s390/mm: fix gmap tlb flush issues
[linux/fpc-iii.git] / mm / slab.c
blobb7f9f6456a61e95247a4a7dc9fd235e0e6f21d4c
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
90 #include <linux/mm.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
130 #include "slab.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
143 #define DEBUG 1
144 #define STATS 1
145 #define FORCED_DEBUG 1
146 #else
147 #define DEBUG 0
148 #define STATS 0
149 #define FORCED_DEBUG 0
150 #endif
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
158 #endif
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t;
165 #else
166 typedef unsigned short freelist_idx_t;
167 #endif
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172 * true if a page was allocated from pfmemalloc reserves for network-based
173 * swap
175 static bool pfmemalloc_active __read_mostly;
178 * struct array_cache
180 * Purpose:
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
185 * The limit is stored in the per-cpu structure to reduce the data cache
186 * footprint.
189 struct array_cache {
190 unsigned int avail;
191 unsigned int limit;
192 unsigned int batchcount;
193 unsigned int touched;
194 void *entry[]; /*
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
197 * the entries.
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
205 struct alien_cache {
206 spinlock_t lock;
207 struct array_cache ac;
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp)
213 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
216 static inline void set_obj_pfmemalloc(void **objp)
218 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
219 return;
222 static inline void clear_obj_pfmemalloc(void **objp)
224 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init {
233 struct array_cache cache;
234 void *entries[BOOT_CPUCACHE_ENTRIES];
238 * Need this for bootstrapping a per node allocator.
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
242 #define CACHE_CACHE 0
243 #define SIZE_NODE (MAX_NUMNODES)
245 static int drain_freelist(struct kmem_cache *cache,
246 struct kmem_cache_node *n, int tofree);
247 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
248 int node, struct list_head *list);
249 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
250 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
251 static void cache_reap(struct work_struct *unused);
253 static int slab_early_init = 1;
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
257 static void kmem_cache_node_init(struct kmem_cache_node *parent)
259 INIT_LIST_HEAD(&parent->slabs_full);
260 INIT_LIST_HEAD(&parent->slabs_partial);
261 INIT_LIST_HEAD(&parent->slabs_free);
262 parent->shared = NULL;
263 parent->alien = NULL;
264 parent->colour_next = 0;
265 spin_lock_init(&parent->list_lock);
266 parent->free_objects = 0;
267 parent->free_touched = 0;
270 #define MAKE_LIST(cachep, listp, slab, nodeid) \
271 do { \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
274 } while (0)
276 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
277 do { \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
281 } while (0)
283 #define CFLGS_OFF_SLAB (0x80000000UL)
284 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
286 #define BATCHREFILL_LIMIT 16
288 * Optimization question: fewer reaps means less probability for unnessary
289 * cpucache drain/refill cycles.
291 * OTOH the cpuarrays can contain lots of objects,
292 * which could lock up otherwise freeable slabs.
294 #define REAPTIMEOUT_AC (2*HZ)
295 #define REAPTIMEOUT_NODE (4*HZ)
297 #if STATS
298 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
299 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
300 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
301 #define STATS_INC_GROWN(x) ((x)->grown++)
302 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
303 #define STATS_SET_HIGH(x) \
304 do { \
305 if ((x)->num_active > (x)->high_mark) \
306 (x)->high_mark = (x)->num_active; \
307 } while (0)
308 #define STATS_INC_ERR(x) ((x)->errors++)
309 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
310 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
311 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
312 #define STATS_SET_FREEABLE(x, i) \
313 do { \
314 if ((x)->max_freeable < i) \
315 (x)->max_freeable = i; \
316 } while (0)
317 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
318 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
319 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
320 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
321 #else
322 #define STATS_INC_ACTIVE(x) do { } while (0)
323 #define STATS_DEC_ACTIVE(x) do { } while (0)
324 #define STATS_INC_ALLOCED(x) do { } while (0)
325 #define STATS_INC_GROWN(x) do { } while (0)
326 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
327 #define STATS_SET_HIGH(x) do { } while (0)
328 #define STATS_INC_ERR(x) do { } while (0)
329 #define STATS_INC_NODEALLOCS(x) do { } while (0)
330 #define STATS_INC_NODEFREES(x) do { } while (0)
331 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
332 #define STATS_SET_FREEABLE(x, i) do { } while (0)
333 #define STATS_INC_ALLOCHIT(x) do { } while (0)
334 #define STATS_INC_ALLOCMISS(x) do { } while (0)
335 #define STATS_INC_FREEHIT(x) do { } while (0)
336 #define STATS_INC_FREEMISS(x) do { } while (0)
337 #endif
339 #if DEBUG
342 * memory layout of objects:
343 * 0 : objp
344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
345 * the end of an object is aligned with the end of the real
346 * allocation. Catches writes behind the end of the allocation.
347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
348 * redzone word.
349 * cachep->obj_offset: The real object.
350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351 * cachep->size - 1* BYTES_PER_WORD: last caller address
352 * [BYTES_PER_WORD long]
354 static int obj_offset(struct kmem_cache *cachep)
356 return cachep->obj_offset;
359 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
361 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
362 return (unsigned long long*) (objp + obj_offset(cachep) -
363 sizeof(unsigned long long));
366 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
368 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
369 if (cachep->flags & SLAB_STORE_USER)
370 return (unsigned long long *)(objp + cachep->size -
371 sizeof(unsigned long long) -
372 REDZONE_ALIGN);
373 return (unsigned long long *) (objp + cachep->size -
374 sizeof(unsigned long long));
377 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
379 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
380 return (void **)(objp + cachep->size - BYTES_PER_WORD);
383 #else
385 #define obj_offset(x) 0
386 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
387 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
390 #endif
392 #define OBJECT_FREE (0)
393 #define OBJECT_ACTIVE (1)
395 #ifdef CONFIG_DEBUG_SLAB_LEAK
397 static void set_obj_status(struct page *page, int idx, int val)
399 int freelist_size;
400 char *status;
401 struct kmem_cache *cachep = page->slab_cache;
403 freelist_size = cachep->num * sizeof(freelist_idx_t);
404 status = (char *)page->freelist + freelist_size;
405 status[idx] = val;
408 static inline unsigned int get_obj_status(struct page *page, int idx)
410 int freelist_size;
411 char *status;
412 struct kmem_cache *cachep = page->slab_cache;
414 freelist_size = cachep->num * sizeof(freelist_idx_t);
415 status = (char *)page->freelist + freelist_size;
417 return status[idx];
420 #else
421 static inline void set_obj_status(struct page *page, int idx, int val) {}
423 #endif
426 * Do not go above this order unless 0 objects fit into the slab or
427 * overridden on the command line.
429 #define SLAB_MAX_ORDER_HI 1
430 #define SLAB_MAX_ORDER_LO 0
431 static int slab_max_order = SLAB_MAX_ORDER_LO;
432 static bool slab_max_order_set __initdata;
434 static inline struct kmem_cache *virt_to_cache(const void *obj)
436 struct page *page = virt_to_head_page(obj);
437 return page->slab_cache;
440 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
441 unsigned int idx)
443 return page->s_mem + cache->size * idx;
447 * We want to avoid an expensive divide : (offset / cache->size)
448 * Using the fact that size is a constant for a particular cache,
449 * we can replace (offset / cache->size) by
450 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
452 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
453 const struct page *page, void *obj)
455 u32 offset = (obj - page->s_mem);
456 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
459 /* internal cache of cache description objs */
460 static struct kmem_cache kmem_cache_boot = {
461 .batchcount = 1,
462 .limit = BOOT_CPUCACHE_ENTRIES,
463 .shared = 1,
464 .size = sizeof(struct kmem_cache),
465 .name = "kmem_cache",
468 #define BAD_ALIEN_MAGIC 0x01020304ul
470 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
472 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
474 return this_cpu_ptr(cachep->cpu_cache);
477 static size_t calculate_freelist_size(int nr_objs, size_t align)
479 size_t freelist_size;
481 freelist_size = nr_objs * sizeof(freelist_idx_t);
482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
483 freelist_size += nr_objs * sizeof(char);
485 if (align)
486 freelist_size = ALIGN(freelist_size, align);
488 return freelist_size;
491 static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
492 size_t idx_size, size_t align)
494 int nr_objs;
495 size_t remained_size;
496 size_t freelist_size;
497 int extra_space = 0;
499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
500 extra_space = sizeof(char);
502 * Ignore padding for the initial guess. The padding
503 * is at most @align-1 bytes, and @buffer_size is at
504 * least @align. In the worst case, this result will
505 * be one greater than the number of objects that fit
506 * into the memory allocation when taking the padding
507 * into account.
509 nr_objs = slab_size / (buffer_size + idx_size + extra_space);
512 * This calculated number will be either the right
513 * amount, or one greater than what we want.
515 remained_size = slab_size - nr_objs * buffer_size;
516 freelist_size = calculate_freelist_size(nr_objs, align);
517 if (remained_size < freelist_size)
518 nr_objs--;
520 return nr_objs;
524 * Calculate the number of objects and left-over bytes for a given buffer size.
526 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
527 size_t align, int flags, size_t *left_over,
528 unsigned int *num)
530 int nr_objs;
531 size_t mgmt_size;
532 size_t slab_size = PAGE_SIZE << gfporder;
535 * The slab management structure can be either off the slab or
536 * on it. For the latter case, the memory allocated for a
537 * slab is used for:
539 * - One unsigned int for each object
540 * - Padding to respect alignment of @align
541 * - @buffer_size bytes for each object
543 * If the slab management structure is off the slab, then the
544 * alignment will already be calculated into the size. Because
545 * the slabs are all pages aligned, the objects will be at the
546 * correct alignment when allocated.
548 if (flags & CFLGS_OFF_SLAB) {
549 mgmt_size = 0;
550 nr_objs = slab_size / buffer_size;
552 } else {
553 nr_objs = calculate_nr_objs(slab_size, buffer_size,
554 sizeof(freelist_idx_t), align);
555 mgmt_size = calculate_freelist_size(nr_objs, align);
557 *num = nr_objs;
558 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
561 #if DEBUG
562 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
564 static void __slab_error(const char *function, struct kmem_cache *cachep,
565 char *msg)
567 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
568 function, cachep->name, msg);
569 dump_stack();
570 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
572 #endif
575 * By default on NUMA we use alien caches to stage the freeing of
576 * objects allocated from other nodes. This causes massive memory
577 * inefficiencies when using fake NUMA setup to split memory into a
578 * large number of small nodes, so it can be disabled on the command
579 * line
582 static int use_alien_caches __read_mostly = 1;
583 static int __init noaliencache_setup(char *s)
585 use_alien_caches = 0;
586 return 1;
588 __setup("noaliencache", noaliencache_setup);
590 static int __init slab_max_order_setup(char *str)
592 get_option(&str, &slab_max_order);
593 slab_max_order = slab_max_order < 0 ? 0 :
594 min(slab_max_order, MAX_ORDER - 1);
595 slab_max_order_set = true;
597 return 1;
599 __setup("slab_max_order=", slab_max_order_setup);
601 #ifdef CONFIG_NUMA
603 * Special reaping functions for NUMA systems called from cache_reap().
604 * These take care of doing round robin flushing of alien caches (containing
605 * objects freed on different nodes from which they were allocated) and the
606 * flushing of remote pcps by calling drain_node_pages.
608 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
610 static void init_reap_node(int cpu)
612 int node;
614 node = next_node(cpu_to_mem(cpu), node_online_map);
615 if (node == MAX_NUMNODES)
616 node = first_node(node_online_map);
618 per_cpu(slab_reap_node, cpu) = node;
621 static void next_reap_node(void)
623 int node = __this_cpu_read(slab_reap_node);
625 node = next_node(node, node_online_map);
626 if (unlikely(node >= MAX_NUMNODES))
627 node = first_node(node_online_map);
628 __this_cpu_write(slab_reap_node, node);
631 #else
632 #define init_reap_node(cpu) do { } while (0)
633 #define next_reap_node(void) do { } while (0)
634 #endif
637 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
638 * via the workqueue/eventd.
639 * Add the CPU number into the expiration time to minimize the possibility of
640 * the CPUs getting into lockstep and contending for the global cache chain
641 * lock.
643 static void start_cpu_timer(int cpu)
645 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
648 * When this gets called from do_initcalls via cpucache_init(),
649 * init_workqueues() has already run, so keventd will be setup
650 * at that time.
652 if (keventd_up() && reap_work->work.func == NULL) {
653 init_reap_node(cpu);
654 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
655 schedule_delayed_work_on(cpu, reap_work,
656 __round_jiffies_relative(HZ, cpu));
660 static void init_arraycache(struct array_cache *ac, int limit, int batch)
663 * The array_cache structures contain pointers to free object.
664 * However, when such objects are allocated or transferred to another
665 * cache the pointers are not cleared and they could be counted as
666 * valid references during a kmemleak scan. Therefore, kmemleak must
667 * not scan such objects.
669 kmemleak_no_scan(ac);
670 if (ac) {
671 ac->avail = 0;
672 ac->limit = limit;
673 ac->batchcount = batch;
674 ac->touched = 0;
678 static struct array_cache *alloc_arraycache(int node, int entries,
679 int batchcount, gfp_t gfp)
681 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
682 struct array_cache *ac = NULL;
684 ac = kmalloc_node(memsize, gfp, node);
685 init_arraycache(ac, entries, batchcount);
686 return ac;
689 static inline bool is_slab_pfmemalloc(struct page *page)
691 return PageSlabPfmemalloc(page);
694 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
695 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
696 struct array_cache *ac)
698 struct kmem_cache_node *n = get_node(cachep, numa_mem_id());
699 struct page *page;
700 unsigned long flags;
702 if (!pfmemalloc_active)
703 return;
705 spin_lock_irqsave(&n->list_lock, flags);
706 list_for_each_entry(page, &n->slabs_full, lru)
707 if (is_slab_pfmemalloc(page))
708 goto out;
710 list_for_each_entry(page, &n->slabs_partial, lru)
711 if (is_slab_pfmemalloc(page))
712 goto out;
714 list_for_each_entry(page, &n->slabs_free, lru)
715 if (is_slab_pfmemalloc(page))
716 goto out;
718 pfmemalloc_active = false;
719 out:
720 spin_unlock_irqrestore(&n->list_lock, flags);
723 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
724 gfp_t flags, bool force_refill)
726 int i;
727 void *objp = ac->entry[--ac->avail];
729 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730 if (unlikely(is_obj_pfmemalloc(objp))) {
731 struct kmem_cache_node *n;
733 if (gfp_pfmemalloc_allowed(flags)) {
734 clear_obj_pfmemalloc(&objp);
735 return objp;
738 /* The caller cannot use PFMEMALLOC objects, find another one */
739 for (i = 0; i < ac->avail; i++) {
740 /* If a !PFMEMALLOC object is found, swap them */
741 if (!is_obj_pfmemalloc(ac->entry[i])) {
742 objp = ac->entry[i];
743 ac->entry[i] = ac->entry[ac->avail];
744 ac->entry[ac->avail] = objp;
745 return objp;
750 * If there are empty slabs on the slabs_free list and we are
751 * being forced to refill the cache, mark this one !pfmemalloc.
753 n = get_node(cachep, numa_mem_id());
754 if (!list_empty(&n->slabs_free) && force_refill) {
755 struct page *page = virt_to_head_page(objp);
756 ClearPageSlabPfmemalloc(page);
757 clear_obj_pfmemalloc(&objp);
758 recheck_pfmemalloc_active(cachep, ac);
759 return objp;
762 /* No !PFMEMALLOC objects available */
763 ac->avail++;
764 objp = NULL;
767 return objp;
770 static inline void *ac_get_obj(struct kmem_cache *cachep,
771 struct array_cache *ac, gfp_t flags, bool force_refill)
773 void *objp;
775 if (unlikely(sk_memalloc_socks()))
776 objp = __ac_get_obj(cachep, ac, flags, force_refill);
777 else
778 objp = ac->entry[--ac->avail];
780 return objp;
783 static noinline void *__ac_put_obj(struct kmem_cache *cachep,
784 struct array_cache *ac, void *objp)
786 if (unlikely(pfmemalloc_active)) {
787 /* Some pfmemalloc slabs exist, check if this is one */
788 struct page *page = virt_to_head_page(objp);
789 if (PageSlabPfmemalloc(page))
790 set_obj_pfmemalloc(&objp);
793 return objp;
796 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
797 void *objp)
799 if (unlikely(sk_memalloc_socks()))
800 objp = __ac_put_obj(cachep, ac, objp);
802 ac->entry[ac->avail++] = objp;
806 * Transfer objects in one arraycache to another.
807 * Locking must be handled by the caller.
809 * Return the number of entries transferred.
811 static int transfer_objects(struct array_cache *to,
812 struct array_cache *from, unsigned int max)
814 /* Figure out how many entries to transfer */
815 int nr = min3(from->avail, max, to->limit - to->avail);
817 if (!nr)
818 return 0;
820 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
821 sizeof(void *) *nr);
823 from->avail -= nr;
824 to->avail += nr;
825 return nr;
828 #ifndef CONFIG_NUMA
830 #define drain_alien_cache(cachep, alien) do { } while (0)
831 #define reap_alien(cachep, n) do { } while (0)
833 static inline struct alien_cache **alloc_alien_cache(int node,
834 int limit, gfp_t gfp)
836 return (struct alien_cache **)BAD_ALIEN_MAGIC;
839 static inline void free_alien_cache(struct alien_cache **ac_ptr)
843 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
845 return 0;
848 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
849 gfp_t flags)
851 return NULL;
854 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
855 gfp_t flags, int nodeid)
857 return NULL;
860 #else /* CONFIG_NUMA */
862 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
863 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
865 static struct alien_cache *__alloc_alien_cache(int node, int entries,
866 int batch, gfp_t gfp)
868 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
869 struct alien_cache *alc = NULL;
871 alc = kmalloc_node(memsize, gfp, node);
872 init_arraycache(&alc->ac, entries, batch);
873 spin_lock_init(&alc->lock);
874 return alc;
877 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
879 struct alien_cache **alc_ptr;
880 size_t memsize = sizeof(void *) * nr_node_ids;
881 int i;
883 if (limit > 1)
884 limit = 12;
885 alc_ptr = kzalloc_node(memsize, gfp, node);
886 if (!alc_ptr)
887 return NULL;
889 for_each_node(i) {
890 if (i == node || !node_online(i))
891 continue;
892 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
893 if (!alc_ptr[i]) {
894 for (i--; i >= 0; i--)
895 kfree(alc_ptr[i]);
896 kfree(alc_ptr);
897 return NULL;
900 return alc_ptr;
903 static void free_alien_cache(struct alien_cache **alc_ptr)
905 int i;
907 if (!alc_ptr)
908 return;
909 for_each_node(i)
910 kfree(alc_ptr[i]);
911 kfree(alc_ptr);
914 static void __drain_alien_cache(struct kmem_cache *cachep,
915 struct array_cache *ac, int node,
916 struct list_head *list)
918 struct kmem_cache_node *n = get_node(cachep, node);
920 if (ac->avail) {
921 spin_lock(&n->list_lock);
923 * Stuff objects into the remote nodes shared array first.
924 * That way we could avoid the overhead of putting the objects
925 * into the free lists and getting them back later.
927 if (n->shared)
928 transfer_objects(n->shared, ac, ac->limit);
930 free_block(cachep, ac->entry, ac->avail, node, list);
931 ac->avail = 0;
932 spin_unlock(&n->list_lock);
937 * Called from cache_reap() to regularly drain alien caches round robin.
939 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
941 int node = __this_cpu_read(slab_reap_node);
943 if (n->alien) {
944 struct alien_cache *alc = n->alien[node];
945 struct array_cache *ac;
947 if (alc) {
948 ac = &alc->ac;
949 if (ac->avail && spin_trylock_irq(&alc->lock)) {
950 LIST_HEAD(list);
952 __drain_alien_cache(cachep, ac, node, &list);
953 spin_unlock_irq(&alc->lock);
954 slabs_destroy(cachep, &list);
960 static void drain_alien_cache(struct kmem_cache *cachep,
961 struct alien_cache **alien)
963 int i = 0;
964 struct alien_cache *alc;
965 struct array_cache *ac;
966 unsigned long flags;
968 for_each_online_node(i) {
969 alc = alien[i];
970 if (alc) {
971 LIST_HEAD(list);
973 ac = &alc->ac;
974 spin_lock_irqsave(&alc->lock, flags);
975 __drain_alien_cache(cachep, ac, i, &list);
976 spin_unlock_irqrestore(&alc->lock, flags);
977 slabs_destroy(cachep, &list);
982 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
983 int node, int page_node)
985 struct kmem_cache_node *n;
986 struct alien_cache *alien = NULL;
987 struct array_cache *ac;
988 LIST_HEAD(list);
990 n = get_node(cachep, node);
991 STATS_INC_NODEFREES(cachep);
992 if (n->alien && n->alien[page_node]) {
993 alien = n->alien[page_node];
994 ac = &alien->ac;
995 spin_lock(&alien->lock);
996 if (unlikely(ac->avail == ac->limit)) {
997 STATS_INC_ACOVERFLOW(cachep);
998 __drain_alien_cache(cachep, ac, page_node, &list);
1000 ac_put_obj(cachep, ac, objp);
1001 spin_unlock(&alien->lock);
1002 slabs_destroy(cachep, &list);
1003 } else {
1004 n = get_node(cachep, page_node);
1005 spin_lock(&n->list_lock);
1006 free_block(cachep, &objp, 1, page_node, &list);
1007 spin_unlock(&n->list_lock);
1008 slabs_destroy(cachep, &list);
1010 return 1;
1013 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1015 int page_node = page_to_nid(virt_to_page(objp));
1016 int node = numa_mem_id();
1018 * Make sure we are not freeing a object from another node to the array
1019 * cache on this cpu.
1021 if (likely(node == page_node))
1022 return 0;
1024 return __cache_free_alien(cachep, objp, node, page_node);
1026 #endif
1029 * Allocates and initializes node for a node on each slab cache, used for
1030 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1031 * will be allocated off-node since memory is not yet online for the new node.
1032 * When hotplugging memory or a cpu, existing node are not replaced if
1033 * already in use.
1035 * Must hold slab_mutex.
1037 static int init_cache_node_node(int node)
1039 struct kmem_cache *cachep;
1040 struct kmem_cache_node *n;
1041 const size_t memsize = sizeof(struct kmem_cache_node);
1043 list_for_each_entry(cachep, &slab_caches, list) {
1045 * Set up the kmem_cache_node for cpu before we can
1046 * begin anything. Make sure some other cpu on this
1047 * node has not already allocated this
1049 n = get_node(cachep, node);
1050 if (!n) {
1051 n = kmalloc_node(memsize, GFP_KERNEL, node);
1052 if (!n)
1053 return -ENOMEM;
1054 kmem_cache_node_init(n);
1055 n->next_reap = jiffies + REAPTIMEOUT_NODE +
1056 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1059 * The kmem_cache_nodes don't come and go as CPUs
1060 * come and go. slab_mutex is sufficient
1061 * protection here.
1063 cachep->node[node] = n;
1066 spin_lock_irq(&n->list_lock);
1067 n->free_limit =
1068 (1 + nr_cpus_node(node)) *
1069 cachep->batchcount + cachep->num;
1070 spin_unlock_irq(&n->list_lock);
1072 return 0;
1075 static inline int slabs_tofree(struct kmem_cache *cachep,
1076 struct kmem_cache_node *n)
1078 return (n->free_objects + cachep->num - 1) / cachep->num;
1081 static void cpuup_canceled(long cpu)
1083 struct kmem_cache *cachep;
1084 struct kmem_cache_node *n = NULL;
1085 int node = cpu_to_mem(cpu);
1086 const struct cpumask *mask = cpumask_of_node(node);
1088 list_for_each_entry(cachep, &slab_caches, list) {
1089 struct array_cache *nc;
1090 struct array_cache *shared;
1091 struct alien_cache **alien;
1092 LIST_HEAD(list);
1094 n = get_node(cachep, node);
1095 if (!n)
1096 continue;
1098 spin_lock_irq(&n->list_lock);
1100 /* Free limit for this kmem_cache_node */
1101 n->free_limit -= cachep->batchcount;
1103 /* cpu is dead; no one can alloc from it. */
1104 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1105 if (nc) {
1106 free_block(cachep, nc->entry, nc->avail, node, &list);
1107 nc->avail = 0;
1110 if (!cpumask_empty(mask)) {
1111 spin_unlock_irq(&n->list_lock);
1112 goto free_slab;
1115 shared = n->shared;
1116 if (shared) {
1117 free_block(cachep, shared->entry,
1118 shared->avail, node, &list);
1119 n->shared = NULL;
1122 alien = n->alien;
1123 n->alien = NULL;
1125 spin_unlock_irq(&n->list_lock);
1127 kfree(shared);
1128 if (alien) {
1129 drain_alien_cache(cachep, alien);
1130 free_alien_cache(alien);
1133 free_slab:
1134 slabs_destroy(cachep, &list);
1137 * In the previous loop, all the objects were freed to
1138 * the respective cache's slabs, now we can go ahead and
1139 * shrink each nodelist to its limit.
1141 list_for_each_entry(cachep, &slab_caches, list) {
1142 n = get_node(cachep, node);
1143 if (!n)
1144 continue;
1145 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1149 static int cpuup_prepare(long cpu)
1151 struct kmem_cache *cachep;
1152 struct kmem_cache_node *n = NULL;
1153 int node = cpu_to_mem(cpu);
1154 int err;
1157 * We need to do this right in the beginning since
1158 * alloc_arraycache's are going to use this list.
1159 * kmalloc_node allows us to add the slab to the right
1160 * kmem_cache_node and not this cpu's kmem_cache_node
1162 err = init_cache_node_node(node);
1163 if (err < 0)
1164 goto bad;
1167 * Now we can go ahead with allocating the shared arrays and
1168 * array caches
1170 list_for_each_entry(cachep, &slab_caches, list) {
1171 struct array_cache *shared = NULL;
1172 struct alien_cache **alien = NULL;
1174 if (cachep->shared) {
1175 shared = alloc_arraycache(node,
1176 cachep->shared * cachep->batchcount,
1177 0xbaadf00d, GFP_KERNEL);
1178 if (!shared)
1179 goto bad;
1181 if (use_alien_caches) {
1182 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1183 if (!alien) {
1184 kfree(shared);
1185 goto bad;
1188 n = get_node(cachep, node);
1189 BUG_ON(!n);
1191 spin_lock_irq(&n->list_lock);
1192 if (!n->shared) {
1194 * We are serialised from CPU_DEAD or
1195 * CPU_UP_CANCELLED by the cpucontrol lock
1197 n->shared = shared;
1198 shared = NULL;
1200 #ifdef CONFIG_NUMA
1201 if (!n->alien) {
1202 n->alien = alien;
1203 alien = NULL;
1205 #endif
1206 spin_unlock_irq(&n->list_lock);
1207 kfree(shared);
1208 free_alien_cache(alien);
1211 return 0;
1212 bad:
1213 cpuup_canceled(cpu);
1214 return -ENOMEM;
1217 static int cpuup_callback(struct notifier_block *nfb,
1218 unsigned long action, void *hcpu)
1220 long cpu = (long)hcpu;
1221 int err = 0;
1223 switch (action) {
1224 case CPU_UP_PREPARE:
1225 case CPU_UP_PREPARE_FROZEN:
1226 mutex_lock(&slab_mutex);
1227 err = cpuup_prepare(cpu);
1228 mutex_unlock(&slab_mutex);
1229 break;
1230 case CPU_ONLINE:
1231 case CPU_ONLINE_FROZEN:
1232 start_cpu_timer(cpu);
1233 break;
1234 #ifdef CONFIG_HOTPLUG_CPU
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1238 * Shutdown cache reaper. Note that the slab_mutex is
1239 * held so that if cache_reap() is invoked it cannot do
1240 * anything expensive but will only modify reap_work
1241 * and reschedule the timer.
1243 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1244 /* Now the cache_reaper is guaranteed to be not running. */
1245 per_cpu(slab_reap_work, cpu).work.func = NULL;
1246 break;
1247 case CPU_DOWN_FAILED:
1248 case CPU_DOWN_FAILED_FROZEN:
1249 start_cpu_timer(cpu);
1250 break;
1251 case CPU_DEAD:
1252 case CPU_DEAD_FROZEN:
1254 * Even if all the cpus of a node are down, we don't free the
1255 * kmem_cache_node of any cache. This to avoid a race between
1256 * cpu_down, and a kmalloc allocation from another cpu for
1257 * memory from the node of the cpu going down. The node
1258 * structure is usually allocated from kmem_cache_create() and
1259 * gets destroyed at kmem_cache_destroy().
1261 /* fall through */
1262 #endif
1263 case CPU_UP_CANCELED:
1264 case CPU_UP_CANCELED_FROZEN:
1265 mutex_lock(&slab_mutex);
1266 cpuup_canceled(cpu);
1267 mutex_unlock(&slab_mutex);
1268 break;
1270 return notifier_from_errno(err);
1273 static struct notifier_block cpucache_notifier = {
1274 &cpuup_callback, NULL, 0
1277 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1279 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1280 * Returns -EBUSY if all objects cannot be drained so that the node is not
1281 * removed.
1283 * Must hold slab_mutex.
1285 static int __meminit drain_cache_node_node(int node)
1287 struct kmem_cache *cachep;
1288 int ret = 0;
1290 list_for_each_entry(cachep, &slab_caches, list) {
1291 struct kmem_cache_node *n;
1293 n = get_node(cachep, node);
1294 if (!n)
1295 continue;
1297 drain_freelist(cachep, n, slabs_tofree(cachep, n));
1299 if (!list_empty(&n->slabs_full) ||
1300 !list_empty(&n->slabs_partial)) {
1301 ret = -EBUSY;
1302 break;
1305 return ret;
1308 static int __meminit slab_memory_callback(struct notifier_block *self,
1309 unsigned long action, void *arg)
1311 struct memory_notify *mnb = arg;
1312 int ret = 0;
1313 int nid;
1315 nid = mnb->status_change_nid;
1316 if (nid < 0)
1317 goto out;
1319 switch (action) {
1320 case MEM_GOING_ONLINE:
1321 mutex_lock(&slab_mutex);
1322 ret = init_cache_node_node(nid);
1323 mutex_unlock(&slab_mutex);
1324 break;
1325 case MEM_GOING_OFFLINE:
1326 mutex_lock(&slab_mutex);
1327 ret = drain_cache_node_node(nid);
1328 mutex_unlock(&slab_mutex);
1329 break;
1330 case MEM_ONLINE:
1331 case MEM_OFFLINE:
1332 case MEM_CANCEL_ONLINE:
1333 case MEM_CANCEL_OFFLINE:
1334 break;
1336 out:
1337 return notifier_from_errno(ret);
1339 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1342 * swap the static kmem_cache_node with kmalloced memory
1344 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1345 int nodeid)
1347 struct kmem_cache_node *ptr;
1349 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1350 BUG_ON(!ptr);
1352 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1354 * Do not assume that spinlocks can be initialized via memcpy:
1356 spin_lock_init(&ptr->list_lock);
1358 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1359 cachep->node[nodeid] = ptr;
1363 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1364 * size of kmem_cache_node.
1366 static void __init set_up_node(struct kmem_cache *cachep, int index)
1368 int node;
1370 for_each_online_node(node) {
1371 cachep->node[node] = &init_kmem_cache_node[index + node];
1372 cachep->node[node]->next_reap = jiffies +
1373 REAPTIMEOUT_NODE +
1374 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1379 * Initialisation. Called after the page allocator have been initialised and
1380 * before smp_init().
1382 void __init kmem_cache_init(void)
1384 int i;
1386 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1387 sizeof(struct rcu_head));
1388 kmem_cache = &kmem_cache_boot;
1390 if (num_possible_nodes() == 1)
1391 use_alien_caches = 0;
1393 for (i = 0; i < NUM_INIT_LISTS; i++)
1394 kmem_cache_node_init(&init_kmem_cache_node[i]);
1397 * Fragmentation resistance on low memory - only use bigger
1398 * page orders on machines with more than 32MB of memory if
1399 * not overridden on the command line.
1401 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1402 slab_max_order = SLAB_MAX_ORDER_HI;
1404 /* Bootstrap is tricky, because several objects are allocated
1405 * from caches that do not exist yet:
1406 * 1) initialize the kmem_cache cache: it contains the struct
1407 * kmem_cache structures of all caches, except kmem_cache itself:
1408 * kmem_cache is statically allocated.
1409 * Initially an __init data area is used for the head array and the
1410 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1411 * array at the end of the bootstrap.
1412 * 2) Create the first kmalloc cache.
1413 * The struct kmem_cache for the new cache is allocated normally.
1414 * An __init data area is used for the head array.
1415 * 3) Create the remaining kmalloc caches, with minimally sized
1416 * head arrays.
1417 * 4) Replace the __init data head arrays for kmem_cache and the first
1418 * kmalloc cache with kmalloc allocated arrays.
1419 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1420 * the other cache's with kmalloc allocated memory.
1421 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1424 /* 1) create the kmem_cache */
1427 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1429 create_boot_cache(kmem_cache, "kmem_cache",
1430 offsetof(struct kmem_cache, node) +
1431 nr_node_ids * sizeof(struct kmem_cache_node *),
1432 SLAB_HWCACHE_ALIGN);
1433 list_add(&kmem_cache->list, &slab_caches);
1434 slab_state = PARTIAL;
1437 * Initialize the caches that provide memory for the kmem_cache_node
1438 * structures first. Without this, further allocations will bug.
1440 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache("kmalloc-node",
1441 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1442 slab_state = PARTIAL_NODE;
1444 slab_early_init = 0;
1446 /* 5) Replace the bootstrap kmem_cache_node */
1448 int nid;
1450 for_each_online_node(nid) {
1451 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1453 init_list(kmalloc_caches[INDEX_NODE],
1454 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1458 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1461 void __init kmem_cache_init_late(void)
1463 struct kmem_cache *cachep;
1465 slab_state = UP;
1467 /* 6) resize the head arrays to their final sizes */
1468 mutex_lock(&slab_mutex);
1469 list_for_each_entry(cachep, &slab_caches, list)
1470 if (enable_cpucache(cachep, GFP_NOWAIT))
1471 BUG();
1472 mutex_unlock(&slab_mutex);
1474 /* Done! */
1475 slab_state = FULL;
1478 * Register a cpu startup notifier callback that initializes
1479 * cpu_cache_get for all new cpus
1481 register_cpu_notifier(&cpucache_notifier);
1483 #ifdef CONFIG_NUMA
1485 * Register a memory hotplug callback that initializes and frees
1486 * node.
1488 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1489 #endif
1492 * The reap timers are started later, with a module init call: That part
1493 * of the kernel is not yet operational.
1497 static int __init cpucache_init(void)
1499 int cpu;
1502 * Register the timers that return unneeded pages to the page allocator
1504 for_each_online_cpu(cpu)
1505 start_cpu_timer(cpu);
1507 /* Done! */
1508 slab_state = FULL;
1509 return 0;
1511 __initcall(cpucache_init);
1513 static noinline void
1514 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1516 #if DEBUG
1517 struct kmem_cache_node *n;
1518 struct page *page;
1519 unsigned long flags;
1520 int node;
1521 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1522 DEFAULT_RATELIMIT_BURST);
1524 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1525 return;
1527 printk(KERN_WARNING
1528 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1529 nodeid, gfpflags);
1530 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1531 cachep->name, cachep->size, cachep->gfporder);
1533 for_each_kmem_cache_node(cachep, node, n) {
1534 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1535 unsigned long active_slabs = 0, num_slabs = 0;
1537 spin_lock_irqsave(&n->list_lock, flags);
1538 list_for_each_entry(page, &n->slabs_full, lru) {
1539 active_objs += cachep->num;
1540 active_slabs++;
1542 list_for_each_entry(page, &n->slabs_partial, lru) {
1543 active_objs += page->active;
1544 active_slabs++;
1546 list_for_each_entry(page, &n->slabs_free, lru)
1547 num_slabs++;
1549 free_objects += n->free_objects;
1550 spin_unlock_irqrestore(&n->list_lock, flags);
1552 num_slabs += active_slabs;
1553 num_objs = num_slabs * cachep->num;
1554 printk(KERN_WARNING
1555 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1556 node, active_slabs, num_slabs, active_objs, num_objs,
1557 free_objects);
1559 #endif
1563 * Interface to system's page allocator. No need to hold the
1564 * kmem_cache_node ->list_lock.
1566 * If we requested dmaable memory, we will get it. Even if we
1567 * did not request dmaable memory, we might get it, but that
1568 * would be relatively rare and ignorable.
1570 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1571 int nodeid)
1573 struct page *page;
1574 int nr_pages;
1576 flags |= cachep->allocflags;
1577 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1578 flags |= __GFP_RECLAIMABLE;
1580 if (memcg_charge_slab(cachep, flags, cachep->gfporder))
1581 return NULL;
1583 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1584 if (!page) {
1585 memcg_uncharge_slab(cachep, cachep->gfporder);
1586 slab_out_of_memory(cachep, flags, nodeid);
1587 return NULL;
1590 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1591 if (unlikely(page->pfmemalloc))
1592 pfmemalloc_active = true;
1594 nr_pages = (1 << cachep->gfporder);
1595 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1596 add_zone_page_state(page_zone(page),
1597 NR_SLAB_RECLAIMABLE, nr_pages);
1598 else
1599 add_zone_page_state(page_zone(page),
1600 NR_SLAB_UNRECLAIMABLE, nr_pages);
1601 __SetPageSlab(page);
1602 if (page->pfmemalloc)
1603 SetPageSlabPfmemalloc(page);
1605 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1606 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1608 if (cachep->ctor)
1609 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1610 else
1611 kmemcheck_mark_unallocated_pages(page, nr_pages);
1614 return page;
1618 * Interface to system's page release.
1620 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1622 const unsigned long nr_freed = (1 << cachep->gfporder);
1624 kmemcheck_free_shadow(page, cachep->gfporder);
1626 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1627 sub_zone_page_state(page_zone(page),
1628 NR_SLAB_RECLAIMABLE, nr_freed);
1629 else
1630 sub_zone_page_state(page_zone(page),
1631 NR_SLAB_UNRECLAIMABLE, nr_freed);
1633 BUG_ON(!PageSlab(page));
1634 __ClearPageSlabPfmemalloc(page);
1635 __ClearPageSlab(page);
1636 page_mapcount_reset(page);
1637 page->mapping = NULL;
1639 if (current->reclaim_state)
1640 current->reclaim_state->reclaimed_slab += nr_freed;
1641 __free_pages(page, cachep->gfporder);
1642 memcg_uncharge_slab(cachep, cachep->gfporder);
1645 static void kmem_rcu_free(struct rcu_head *head)
1647 struct kmem_cache *cachep;
1648 struct page *page;
1650 page = container_of(head, struct page, rcu_head);
1651 cachep = page->slab_cache;
1653 kmem_freepages(cachep, page);
1656 #if DEBUG
1658 #ifdef CONFIG_DEBUG_PAGEALLOC
1659 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1660 unsigned long caller)
1662 int size = cachep->object_size;
1664 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1666 if (size < 5 * sizeof(unsigned long))
1667 return;
1669 *addr++ = 0x12345678;
1670 *addr++ = caller;
1671 *addr++ = smp_processor_id();
1672 size -= 3 * sizeof(unsigned long);
1674 unsigned long *sptr = &caller;
1675 unsigned long svalue;
1677 while (!kstack_end(sptr)) {
1678 svalue = *sptr++;
1679 if (kernel_text_address(svalue)) {
1680 *addr++ = svalue;
1681 size -= sizeof(unsigned long);
1682 if (size <= sizeof(unsigned long))
1683 break;
1688 *addr++ = 0x87654321;
1690 #endif
1692 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1694 int size = cachep->object_size;
1695 addr = &((char *)addr)[obj_offset(cachep)];
1697 memset(addr, val, size);
1698 *(unsigned char *)(addr + size - 1) = POISON_END;
1701 static void dump_line(char *data, int offset, int limit)
1703 int i;
1704 unsigned char error = 0;
1705 int bad_count = 0;
1707 printk(KERN_ERR "%03x: ", offset);
1708 for (i = 0; i < limit; i++) {
1709 if (data[offset + i] != POISON_FREE) {
1710 error = data[offset + i];
1711 bad_count++;
1714 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1715 &data[offset], limit, 1);
1717 if (bad_count == 1) {
1718 error ^= POISON_FREE;
1719 if (!(error & (error - 1))) {
1720 printk(KERN_ERR "Single bit error detected. Probably "
1721 "bad RAM.\n");
1722 #ifdef CONFIG_X86
1723 printk(KERN_ERR "Run memtest86+ or a similar memory "
1724 "test tool.\n");
1725 #else
1726 printk(KERN_ERR "Run a memory test tool.\n");
1727 #endif
1731 #endif
1733 #if DEBUG
1735 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1737 int i, size;
1738 char *realobj;
1740 if (cachep->flags & SLAB_RED_ZONE) {
1741 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1742 *dbg_redzone1(cachep, objp),
1743 *dbg_redzone2(cachep, objp));
1746 if (cachep->flags & SLAB_STORE_USER) {
1747 printk(KERN_ERR "Last user: [<%p>](%pSR)\n",
1748 *dbg_userword(cachep, objp),
1749 *dbg_userword(cachep, objp));
1751 realobj = (char *)objp + obj_offset(cachep);
1752 size = cachep->object_size;
1753 for (i = 0; i < size && lines; i += 16, lines--) {
1754 int limit;
1755 limit = 16;
1756 if (i + limit > size)
1757 limit = size - i;
1758 dump_line(realobj, i, limit);
1762 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1764 char *realobj;
1765 int size, i;
1766 int lines = 0;
1768 realobj = (char *)objp + obj_offset(cachep);
1769 size = cachep->object_size;
1771 for (i = 0; i < size; i++) {
1772 char exp = POISON_FREE;
1773 if (i == size - 1)
1774 exp = POISON_END;
1775 if (realobj[i] != exp) {
1776 int limit;
1777 /* Mismatch ! */
1778 /* Print header */
1779 if (lines == 0) {
1780 printk(KERN_ERR
1781 "Slab corruption (%s): %s start=%p, len=%d\n",
1782 print_tainted(), cachep->name, realobj, size);
1783 print_objinfo(cachep, objp, 0);
1785 /* Hexdump the affected line */
1786 i = (i / 16) * 16;
1787 limit = 16;
1788 if (i + limit > size)
1789 limit = size - i;
1790 dump_line(realobj, i, limit);
1791 i += 16;
1792 lines++;
1793 /* Limit to 5 lines */
1794 if (lines > 5)
1795 break;
1798 if (lines != 0) {
1799 /* Print some data about the neighboring objects, if they
1800 * exist:
1802 struct page *page = virt_to_head_page(objp);
1803 unsigned int objnr;
1805 objnr = obj_to_index(cachep, page, objp);
1806 if (objnr) {
1807 objp = index_to_obj(cachep, page, objnr - 1);
1808 realobj = (char *)objp + obj_offset(cachep);
1809 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1810 realobj, size);
1811 print_objinfo(cachep, objp, 2);
1813 if (objnr + 1 < cachep->num) {
1814 objp = index_to_obj(cachep, page, objnr + 1);
1815 realobj = (char *)objp + obj_offset(cachep);
1816 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1817 realobj, size);
1818 print_objinfo(cachep, objp, 2);
1822 #endif
1824 #if DEBUG
1825 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1826 struct page *page)
1828 int i;
1829 for (i = 0; i < cachep->num; i++) {
1830 void *objp = index_to_obj(cachep, page, i);
1832 if (cachep->flags & SLAB_POISON) {
1833 #ifdef CONFIG_DEBUG_PAGEALLOC
1834 if (cachep->size % PAGE_SIZE == 0 &&
1835 OFF_SLAB(cachep))
1836 kernel_map_pages(virt_to_page(objp),
1837 cachep->size / PAGE_SIZE, 1);
1838 else
1839 check_poison_obj(cachep, objp);
1840 #else
1841 check_poison_obj(cachep, objp);
1842 #endif
1844 if (cachep->flags & SLAB_RED_ZONE) {
1845 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1846 slab_error(cachep, "start of a freed object "
1847 "was overwritten");
1848 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1849 slab_error(cachep, "end of a freed object "
1850 "was overwritten");
1854 #else
1855 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1856 struct page *page)
1859 #endif
1862 * slab_destroy - destroy and release all objects in a slab
1863 * @cachep: cache pointer being destroyed
1864 * @page: page pointer being destroyed
1866 * Destroy all the objs in a slab page, and release the mem back to the system.
1867 * Before calling the slab page must have been unlinked from the cache. The
1868 * kmem_cache_node ->list_lock is not held/needed.
1870 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1872 void *freelist;
1874 freelist = page->freelist;
1875 slab_destroy_debugcheck(cachep, page);
1876 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1877 struct rcu_head *head;
1880 * RCU free overloads the RCU head over the LRU.
1881 * slab_page has been overloeaded over the LRU,
1882 * however it is not used from now on so that
1883 * we can use it safely.
1885 head = (void *)&page->rcu_head;
1886 call_rcu(head, kmem_rcu_free);
1888 } else {
1889 kmem_freepages(cachep, page);
1893 * From now on, we don't use freelist
1894 * although actual page can be freed in rcu context
1896 if (OFF_SLAB(cachep))
1897 kmem_cache_free(cachep->freelist_cache, freelist);
1900 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1902 struct page *page, *n;
1904 list_for_each_entry_safe(page, n, list, lru) {
1905 list_del(&page->lru);
1906 slab_destroy(cachep, page);
1911 * calculate_slab_order - calculate size (page order) of slabs
1912 * @cachep: pointer to the cache that is being created
1913 * @size: size of objects to be created in this cache.
1914 * @align: required alignment for the objects.
1915 * @flags: slab allocation flags
1917 * Also calculates the number of objects per slab.
1919 * This could be made much more intelligent. For now, try to avoid using
1920 * high order pages for slabs. When the gfp() functions are more friendly
1921 * towards high-order requests, this should be changed.
1923 static size_t calculate_slab_order(struct kmem_cache *cachep,
1924 size_t size, size_t align, unsigned long flags)
1926 unsigned long offslab_limit;
1927 size_t left_over = 0;
1928 int gfporder;
1930 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1931 unsigned int num;
1932 size_t remainder;
1934 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1935 if (!num)
1936 continue;
1938 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1939 if (num > SLAB_OBJ_MAX_NUM)
1940 break;
1942 if (flags & CFLGS_OFF_SLAB) {
1943 size_t freelist_size_per_obj = sizeof(freelist_idx_t);
1945 * Max number of objs-per-slab for caches which
1946 * use off-slab slabs. Needed to avoid a possible
1947 * looping condition in cache_grow().
1949 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK))
1950 freelist_size_per_obj += sizeof(char);
1951 offslab_limit = size;
1952 offslab_limit /= freelist_size_per_obj;
1954 if (num > offslab_limit)
1955 break;
1958 /* Found something acceptable - save it away */
1959 cachep->num = num;
1960 cachep->gfporder = gfporder;
1961 left_over = remainder;
1964 * A VFS-reclaimable slab tends to have most allocations
1965 * as GFP_NOFS and we really don't want to have to be allocating
1966 * higher-order pages when we are unable to shrink dcache.
1968 if (flags & SLAB_RECLAIM_ACCOUNT)
1969 break;
1972 * Large number of objects is good, but very large slabs are
1973 * currently bad for the gfp()s.
1975 if (gfporder >= slab_max_order)
1976 break;
1979 * Acceptable internal fragmentation?
1981 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1982 break;
1984 return left_over;
1987 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1988 struct kmem_cache *cachep, int entries, int batchcount)
1990 int cpu;
1991 size_t size;
1992 struct array_cache __percpu *cpu_cache;
1994 size = sizeof(void *) * entries + sizeof(struct array_cache);
1995 cpu_cache = __alloc_percpu(size, sizeof(void *));
1997 if (!cpu_cache)
1998 return NULL;
2000 for_each_possible_cpu(cpu) {
2001 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
2002 entries, batchcount);
2005 return cpu_cache;
2008 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2010 if (slab_state >= FULL)
2011 return enable_cpucache(cachep, gfp);
2013 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
2014 if (!cachep->cpu_cache)
2015 return 1;
2017 if (slab_state == DOWN) {
2018 /* Creation of first cache (kmem_cache). */
2019 set_up_node(kmem_cache, CACHE_CACHE);
2020 } else if (slab_state == PARTIAL) {
2021 /* For kmem_cache_node */
2022 set_up_node(cachep, SIZE_NODE);
2023 } else {
2024 int node;
2026 for_each_online_node(node) {
2027 cachep->node[node] = kmalloc_node(
2028 sizeof(struct kmem_cache_node), gfp, node);
2029 BUG_ON(!cachep->node[node]);
2030 kmem_cache_node_init(cachep->node[node]);
2034 cachep->node[numa_mem_id()]->next_reap =
2035 jiffies + REAPTIMEOUT_NODE +
2036 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
2038 cpu_cache_get(cachep)->avail = 0;
2039 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2040 cpu_cache_get(cachep)->batchcount = 1;
2041 cpu_cache_get(cachep)->touched = 0;
2042 cachep->batchcount = 1;
2043 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2044 return 0;
2047 unsigned long kmem_cache_flags(unsigned long object_size,
2048 unsigned long flags, const char *name,
2049 void (*ctor)(void *))
2051 return flags;
2054 struct kmem_cache *
2055 __kmem_cache_alias(const char *name, size_t size, size_t align,
2056 unsigned long flags, void (*ctor)(void *))
2058 struct kmem_cache *cachep;
2060 cachep = find_mergeable(size, align, flags, name, ctor);
2061 if (cachep) {
2062 cachep->refcount++;
2065 * Adjust the object sizes so that we clear
2066 * the complete object on kzalloc.
2068 cachep->object_size = max_t(int, cachep->object_size, size);
2070 return cachep;
2074 * __kmem_cache_create - Create a cache.
2075 * @cachep: cache management descriptor
2076 * @flags: SLAB flags
2078 * Returns a ptr to the cache on success, NULL on failure.
2079 * Cannot be called within a int, but can be interrupted.
2080 * The @ctor is run when new pages are allocated by the cache.
2082 * The flags are
2084 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2085 * to catch references to uninitialised memory.
2087 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2088 * for buffer overruns.
2090 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2091 * cacheline. This can be beneficial if you're counting cycles as closely
2092 * as davem.
2095 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2097 size_t left_over, freelist_size;
2098 size_t ralign = BYTES_PER_WORD;
2099 gfp_t gfp;
2100 int err;
2101 size_t size = cachep->size;
2103 #if DEBUG
2104 #if FORCED_DEBUG
2106 * Enable redzoning and last user accounting, except for caches with
2107 * large objects, if the increased size would increase the object size
2108 * above the next power of two: caches with object sizes just above a
2109 * power of two have a significant amount of internal fragmentation.
2111 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2112 2 * sizeof(unsigned long long)))
2113 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2114 if (!(flags & SLAB_DESTROY_BY_RCU))
2115 flags |= SLAB_POISON;
2116 #endif
2117 if (flags & SLAB_DESTROY_BY_RCU)
2118 BUG_ON(flags & SLAB_POISON);
2119 #endif
2122 * Check that size is in terms of words. This is needed to avoid
2123 * unaligned accesses for some archs when redzoning is used, and makes
2124 * sure any on-slab bufctl's are also correctly aligned.
2126 if (size & (BYTES_PER_WORD - 1)) {
2127 size += (BYTES_PER_WORD - 1);
2128 size &= ~(BYTES_PER_WORD - 1);
2131 if (flags & SLAB_RED_ZONE) {
2132 ralign = REDZONE_ALIGN;
2133 /* If redzoning, ensure that the second redzone is suitably
2134 * aligned, by adjusting the object size accordingly. */
2135 size += REDZONE_ALIGN - 1;
2136 size &= ~(REDZONE_ALIGN - 1);
2139 /* 3) caller mandated alignment */
2140 if (ralign < cachep->align) {
2141 ralign = cachep->align;
2143 /* disable debug if necessary */
2144 if (ralign > __alignof__(unsigned long long))
2145 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2147 * 4) Store it.
2149 cachep->align = ralign;
2151 if (slab_is_available())
2152 gfp = GFP_KERNEL;
2153 else
2154 gfp = GFP_NOWAIT;
2156 #if DEBUG
2159 * Both debugging options require word-alignment which is calculated
2160 * into align above.
2162 if (flags & SLAB_RED_ZONE) {
2163 /* add space for red zone words */
2164 cachep->obj_offset += sizeof(unsigned long long);
2165 size += 2 * sizeof(unsigned long long);
2167 if (flags & SLAB_STORE_USER) {
2168 /* user store requires one word storage behind the end of
2169 * the real object. But if the second red zone needs to be
2170 * aligned to 64 bits, we must allow that much space.
2172 if (flags & SLAB_RED_ZONE)
2173 size += REDZONE_ALIGN;
2174 else
2175 size += BYTES_PER_WORD;
2177 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2179 * To activate debug pagealloc, off-slab management is necessary
2180 * requirement. In early phase of initialization, small sized slab
2181 * doesn't get initialized so it would not be possible. So, we need
2182 * to check size >= 256. It guarantees that all necessary small
2183 * sized slab is initialized in current slab initialization sequence.
2185 if (!slab_early_init && size >= kmalloc_size(INDEX_NODE) &&
2186 size >= 256 && cachep->object_size > cache_line_size() &&
2187 ALIGN(size, cachep->align) < PAGE_SIZE) {
2188 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2189 size = PAGE_SIZE;
2191 #endif
2192 #endif
2195 * Determine if the slab management is 'on' or 'off' slab.
2196 * (bootstrapping cannot cope with offslab caches so don't do
2197 * it too early on. Always use on-slab management when
2198 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2200 if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
2201 !(flags & SLAB_NOLEAKTRACE))
2203 * Size is large, assume best to place the slab management obj
2204 * off-slab (should allow better packing of objs).
2206 flags |= CFLGS_OFF_SLAB;
2208 size = ALIGN(size, cachep->align);
2210 * We should restrict the number of objects in a slab to implement
2211 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2213 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2214 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2216 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2218 if (!cachep->num)
2219 return -E2BIG;
2221 freelist_size = calculate_freelist_size(cachep->num, cachep->align);
2224 * If the slab has been placed off-slab, and we have enough space then
2225 * move it on-slab. This is at the expense of any extra colouring.
2227 if (flags & CFLGS_OFF_SLAB && left_over >= freelist_size) {
2228 flags &= ~CFLGS_OFF_SLAB;
2229 left_over -= freelist_size;
2232 if (flags & CFLGS_OFF_SLAB) {
2233 /* really off slab. No need for manual alignment */
2234 freelist_size = calculate_freelist_size(cachep->num, 0);
2236 #ifdef CONFIG_PAGE_POISONING
2237 /* If we're going to use the generic kernel_map_pages()
2238 * poisoning, then it's going to smash the contents of
2239 * the redzone and userword anyhow, so switch them off.
2241 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2242 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2243 #endif
2246 cachep->colour_off = cache_line_size();
2247 /* Offset must be a multiple of the alignment. */
2248 if (cachep->colour_off < cachep->align)
2249 cachep->colour_off = cachep->align;
2250 cachep->colour = left_over / cachep->colour_off;
2251 cachep->freelist_size = freelist_size;
2252 cachep->flags = flags;
2253 cachep->allocflags = __GFP_COMP;
2254 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2255 cachep->allocflags |= GFP_DMA;
2256 cachep->size = size;
2257 cachep->reciprocal_buffer_size = reciprocal_value(size);
2259 if (flags & CFLGS_OFF_SLAB) {
2260 cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
2262 * This is a possibility for one of the kmalloc_{dma,}_caches.
2263 * But since we go off slab only for object size greater than
2264 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2265 * in ascending order,this should not happen at all.
2266 * But leave a BUG_ON for some lucky dude.
2268 BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
2271 err = setup_cpu_cache(cachep, gfp);
2272 if (err) {
2273 __kmem_cache_shutdown(cachep);
2274 return err;
2277 return 0;
2280 #if DEBUG
2281 static void check_irq_off(void)
2283 BUG_ON(!irqs_disabled());
2286 static void check_irq_on(void)
2288 BUG_ON(irqs_disabled());
2291 static void check_spinlock_acquired(struct kmem_cache *cachep)
2293 #ifdef CONFIG_SMP
2294 check_irq_off();
2295 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2296 #endif
2299 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2301 #ifdef CONFIG_SMP
2302 check_irq_off();
2303 assert_spin_locked(&get_node(cachep, node)->list_lock);
2304 #endif
2307 #else
2308 #define check_irq_off() do { } while(0)
2309 #define check_irq_on() do { } while(0)
2310 #define check_spinlock_acquired(x) do { } while(0)
2311 #define check_spinlock_acquired_node(x, y) do { } while(0)
2312 #endif
2314 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
2315 struct array_cache *ac,
2316 int force, int node);
2318 static void do_drain(void *arg)
2320 struct kmem_cache *cachep = arg;
2321 struct array_cache *ac;
2322 int node = numa_mem_id();
2323 struct kmem_cache_node *n;
2324 LIST_HEAD(list);
2326 check_irq_off();
2327 ac = cpu_cache_get(cachep);
2328 n = get_node(cachep, node);
2329 spin_lock(&n->list_lock);
2330 free_block(cachep, ac->entry, ac->avail, node, &list);
2331 spin_unlock(&n->list_lock);
2332 slabs_destroy(cachep, &list);
2333 ac->avail = 0;
2336 static void drain_cpu_caches(struct kmem_cache *cachep)
2338 struct kmem_cache_node *n;
2339 int node;
2341 on_each_cpu(do_drain, cachep, 1);
2342 check_irq_on();
2343 for_each_kmem_cache_node(cachep, node, n)
2344 if (n->alien)
2345 drain_alien_cache(cachep, n->alien);
2347 for_each_kmem_cache_node(cachep, node, n)
2348 drain_array(cachep, n, n->shared, 1, node);
2352 * Remove slabs from the list of free slabs.
2353 * Specify the number of slabs to drain in tofree.
2355 * Returns the actual number of slabs released.
2357 static int drain_freelist(struct kmem_cache *cache,
2358 struct kmem_cache_node *n, int tofree)
2360 struct list_head *p;
2361 int nr_freed;
2362 struct page *page;
2364 nr_freed = 0;
2365 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2367 spin_lock_irq(&n->list_lock);
2368 p = n->slabs_free.prev;
2369 if (p == &n->slabs_free) {
2370 spin_unlock_irq(&n->list_lock);
2371 goto out;
2374 page = list_entry(p, struct page, lru);
2375 #if DEBUG
2376 BUG_ON(page->active);
2377 #endif
2378 list_del(&page->lru);
2380 * Safe to drop the lock. The slab is no longer linked
2381 * to the cache.
2383 n->free_objects -= cache->num;
2384 spin_unlock_irq(&n->list_lock);
2385 slab_destroy(cache, page);
2386 nr_freed++;
2388 out:
2389 return nr_freed;
2392 int __kmem_cache_shrink(struct kmem_cache *cachep)
2394 int ret = 0;
2395 int node;
2396 struct kmem_cache_node *n;
2398 drain_cpu_caches(cachep);
2400 check_irq_on();
2401 for_each_kmem_cache_node(cachep, node, n) {
2402 drain_freelist(cachep, n, slabs_tofree(cachep, n));
2404 ret += !list_empty(&n->slabs_full) ||
2405 !list_empty(&n->slabs_partial);
2407 return (ret ? 1 : 0);
2410 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2412 int i;
2413 struct kmem_cache_node *n;
2414 int rc = __kmem_cache_shrink(cachep);
2416 if (rc)
2417 return rc;
2419 free_percpu(cachep->cpu_cache);
2421 /* NUMA: free the node structures */
2422 for_each_kmem_cache_node(cachep, i, n) {
2423 kfree(n->shared);
2424 free_alien_cache(n->alien);
2425 kfree(n);
2426 cachep->node[i] = NULL;
2428 return 0;
2432 * Get the memory for a slab management obj.
2434 * For a slab cache when the slab descriptor is off-slab, the
2435 * slab descriptor can't come from the same cache which is being created,
2436 * Because if it is the case, that means we defer the creation of
2437 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2438 * And we eventually call down to __kmem_cache_create(), which
2439 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2440 * This is a "chicken-and-egg" problem.
2442 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2443 * which are all initialized during kmem_cache_init().
2445 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2446 struct page *page, int colour_off,
2447 gfp_t local_flags, int nodeid)
2449 void *freelist;
2450 void *addr = page_address(page);
2452 if (OFF_SLAB(cachep)) {
2453 /* Slab management obj is off-slab. */
2454 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2455 local_flags, nodeid);
2456 if (!freelist)
2457 return NULL;
2458 } else {
2459 freelist = addr + colour_off;
2460 colour_off += cachep->freelist_size;
2462 page->active = 0;
2463 page->s_mem = addr + colour_off;
2464 return freelist;
2467 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2469 return ((freelist_idx_t *)page->freelist)[idx];
2472 static inline void set_free_obj(struct page *page,
2473 unsigned int idx, freelist_idx_t val)
2475 ((freelist_idx_t *)(page->freelist))[idx] = val;
2478 static void cache_init_objs(struct kmem_cache *cachep,
2479 struct page *page)
2481 int i;
2483 for (i = 0; i < cachep->num; i++) {
2484 void *objp = index_to_obj(cachep, page, i);
2485 #if DEBUG
2486 /* need to poison the objs? */
2487 if (cachep->flags & SLAB_POISON)
2488 poison_obj(cachep, objp, POISON_FREE);
2489 if (cachep->flags & SLAB_STORE_USER)
2490 *dbg_userword(cachep, objp) = NULL;
2492 if (cachep->flags & SLAB_RED_ZONE) {
2493 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2494 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2497 * Constructors are not allowed to allocate memory from the same
2498 * cache which they are a constructor for. Otherwise, deadlock.
2499 * They must also be threaded.
2501 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2502 cachep->ctor(objp + obj_offset(cachep));
2504 if (cachep->flags & SLAB_RED_ZONE) {
2505 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2506 slab_error(cachep, "constructor overwrote the"
2507 " end of an object");
2508 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2509 slab_error(cachep, "constructor overwrote the"
2510 " start of an object");
2512 if ((cachep->size % PAGE_SIZE) == 0 &&
2513 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2514 kernel_map_pages(virt_to_page(objp),
2515 cachep->size / PAGE_SIZE, 0);
2516 #else
2517 if (cachep->ctor)
2518 cachep->ctor(objp);
2519 #endif
2520 set_obj_status(page, i, OBJECT_FREE);
2521 set_free_obj(page, i, i);
2525 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2527 if (CONFIG_ZONE_DMA_FLAG) {
2528 if (flags & GFP_DMA)
2529 BUG_ON(!(cachep->allocflags & GFP_DMA));
2530 else
2531 BUG_ON(cachep->allocflags & GFP_DMA);
2535 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
2536 int nodeid)
2538 void *objp;
2540 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2541 page->active++;
2542 #if DEBUG
2543 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2544 #endif
2546 return objp;
2549 static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
2550 void *objp, int nodeid)
2552 unsigned int objnr = obj_to_index(cachep, page, objp);
2553 #if DEBUG
2554 unsigned int i;
2556 /* Verify that the slab belongs to the intended node */
2557 WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
2559 /* Verify double free bug */
2560 for (i = page->active; i < cachep->num; i++) {
2561 if (get_free_obj(page, i) == objnr) {
2562 printk(KERN_ERR "slab: double free detected in cache "
2563 "'%s', objp %p\n", cachep->name, objp);
2564 BUG();
2567 #endif
2568 page->active--;
2569 set_free_obj(page, page->active, objnr);
2573 * Map pages beginning at addr to the given cache and slab. This is required
2574 * for the slab allocator to be able to lookup the cache and slab of a
2575 * virtual address for kfree, ksize, and slab debugging.
2577 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2578 void *freelist)
2580 page->slab_cache = cache;
2581 page->freelist = freelist;
2585 * Grow (by 1) the number of slabs within a cache. This is called by
2586 * kmem_cache_alloc() when there are no active objs left in a cache.
2588 static int cache_grow(struct kmem_cache *cachep,
2589 gfp_t flags, int nodeid, struct page *page)
2591 void *freelist;
2592 size_t offset;
2593 gfp_t local_flags;
2594 struct kmem_cache_node *n;
2597 * Be lazy and only check for valid flags here, keeping it out of the
2598 * critical path in kmem_cache_alloc().
2600 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2601 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2603 /* Take the node list lock to change the colour_next on this node */
2604 check_irq_off();
2605 n = get_node(cachep, nodeid);
2606 spin_lock(&n->list_lock);
2608 /* Get colour for the slab, and cal the next value. */
2609 offset = n->colour_next;
2610 n->colour_next++;
2611 if (n->colour_next >= cachep->colour)
2612 n->colour_next = 0;
2613 spin_unlock(&n->list_lock);
2615 offset *= cachep->colour_off;
2617 if (local_flags & __GFP_WAIT)
2618 local_irq_enable();
2621 * The test for missing atomic flag is performed here, rather than
2622 * the more obvious place, simply to reduce the critical path length
2623 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2624 * will eventually be caught here (where it matters).
2626 kmem_flagcheck(cachep, flags);
2629 * Get mem for the objs. Attempt to allocate a physical page from
2630 * 'nodeid'.
2632 if (!page)
2633 page = kmem_getpages(cachep, local_flags, nodeid);
2634 if (!page)
2635 goto failed;
2637 /* Get slab management. */
2638 freelist = alloc_slabmgmt(cachep, page, offset,
2639 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2640 if (!freelist)
2641 goto opps1;
2643 slab_map_pages(cachep, page, freelist);
2645 cache_init_objs(cachep, page);
2647 if (local_flags & __GFP_WAIT)
2648 local_irq_disable();
2649 check_irq_off();
2650 spin_lock(&n->list_lock);
2652 /* Make slab active. */
2653 list_add_tail(&page->lru, &(n->slabs_free));
2654 STATS_INC_GROWN(cachep);
2655 n->free_objects += cachep->num;
2656 spin_unlock(&n->list_lock);
2657 return 1;
2658 opps1:
2659 kmem_freepages(cachep, page);
2660 failed:
2661 if (local_flags & __GFP_WAIT)
2662 local_irq_disable();
2663 return 0;
2666 #if DEBUG
2669 * Perform extra freeing checks:
2670 * - detect bad pointers.
2671 * - POISON/RED_ZONE checking
2673 static void kfree_debugcheck(const void *objp)
2675 if (!virt_addr_valid(objp)) {
2676 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2677 (unsigned long)objp);
2678 BUG();
2682 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2684 unsigned long long redzone1, redzone2;
2686 redzone1 = *dbg_redzone1(cache, obj);
2687 redzone2 = *dbg_redzone2(cache, obj);
2690 * Redzone is ok.
2692 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2693 return;
2695 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2696 slab_error(cache, "double free detected");
2697 else
2698 slab_error(cache, "memory outside object was overwritten");
2700 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2701 obj, redzone1, redzone2);
2704 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2705 unsigned long caller)
2707 unsigned int objnr;
2708 struct page *page;
2710 BUG_ON(virt_to_cache(objp) != cachep);
2712 objp -= obj_offset(cachep);
2713 kfree_debugcheck(objp);
2714 page = virt_to_head_page(objp);
2716 if (cachep->flags & SLAB_RED_ZONE) {
2717 verify_redzone_free(cachep, objp);
2718 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2719 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2721 if (cachep->flags & SLAB_STORE_USER)
2722 *dbg_userword(cachep, objp) = (void *)caller;
2724 objnr = obj_to_index(cachep, page, objp);
2726 BUG_ON(objnr >= cachep->num);
2727 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2729 set_obj_status(page, objnr, OBJECT_FREE);
2730 if (cachep->flags & SLAB_POISON) {
2731 #ifdef CONFIG_DEBUG_PAGEALLOC
2732 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2733 store_stackinfo(cachep, objp, caller);
2734 kernel_map_pages(virt_to_page(objp),
2735 cachep->size / PAGE_SIZE, 0);
2736 } else {
2737 poison_obj(cachep, objp, POISON_FREE);
2739 #else
2740 poison_obj(cachep, objp, POISON_FREE);
2741 #endif
2743 return objp;
2746 #else
2747 #define kfree_debugcheck(x) do { } while(0)
2748 #define cache_free_debugcheck(x,objp,z) (objp)
2749 #endif
2751 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
2752 bool force_refill)
2754 int batchcount;
2755 struct kmem_cache_node *n;
2756 struct array_cache *ac;
2757 int node;
2759 check_irq_off();
2760 node = numa_mem_id();
2761 if (unlikely(force_refill))
2762 goto force_grow;
2763 retry:
2764 ac = cpu_cache_get(cachep);
2765 batchcount = ac->batchcount;
2766 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2768 * If there was little recent activity on this cache, then
2769 * perform only a partial refill. Otherwise we could generate
2770 * refill bouncing.
2772 batchcount = BATCHREFILL_LIMIT;
2774 n = get_node(cachep, node);
2776 BUG_ON(ac->avail > 0 || !n);
2777 spin_lock(&n->list_lock);
2779 /* See if we can refill from the shared array */
2780 if (n->shared && transfer_objects(ac, n->shared, batchcount)) {
2781 n->shared->touched = 1;
2782 goto alloc_done;
2785 while (batchcount > 0) {
2786 struct list_head *entry;
2787 struct page *page;
2788 /* Get slab alloc is to come from. */
2789 entry = n->slabs_partial.next;
2790 if (entry == &n->slabs_partial) {
2791 n->free_touched = 1;
2792 entry = n->slabs_free.next;
2793 if (entry == &n->slabs_free)
2794 goto must_grow;
2797 page = list_entry(entry, struct page, lru);
2798 check_spinlock_acquired(cachep);
2801 * The slab was either on partial or free list so
2802 * there must be at least one object available for
2803 * allocation.
2805 BUG_ON(page->active >= cachep->num);
2807 while (page->active < cachep->num && batchcount--) {
2808 STATS_INC_ALLOCED(cachep);
2809 STATS_INC_ACTIVE(cachep);
2810 STATS_SET_HIGH(cachep);
2812 ac_put_obj(cachep, ac, slab_get_obj(cachep, page,
2813 node));
2816 /* move slabp to correct slabp list: */
2817 list_del(&page->lru);
2818 if (page->active == cachep->num)
2819 list_add(&page->lru, &n->slabs_full);
2820 else
2821 list_add(&page->lru, &n->slabs_partial);
2824 must_grow:
2825 n->free_objects -= ac->avail;
2826 alloc_done:
2827 spin_unlock(&n->list_lock);
2829 if (unlikely(!ac->avail)) {
2830 int x;
2831 force_grow:
2832 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2834 /* cache_grow can reenable interrupts, then ac could change. */
2835 ac = cpu_cache_get(cachep);
2836 node = numa_mem_id();
2838 /* no objects in sight? abort */
2839 if (!x && (ac->avail == 0 || force_refill))
2840 return NULL;
2842 if (!ac->avail) /* objects refilled by interrupt? */
2843 goto retry;
2845 ac->touched = 1;
2847 return ac_get_obj(cachep, ac, flags, force_refill);
2850 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2851 gfp_t flags)
2853 might_sleep_if(flags & __GFP_WAIT);
2854 #if DEBUG
2855 kmem_flagcheck(cachep, flags);
2856 #endif
2859 #if DEBUG
2860 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2861 gfp_t flags, void *objp, unsigned long caller)
2863 struct page *page;
2865 if (!objp)
2866 return objp;
2867 if (cachep->flags & SLAB_POISON) {
2868 #ifdef CONFIG_DEBUG_PAGEALLOC
2869 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2870 kernel_map_pages(virt_to_page(objp),
2871 cachep->size / PAGE_SIZE, 1);
2872 else
2873 check_poison_obj(cachep, objp);
2874 #else
2875 check_poison_obj(cachep, objp);
2876 #endif
2877 poison_obj(cachep, objp, POISON_INUSE);
2879 if (cachep->flags & SLAB_STORE_USER)
2880 *dbg_userword(cachep, objp) = (void *)caller;
2882 if (cachep->flags & SLAB_RED_ZONE) {
2883 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2884 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2885 slab_error(cachep, "double free, or memory outside"
2886 " object was overwritten");
2887 printk(KERN_ERR
2888 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2889 objp, *dbg_redzone1(cachep, objp),
2890 *dbg_redzone2(cachep, objp));
2892 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2893 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2896 page = virt_to_head_page(objp);
2897 set_obj_status(page, obj_to_index(cachep, page, objp), OBJECT_ACTIVE);
2898 objp += obj_offset(cachep);
2899 if (cachep->ctor && cachep->flags & SLAB_POISON)
2900 cachep->ctor(objp);
2901 if (ARCH_SLAB_MINALIGN &&
2902 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
2903 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2904 objp, (int)ARCH_SLAB_MINALIGN);
2906 return objp;
2908 #else
2909 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2910 #endif
2912 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
2914 if (unlikely(cachep == kmem_cache))
2915 return false;
2917 return should_failslab(cachep->object_size, flags, cachep->flags);
2920 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2922 void *objp;
2923 struct array_cache *ac;
2924 bool force_refill = false;
2926 check_irq_off();
2928 ac = cpu_cache_get(cachep);
2929 if (likely(ac->avail)) {
2930 ac->touched = 1;
2931 objp = ac_get_obj(cachep, ac, flags, false);
2934 * Allow for the possibility all avail objects are not allowed
2935 * by the current flags
2937 if (objp) {
2938 STATS_INC_ALLOCHIT(cachep);
2939 goto out;
2941 force_refill = true;
2944 STATS_INC_ALLOCMISS(cachep);
2945 objp = cache_alloc_refill(cachep, flags, force_refill);
2947 * the 'ac' may be updated by cache_alloc_refill(),
2948 * and kmemleak_erase() requires its correct value.
2950 ac = cpu_cache_get(cachep);
2952 out:
2954 * To avoid a false negative, if an object that is in one of the
2955 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2956 * treat the array pointers as a reference to the object.
2958 if (objp)
2959 kmemleak_erase(&ac->entry[ac->avail]);
2960 return objp;
2963 #ifdef CONFIG_NUMA
2965 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2967 * If we are in_interrupt, then process context, including cpusets and
2968 * mempolicy, may not apply and should not be used for allocation policy.
2970 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
2972 int nid_alloc, nid_here;
2974 if (in_interrupt() || (flags & __GFP_THISNODE))
2975 return NULL;
2976 nid_alloc = nid_here = numa_mem_id();
2977 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
2978 nid_alloc = cpuset_slab_spread_node();
2979 else if (current->mempolicy)
2980 nid_alloc = mempolicy_slab_node();
2981 if (nid_alloc != nid_here)
2982 return ____cache_alloc_node(cachep, flags, nid_alloc);
2983 return NULL;
2987 * Fallback function if there was no memory available and no objects on a
2988 * certain node and fall back is permitted. First we scan all the
2989 * available node for available objects. If that fails then we
2990 * perform an allocation without specifying a node. This allows the page
2991 * allocator to do its reclaim / fallback magic. We then insert the
2992 * slab into the proper nodelist and then allocate from it.
2994 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
2996 struct zonelist *zonelist;
2997 gfp_t local_flags;
2998 struct zoneref *z;
2999 struct zone *zone;
3000 enum zone_type high_zoneidx = gfp_zone(flags);
3001 void *obj = NULL;
3002 int nid;
3003 unsigned int cpuset_mems_cookie;
3005 if (flags & __GFP_THISNODE)
3006 return NULL;
3008 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3010 retry_cpuset:
3011 cpuset_mems_cookie = read_mems_allowed_begin();
3012 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3014 retry:
3016 * Look through allowed nodes for objects available
3017 * from existing per node queues.
3019 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3020 nid = zone_to_nid(zone);
3022 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3023 get_node(cache, nid) &&
3024 get_node(cache, nid)->free_objects) {
3025 obj = ____cache_alloc_node(cache,
3026 flags | GFP_THISNODE, nid);
3027 if (obj)
3028 break;
3032 if (!obj) {
3034 * This allocation will be performed within the constraints
3035 * of the current cpuset / memory policy requirements.
3036 * We may trigger various forms of reclaim on the allowed
3037 * set and go into memory reserves if necessary.
3039 struct page *page;
3041 if (local_flags & __GFP_WAIT)
3042 local_irq_enable();
3043 kmem_flagcheck(cache, flags);
3044 page = kmem_getpages(cache, local_flags, numa_mem_id());
3045 if (local_flags & __GFP_WAIT)
3046 local_irq_disable();
3047 if (page) {
3049 * Insert into the appropriate per node queues
3051 nid = page_to_nid(page);
3052 if (cache_grow(cache, flags, nid, page)) {
3053 obj = ____cache_alloc_node(cache,
3054 flags | GFP_THISNODE, nid);
3055 if (!obj)
3057 * Another processor may allocate the
3058 * objects in the slab since we are
3059 * not holding any locks.
3061 goto retry;
3062 } else {
3063 /* cache_grow already freed obj */
3064 obj = NULL;
3069 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3070 goto retry_cpuset;
3071 return obj;
3075 * A interface to enable slab creation on nodeid
3077 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3078 int nodeid)
3080 struct list_head *entry;
3081 struct page *page;
3082 struct kmem_cache_node *n;
3083 void *obj;
3084 int x;
3086 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3087 n = get_node(cachep, nodeid);
3088 BUG_ON(!n);
3090 retry:
3091 check_irq_off();
3092 spin_lock(&n->list_lock);
3093 entry = n->slabs_partial.next;
3094 if (entry == &n->slabs_partial) {
3095 n->free_touched = 1;
3096 entry = n->slabs_free.next;
3097 if (entry == &n->slabs_free)
3098 goto must_grow;
3101 page = list_entry(entry, struct page, lru);
3102 check_spinlock_acquired_node(cachep, nodeid);
3104 STATS_INC_NODEALLOCS(cachep);
3105 STATS_INC_ACTIVE(cachep);
3106 STATS_SET_HIGH(cachep);
3108 BUG_ON(page->active == cachep->num);
3110 obj = slab_get_obj(cachep, page, nodeid);
3111 n->free_objects--;
3112 /* move slabp to correct slabp list: */
3113 list_del(&page->lru);
3115 if (page->active == cachep->num)
3116 list_add(&page->lru, &n->slabs_full);
3117 else
3118 list_add(&page->lru, &n->slabs_partial);
3120 spin_unlock(&n->list_lock);
3121 goto done;
3123 must_grow:
3124 spin_unlock(&n->list_lock);
3125 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3126 if (x)
3127 goto retry;
3129 return fallback_alloc(cachep, flags);
3131 done:
3132 return obj;
3135 static __always_inline void *
3136 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3137 unsigned long caller)
3139 unsigned long save_flags;
3140 void *ptr;
3141 int slab_node = numa_mem_id();
3143 flags &= gfp_allowed_mask;
3145 lockdep_trace_alloc(flags);
3147 if (slab_should_failslab(cachep, flags))
3148 return NULL;
3150 cachep = memcg_kmem_get_cache(cachep, flags);
3152 cache_alloc_debugcheck_before(cachep, flags);
3153 local_irq_save(save_flags);
3155 if (nodeid == NUMA_NO_NODE)
3156 nodeid = slab_node;
3158 if (unlikely(!get_node(cachep, nodeid))) {
3159 /* Node not bootstrapped yet */
3160 ptr = fallback_alloc(cachep, flags);
3161 goto out;
3164 if (nodeid == slab_node) {
3166 * Use the locally cached objects if possible.
3167 * However ____cache_alloc does not allow fallback
3168 * to other nodes. It may fail while we still have
3169 * objects on other nodes available.
3171 ptr = ____cache_alloc(cachep, flags);
3172 if (ptr)
3173 goto out;
3175 /* ___cache_alloc_node can fall back to other nodes */
3176 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3177 out:
3178 local_irq_restore(save_flags);
3179 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3180 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3181 flags);
3183 if (likely(ptr)) {
3184 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3185 if (unlikely(flags & __GFP_ZERO))
3186 memset(ptr, 0, cachep->object_size);
3189 return ptr;
3192 static __always_inline void *
3193 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3195 void *objp;
3197 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3198 objp = alternate_node_alloc(cache, flags);
3199 if (objp)
3200 goto out;
3202 objp = ____cache_alloc(cache, flags);
3205 * We may just have run out of memory on the local node.
3206 * ____cache_alloc_node() knows how to locate memory on other nodes
3208 if (!objp)
3209 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3211 out:
3212 return objp;
3214 #else
3216 static __always_inline void *
3217 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3219 return ____cache_alloc(cachep, flags);
3222 #endif /* CONFIG_NUMA */
3224 static __always_inline void *
3225 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3227 unsigned long save_flags;
3228 void *objp;
3230 flags &= gfp_allowed_mask;
3232 lockdep_trace_alloc(flags);
3234 if (slab_should_failslab(cachep, flags))
3235 return NULL;
3237 cachep = memcg_kmem_get_cache(cachep, flags);
3239 cache_alloc_debugcheck_before(cachep, flags);
3240 local_irq_save(save_flags);
3241 objp = __do_cache_alloc(cachep, flags);
3242 local_irq_restore(save_flags);
3243 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3244 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3245 flags);
3246 prefetchw(objp);
3248 if (likely(objp)) {
3249 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3250 if (unlikely(flags & __GFP_ZERO))
3251 memset(objp, 0, cachep->object_size);
3254 return objp;
3258 * Caller needs to acquire correct kmem_cache_node's list_lock
3259 * @list: List of detached free slabs should be freed by caller
3261 static void free_block(struct kmem_cache *cachep, void **objpp,
3262 int nr_objects, int node, struct list_head *list)
3264 int i;
3265 struct kmem_cache_node *n = get_node(cachep, node);
3267 for (i = 0; i < nr_objects; i++) {
3268 void *objp;
3269 struct page *page;
3271 clear_obj_pfmemalloc(&objpp[i]);
3272 objp = objpp[i];
3274 page = virt_to_head_page(objp);
3275 list_del(&page->lru);
3276 check_spinlock_acquired_node(cachep, node);
3277 slab_put_obj(cachep, page, objp, node);
3278 STATS_DEC_ACTIVE(cachep);
3279 n->free_objects++;
3281 /* fixup slab chains */
3282 if (page->active == 0) {
3283 if (n->free_objects > n->free_limit) {
3284 n->free_objects -= cachep->num;
3285 list_add_tail(&page->lru, list);
3286 } else {
3287 list_add(&page->lru, &n->slabs_free);
3289 } else {
3290 /* Unconditionally move a slab to the end of the
3291 * partial list on free - maximum time for the
3292 * other objects to be freed, too.
3294 list_add_tail(&page->lru, &n->slabs_partial);
3299 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3301 int batchcount;
3302 struct kmem_cache_node *n;
3303 int node = numa_mem_id();
3304 LIST_HEAD(list);
3306 batchcount = ac->batchcount;
3307 #if DEBUG
3308 BUG_ON(!batchcount || batchcount > ac->avail);
3309 #endif
3310 check_irq_off();
3311 n = get_node(cachep, node);
3312 spin_lock(&n->list_lock);
3313 if (n->shared) {
3314 struct array_cache *shared_array = n->shared;
3315 int max = shared_array->limit - shared_array->avail;
3316 if (max) {
3317 if (batchcount > max)
3318 batchcount = max;
3319 memcpy(&(shared_array->entry[shared_array->avail]),
3320 ac->entry, sizeof(void *) * batchcount);
3321 shared_array->avail += batchcount;
3322 goto free_done;
3326 free_block(cachep, ac->entry, batchcount, node, &list);
3327 free_done:
3328 #if STATS
3330 int i = 0;
3331 struct list_head *p;
3333 p = n->slabs_free.next;
3334 while (p != &(n->slabs_free)) {
3335 struct page *page;
3337 page = list_entry(p, struct page, lru);
3338 BUG_ON(page->active);
3340 i++;
3341 p = p->next;
3343 STATS_SET_FREEABLE(cachep, i);
3345 #endif
3346 spin_unlock(&n->list_lock);
3347 slabs_destroy(cachep, &list);
3348 ac->avail -= batchcount;
3349 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3353 * Release an obj back to its cache. If the obj has a constructed state, it must
3354 * be in this state _before_ it is released. Called with disabled ints.
3356 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3357 unsigned long caller)
3359 struct array_cache *ac = cpu_cache_get(cachep);
3361 check_irq_off();
3362 kmemleak_free_recursive(objp, cachep->flags);
3363 objp = cache_free_debugcheck(cachep, objp, caller);
3365 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3368 * Skip calling cache_free_alien() when the platform is not numa.
3369 * This will avoid cache misses that happen while accessing slabp (which
3370 * is per page memory reference) to get nodeid. Instead use a global
3371 * variable to skip the call, which is mostly likely to be present in
3372 * the cache.
3374 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3375 return;
3377 if (ac->avail < ac->limit) {
3378 STATS_INC_FREEHIT(cachep);
3379 } else {
3380 STATS_INC_FREEMISS(cachep);
3381 cache_flusharray(cachep, ac);
3384 ac_put_obj(cachep, ac, objp);
3388 * kmem_cache_alloc - Allocate an object
3389 * @cachep: The cache to allocate from.
3390 * @flags: See kmalloc().
3392 * Allocate an object from this cache. The flags are only relevant
3393 * if the cache has no available objects.
3395 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3397 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3399 trace_kmem_cache_alloc(_RET_IP_, ret,
3400 cachep->object_size, cachep->size, flags);
3402 return ret;
3404 EXPORT_SYMBOL(kmem_cache_alloc);
3406 #ifdef CONFIG_TRACING
3407 void *
3408 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3410 void *ret;
3412 ret = slab_alloc(cachep, flags, _RET_IP_);
3414 trace_kmalloc(_RET_IP_, ret,
3415 size, cachep->size, flags);
3416 return ret;
3418 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3419 #endif
3421 #ifdef CONFIG_NUMA
3423 * kmem_cache_alloc_node - Allocate an object on the specified node
3424 * @cachep: The cache to allocate from.
3425 * @flags: See kmalloc().
3426 * @nodeid: node number of the target node.
3428 * Identical to kmem_cache_alloc but it will allocate memory on the given
3429 * node, which can improve the performance for cpu bound structures.
3431 * Fallback to other node is possible if __GFP_THISNODE is not set.
3433 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3435 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3437 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3438 cachep->object_size, cachep->size,
3439 flags, nodeid);
3441 return ret;
3443 EXPORT_SYMBOL(kmem_cache_alloc_node);
3445 #ifdef CONFIG_TRACING
3446 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3447 gfp_t flags,
3448 int nodeid,
3449 size_t size)
3451 void *ret;
3453 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3455 trace_kmalloc_node(_RET_IP_, ret,
3456 size, cachep->size,
3457 flags, nodeid);
3458 return ret;
3460 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3461 #endif
3463 static __always_inline void *
3464 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3466 struct kmem_cache *cachep;
3468 cachep = kmalloc_slab(size, flags);
3469 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3470 return cachep;
3471 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3474 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3476 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3478 EXPORT_SYMBOL(__kmalloc_node);
3480 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3481 int node, unsigned long caller)
3483 return __do_kmalloc_node(size, flags, node, caller);
3485 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3486 #endif /* CONFIG_NUMA */
3489 * __do_kmalloc - allocate memory
3490 * @size: how many bytes of memory are required.
3491 * @flags: the type of memory to allocate (see kmalloc).
3492 * @caller: function caller for debug tracking of the caller
3494 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3495 unsigned long caller)
3497 struct kmem_cache *cachep;
3498 void *ret;
3500 cachep = kmalloc_slab(size, flags);
3501 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3502 return cachep;
3503 ret = slab_alloc(cachep, flags, caller);
3505 trace_kmalloc(caller, ret,
3506 size, cachep->size, flags);
3508 return ret;
3511 void *__kmalloc(size_t size, gfp_t flags)
3513 return __do_kmalloc(size, flags, _RET_IP_);
3515 EXPORT_SYMBOL(__kmalloc);
3517 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3519 return __do_kmalloc(size, flags, caller);
3521 EXPORT_SYMBOL(__kmalloc_track_caller);
3524 * kmem_cache_free - Deallocate an object
3525 * @cachep: The cache the allocation was from.
3526 * @objp: The previously allocated object.
3528 * Free an object which was previously allocated from this
3529 * cache.
3531 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3533 unsigned long flags;
3534 cachep = cache_from_obj(cachep, objp);
3535 if (!cachep)
3536 return;
3538 local_irq_save(flags);
3539 debug_check_no_locks_freed(objp, cachep->object_size);
3540 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3541 debug_check_no_obj_freed(objp, cachep->object_size);
3542 __cache_free(cachep, objp, _RET_IP_);
3543 local_irq_restore(flags);
3545 trace_kmem_cache_free(_RET_IP_, objp);
3547 EXPORT_SYMBOL(kmem_cache_free);
3550 * kfree - free previously allocated memory
3551 * @objp: pointer returned by kmalloc.
3553 * If @objp is NULL, no operation is performed.
3555 * Don't free memory not originally allocated by kmalloc()
3556 * or you will run into trouble.
3558 void kfree(const void *objp)
3560 struct kmem_cache *c;
3561 unsigned long flags;
3563 trace_kfree(_RET_IP_, objp);
3565 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3566 return;
3567 local_irq_save(flags);
3568 kfree_debugcheck(objp);
3569 c = virt_to_cache(objp);
3570 debug_check_no_locks_freed(objp, c->object_size);
3572 debug_check_no_obj_freed(objp, c->object_size);
3573 __cache_free(c, (void *)objp, _RET_IP_);
3574 local_irq_restore(flags);
3576 EXPORT_SYMBOL(kfree);
3579 * This initializes kmem_cache_node or resizes various caches for all nodes.
3581 static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
3583 int node;
3584 struct kmem_cache_node *n;
3585 struct array_cache *new_shared;
3586 struct alien_cache **new_alien = NULL;
3588 for_each_online_node(node) {
3590 if (use_alien_caches) {
3591 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3592 if (!new_alien)
3593 goto fail;
3596 new_shared = NULL;
3597 if (cachep->shared) {
3598 new_shared = alloc_arraycache(node,
3599 cachep->shared*cachep->batchcount,
3600 0xbaadf00d, gfp);
3601 if (!new_shared) {
3602 free_alien_cache(new_alien);
3603 goto fail;
3607 n = get_node(cachep, node);
3608 if (n) {
3609 struct array_cache *shared = n->shared;
3610 LIST_HEAD(list);
3612 spin_lock_irq(&n->list_lock);
3614 if (shared)
3615 free_block(cachep, shared->entry,
3616 shared->avail, node, &list);
3618 n->shared = new_shared;
3619 if (!n->alien) {
3620 n->alien = new_alien;
3621 new_alien = NULL;
3623 n->free_limit = (1 + nr_cpus_node(node)) *
3624 cachep->batchcount + cachep->num;
3625 spin_unlock_irq(&n->list_lock);
3626 slabs_destroy(cachep, &list);
3627 kfree(shared);
3628 free_alien_cache(new_alien);
3629 continue;
3631 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
3632 if (!n) {
3633 free_alien_cache(new_alien);
3634 kfree(new_shared);
3635 goto fail;
3638 kmem_cache_node_init(n);
3639 n->next_reap = jiffies + REAPTIMEOUT_NODE +
3640 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
3641 n->shared = new_shared;
3642 n->alien = new_alien;
3643 n->free_limit = (1 + nr_cpus_node(node)) *
3644 cachep->batchcount + cachep->num;
3645 cachep->node[node] = n;
3647 return 0;
3649 fail:
3650 if (!cachep->list.next) {
3651 /* Cache is not active yet. Roll back what we did */
3652 node--;
3653 while (node >= 0) {
3654 n = get_node(cachep, node);
3655 if (n) {
3656 kfree(n->shared);
3657 free_alien_cache(n->alien);
3658 kfree(n);
3659 cachep->node[node] = NULL;
3661 node--;
3664 return -ENOMEM;
3667 /* Always called with the slab_mutex held */
3668 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3669 int batchcount, int shared, gfp_t gfp)
3671 struct array_cache __percpu *cpu_cache, *prev;
3672 int cpu;
3674 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3675 if (!cpu_cache)
3676 return -ENOMEM;
3678 prev = cachep->cpu_cache;
3679 cachep->cpu_cache = cpu_cache;
3680 kick_all_cpus_sync();
3682 check_irq_on();
3683 cachep->batchcount = batchcount;
3684 cachep->limit = limit;
3685 cachep->shared = shared;
3687 if (!prev)
3688 goto alloc_node;
3690 for_each_online_cpu(cpu) {
3691 LIST_HEAD(list);
3692 int node;
3693 struct kmem_cache_node *n;
3694 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3696 node = cpu_to_mem(cpu);
3697 n = get_node(cachep, node);
3698 spin_lock_irq(&n->list_lock);
3699 free_block(cachep, ac->entry, ac->avail, node, &list);
3700 spin_unlock_irq(&n->list_lock);
3701 slabs_destroy(cachep, &list);
3703 free_percpu(prev);
3705 alloc_node:
3706 return alloc_kmem_cache_node(cachep, gfp);
3709 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3710 int batchcount, int shared, gfp_t gfp)
3712 int ret;
3713 struct kmem_cache *c = NULL;
3714 int i = 0;
3716 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3718 if (slab_state < FULL)
3719 return ret;
3721 if ((ret < 0) || !is_root_cache(cachep))
3722 return ret;
3724 VM_BUG_ON(!mutex_is_locked(&slab_mutex));
3725 for_each_memcg_cache_index(i) {
3726 c = cache_from_memcg_idx(cachep, i);
3727 if (c)
3728 /* return value determined by the parent cache only */
3729 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3732 return ret;
3735 /* Called with slab_mutex held always */
3736 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3738 int err;
3739 int limit = 0;
3740 int shared = 0;
3741 int batchcount = 0;
3743 if (!is_root_cache(cachep)) {
3744 struct kmem_cache *root = memcg_root_cache(cachep);
3745 limit = root->limit;
3746 shared = root->shared;
3747 batchcount = root->batchcount;
3750 if (limit && shared && batchcount)
3751 goto skip_setup;
3753 * The head array serves three purposes:
3754 * - create a LIFO ordering, i.e. return objects that are cache-warm
3755 * - reduce the number of spinlock operations.
3756 * - reduce the number of linked list operations on the slab and
3757 * bufctl chains: array operations are cheaper.
3758 * The numbers are guessed, we should auto-tune as described by
3759 * Bonwick.
3761 if (cachep->size > 131072)
3762 limit = 1;
3763 else if (cachep->size > PAGE_SIZE)
3764 limit = 8;
3765 else if (cachep->size > 1024)
3766 limit = 24;
3767 else if (cachep->size > 256)
3768 limit = 54;
3769 else
3770 limit = 120;
3773 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3774 * allocation behaviour: Most allocs on one cpu, most free operations
3775 * on another cpu. For these cases, an efficient object passing between
3776 * cpus is necessary. This is provided by a shared array. The array
3777 * replaces Bonwick's magazine layer.
3778 * On uniprocessor, it's functionally equivalent (but less efficient)
3779 * to a larger limit. Thus disabled by default.
3781 shared = 0;
3782 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3783 shared = 8;
3785 #if DEBUG
3787 * With debugging enabled, large batchcount lead to excessively long
3788 * periods with disabled local interrupts. Limit the batchcount
3790 if (limit > 32)
3791 limit = 32;
3792 #endif
3793 batchcount = (limit + 1) / 2;
3794 skip_setup:
3795 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3796 if (err)
3797 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3798 cachep->name, -err);
3799 return err;
3803 * Drain an array if it contains any elements taking the node lock only if
3804 * necessary. Note that the node listlock also protects the array_cache
3805 * if drain_array() is used on the shared array.
3807 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3808 struct array_cache *ac, int force, int node)
3810 LIST_HEAD(list);
3811 int tofree;
3813 if (!ac || !ac->avail)
3814 return;
3815 if (ac->touched && !force) {
3816 ac->touched = 0;
3817 } else {
3818 spin_lock_irq(&n->list_lock);
3819 if (ac->avail) {
3820 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3821 if (tofree > ac->avail)
3822 tofree = (ac->avail + 1) / 2;
3823 free_block(cachep, ac->entry, tofree, node, &list);
3824 ac->avail -= tofree;
3825 memmove(ac->entry, &(ac->entry[tofree]),
3826 sizeof(void *) * ac->avail);
3828 spin_unlock_irq(&n->list_lock);
3829 slabs_destroy(cachep, &list);
3834 * cache_reap - Reclaim memory from caches.
3835 * @w: work descriptor
3837 * Called from workqueue/eventd every few seconds.
3838 * Purpose:
3839 * - clear the per-cpu caches for this CPU.
3840 * - return freeable pages to the main free memory pool.
3842 * If we cannot acquire the cache chain mutex then just give up - we'll try
3843 * again on the next iteration.
3845 static void cache_reap(struct work_struct *w)
3847 struct kmem_cache *searchp;
3848 struct kmem_cache_node *n;
3849 int node = numa_mem_id();
3850 struct delayed_work *work = to_delayed_work(w);
3852 if (!mutex_trylock(&slab_mutex))
3853 /* Give up. Setup the next iteration. */
3854 goto out;
3856 list_for_each_entry(searchp, &slab_caches, list) {
3857 check_irq_on();
3860 * We only take the node lock if absolutely necessary and we
3861 * have established with reasonable certainty that
3862 * we can do some work if the lock was obtained.
3864 n = get_node(searchp, node);
3866 reap_alien(searchp, n);
3868 drain_array(searchp, n, cpu_cache_get(searchp), 0, node);
3871 * These are racy checks but it does not matter
3872 * if we skip one check or scan twice.
3874 if (time_after(n->next_reap, jiffies))
3875 goto next;
3877 n->next_reap = jiffies + REAPTIMEOUT_NODE;
3879 drain_array(searchp, n, n->shared, 0, node);
3881 if (n->free_touched)
3882 n->free_touched = 0;
3883 else {
3884 int freed;
3886 freed = drain_freelist(searchp, n, (n->free_limit +
3887 5 * searchp->num - 1) / (5 * searchp->num));
3888 STATS_ADD_REAPED(searchp, freed);
3890 next:
3891 cond_resched();
3893 check_irq_on();
3894 mutex_unlock(&slab_mutex);
3895 next_reap_node();
3896 out:
3897 /* Set up the next iteration */
3898 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
3901 #ifdef CONFIG_SLABINFO
3902 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
3904 struct page *page;
3905 unsigned long active_objs;
3906 unsigned long num_objs;
3907 unsigned long active_slabs = 0;
3908 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3909 const char *name;
3910 char *error = NULL;
3911 int node;
3912 struct kmem_cache_node *n;
3914 active_objs = 0;
3915 num_slabs = 0;
3916 for_each_kmem_cache_node(cachep, node, n) {
3918 check_irq_on();
3919 spin_lock_irq(&n->list_lock);
3921 list_for_each_entry(page, &n->slabs_full, lru) {
3922 if (page->active != cachep->num && !error)
3923 error = "slabs_full accounting error";
3924 active_objs += cachep->num;
3925 active_slabs++;
3927 list_for_each_entry(page, &n->slabs_partial, lru) {
3928 if (page->active == cachep->num && !error)
3929 error = "slabs_partial accounting error";
3930 if (!page->active && !error)
3931 error = "slabs_partial accounting error";
3932 active_objs += page->active;
3933 active_slabs++;
3935 list_for_each_entry(page, &n->slabs_free, lru) {
3936 if (page->active && !error)
3937 error = "slabs_free accounting error";
3938 num_slabs++;
3940 free_objects += n->free_objects;
3941 if (n->shared)
3942 shared_avail += n->shared->avail;
3944 spin_unlock_irq(&n->list_lock);
3946 num_slabs += active_slabs;
3947 num_objs = num_slabs * cachep->num;
3948 if (num_objs - active_objs != free_objects && !error)
3949 error = "free_objects accounting error";
3951 name = cachep->name;
3952 if (error)
3953 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3955 sinfo->active_objs = active_objs;
3956 sinfo->num_objs = num_objs;
3957 sinfo->active_slabs = active_slabs;
3958 sinfo->num_slabs = num_slabs;
3959 sinfo->shared_avail = shared_avail;
3960 sinfo->limit = cachep->limit;
3961 sinfo->batchcount = cachep->batchcount;
3962 sinfo->shared = cachep->shared;
3963 sinfo->objects_per_slab = cachep->num;
3964 sinfo->cache_order = cachep->gfporder;
3967 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
3969 #if STATS
3970 { /* node stats */
3971 unsigned long high = cachep->high_mark;
3972 unsigned long allocs = cachep->num_allocations;
3973 unsigned long grown = cachep->grown;
3974 unsigned long reaped = cachep->reaped;
3975 unsigned long errors = cachep->errors;
3976 unsigned long max_freeable = cachep->max_freeable;
3977 unsigned long node_allocs = cachep->node_allocs;
3978 unsigned long node_frees = cachep->node_frees;
3979 unsigned long overflows = cachep->node_overflow;
3981 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
3982 "%4lu %4lu %4lu %4lu %4lu",
3983 allocs, high, grown,
3984 reaped, errors, max_freeable, node_allocs,
3985 node_frees, overflows);
3987 /* cpu stats */
3989 unsigned long allochit = atomic_read(&cachep->allochit);
3990 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3991 unsigned long freehit = atomic_read(&cachep->freehit);
3992 unsigned long freemiss = atomic_read(&cachep->freemiss);
3994 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3995 allochit, allocmiss, freehit, freemiss);
3997 #endif
4000 #define MAX_SLABINFO_WRITE 128
4002 * slabinfo_write - Tuning for the slab allocator
4003 * @file: unused
4004 * @buffer: user buffer
4005 * @count: data length
4006 * @ppos: unused
4008 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4009 size_t count, loff_t *ppos)
4011 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4012 int limit, batchcount, shared, res;
4013 struct kmem_cache *cachep;
4015 if (count > MAX_SLABINFO_WRITE)
4016 return -EINVAL;
4017 if (copy_from_user(&kbuf, buffer, count))
4018 return -EFAULT;
4019 kbuf[MAX_SLABINFO_WRITE] = '\0';
4021 tmp = strchr(kbuf, ' ');
4022 if (!tmp)
4023 return -EINVAL;
4024 *tmp = '\0';
4025 tmp++;
4026 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4027 return -EINVAL;
4029 /* Find the cache in the chain of caches. */
4030 mutex_lock(&slab_mutex);
4031 res = -EINVAL;
4032 list_for_each_entry(cachep, &slab_caches, list) {
4033 if (!strcmp(cachep->name, kbuf)) {
4034 if (limit < 1 || batchcount < 1 ||
4035 batchcount > limit || shared < 0) {
4036 res = 0;
4037 } else {
4038 res = do_tune_cpucache(cachep, limit,
4039 batchcount, shared,
4040 GFP_KERNEL);
4042 break;
4045 mutex_unlock(&slab_mutex);
4046 if (res >= 0)
4047 res = count;
4048 return res;
4051 #ifdef CONFIG_DEBUG_SLAB_LEAK
4053 static void *leaks_start(struct seq_file *m, loff_t *pos)
4055 mutex_lock(&slab_mutex);
4056 return seq_list_start(&slab_caches, *pos);
4059 static inline int add_caller(unsigned long *n, unsigned long v)
4061 unsigned long *p;
4062 int l;
4063 if (!v)
4064 return 1;
4065 l = n[1];
4066 p = n + 2;
4067 while (l) {
4068 int i = l/2;
4069 unsigned long *q = p + 2 * i;
4070 if (*q == v) {
4071 q[1]++;
4072 return 1;
4074 if (*q > v) {
4075 l = i;
4076 } else {
4077 p = q + 2;
4078 l -= i + 1;
4081 if (++n[1] == n[0])
4082 return 0;
4083 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4084 p[0] = v;
4085 p[1] = 1;
4086 return 1;
4089 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4090 struct page *page)
4092 void *p;
4093 int i;
4095 if (n[0] == n[1])
4096 return;
4097 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4098 if (get_obj_status(page, i) != OBJECT_ACTIVE)
4099 continue;
4101 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4102 return;
4106 static void show_symbol(struct seq_file *m, unsigned long address)
4108 #ifdef CONFIG_KALLSYMS
4109 unsigned long offset, size;
4110 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4112 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4113 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4114 if (modname[0])
4115 seq_printf(m, " [%s]", modname);
4116 return;
4118 #endif
4119 seq_printf(m, "%p", (void *)address);
4122 static int leaks_show(struct seq_file *m, void *p)
4124 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4125 struct page *page;
4126 struct kmem_cache_node *n;
4127 const char *name;
4128 unsigned long *x = m->private;
4129 int node;
4130 int i;
4132 if (!(cachep->flags & SLAB_STORE_USER))
4133 return 0;
4134 if (!(cachep->flags & SLAB_RED_ZONE))
4135 return 0;
4137 /* OK, we can do it */
4139 x[1] = 0;
4141 for_each_kmem_cache_node(cachep, node, n) {
4143 check_irq_on();
4144 spin_lock_irq(&n->list_lock);
4146 list_for_each_entry(page, &n->slabs_full, lru)
4147 handle_slab(x, cachep, page);
4148 list_for_each_entry(page, &n->slabs_partial, lru)
4149 handle_slab(x, cachep, page);
4150 spin_unlock_irq(&n->list_lock);
4152 name = cachep->name;
4153 if (x[0] == x[1]) {
4154 /* Increase the buffer size */
4155 mutex_unlock(&slab_mutex);
4156 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4157 if (!m->private) {
4158 /* Too bad, we are really out */
4159 m->private = x;
4160 mutex_lock(&slab_mutex);
4161 return -ENOMEM;
4163 *(unsigned long *)m->private = x[0] * 2;
4164 kfree(x);
4165 mutex_lock(&slab_mutex);
4166 /* Now make sure this entry will be retried */
4167 m->count = m->size;
4168 return 0;
4170 for (i = 0; i < x[1]; i++) {
4171 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4172 show_symbol(m, x[2*i+2]);
4173 seq_putc(m, '\n');
4176 return 0;
4179 static const struct seq_operations slabstats_op = {
4180 .start = leaks_start,
4181 .next = slab_next,
4182 .stop = slab_stop,
4183 .show = leaks_show,
4186 static int slabstats_open(struct inode *inode, struct file *file)
4188 unsigned long *n;
4190 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4191 if (!n)
4192 return -ENOMEM;
4194 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4196 return 0;
4199 static const struct file_operations proc_slabstats_operations = {
4200 .open = slabstats_open,
4201 .read = seq_read,
4202 .llseek = seq_lseek,
4203 .release = seq_release_private,
4205 #endif
4207 static int __init slab_proc_init(void)
4209 #ifdef CONFIG_DEBUG_SLAB_LEAK
4210 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4211 #endif
4212 return 0;
4214 module_init(slab_proc_init);
4215 #endif
4218 * ksize - get the actual amount of memory allocated for a given object
4219 * @objp: Pointer to the object
4221 * kmalloc may internally round up allocations and return more memory
4222 * than requested. ksize() can be used to determine the actual amount of
4223 * memory allocated. The caller may use this additional memory, even though
4224 * a smaller amount of memory was initially specified with the kmalloc call.
4225 * The caller must guarantee that objp points to a valid object previously
4226 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4227 * must not be freed during the duration of the call.
4229 size_t ksize(const void *objp)
4231 BUG_ON(!objp);
4232 if (unlikely(objp == ZERO_SIZE_PTR))
4233 return 0;
4235 return virt_to_cache(objp)->object_size;
4237 EXPORT_SYMBOL(ksize);