The caller should have mapped the first chunk at @base_addr and
1988 * copied static data to each unit.
1990 * The first chunk will always contain a static and a dynamic region.
1991 * However, the static region is not managed by any chunk. If the first
1992 * chunk also contains a reserved region, it is served by two chunks -
1993 * one for the reserved region and one for the dynamic region. They
1994 * share the same vm, but use offset regions in the area allocation map.
1995 * The chunk serving the dynamic region is circulated in the chunk slots
1996 * and available for dynamic allocation like any other chunk.
1998 * RETURNS:
1999 * 0 on success, -errno on failure.
2001 int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2002 void *base_addr)
2004 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2005 size_t static_size, dyn_size;
2006 struct pcpu_chunk *chunk;
2007 unsigned long *group_offsets;
2008 size_t *group_sizes;
2009 unsigned long *unit_off;
2010 unsigned int cpu;
2011 int *unit_map;
2012 int group, unit, i;
2013 int map_size;
2014 unsigned long tmp_addr;
2016 #define PCPU_SETUP_BUG_ON(cond) do { \
2017 if (unlikely(cond)) { \
2018 pr_emerg("failed to initialize, %s\n", #cond); \
2019 pr_emerg("cpu_possible_mask=%*pb\n", \
2020 cpumask_pr_args(cpu_possible_mask)); \
2021 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2022 BUG(); \
2024 } while (0)
2026 /* sanity checks */
2027 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2028 #ifdef CONFIG_SMP
2029 PCPU_SETUP_BUG_ON(!ai->static_size);
2030 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2031 #endif
2032 PCPU_SETUP_BUG_ON(!base_addr);
2033 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2034 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2035 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2036 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2037 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2038 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2039 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2040 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2041 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2042 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2043 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2045 /* process group information and build config tables accordingly */
2046 group_offsets = memblock_virt_alloc(ai->nr_groups *
2047 sizeof(group_offsets[0]), 0);
2048 group_sizes = memblock_virt_alloc(ai->nr_groups *
2049 sizeof(group_sizes[0]), 0);
2050 unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2051 unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2053 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2054 unit_map[cpu] = UINT_MAX;
2056 pcpu_low_unit_cpu = NR_CPUS;
2057 pcpu_high_unit_cpu = NR_CPUS;
2059 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2060 const struct pcpu_group_info *gi = &ai->groups[group];
2062 group_offsets[group] = gi->base_offset;
2063 group_sizes[group] = gi->nr_units * ai->unit_size;
2065 for (i = 0; i < gi->nr_units; i++) {
2066 cpu = gi->cpu_map[i];
2067 if (cpu == NR_CPUS)
2068 continue;
2070 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2071 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2072 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2074 unit_map[cpu] = unit + i;
2075 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2077 /* determine low/high unit_cpu */
2078 if (pcpu_low_unit_cpu == NR_CPUS ||
2079 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2080 pcpu_low_unit_cpu = cpu;
2081 if (pcpu_high_unit_cpu == NR_CPUS ||
2082 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2083 pcpu_high_unit_cpu = cpu;
2086 pcpu_nr_units = unit;
2088 for_each_possible_cpu(cpu)
2089 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2091 /* we're done parsing the input, undefine BUG macro and dump config */
2092 #undef PCPU_SETUP_BUG_ON
2093 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2095 pcpu_nr_groups = ai->nr_groups;
2096 pcpu_group_offsets = group_offsets;
2097 pcpu_group_sizes = group_sizes;
2098 pcpu_unit_map = unit_map;
2099 pcpu_unit_offsets = unit_off;
2101 /* determine basic parameters */
2102 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2103 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2104 pcpu_atom_size = ai->atom_size;
2105 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2106 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2108 pcpu_stats_save_ai(ai);
2111 * Allocate chunk slots. The additional last slot is for
2112 * empty chunks.
2114 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2115 pcpu_slot = memblock_virt_alloc(
2116 pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2117 for (i = 0; i < pcpu_nr_slots; i++)
2118 INIT_LIST_HEAD(&pcpu_slot[i]);
2121 * The end of the static region needs to be aligned with the
2122 * minimum allocation size as this offsets the reserved and
2123 * dynamic region. The first chunk ends page aligned by
2124 * expanding the dynamic region, therefore the dynamic region
2125 * can be shrunk to compensate while still staying above the
2126 * configured sizes.
2128 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2129 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2132 * Initialize first chunk.
2133 * If the reserved_size is non-zero, this initializes the reserved
2134 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2135 * and the dynamic region is initialized here. The first chunk,
2136 * pcpu_first_chunk, will always point to the chunk that serves
2137 * the dynamic region.
2139 tmp_addr = (unsigned long)base_addr + static_size;
2140 map_size = ai->reserved_size ?: dyn_size;
2141 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2143 /* init dynamic chunk if necessary */
2144 if (ai->reserved_size) {
2145 pcpu_reserved_chunk = chunk;
2147 tmp_addr = (unsigned long)base_addr + static_size +
2148 ai->reserved_size;
2149 map_size = dyn_size;
2150 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2153 /* link the first chunk in */
2154 pcpu_first_chunk = chunk;
2155 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2156 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2158 pcpu_stats_chunk_alloc();
2159 trace_percpu_create_chunk(base_addr);
2161 /* we're done */
2162 pcpu_base_addr = base_addr;
2163 return 0;
2166 #ifdef CONFIG_SMP
2168 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2169 [PCPU_FC_AUTO] = "auto",
2170 [PCPU_FC_EMBED] = "embed",
2171 [PCPU_FC_PAGE] = "page",
2174 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2176 static int __init percpu_alloc_setup(char *str)
2178 if (!str)
2179 return -EINVAL;
2181 if (0)
2182 /* nada */;
2183 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2184 else if (!strcmp(str, "embed"))
2185 pcpu_chosen_fc = PCPU_FC_EMBED;
2186 #endif
2187 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2188 else if (!strcmp(str, "page"))
2189 pcpu_chosen_fc = PCPU_FC_PAGE;
2190 #endif
2191 else
2192 pr_warn("unknown allocator %s specified\n", str);
2194 return 0;
2196 early_param("percpu_alloc", percpu_alloc_setup);
2199 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2200 * Build it if needed by the arch config or the generic setup is going
2201 * to be used.
2203 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2204 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2205 #define BUILD_EMBED_FIRST_CHUNK
2206 #endif
2208 /* build pcpu_page_first_chunk() iff needed by the arch config */
2209 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2210 #define BUILD_PAGE_FIRST_CHUNK
2211 #endif
2213 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2214 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2216 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2217 * @reserved_size: the size of reserved percpu area in bytes
2218 * @dyn_size: minimum free size for dynamic allocation in bytes
2219 * @atom_size: allocation atom size
2220 * @cpu_distance_fn: callback to determine distance between cpus, optional
2222 * This function determines grouping of units, their mappings to cpus
2223 * and other parameters considering needed percpu size, allocation
2224 * atom size and distances between CPUs.
2226 * Groups are always multiples of atom size and CPUs which are of
2227 * LOCAL_DISTANCE both ways are grouped together and share space for
2228 * units in the same group. The returned configuration is guaranteed
2229 * to have CPUs on different nodes on different groups and >=75% usage
2230 * of allocated virtual address space.
2232 * RETURNS:
2233 * On success, pointer to the new allocation_info is returned. On
2234 * failure, ERR_PTR value is returned.
2236 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2237 size_t reserved_size, size_t dyn_size,
2238 size_t atom_size,
2239 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2241 static int group_map[NR_CPUS] __initdata;
2242 static int group_cnt[NR_CPUS] __initdata;
2243 const size_t static_size = __per_cpu_end - __per_cpu_start;
2244 int nr_groups = 1, nr_units = 0;
2245 size_t size_sum, min_unit_size, alloc_size;
2246 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2247 int last_allocs, group, unit;
2248 unsigned int cpu, tcpu;
2249 struct pcpu_alloc_info *ai;
2250 unsigned int *cpu_map;
2252 /* this function may be called multiple times */
2253 memset(group_map, 0, sizeof(group_map));
2254 memset(group_cnt, 0, sizeof(group_cnt));
2256 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2257 size_sum = PFN_ALIGN(static_size + reserved_size +
2258 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2259 dyn_size = size_sum - static_size - reserved_size;
2262 * Determine min_unit_size, alloc_size and max_upa such that
2263 * alloc_size is multiple of atom_size and is the smallest
2264 * which can accommodate 4k aligned segments which are equal to
2265 * or larger than min_unit_size.
2267 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2269 /* determine the maximum # of units that can fit in an allocation */
2270 alloc_size = roundup(min_unit_size, atom_size);
2271 upa = alloc_size / min_unit_size;
2272 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2273 upa--;
2274 max_upa = upa;
2276 /* group cpus according to their proximity */
2277 for_each_possible_cpu(cpu) {
2278 group = 0;
2279 next_group:
2280 for_each_possible_cpu(tcpu) {
2281 if (cpu == tcpu)
2282 break;
2283 if (group_map[tcpu] == group && cpu_distance_fn &&
2284 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2285 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2286 group++;
2287 nr_groups = max(nr_groups, group + 1);
2288 goto next_group;
2291 group_map[cpu] = group;
2292 group_cnt[group]++;
2296 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2297 * Expand the unit_size until we use >= 75% of the units allocated.
2298 * Related to atom_size, which could be much larger than the unit_size.
2300 last_allocs = INT_MAX;
2301 for (upa = max_upa; upa; upa--) {
2302 int allocs = 0, wasted = 0;
2304 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2305 continue;
2307 for (group = 0; group < nr_groups; group++) {
2308 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2309 allocs += this_allocs;
2310 wasted += this_allocs * upa - group_cnt[group];
2314 * Don't accept if wastage is over 1/3. The
2315 * greater-than comparison ensures upa==1 always
2316 * passes the following check.
2318 if (wasted > num_possible_cpus() / 3)
2319 continue;
2321 /* and then don't consume more memory */
2322 if (allocs > last_allocs)
2323 break;
2324 last_allocs = allocs;
2325 best_upa = upa;
2327 upa = best_upa;
2329 /* allocate and fill alloc_info */
2330 for (group = 0; group < nr_groups; group++)
2331 nr_units += roundup(group_cnt[group], upa);
2333 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2334 if (!ai)
2335 return ERR_PTR(-ENOMEM);
2336 cpu_map = ai->groups[0].cpu_map;
2338 for (group = 0; group < nr_groups; group++) {
2339 ai->groups[group].cpu_map = cpu_map;
2340 cpu_map += roundup(group_cnt[group], upa);
2343 ai->static_size = static_size;
2344 ai->reserved_size = reserved_size;
2345 ai->dyn_size = dyn_size;
2346 ai->unit_size = alloc_size / upa;
2347 ai->atom_size = atom_size;
2348 ai->alloc_size = alloc_size;
2350 for (group = 0, unit = 0; group_cnt[group]; group++) {
2351 struct pcpu_group_info *gi = &ai->groups[group];
2354 * Initialize base_offset as if all groups are located
2355 * back-to-back. The caller should update this to
2356 * reflect actual allocation.
2358 gi->base_offset = unit * ai->unit_size;
2360 for_each_possible_cpu(cpu)
2361 if (group_map[cpu] == group)
2362 gi->cpu_map[gi->nr_units++] = cpu;
2363 gi->nr_units = roundup(gi->nr_units, upa);
2364 unit += gi->nr_units;
2366 BUG_ON(unit != nr_units);
2368 return ai;
2370 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2372 #if defined(BUILD_EMBED_FIRST_CHUNK)
2374 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2375 * @reserved_size: the size of reserved percpu area in bytes
2376 * @dyn_size: minimum free size for dynamic allocation in bytes
2377 * @atom_size: allocation atom size
2378 * @cpu_distance_fn: callback to determine distance between cpus, optional
2379 * @alloc_fn: function to allocate percpu page
2380 * @free_fn: function to free percpu page
2382 * This is a helper to ease setting up embedded first percpu chunk and
2383 * can be called where pcpu_setup_first_chunk() is expected.
2385 * If this function is used to setup the first chunk, it is allocated
2386 * by calling @alloc_fn and used as-is without being mapped into
2387 * vmalloc area. Allocations are always whole multiples of @atom_size
2388 * aligned to @atom_size.
2390 * This enables the first chunk to piggy back on the linear physical
2391 * mapping which often uses larger page size. Please note that this
2392 * can result in very sparse cpu->unit mapping on NUMA machines thus
2393 * requiring large vmalloc address space. Don't use this allocator if
2394 * vmalloc space is not orders of magnitude larger than distances
2395 * between node memory addresses (ie. 32bit NUMA machines).
2397 * @dyn_size specifies the minimum dynamic area size.
2399 * If the needed size is smaller than the minimum or specified unit
2400 * size, the leftover is returned using @free_fn.
2402 * RETURNS:
2403 * 0 on success, -errno on failure.
2405 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2406 size_t atom_size,
2407 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2408 pcpu_fc_alloc_fn_t alloc_fn,
2409 pcpu_fc_free_fn_t free_fn)
2411 void *base = (void *)ULONG_MAX;
2412 void **areas = NULL;
2413 struct pcpu_alloc_info *ai;
2414 size_t size_sum, areas_size;
2415 unsigned long max_distance;
2416 int group, i, highest_group, rc;
2418 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2419 cpu_distance_fn);
2420 if (IS_ERR(ai))
2421 return PTR_ERR(ai);
2423 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2424 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2426 areas = memblock_virt_alloc_nopanic(areas_size, 0);
2427 if (!areas) {
2428 rc = -ENOMEM;
2429 goto out_free;
2432 /* allocate, copy and determine base address & max_distance */
2433 highest_group = 0;
2434 for (group = 0; group < ai->nr_groups; group++) {
2435 struct pcpu_group_info *gi = &ai->groups[group];
2436 unsigned int cpu = NR_CPUS;
2437 void *ptr;
2439 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2440 cpu = gi->cpu_map[i];
2441 BUG_ON(cpu == NR_CPUS);
2443 /* allocate space for the whole group */
2444 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2445 if (!ptr) {
2446 rc = -ENOMEM;
2447 goto out_free_areas;
2449 /* kmemleak tracks the percpu allocations separately */
2450 kmemleak_free(ptr);
2451 areas[group] = ptr;
2453 base = min(ptr, base);
2454 if (ptr > areas[highest_group])
2455 highest_group = group;
2457 max_distance = areas[highest_group] - base;
2458 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2460 /* warn if maximum distance is further than 75% of vmalloc space */
2461 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2462 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2463 max_distance, VMALLOC_TOTAL);
2464 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2465 /* and fail if we have fallback */
2466 rc = -EINVAL;
2467 goto out_free_areas;
2468 #endif
2472 * Copy data and free unused parts. This should happen after all
2473 * allocations are complete; otherwise, we may end up with
2474 * overlapping groups.
2476 for (group = 0; group < ai->nr_groups; group++) {
2477 struct pcpu_group_info *gi = &ai->groups[group];
2478 void *ptr = areas[group];
2480 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2481 if (gi->cpu_map[i] == NR_CPUS) {
2482 /* unused unit, free whole */
2483 free_fn(ptr, ai->unit_size);
2484 continue;
2486 /* copy and return the unused part */
2487 memcpy(ptr, __per_cpu_load, ai->static_size);
2488 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2492 /* base address is now known, determine group base offsets */
2493 for (group = 0; group < ai->nr_groups; group++) {
2494 ai->groups[group].base_offset = areas[group] - base;
2497 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2498 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2499 ai->dyn_size, ai->unit_size);
2501 rc = pcpu_setup_first_chunk(ai, base);
2502 goto out_free;
2504 out_free_areas:
2505 for (group = 0; group < ai->nr_groups; group++)
2506 if (areas[group])
2507 free_fn(areas[group],
2508 ai->groups[group].nr_units * ai->unit_size);
2509 out_free:
2510 pcpu_free_alloc_info(ai);
2511 if (areas)
2512 memblock_free_early(__pa(areas), areas_size);
2513 return rc;
2515 #endif /* BUILD_EMBED_FIRST_CHUNK */
2517 #ifdef BUILD_PAGE_FIRST_CHUNK
2519 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2520 * @reserved_size: the size of reserved percpu area in bytes
2521 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2522 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2523 * @populate_pte_fn: function to populate pte
2525 * This is a helper to ease setting up page-remapped first percpu
2526 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2528 * This is the basic allocator. Static percpu area is allocated
2529 * page-by-page into vmalloc area.
2531 * RETURNS:
2532 * 0 on success, -errno on failure.
2534 int __init pcpu_page_first_chunk(size_t reserved_size,
2535 pcpu_fc_alloc_fn_t alloc_fn,
2536 pcpu_fc_free_fn_t free_fn,
2537 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2539 static struct vm_struct vm;
2540 struct pcpu_alloc_info *ai;
2541 char psize_str[16];
2542 int unit_pages;
2543 size_t pages_size;
2544 struct page **pages;
2545 int unit, i, j, rc;
2546 int upa;
2547 int nr_g0_units;
2549 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2551 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2552 if (IS_ERR(ai))
2553 return PTR_ERR(ai);
2554 BUG_ON(ai->nr_groups != 1);
2555 upa = ai->alloc_size/ai->unit_size;
2556 nr_g0_units = roundup(num_possible_cpus(), upa);
2557 if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2558 pcpu_free_alloc_info(ai);
2559 return -EINVAL;
2562 unit_pages = ai->unit_size >> PAGE_SHIFT;
2564 /* unaligned allocations can't be freed, round up to page size */
2565 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2566 sizeof(pages[0]));
2567 pages = memblock_virt_alloc(pages_size, 0);
2569 /* allocate pages */
2570 j = 0;
2571 for (unit = 0; unit < num_possible_cpus(); unit++) {
2572 unsigned int cpu = ai->groups[0].cpu_map[unit];
2573 for (i = 0; i < unit_pages; i++) {
2574 void *ptr;
2576 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2577 if (!ptr) {
2578 pr_warn("failed to allocate %s page for cpu%u\n",
2579 psize_str, cpu);
2580 goto enomem;
2582 /* kmemleak tracks the percpu allocations separately */
2583 kmemleak_free(ptr);
2584 pages[j++] = virt_to_page(ptr);
2588 /* allocate vm area, map the pages and copy static data */
2589 vm.flags = VM_ALLOC;
2590 vm.size = num_possible_cpus() * ai->unit_size;
2591 vm_area_register_early(&vm, PAGE_SIZE);
2593 for (unit = 0; unit < num_possible_cpus(); unit++) {
2594 unsigned long unit_addr =
2595 (unsigned long)vm.addr + unit * ai->unit_size;
2597 for (i = 0; i < unit_pages; i++)
2598 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2600 /* pte already populated, the following shouldn't fail */
2601 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2602 unit_pages);
2603 if (rc < 0)
2604 panic("failed to map percpu area, err=%d\n", rc);
2607 * FIXME: Archs with virtual cache should flush local
2608 * cache for the linear mapping here - something
2609 * equivalent to flush_cache_vmap() on the local cpu.
2610 * flush_cache_vmap() can't be used as most supporting
2611 * data structures are not set up yet.
2614 /* copy static data */
2615 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2618 /* we're ready, commit */
2619 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2620 unit_pages, psize_str, vm.addr, ai->static_size,
2621 ai->reserved_size, ai->dyn_size);
2623 rc = pcpu_setup_first_chunk(ai, vm.addr);
2624 goto out_free_ar;
2626 enomem:
2627 while (--j >= 0)
2628 free_fn(page_address(pages[j]), PAGE_SIZE);
2629 rc = -ENOMEM;
2630 out_free_ar:
2631 memblock_free_early(__pa(pages), pages_size);
2632 pcpu_free_alloc_info(ai);
2633 return rc;
2635 #endif /* BUILD_PAGE_FIRST_CHUNK */
2637 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2639 * Generic SMP percpu area setup.
2641 * The embedding helper is used because its behavior closely resembles
2642 * the original non-dynamic generic percpu area setup. This is
2643 * important because many archs have addressing restrictions and might
2644 * fail if the percpu area is located far away from the previous
2645 * location. As an added bonus, in non-NUMA cases, embedding is
2646 * generally a good idea TLB-wise because percpu area can piggy back
2647 * on the physical linear memory mapping which uses large page
2648 * mappings on applicable archs.
2650 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2651 EXPORT_SYMBOL(__per_cpu_offset);
2653 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2654 size_t align)
2656 return memblock_virt_alloc_from_nopanic(
2657 size, align, __pa(MAX_DMA_ADDRESS));
2660 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2662 memblock_free_early(__pa(ptr), size);
2665 void __init setup_per_cpu_areas(void)
2667 unsigned long delta;
2668 unsigned int cpu;
2669 int rc;
2672 * Always reserve area for module percpu variables. That's
2673 * what the legacy allocator did.
2675 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2676 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2677 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2678 if (rc < 0)
2679 panic("Failed to initialize percpu areas.");
2681 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2682 for_each_possible_cpu(cpu)
2683 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2685 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2687 #else /* CONFIG_SMP */
2690 * UP percpu area setup.
2692 * UP always uses km-based percpu allocator with identity mapping.
2693 * Static percpu variables are indistinguishable from the usual static
2694 * variables and don't require any special preparation.
2696 void __init setup_per_cpu_areas(void)
2698 const size_t unit_size =
2699 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2700 PERCPU_DYNAMIC_RESERVE));
2701 struct pcpu_alloc_info *ai;
2702 void *fc;
2704 ai = pcpu_alloc_alloc_info(1, 1);
2705 fc = memblock_virt_alloc_from_nopanic(unit_size,
2706 PAGE_SIZE,
2707 __pa(MAX_DMA_ADDRESS));
2708 if (!ai || !fc)
2709 panic("Failed to allocate memory for percpu areas.");
2710 /* kmemleak tracks the percpu allocations separately */
2711 kmemleak_free(fc);
2713 ai->dyn_size = unit_size;
2714 ai->unit_size = unit_size;
2715 ai->atom_size = unit_size;
2716 ai->alloc_size = unit_size;
2717 ai->groups[0].nr_units = 1;
2718 ai->groups[0].cpu_map[0] = 0;
2720 if (pcpu_setup_first_chunk(ai, fc) < 0)
2721 panic("Failed to initialize percpu areas.");
2722 #ifdef CONFIG_CRIS
2723 #warning "the CRIS architecture has physical and virtual addresses confused"
2724 #else
2725 pcpu_free_alloc_info(ai);
2726 #endif
2729 #endif /* CONFIG_SMP */
2732 * Percpu allocator is initialized early during boot when neither slab or
2733 * workqueue is available. Plug async management until everything is up
2734 * and running.
2736 static int __init percpu_enable_async(void)
2738 pcpu_async_enabled = true;
2739 return 0;
2741 subsys_initcall(percpu_enable_async);