3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t
;
166 typedef unsigned short freelist_idx_t
;
169 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
172 * true if a page was allocated from pfmemalloc reserves for network-based
175 static bool pfmemalloc_active __read_mostly
;
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
185 * The limit is stored in the per-cpu structure to reduce the data cache
192 unsigned int batchcount
;
193 unsigned int touched
;
195 * Must have this definition in here for the proper
196 * alignment of array_cache. Also simplifies accessing
199 * Entries should not be directly dereferenced as
200 * entries belonging to slabs marked pfmemalloc will
201 * have the lower bits set SLAB_OBJ_PFMEMALLOC
207 struct array_cache ac
;
210 #define SLAB_OBJ_PFMEMALLOC 1
211 static inline bool is_obj_pfmemalloc(void *objp
)
213 return (unsigned long)objp
& SLAB_OBJ_PFMEMALLOC
;
216 static inline void set_obj_pfmemalloc(void **objp
)
218 *objp
= (void *)((unsigned long)*objp
| SLAB_OBJ_PFMEMALLOC
);
222 static inline void clear_obj_pfmemalloc(void **objp
)
224 *objp
= (void *)((unsigned long)*objp
& ~SLAB_OBJ_PFMEMALLOC
);
228 * bootstrap: The caches do not work without cpuarrays anymore, but the
229 * cpuarrays are allocated from the generic caches...
231 #define BOOT_CPUCACHE_ENTRIES 1
232 struct arraycache_init
{
233 struct array_cache cache
;
234 void *entries
[BOOT_CPUCACHE_ENTRIES
];
238 * Need this for bootstrapping a per node allocator.
240 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
241 static struct kmem_cache_node __initdata init_kmem_cache_node
[NUM_INIT_LISTS
];
242 #define CACHE_CACHE 0
243 #define SIZE_NODE (MAX_NUMNODES)
245 static int drain_freelist(struct kmem_cache
*cache
,
246 struct kmem_cache_node
*n
, int tofree
);
247 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
248 int node
, struct list_head
*list
);
249 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
);
250 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
251 static void cache_reap(struct work_struct
*unused
);
253 static int slab_early_init
= 1;
255 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
257 static void kmem_cache_node_init(struct kmem_cache_node
*parent
)
259 INIT_LIST_HEAD(&parent
->slabs_full
);
260 INIT_LIST_HEAD(&parent
->slabs_partial
);
261 INIT_LIST_HEAD(&parent
->slabs_free
);
262 parent
->shared
= NULL
;
263 parent
->alien
= NULL
;
264 parent
->colour_next
= 0;
265 spin_lock_init(&parent
->list_lock
);
266 parent
->free_objects
= 0;
267 parent
->free_touched
= 0;
270 #define MAKE_LIST(cachep, listp, slab, nodeid) \
272 INIT_LIST_HEAD(listp); \
273 list_splice(&get_node(cachep, nodeid)->slab, listp); \
276 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
278 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
279 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
280 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
283 #define CFLGS_OFF_SLAB (0x80000000UL)
284 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
286 #define BATCHREFILL_LIMIT 16
288 * Optimization question: fewer reaps means less probability for unnessary
289 * cpucache drain/refill cycles.
291 * OTOH the cpuarrays can contain lots of objects,
292 * which could lock up otherwise freeable slabs.
294 #define REAPTIMEOUT_AC (2*HZ)
295 #define REAPTIMEOUT_NODE (4*HZ)
298 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
299 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
300 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
301 #define STATS_INC_GROWN(x) ((x)->grown++)
302 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
303 #define STATS_SET_HIGH(x) \
305 if ((x)->num_active > (x)->high_mark) \
306 (x)->high_mark = (x)->num_active; \
308 #define STATS_INC_ERR(x) ((x)->errors++)
309 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
310 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
311 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
312 #define STATS_SET_FREEABLE(x, i) \
314 if ((x)->max_freeable < i) \
315 (x)->max_freeable = i; \
317 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
318 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
319 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
320 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
322 #define STATS_INC_ACTIVE(x) do { } while (0)
323 #define STATS_DEC_ACTIVE(x) do { } while (0)
324 #define STATS_INC_ALLOCED(x) do { } while (0)
325 #define STATS_INC_GROWN(x) do { } while (0)
326 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
327 #define STATS_SET_HIGH(x) do { } while (0)
328 #define STATS_INC_ERR(x) do { } while (0)
329 #define STATS_INC_NODEALLOCS(x) do { } while (0)
330 #define STATS_INC_NODEFREES(x) do { } while (0)
331 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
332 #define STATS_SET_FREEABLE(x, i) do { } while (0)
333 #define STATS_INC_ALLOCHIT(x) do { } while (0)
334 #define STATS_INC_ALLOCMISS(x) do { } while (0)
335 #define STATS_INC_FREEHIT(x) do { } while (0)
336 #define STATS_INC_FREEMISS(x) do { } while (0)
342 * memory layout of objects:
344 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
345 * the end of an object is aligned with the end of the real
346 * allocation. Catches writes behind the end of the allocation.
347 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
349 * cachep->obj_offset: The real object.
350 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
351 * cachep->size - 1* BYTES_PER_WORD: last caller address
352 * [BYTES_PER_WORD long]
354 static int obj_offset(struct kmem_cache
*cachep
)
356 return cachep
->obj_offset
;
359 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
361 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
362 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
363 sizeof(unsigned long long));
366 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
368 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
369 if (cachep
->flags
& SLAB_STORE_USER
)
370 return (unsigned long long *)(objp
+ cachep
->size
-
371 sizeof(unsigned long long) -
373 return (unsigned long long *) (objp
+ cachep
->size
-
374 sizeof(unsigned long long));
377 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
379 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
380 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
385 #define obj_offset(x) 0
386 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
387 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
388 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
392 #define OBJECT_FREE (0)
393 #define OBJECT_ACTIVE (1)
395 #ifdef CONFIG_DEBUG_SLAB_LEAK
397 static void set_obj_status(struct page
*page
, int idx
, int val
)
401 struct kmem_cache
*cachep
= page
->slab_cache
;
403 freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
404 status
= (char *)page
->freelist
+ freelist_size
;
408 static inline unsigned int get_obj_status(struct page
*page
, int idx
)
412 struct kmem_cache
*cachep
= page
->slab_cache
;
414 freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
415 status
= (char *)page
->freelist
+ freelist_size
;
421 static inline void set_obj_status(struct page
*page
, int idx
, int val
) {}
426 * Do not go above this order unless 0 objects fit into the slab or
427 * overridden on the command line.
429 #define SLAB_MAX_ORDER_HI 1
430 #define SLAB_MAX_ORDER_LO 0
431 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
432 static bool slab_max_order_set __initdata
;
434 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
436 struct page
*page
= virt_to_head_page(obj
);
437 return page
->slab_cache
;
440 static inline void *index_to_obj(struct kmem_cache
*cache
, struct page
*page
,
443 return page
->s_mem
+ cache
->size
* idx
;
447 * We want to avoid an expensive divide : (offset / cache->size)
448 * Using the fact that size is a constant for a particular cache,
449 * we can replace (offset / cache->size) by
450 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
452 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
453 const struct page
*page
, void *obj
)
455 u32 offset
= (obj
- page
->s_mem
);
456 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
459 /* internal cache of cache description objs */
460 static struct kmem_cache kmem_cache_boot
= {
462 .limit
= BOOT_CPUCACHE_ENTRIES
,
464 .size
= sizeof(struct kmem_cache
),
465 .name
= "kmem_cache",
468 #define BAD_ALIEN_MAGIC 0x01020304ul
470 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
472 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
474 return this_cpu_ptr(cachep
->cpu_cache
);
477 static size_t calculate_freelist_size(int nr_objs
, size_t align
)
479 size_t freelist_size
;
481 freelist_size
= nr_objs
* sizeof(freelist_idx_t
);
482 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK
))
483 freelist_size
+= nr_objs
* sizeof(char);
486 freelist_size
= ALIGN(freelist_size
, align
);
488 return freelist_size
;
491 static int calculate_nr_objs(size_t slab_size
, size_t buffer_size
,
492 size_t idx_size
, size_t align
)
495 size_t remained_size
;
496 size_t freelist_size
;
499 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK
))
500 extra_space
= sizeof(char);
502 * Ignore padding for the initial guess. The padding
503 * is at most @align-1 bytes, and @buffer_size is at
504 * least @align. In the worst case, this result will
505 * be one greater than the number of objects that fit
506 * into the memory allocation when taking the padding
509 nr_objs
= slab_size
/ (buffer_size
+ idx_size
+ extra_space
);
512 * This calculated number will be either the right
513 * amount, or one greater than what we want.
515 remained_size
= slab_size
- nr_objs
* buffer_size
;
516 freelist_size
= calculate_freelist_size(nr_objs
, align
);
517 if (remained_size
< freelist_size
)
524 * Calculate the number of objects and left-over bytes for a given buffer size.
526 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
527 size_t align
, int flags
, size_t *left_over
,
532 size_t slab_size
= PAGE_SIZE
<< gfporder
;
535 * The slab management structure can be either off the slab or
536 * on it. For the latter case, the memory allocated for a
539 * - One unsigned int for each object
540 * - Padding to respect alignment of @align
541 * - @buffer_size bytes for each object
543 * If the slab management structure is off the slab, then the
544 * alignment will already be calculated into the size. Because
545 * the slabs are all pages aligned, the objects will be at the
546 * correct alignment when allocated.
548 if (flags
& CFLGS_OFF_SLAB
) {
550 nr_objs
= slab_size
/ buffer_size
;
553 nr_objs
= calculate_nr_objs(slab_size
, buffer_size
,
554 sizeof(freelist_idx_t
), align
);
555 mgmt_size
= calculate_freelist_size(nr_objs
, align
);
558 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
562 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
564 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
567 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
568 function
, cachep
->name
, msg
);
570 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
575 * By default on NUMA we use alien caches to stage the freeing of
576 * objects allocated from other nodes. This causes massive memory
577 * inefficiencies when using fake NUMA setup to split memory into a
578 * large number of small nodes, so it can be disabled on the command
582 static int use_alien_caches __read_mostly
= 1;
583 static int __init
noaliencache_setup(char *s
)
585 use_alien_caches
= 0;
588 __setup("noaliencache", noaliencache_setup
);
590 static int __init
slab_max_order_setup(char *str
)
592 get_option(&str
, &slab_max_order
);
593 slab_max_order
= slab_max_order
< 0 ? 0 :
594 min(slab_max_order
, MAX_ORDER
- 1);
595 slab_max_order_set
= true;
599 __setup("slab_max_order=", slab_max_order_setup
);
603 * Special reaping functions for NUMA systems called from cache_reap().
604 * These take care of doing round robin flushing of alien caches (containing
605 * objects freed on different nodes from which they were allocated) and the
606 * flushing of remote pcps by calling drain_node_pages.
608 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
610 static void init_reap_node(int cpu
)
614 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
615 if (node
== MAX_NUMNODES
)
616 node
= first_node(node_online_map
);
618 per_cpu(slab_reap_node
, cpu
) = node
;
621 static void next_reap_node(void)
623 int node
= __this_cpu_read(slab_reap_node
);
625 node
= next_node(node
, node_online_map
);
626 if (unlikely(node
>= MAX_NUMNODES
))
627 node
= first_node(node_online_map
);
628 __this_cpu_write(slab_reap_node
, node
);
632 #define init_reap_node(cpu) do { } while (0)
633 #define next_reap_node(void) do { } while (0)
637 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
638 * via the workqueue/eventd.
639 * Add the CPU number into the expiration time to minimize the possibility of
640 * the CPUs getting into lockstep and contending for the global cache chain
643 static void start_cpu_timer(int cpu
)
645 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
648 * When this gets called from do_initcalls via cpucache_init(),
649 * init_workqueues() has already run, so keventd will be setup
652 if (keventd_up() && reap_work
->work
.func
== NULL
) {
654 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
655 schedule_delayed_work_on(cpu
, reap_work
,
656 __round_jiffies_relative(HZ
, cpu
));
660 static void init_arraycache(struct array_cache
*ac
, int limit
, int batch
)
663 * The array_cache structures contain pointers to free object.
664 * However, when such objects are allocated or transferred to another
665 * cache the pointers are not cleared and they could be counted as
666 * valid references during a kmemleak scan. Therefore, kmemleak must
667 * not scan such objects.
669 kmemleak_no_scan(ac
);
673 ac
->batchcount
= batch
;
678 static struct array_cache
*alloc_arraycache(int node
, int entries
,
679 int batchcount
, gfp_t gfp
)
681 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
682 struct array_cache
*ac
= NULL
;
684 ac
= kmalloc_node(memsize
, gfp
, node
);
685 init_arraycache(ac
, entries
, batchcount
);
689 static inline bool is_slab_pfmemalloc(struct page
*page
)
691 return PageSlabPfmemalloc(page
);
694 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
695 static void recheck_pfmemalloc_active(struct kmem_cache
*cachep
,
696 struct array_cache
*ac
)
698 struct kmem_cache_node
*n
= get_node(cachep
, numa_mem_id());
702 if (!pfmemalloc_active
)
705 spin_lock_irqsave(&n
->list_lock
, flags
);
706 list_for_each_entry(page
, &n
->slabs_full
, lru
)
707 if (is_slab_pfmemalloc(page
))
710 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
711 if (is_slab_pfmemalloc(page
))
714 list_for_each_entry(page
, &n
->slabs_free
, lru
)
715 if (is_slab_pfmemalloc(page
))
718 pfmemalloc_active
= false;
720 spin_unlock_irqrestore(&n
->list_lock
, flags
);
723 static void *__ac_get_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
724 gfp_t flags
, bool force_refill
)
727 void *objp
= ac
->entry
[--ac
->avail
];
729 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
730 if (unlikely(is_obj_pfmemalloc(objp
))) {
731 struct kmem_cache_node
*n
;
733 if (gfp_pfmemalloc_allowed(flags
)) {
734 clear_obj_pfmemalloc(&objp
);
738 /* The caller cannot use PFMEMALLOC objects, find another one */
739 for (i
= 0; i
< ac
->avail
; i
++) {
740 /* If a !PFMEMALLOC object is found, swap them */
741 if (!is_obj_pfmemalloc(ac
->entry
[i
])) {
743 ac
->entry
[i
] = ac
->entry
[ac
->avail
];
744 ac
->entry
[ac
->avail
] = objp
;
750 * If there are empty slabs on the slabs_free list and we are
751 * being forced to refill the cache, mark this one !pfmemalloc.
753 n
= get_node(cachep
, numa_mem_id());
754 if (!list_empty(&n
->slabs_free
) && force_refill
) {
755 struct page
*page
= virt_to_head_page(objp
);
756 ClearPageSlabPfmemalloc(page
);
757 clear_obj_pfmemalloc(&objp
);
758 recheck_pfmemalloc_active(cachep
, ac
);
762 /* No !PFMEMALLOC objects available */
770 static inline void *ac_get_obj(struct kmem_cache
*cachep
,
771 struct array_cache
*ac
, gfp_t flags
, bool force_refill
)
775 if (unlikely(sk_memalloc_socks()))
776 objp
= __ac_get_obj(cachep
, ac
, flags
, force_refill
);
778 objp
= ac
->entry
[--ac
->avail
];
783 static noinline
void *__ac_put_obj(struct kmem_cache
*cachep
,
784 struct array_cache
*ac
, void *objp
)
786 if (unlikely(pfmemalloc_active
)) {
787 /* Some pfmemalloc slabs exist, check if this is one */
788 struct page
*page
= virt_to_head_page(objp
);
789 if (PageSlabPfmemalloc(page
))
790 set_obj_pfmemalloc(&objp
);
796 static inline void ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
799 if (unlikely(sk_memalloc_socks()))
800 objp
= __ac_put_obj(cachep
, ac
, objp
);
802 ac
->entry
[ac
->avail
++] = objp
;
806 * Transfer objects in one arraycache to another.
807 * Locking must be handled by the caller.
809 * Return the number of entries transferred.
811 static int transfer_objects(struct array_cache
*to
,
812 struct array_cache
*from
, unsigned int max
)
814 /* Figure out how many entries to transfer */
815 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
820 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
830 #define drain_alien_cache(cachep, alien) do { } while (0)
831 #define reap_alien(cachep, n) do { } while (0)
833 static inline struct alien_cache
**alloc_alien_cache(int node
,
834 int limit
, gfp_t gfp
)
836 return (struct alien_cache
**)BAD_ALIEN_MAGIC
;
839 static inline void free_alien_cache(struct alien_cache
**ac_ptr
)
843 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
848 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
854 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
855 gfp_t flags
, int nodeid
)
860 #else /* CONFIG_NUMA */
862 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
863 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
865 static struct alien_cache
*__alloc_alien_cache(int node
, int entries
,
866 int batch
, gfp_t gfp
)
868 size_t memsize
= sizeof(void *) * entries
+ sizeof(struct alien_cache
);
869 struct alien_cache
*alc
= NULL
;
871 alc
= kmalloc_node(memsize
, gfp
, node
);
872 init_arraycache(&alc
->ac
, entries
, batch
);
873 spin_lock_init(&alc
->lock
);
877 static struct alien_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
879 struct alien_cache
**alc_ptr
;
880 size_t memsize
= sizeof(void *) * nr_node_ids
;
885 alc_ptr
= kzalloc_node(memsize
, gfp
, node
);
890 if (i
== node
|| !node_online(i
))
892 alc_ptr
[i
] = __alloc_alien_cache(node
, limit
, 0xbaadf00d, gfp
);
894 for (i
--; i
>= 0; i
--)
903 static void free_alien_cache(struct alien_cache
**alc_ptr
)
914 static void __drain_alien_cache(struct kmem_cache
*cachep
,
915 struct array_cache
*ac
, int node
,
916 struct list_head
*list
)
918 struct kmem_cache_node
*n
= get_node(cachep
, node
);
921 spin_lock(&n
->list_lock
);
923 * Stuff objects into the remote nodes shared array first.
924 * That way we could avoid the overhead of putting the objects
925 * into the free lists and getting them back later.
928 transfer_objects(n
->shared
, ac
, ac
->limit
);
930 free_block(cachep
, ac
->entry
, ac
->avail
, node
, list
);
932 spin_unlock(&n
->list_lock
);
937 * Called from cache_reap() to regularly drain alien caches round robin.
939 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
)
941 int node
= __this_cpu_read(slab_reap_node
);
944 struct alien_cache
*alc
= n
->alien
[node
];
945 struct array_cache
*ac
;
949 if (ac
->avail
&& spin_trylock_irq(&alc
->lock
)) {
952 __drain_alien_cache(cachep
, ac
, node
, &list
);
953 spin_unlock_irq(&alc
->lock
);
954 slabs_destroy(cachep
, &list
);
960 static void drain_alien_cache(struct kmem_cache
*cachep
,
961 struct alien_cache
**alien
)
964 struct alien_cache
*alc
;
965 struct array_cache
*ac
;
968 for_each_online_node(i
) {
974 spin_lock_irqsave(&alc
->lock
, flags
);
975 __drain_alien_cache(cachep
, ac
, i
, &list
);
976 spin_unlock_irqrestore(&alc
->lock
, flags
);
977 slabs_destroy(cachep
, &list
);
982 static int __cache_free_alien(struct kmem_cache
*cachep
, void *objp
,
983 int node
, int page_node
)
985 struct kmem_cache_node
*n
;
986 struct alien_cache
*alien
= NULL
;
987 struct array_cache
*ac
;
990 n
= get_node(cachep
, node
);
991 STATS_INC_NODEFREES(cachep
);
992 if (n
->alien
&& n
->alien
[page_node
]) {
993 alien
= n
->alien
[page_node
];
995 spin_lock(&alien
->lock
);
996 if (unlikely(ac
->avail
== ac
->limit
)) {
997 STATS_INC_ACOVERFLOW(cachep
);
998 __drain_alien_cache(cachep
, ac
, page_node
, &list
);
1000 ac_put_obj(cachep
, ac
, objp
);
1001 spin_unlock(&alien
->lock
);
1002 slabs_destroy(cachep
, &list
);
1004 n
= get_node(cachep
, page_node
);
1005 spin_lock(&n
->list_lock
);
1006 free_block(cachep
, &objp
, 1, page_node
, &list
);
1007 spin_unlock(&n
->list_lock
);
1008 slabs_destroy(cachep
, &list
);
1013 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1015 int page_node
= page_to_nid(virt_to_page(objp
));
1016 int node
= numa_mem_id();
1018 * Make sure we are not freeing a object from another node to the array
1019 * cache on this cpu.
1021 if (likely(node
== page_node
))
1024 return __cache_free_alien(cachep
, objp
, node
, page_node
);
1029 * Allocates and initializes node for a node on each slab cache, used for
1030 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1031 * will be allocated off-node since memory is not yet online for the new node.
1032 * When hotplugging memory or a cpu, existing node are not replaced if
1035 * Must hold slab_mutex.
1037 static int init_cache_node_node(int node
)
1039 struct kmem_cache
*cachep
;
1040 struct kmem_cache_node
*n
;
1041 const size_t memsize
= sizeof(struct kmem_cache_node
);
1043 list_for_each_entry(cachep
, &slab_caches
, list
) {
1045 * Set up the kmem_cache_node for cpu before we can
1046 * begin anything. Make sure some other cpu on this
1047 * node has not already allocated this
1049 n
= get_node(cachep
, node
);
1051 n
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1054 kmem_cache_node_init(n
);
1055 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
1056 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1059 * The kmem_cache_nodes don't come and go as CPUs
1060 * come and go. slab_mutex is sufficient
1063 cachep
->node
[node
] = n
;
1066 spin_lock_irq(&n
->list_lock
);
1068 (1 + nr_cpus_node(node
)) *
1069 cachep
->batchcount
+ cachep
->num
;
1070 spin_unlock_irq(&n
->list_lock
);
1075 static inline int slabs_tofree(struct kmem_cache
*cachep
,
1076 struct kmem_cache_node
*n
)
1078 return (n
->free_objects
+ cachep
->num
- 1) / cachep
->num
;
1081 static void cpuup_canceled(long cpu
)
1083 struct kmem_cache
*cachep
;
1084 struct kmem_cache_node
*n
= NULL
;
1085 int node
= cpu_to_mem(cpu
);
1086 const struct cpumask
*mask
= cpumask_of_node(node
);
1088 list_for_each_entry(cachep
, &slab_caches
, list
) {
1089 struct array_cache
*nc
;
1090 struct array_cache
*shared
;
1091 struct alien_cache
**alien
;
1094 n
= get_node(cachep
, node
);
1098 spin_lock_irq(&n
->list_lock
);
1100 /* Free limit for this kmem_cache_node */
1101 n
->free_limit
-= cachep
->batchcount
;
1103 /* cpu is dead; no one can alloc from it. */
1104 nc
= per_cpu_ptr(cachep
->cpu_cache
, cpu
);
1106 free_block(cachep
, nc
->entry
, nc
->avail
, node
, &list
);
1110 if (!cpumask_empty(mask
)) {
1111 spin_unlock_irq(&n
->list_lock
);
1117 free_block(cachep
, shared
->entry
,
1118 shared
->avail
, node
, &list
);
1125 spin_unlock_irq(&n
->list_lock
);
1129 drain_alien_cache(cachep
, alien
);
1130 free_alien_cache(alien
);
1134 slabs_destroy(cachep
, &list
);
1137 * In the previous loop, all the objects were freed to
1138 * the respective cache's slabs, now we can go ahead and
1139 * shrink each nodelist to its limit.
1141 list_for_each_entry(cachep
, &slab_caches
, list
) {
1142 n
= get_node(cachep
, node
);
1145 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
1149 static int cpuup_prepare(long cpu
)
1151 struct kmem_cache
*cachep
;
1152 struct kmem_cache_node
*n
= NULL
;
1153 int node
= cpu_to_mem(cpu
);
1157 * We need to do this right in the beginning since
1158 * alloc_arraycache's are going to use this list.
1159 * kmalloc_node allows us to add the slab to the right
1160 * kmem_cache_node and not this cpu's kmem_cache_node
1162 err
= init_cache_node_node(node
);
1167 * Now we can go ahead with allocating the shared arrays and
1170 list_for_each_entry(cachep
, &slab_caches
, list
) {
1171 struct array_cache
*shared
= NULL
;
1172 struct alien_cache
**alien
= NULL
;
1174 if (cachep
->shared
) {
1175 shared
= alloc_arraycache(node
,
1176 cachep
->shared
* cachep
->batchcount
,
1177 0xbaadf00d, GFP_KERNEL
);
1181 if (use_alien_caches
) {
1182 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1188 n
= get_node(cachep
, node
);
1191 spin_lock_irq(&n
->list_lock
);
1194 * We are serialised from CPU_DEAD or
1195 * CPU_UP_CANCELLED by the cpucontrol lock
1206 spin_unlock_irq(&n
->list_lock
);
1208 free_alien_cache(alien
);
1213 cpuup_canceled(cpu
);
1217 static int cpuup_callback(struct notifier_block
*nfb
,
1218 unsigned long action
, void *hcpu
)
1220 long cpu
= (long)hcpu
;
1224 case CPU_UP_PREPARE
:
1225 case CPU_UP_PREPARE_FROZEN
:
1226 mutex_lock(&slab_mutex
);
1227 err
= cpuup_prepare(cpu
);
1228 mutex_unlock(&slab_mutex
);
1231 case CPU_ONLINE_FROZEN
:
1232 start_cpu_timer(cpu
);
1234 #ifdef CONFIG_HOTPLUG_CPU
1235 case CPU_DOWN_PREPARE
:
1236 case CPU_DOWN_PREPARE_FROZEN
:
1238 * Shutdown cache reaper. Note that the slab_mutex is
1239 * held so that if cache_reap() is invoked it cannot do
1240 * anything expensive but will only modify reap_work
1241 * and reschedule the timer.
1243 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1244 /* Now the cache_reaper is guaranteed to be not running. */
1245 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1247 case CPU_DOWN_FAILED
:
1248 case CPU_DOWN_FAILED_FROZEN
:
1249 start_cpu_timer(cpu
);
1252 case CPU_DEAD_FROZEN
:
1254 * Even if all the cpus of a node are down, we don't free the
1255 * kmem_cache_node of any cache. This to avoid a race between
1256 * cpu_down, and a kmalloc allocation from another cpu for
1257 * memory from the node of the cpu going down. The node
1258 * structure is usually allocated from kmem_cache_create() and
1259 * gets destroyed at kmem_cache_destroy().
1263 case CPU_UP_CANCELED
:
1264 case CPU_UP_CANCELED_FROZEN
:
1265 mutex_lock(&slab_mutex
);
1266 cpuup_canceled(cpu
);
1267 mutex_unlock(&slab_mutex
);
1270 return notifier_from_errno(err
);
1273 static struct notifier_block cpucache_notifier
= {
1274 &cpuup_callback
, NULL
, 0
1277 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1279 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1280 * Returns -EBUSY if all objects cannot be drained so that the node is not
1283 * Must hold slab_mutex.
1285 static int __meminit
drain_cache_node_node(int node
)
1287 struct kmem_cache
*cachep
;
1290 list_for_each_entry(cachep
, &slab_caches
, list
) {
1291 struct kmem_cache_node
*n
;
1293 n
= get_node(cachep
, node
);
1297 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
1299 if (!list_empty(&n
->slabs_full
) ||
1300 !list_empty(&n
->slabs_partial
)) {
1308 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1309 unsigned long action
, void *arg
)
1311 struct memory_notify
*mnb
= arg
;
1315 nid
= mnb
->status_change_nid
;
1320 case MEM_GOING_ONLINE
:
1321 mutex_lock(&slab_mutex
);
1322 ret
= init_cache_node_node(nid
);
1323 mutex_unlock(&slab_mutex
);
1325 case MEM_GOING_OFFLINE
:
1326 mutex_lock(&slab_mutex
);
1327 ret
= drain_cache_node_node(nid
);
1328 mutex_unlock(&slab_mutex
);
1332 case MEM_CANCEL_ONLINE
:
1333 case MEM_CANCEL_OFFLINE
:
1337 return notifier_from_errno(ret
);
1339 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1342 * swap the static kmem_cache_node with kmalloced memory
1344 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_cache_node
*list
,
1347 struct kmem_cache_node
*ptr
;
1349 ptr
= kmalloc_node(sizeof(struct kmem_cache_node
), GFP_NOWAIT
, nodeid
);
1352 memcpy(ptr
, list
, sizeof(struct kmem_cache_node
));
1354 * Do not assume that spinlocks can be initialized via memcpy:
1356 spin_lock_init(&ptr
->list_lock
);
1358 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1359 cachep
->node
[nodeid
] = ptr
;
1363 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1364 * size of kmem_cache_node.
1366 static void __init
set_up_node(struct kmem_cache
*cachep
, int index
)
1370 for_each_online_node(node
) {
1371 cachep
->node
[node
] = &init_kmem_cache_node
[index
+ node
];
1372 cachep
->node
[node
]->next_reap
= jiffies
+
1374 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1379 * Initialisation. Called after the page allocator have been initialised and
1380 * before smp_init().
1382 void __init
kmem_cache_init(void)
1386 BUILD_BUG_ON(sizeof(((struct page
*)NULL
)->lru
) <
1387 sizeof(struct rcu_head
));
1388 kmem_cache
= &kmem_cache_boot
;
1390 if (num_possible_nodes() == 1)
1391 use_alien_caches
= 0;
1393 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1394 kmem_cache_node_init(&init_kmem_cache_node
[i
]);
1397 * Fragmentation resistance on low memory - only use bigger
1398 * page orders on machines with more than 32MB of memory if
1399 * not overridden on the command line.
1401 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1402 slab_max_order
= SLAB_MAX_ORDER_HI
;
1404 /* Bootstrap is tricky, because several objects are allocated
1405 * from caches that do not exist yet:
1406 * 1) initialize the kmem_cache cache: it contains the struct
1407 * kmem_cache structures of all caches, except kmem_cache itself:
1408 * kmem_cache is statically allocated.
1409 * Initially an __init data area is used for the head array and the
1410 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1411 * array at the end of the bootstrap.
1412 * 2) Create the first kmalloc cache.
1413 * The struct kmem_cache for the new cache is allocated normally.
1414 * An __init data area is used for the head array.
1415 * 3) Create the remaining kmalloc caches, with minimally sized
1417 * 4) Replace the __init data head arrays for kmem_cache and the first
1418 * kmalloc cache with kmalloc allocated arrays.
1419 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1420 * the other cache's with kmalloc allocated memory.
1421 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1424 /* 1) create the kmem_cache */
1427 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1429 create_boot_cache(kmem_cache
, "kmem_cache",
1430 offsetof(struct kmem_cache
, node
) +
1431 nr_node_ids
* sizeof(struct kmem_cache_node
*),
1432 SLAB_HWCACHE_ALIGN
);
1433 list_add(&kmem_cache
->list
, &slab_caches
);
1434 slab_state
= PARTIAL
;
1437 * Initialize the caches that provide memory for the kmem_cache_node
1438 * structures first. Without this, further allocations will bug.
1440 kmalloc_caches
[INDEX_NODE
] = create_kmalloc_cache("kmalloc-node",
1441 kmalloc_size(INDEX_NODE
), ARCH_KMALLOC_FLAGS
);
1442 slab_state
= PARTIAL_NODE
;
1444 slab_early_init
= 0;
1446 /* 5) Replace the bootstrap kmem_cache_node */
1450 for_each_online_node(nid
) {
1451 init_list(kmem_cache
, &init_kmem_cache_node
[CACHE_CACHE
+ nid
], nid
);
1453 init_list(kmalloc_caches
[INDEX_NODE
],
1454 &init_kmem_cache_node
[SIZE_NODE
+ nid
], nid
);
1458 create_kmalloc_caches(ARCH_KMALLOC_FLAGS
);
1461 void __init
kmem_cache_init_late(void)
1463 struct kmem_cache
*cachep
;
1467 /* 6) resize the head arrays to their final sizes */
1468 mutex_lock(&slab_mutex
);
1469 list_for_each_entry(cachep
, &slab_caches
, list
)
1470 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1472 mutex_unlock(&slab_mutex
);
1478 * Register a cpu startup notifier callback that initializes
1479 * cpu_cache_get for all new cpus
1481 register_cpu_notifier(&cpucache_notifier
);
1485 * Register a memory hotplug callback that initializes and frees
1488 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1492 * The reap timers are started later, with a module init call: That part
1493 * of the kernel is not yet operational.
1497 static int __init
cpucache_init(void)
1502 * Register the timers that return unneeded pages to the page allocator
1504 for_each_online_cpu(cpu
)
1505 start_cpu_timer(cpu
);
1511 __initcall(cpucache_init
);
1513 static noinline
void
1514 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1517 struct kmem_cache_node
*n
;
1519 unsigned long flags
;
1521 static DEFINE_RATELIMIT_STATE(slab_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1522 DEFAULT_RATELIMIT_BURST
);
1524 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slab_oom_rs
))
1528 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1530 printk(KERN_WARNING
" cache: %s, object size: %d, order: %d\n",
1531 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1533 for_each_kmem_cache_node(cachep
, node
, n
) {
1534 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1535 unsigned long active_slabs
= 0, num_slabs
= 0;
1537 spin_lock_irqsave(&n
->list_lock
, flags
);
1538 list_for_each_entry(page
, &n
->slabs_full
, lru
) {
1539 active_objs
+= cachep
->num
;
1542 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
1543 active_objs
+= page
->active
;
1546 list_for_each_entry(page
, &n
->slabs_free
, lru
)
1549 free_objects
+= n
->free_objects
;
1550 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1552 num_slabs
+= active_slabs
;
1553 num_objs
= num_slabs
* cachep
->num
;
1555 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1556 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1563 * Interface to system's page allocator. No need to hold the
1564 * kmem_cache_node ->list_lock.
1566 * If we requested dmaable memory, we will get it. Even if we
1567 * did not request dmaable memory, we might get it, but that
1568 * would be relatively rare and ignorable.
1570 static struct page
*kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
,
1576 flags
|= cachep
->allocflags
;
1577 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1578 flags
|= __GFP_RECLAIMABLE
;
1580 if (memcg_charge_slab(cachep
, flags
, cachep
->gfporder
))
1583 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1585 memcg_uncharge_slab(cachep
, cachep
->gfporder
);
1586 slab_out_of_memory(cachep
, flags
, nodeid
);
1590 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1591 if (unlikely(page
->pfmemalloc
))
1592 pfmemalloc_active
= true;
1594 nr_pages
= (1 << cachep
->gfporder
);
1595 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1596 add_zone_page_state(page_zone(page
),
1597 NR_SLAB_RECLAIMABLE
, nr_pages
);
1599 add_zone_page_state(page_zone(page
),
1600 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1601 __SetPageSlab(page
);
1602 if (page
->pfmemalloc
)
1603 SetPageSlabPfmemalloc(page
);
1605 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1606 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1609 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1611 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1618 * Interface to system's page release.
1620 static void kmem_freepages(struct kmem_cache
*cachep
, struct page
*page
)
1622 const unsigned long nr_freed
= (1 << cachep
->gfporder
);
1624 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1626 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1627 sub_zone_page_state(page_zone(page
),
1628 NR_SLAB_RECLAIMABLE
, nr_freed
);
1630 sub_zone_page_state(page_zone(page
),
1631 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1633 BUG_ON(!PageSlab(page
));
1634 __ClearPageSlabPfmemalloc(page
);
1635 __ClearPageSlab(page
);
1636 page_mapcount_reset(page
);
1637 page
->mapping
= NULL
;
1639 if (current
->reclaim_state
)
1640 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1641 __free_pages(page
, cachep
->gfporder
);
1642 memcg_uncharge_slab(cachep
, cachep
->gfporder
);
1645 static void kmem_rcu_free(struct rcu_head
*head
)
1647 struct kmem_cache
*cachep
;
1650 page
= container_of(head
, struct page
, rcu_head
);
1651 cachep
= page
->slab_cache
;
1653 kmem_freepages(cachep
, page
);
1658 #ifdef CONFIG_DEBUG_PAGEALLOC
1659 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1660 unsigned long caller
)
1662 int size
= cachep
->object_size
;
1664 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1666 if (size
< 5 * sizeof(unsigned long))
1669 *addr
++ = 0x12345678;
1671 *addr
++ = smp_processor_id();
1672 size
-= 3 * sizeof(unsigned long);
1674 unsigned long *sptr
= &caller
;
1675 unsigned long svalue
;
1677 while (!kstack_end(sptr
)) {
1679 if (kernel_text_address(svalue
)) {
1681 size
-= sizeof(unsigned long);
1682 if (size
<= sizeof(unsigned long))
1688 *addr
++ = 0x87654321;
1692 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1694 int size
= cachep
->object_size
;
1695 addr
= &((char *)addr
)[obj_offset(cachep
)];
1697 memset(addr
, val
, size
);
1698 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1701 static void dump_line(char *data
, int offset
, int limit
)
1704 unsigned char error
= 0;
1707 printk(KERN_ERR
"%03x: ", offset
);
1708 for (i
= 0; i
< limit
; i
++) {
1709 if (data
[offset
+ i
] != POISON_FREE
) {
1710 error
= data
[offset
+ i
];
1714 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1715 &data
[offset
], limit
, 1);
1717 if (bad_count
== 1) {
1718 error
^= POISON_FREE
;
1719 if (!(error
& (error
- 1))) {
1720 printk(KERN_ERR
"Single bit error detected. Probably "
1723 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1726 printk(KERN_ERR
"Run a memory test tool.\n");
1735 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1740 if (cachep
->flags
& SLAB_RED_ZONE
) {
1741 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1742 *dbg_redzone1(cachep
, objp
),
1743 *dbg_redzone2(cachep
, objp
));
1746 if (cachep
->flags
& SLAB_STORE_USER
) {
1747 printk(KERN_ERR
"Last user: [<%p>](%pSR)\n",
1748 *dbg_userword(cachep
, objp
),
1749 *dbg_userword(cachep
, objp
));
1751 realobj
= (char *)objp
+ obj_offset(cachep
);
1752 size
= cachep
->object_size
;
1753 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1756 if (i
+ limit
> size
)
1758 dump_line(realobj
, i
, limit
);
1762 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1768 realobj
= (char *)objp
+ obj_offset(cachep
);
1769 size
= cachep
->object_size
;
1771 for (i
= 0; i
< size
; i
++) {
1772 char exp
= POISON_FREE
;
1775 if (realobj
[i
] != exp
) {
1781 "Slab corruption (%s): %s start=%p, len=%d\n",
1782 print_tainted(), cachep
->name
, realobj
, size
);
1783 print_objinfo(cachep
, objp
, 0);
1785 /* Hexdump the affected line */
1788 if (i
+ limit
> size
)
1790 dump_line(realobj
, i
, limit
);
1793 /* Limit to 5 lines */
1799 /* Print some data about the neighboring objects, if they
1802 struct page
*page
= virt_to_head_page(objp
);
1805 objnr
= obj_to_index(cachep
, page
, objp
);
1807 objp
= index_to_obj(cachep
, page
, objnr
- 1);
1808 realobj
= (char *)objp
+ obj_offset(cachep
);
1809 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1811 print_objinfo(cachep
, objp
, 2);
1813 if (objnr
+ 1 < cachep
->num
) {
1814 objp
= index_to_obj(cachep
, page
, objnr
+ 1);
1815 realobj
= (char *)objp
+ obj_offset(cachep
);
1816 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1818 print_objinfo(cachep
, objp
, 2);
1825 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1829 for (i
= 0; i
< cachep
->num
; i
++) {
1830 void *objp
= index_to_obj(cachep
, page
, i
);
1832 if (cachep
->flags
& SLAB_POISON
) {
1833 #ifdef CONFIG_DEBUG_PAGEALLOC
1834 if (cachep
->size
% PAGE_SIZE
== 0 &&
1836 kernel_map_pages(virt_to_page(objp
),
1837 cachep
->size
/ PAGE_SIZE
, 1);
1839 check_poison_obj(cachep
, objp
);
1841 check_poison_obj(cachep
, objp
);
1844 if (cachep
->flags
& SLAB_RED_ZONE
) {
1845 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1846 slab_error(cachep
, "start of a freed object "
1848 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1849 slab_error(cachep
, "end of a freed object "
1855 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1862 * slab_destroy - destroy and release all objects in a slab
1863 * @cachep: cache pointer being destroyed
1864 * @page: page pointer being destroyed
1866 * Destroy all the objs in a slab page, and release the mem back to the system.
1867 * Before calling the slab page must have been unlinked from the cache. The
1868 * kmem_cache_node ->list_lock is not held/needed.
1870 static void slab_destroy(struct kmem_cache
*cachep
, struct page
*page
)
1874 freelist
= page
->freelist
;
1875 slab_destroy_debugcheck(cachep
, page
);
1876 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1877 struct rcu_head
*head
;
1880 * RCU free overloads the RCU head over the LRU.
1881 * slab_page has been overloeaded over the LRU,
1882 * however it is not used from now on so that
1883 * we can use it safely.
1885 head
= (void *)&page
->rcu_head
;
1886 call_rcu(head
, kmem_rcu_free
);
1889 kmem_freepages(cachep
, page
);
1893 * From now on, we don't use freelist
1894 * although actual page can be freed in rcu context
1896 if (OFF_SLAB(cachep
))
1897 kmem_cache_free(cachep
->freelist_cache
, freelist
);
1900 static void slabs_destroy(struct kmem_cache
*cachep
, struct list_head
*list
)
1902 struct page
*page
, *n
;
1904 list_for_each_entry_safe(page
, n
, list
, lru
) {
1905 list_del(&page
->lru
);
1906 slab_destroy(cachep
, page
);
1911 * calculate_slab_order - calculate size (page order) of slabs
1912 * @cachep: pointer to the cache that is being created
1913 * @size: size of objects to be created in this cache.
1914 * @align: required alignment for the objects.
1915 * @flags: slab allocation flags
1917 * Also calculates the number of objects per slab.
1919 * This could be made much more intelligent. For now, try to avoid using
1920 * high order pages for slabs. When the gfp() functions are more friendly
1921 * towards high-order requests, this should be changed.
1923 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
1924 size_t size
, size_t align
, unsigned long flags
)
1926 unsigned long offslab_limit
;
1927 size_t left_over
= 0;
1930 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
1934 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
1938 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1939 if (num
> SLAB_OBJ_MAX_NUM
)
1942 if (flags
& CFLGS_OFF_SLAB
) {
1943 size_t freelist_size_per_obj
= sizeof(freelist_idx_t
);
1945 * Max number of objs-per-slab for caches which
1946 * use off-slab slabs. Needed to avoid a possible
1947 * looping condition in cache_grow().
1949 if (IS_ENABLED(CONFIG_DEBUG_SLAB_LEAK
))
1950 freelist_size_per_obj
+= sizeof(char);
1951 offslab_limit
= size
;
1952 offslab_limit
/= freelist_size_per_obj
;
1954 if (num
> offslab_limit
)
1958 /* Found something acceptable - save it away */
1960 cachep
->gfporder
= gfporder
;
1961 left_over
= remainder
;
1964 * A VFS-reclaimable slab tends to have most allocations
1965 * as GFP_NOFS and we really don't want to have to be allocating
1966 * higher-order pages when we are unable to shrink dcache.
1968 if (flags
& SLAB_RECLAIM_ACCOUNT
)
1972 * Large number of objects is good, but very large slabs are
1973 * currently bad for the gfp()s.
1975 if (gfporder
>= slab_max_order
)
1979 * Acceptable internal fragmentation?
1981 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
1987 static struct array_cache __percpu
*alloc_kmem_cache_cpus(
1988 struct kmem_cache
*cachep
, int entries
, int batchcount
)
1992 struct array_cache __percpu
*cpu_cache
;
1994 size
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
1995 cpu_cache
= __alloc_percpu(size
, sizeof(void *));
2000 for_each_possible_cpu(cpu
) {
2001 init_arraycache(per_cpu_ptr(cpu_cache
, cpu
),
2002 entries
, batchcount
);
2008 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2010 if (slab_state
>= FULL
)
2011 return enable_cpucache(cachep
, gfp
);
2013 cachep
->cpu_cache
= alloc_kmem_cache_cpus(cachep
, 1, 1);
2014 if (!cachep
->cpu_cache
)
2017 if (slab_state
== DOWN
) {
2018 /* Creation of first cache (kmem_cache). */
2019 set_up_node(kmem_cache
, CACHE_CACHE
);
2020 } else if (slab_state
== PARTIAL
) {
2021 /* For kmem_cache_node */
2022 set_up_node(cachep
, SIZE_NODE
);
2026 for_each_online_node(node
) {
2027 cachep
->node
[node
] = kmalloc_node(
2028 sizeof(struct kmem_cache_node
), gfp
, node
);
2029 BUG_ON(!cachep
->node
[node
]);
2030 kmem_cache_node_init(cachep
->node
[node
]);
2034 cachep
->node
[numa_mem_id()]->next_reap
=
2035 jiffies
+ REAPTIMEOUT_NODE
+
2036 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
2038 cpu_cache_get(cachep
)->avail
= 0;
2039 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2040 cpu_cache_get(cachep
)->batchcount
= 1;
2041 cpu_cache_get(cachep
)->touched
= 0;
2042 cachep
->batchcount
= 1;
2043 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2047 unsigned long kmem_cache_flags(unsigned long object_size
,
2048 unsigned long flags
, const char *name
,
2049 void (*ctor
)(void *))
2055 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
2056 unsigned long flags
, void (*ctor
)(void *))
2058 struct kmem_cache
*cachep
;
2060 cachep
= find_mergeable(size
, align
, flags
, name
, ctor
);
2065 * Adjust the object sizes so that we clear
2066 * the complete object on kzalloc.
2068 cachep
->object_size
= max_t(int, cachep
->object_size
, size
);
2074 * __kmem_cache_create - Create a cache.
2075 * @cachep: cache management descriptor
2076 * @flags: SLAB flags
2078 * Returns a ptr to the cache on success, NULL on failure.
2079 * Cannot be called within a int, but can be interrupted.
2080 * The @ctor is run when new pages are allocated by the cache.
2084 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2085 * to catch references to uninitialised memory.
2087 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2088 * for buffer overruns.
2090 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2091 * cacheline. This can be beneficial if you're counting cycles as closely
2095 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2097 size_t left_over
, freelist_size
;
2098 size_t ralign
= BYTES_PER_WORD
;
2101 size_t size
= cachep
->size
;
2106 * Enable redzoning and last user accounting, except for caches with
2107 * large objects, if the increased size would increase the object size
2108 * above the next power of two: caches with object sizes just above a
2109 * power of two have a significant amount of internal fragmentation.
2111 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2112 2 * sizeof(unsigned long long)))
2113 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2114 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2115 flags
|= SLAB_POISON
;
2117 if (flags
& SLAB_DESTROY_BY_RCU
)
2118 BUG_ON(flags
& SLAB_POISON
);
2122 * Check that size is in terms of words. This is needed to avoid
2123 * unaligned accesses for some archs when redzoning is used, and makes
2124 * sure any on-slab bufctl's are also correctly aligned.
2126 if (size
& (BYTES_PER_WORD
- 1)) {
2127 size
+= (BYTES_PER_WORD
- 1);
2128 size
&= ~(BYTES_PER_WORD
- 1);
2131 if (flags
& SLAB_RED_ZONE
) {
2132 ralign
= REDZONE_ALIGN
;
2133 /* If redzoning, ensure that the second redzone is suitably
2134 * aligned, by adjusting the object size accordingly. */
2135 size
+= REDZONE_ALIGN
- 1;
2136 size
&= ~(REDZONE_ALIGN
- 1);
2139 /* 3) caller mandated alignment */
2140 if (ralign
< cachep
->align
) {
2141 ralign
= cachep
->align
;
2143 /* disable debug if necessary */
2144 if (ralign
> __alignof__(unsigned long long))
2145 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2149 cachep
->align
= ralign
;
2151 if (slab_is_available())
2159 * Both debugging options require word-alignment which is calculated
2162 if (flags
& SLAB_RED_ZONE
) {
2163 /* add space for red zone words */
2164 cachep
->obj_offset
+= sizeof(unsigned long long);
2165 size
+= 2 * sizeof(unsigned long long);
2167 if (flags
& SLAB_STORE_USER
) {
2168 /* user store requires one word storage behind the end of
2169 * the real object. But if the second red zone needs to be
2170 * aligned to 64 bits, we must allow that much space.
2172 if (flags
& SLAB_RED_ZONE
)
2173 size
+= REDZONE_ALIGN
;
2175 size
+= BYTES_PER_WORD
;
2177 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2179 * To activate debug pagealloc, off-slab management is necessary
2180 * requirement. In early phase of initialization, small sized slab
2181 * doesn't get initialized so it would not be possible. So, we need
2182 * to check size >= 256. It guarantees that all necessary small
2183 * sized slab is initialized in current slab initialization sequence.
2185 if (!slab_early_init
&& size
>= kmalloc_size(INDEX_NODE
) &&
2186 size
>= 256 && cachep
->object_size
> cache_line_size() &&
2187 ALIGN(size
, cachep
->align
) < PAGE_SIZE
) {
2188 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, cachep
->align
);
2195 * Determine if the slab management is 'on' or 'off' slab.
2196 * (bootstrapping cannot cope with offslab caches so don't do
2197 * it too early on. Always use on-slab management when
2198 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2200 if ((size
>= (PAGE_SIZE
>> 5)) && !slab_early_init
&&
2201 !(flags
& SLAB_NOLEAKTRACE
))
2203 * Size is large, assume best to place the slab management obj
2204 * off-slab (should allow better packing of objs).
2206 flags
|= CFLGS_OFF_SLAB
;
2208 size
= ALIGN(size
, cachep
->align
);
2210 * We should restrict the number of objects in a slab to implement
2211 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2213 if (FREELIST_BYTE_INDEX
&& size
< SLAB_OBJ_MIN_SIZE
)
2214 size
= ALIGN(SLAB_OBJ_MIN_SIZE
, cachep
->align
);
2216 left_over
= calculate_slab_order(cachep
, size
, cachep
->align
, flags
);
2221 freelist_size
= calculate_freelist_size(cachep
->num
, cachep
->align
);
2224 * If the slab has been placed off-slab, and we have enough space then
2225 * move it on-slab. This is at the expense of any extra colouring.
2227 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= freelist_size
) {
2228 flags
&= ~CFLGS_OFF_SLAB
;
2229 left_over
-= freelist_size
;
2232 if (flags
& CFLGS_OFF_SLAB
) {
2233 /* really off slab. No need for manual alignment */
2234 freelist_size
= calculate_freelist_size(cachep
->num
, 0);
2236 #ifdef CONFIG_PAGE_POISONING
2237 /* If we're going to use the generic kernel_map_pages()
2238 * poisoning, then it's going to smash the contents of
2239 * the redzone and userword anyhow, so switch them off.
2241 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2242 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2246 cachep
->colour_off
= cache_line_size();
2247 /* Offset must be a multiple of the alignment. */
2248 if (cachep
->colour_off
< cachep
->align
)
2249 cachep
->colour_off
= cachep
->align
;
2250 cachep
->colour
= left_over
/ cachep
->colour_off
;
2251 cachep
->freelist_size
= freelist_size
;
2252 cachep
->flags
= flags
;
2253 cachep
->allocflags
= __GFP_COMP
;
2254 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2255 cachep
->allocflags
|= GFP_DMA
;
2256 cachep
->size
= size
;
2257 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2259 if (flags
& CFLGS_OFF_SLAB
) {
2260 cachep
->freelist_cache
= kmalloc_slab(freelist_size
, 0u);
2262 * This is a possibility for one of the kmalloc_{dma,}_caches.
2263 * But since we go off slab only for object size greater than
2264 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2265 * in ascending order,this should not happen at all.
2266 * But leave a BUG_ON for some lucky dude.
2268 BUG_ON(ZERO_OR_NULL_PTR(cachep
->freelist_cache
));
2271 err
= setup_cpu_cache(cachep
, gfp
);
2273 __kmem_cache_shutdown(cachep
);
2281 static void check_irq_off(void)
2283 BUG_ON(!irqs_disabled());
2286 static void check_irq_on(void)
2288 BUG_ON(irqs_disabled());
2291 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2295 assert_spin_locked(&get_node(cachep
, numa_mem_id())->list_lock
);
2299 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2303 assert_spin_locked(&get_node(cachep
, node
)->list_lock
);
2308 #define check_irq_off() do { } while(0)
2309 #define check_irq_on() do { } while(0)
2310 #define check_spinlock_acquired(x) do { } while(0)
2311 #define check_spinlock_acquired_node(x, y) do { } while(0)
2314 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
2315 struct array_cache
*ac
,
2316 int force
, int node
);
2318 static void do_drain(void *arg
)
2320 struct kmem_cache
*cachep
= arg
;
2321 struct array_cache
*ac
;
2322 int node
= numa_mem_id();
2323 struct kmem_cache_node
*n
;
2327 ac
= cpu_cache_get(cachep
);
2328 n
= get_node(cachep
, node
);
2329 spin_lock(&n
->list_lock
);
2330 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
2331 spin_unlock(&n
->list_lock
);
2332 slabs_destroy(cachep
, &list
);
2336 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2338 struct kmem_cache_node
*n
;
2341 on_each_cpu(do_drain
, cachep
, 1);
2343 for_each_kmem_cache_node(cachep
, node
, n
)
2345 drain_alien_cache(cachep
, n
->alien
);
2347 for_each_kmem_cache_node(cachep
, node
, n
)
2348 drain_array(cachep
, n
, n
->shared
, 1, node
);
2352 * Remove slabs from the list of free slabs.
2353 * Specify the number of slabs to drain in tofree.
2355 * Returns the actual number of slabs released.
2357 static int drain_freelist(struct kmem_cache
*cache
,
2358 struct kmem_cache_node
*n
, int tofree
)
2360 struct list_head
*p
;
2365 while (nr_freed
< tofree
&& !list_empty(&n
->slabs_free
)) {
2367 spin_lock_irq(&n
->list_lock
);
2368 p
= n
->slabs_free
.prev
;
2369 if (p
== &n
->slabs_free
) {
2370 spin_unlock_irq(&n
->list_lock
);
2374 page
= list_entry(p
, struct page
, lru
);
2376 BUG_ON(page
->active
);
2378 list_del(&page
->lru
);
2380 * Safe to drop the lock. The slab is no longer linked
2383 n
->free_objects
-= cache
->num
;
2384 spin_unlock_irq(&n
->list_lock
);
2385 slab_destroy(cache
, page
);
2392 int __kmem_cache_shrink(struct kmem_cache
*cachep
)
2396 struct kmem_cache_node
*n
;
2398 drain_cpu_caches(cachep
);
2401 for_each_kmem_cache_node(cachep
, node
, n
) {
2402 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
2404 ret
+= !list_empty(&n
->slabs_full
) ||
2405 !list_empty(&n
->slabs_partial
);
2407 return (ret
? 1 : 0);
2410 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2413 struct kmem_cache_node
*n
;
2414 int rc
= __kmem_cache_shrink(cachep
);
2419 free_percpu(cachep
->cpu_cache
);
2421 /* NUMA: free the node structures */
2422 for_each_kmem_cache_node(cachep
, i
, n
) {
2424 free_alien_cache(n
->alien
);
2426 cachep
->node
[i
] = NULL
;
2432 * Get the memory for a slab management obj.
2434 * For a slab cache when the slab descriptor is off-slab, the
2435 * slab descriptor can't come from the same cache which is being created,
2436 * Because if it is the case, that means we defer the creation of
2437 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2438 * And we eventually call down to __kmem_cache_create(), which
2439 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2440 * This is a "chicken-and-egg" problem.
2442 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2443 * which are all initialized during kmem_cache_init().
2445 static void *alloc_slabmgmt(struct kmem_cache
*cachep
,
2446 struct page
*page
, int colour_off
,
2447 gfp_t local_flags
, int nodeid
)
2450 void *addr
= page_address(page
);
2452 if (OFF_SLAB(cachep
)) {
2453 /* Slab management obj is off-slab. */
2454 freelist
= kmem_cache_alloc_node(cachep
->freelist_cache
,
2455 local_flags
, nodeid
);
2459 freelist
= addr
+ colour_off
;
2460 colour_off
+= cachep
->freelist_size
;
2463 page
->s_mem
= addr
+ colour_off
;
2467 static inline freelist_idx_t
get_free_obj(struct page
*page
, unsigned int idx
)
2469 return ((freelist_idx_t
*)page
->freelist
)[idx
];
2472 static inline void set_free_obj(struct page
*page
,
2473 unsigned int idx
, freelist_idx_t val
)
2475 ((freelist_idx_t
*)(page
->freelist
))[idx
] = val
;
2478 static void cache_init_objs(struct kmem_cache
*cachep
,
2483 for (i
= 0; i
< cachep
->num
; i
++) {
2484 void *objp
= index_to_obj(cachep
, page
, i
);
2486 /* need to poison the objs? */
2487 if (cachep
->flags
& SLAB_POISON
)
2488 poison_obj(cachep
, objp
, POISON_FREE
);
2489 if (cachep
->flags
& SLAB_STORE_USER
)
2490 *dbg_userword(cachep
, objp
) = NULL
;
2492 if (cachep
->flags
& SLAB_RED_ZONE
) {
2493 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2494 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2497 * Constructors are not allowed to allocate memory from the same
2498 * cache which they are a constructor for. Otherwise, deadlock.
2499 * They must also be threaded.
2501 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2502 cachep
->ctor(objp
+ obj_offset(cachep
));
2504 if (cachep
->flags
& SLAB_RED_ZONE
) {
2505 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2506 slab_error(cachep
, "constructor overwrote the"
2507 " end of an object");
2508 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2509 slab_error(cachep
, "constructor overwrote the"
2510 " start of an object");
2512 if ((cachep
->size
% PAGE_SIZE
) == 0 &&
2513 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2514 kernel_map_pages(virt_to_page(objp
),
2515 cachep
->size
/ PAGE_SIZE
, 0);
2520 set_obj_status(page
, i
, OBJECT_FREE
);
2521 set_free_obj(page
, i
, i
);
2525 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2527 if (CONFIG_ZONE_DMA_FLAG
) {
2528 if (flags
& GFP_DMA
)
2529 BUG_ON(!(cachep
->allocflags
& GFP_DMA
));
2531 BUG_ON(cachep
->allocflags
& GFP_DMA
);
2535 static void *slab_get_obj(struct kmem_cache
*cachep
, struct page
*page
,
2540 objp
= index_to_obj(cachep
, page
, get_free_obj(page
, page
->active
));
2543 WARN_ON(page_to_nid(virt_to_page(objp
)) != nodeid
);
2549 static void slab_put_obj(struct kmem_cache
*cachep
, struct page
*page
,
2550 void *objp
, int nodeid
)
2552 unsigned int objnr
= obj_to_index(cachep
, page
, objp
);
2556 /* Verify that the slab belongs to the intended node */
2557 WARN_ON(page_to_nid(virt_to_page(objp
)) != nodeid
);
2559 /* Verify double free bug */
2560 for (i
= page
->active
; i
< cachep
->num
; i
++) {
2561 if (get_free_obj(page
, i
) == objnr
) {
2562 printk(KERN_ERR
"slab: double free detected in cache "
2563 "'%s', objp %p\n", cachep
->name
, objp
);
2569 set_free_obj(page
, page
->active
, objnr
);
2573 * Map pages beginning at addr to the given cache and slab. This is required
2574 * for the slab allocator to be able to lookup the cache and slab of a
2575 * virtual address for kfree, ksize, and slab debugging.
2577 static void slab_map_pages(struct kmem_cache
*cache
, struct page
*page
,
2580 page
->slab_cache
= cache
;
2581 page
->freelist
= freelist
;
2585 * Grow (by 1) the number of slabs within a cache. This is called by
2586 * kmem_cache_alloc() when there are no active objs left in a cache.
2588 static int cache_grow(struct kmem_cache
*cachep
,
2589 gfp_t flags
, int nodeid
, struct page
*page
)
2594 struct kmem_cache_node
*n
;
2597 * Be lazy and only check for valid flags here, keeping it out of the
2598 * critical path in kmem_cache_alloc().
2600 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2601 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2603 /* Take the node list lock to change the colour_next on this node */
2605 n
= get_node(cachep
, nodeid
);
2606 spin_lock(&n
->list_lock
);
2608 /* Get colour for the slab, and cal the next value. */
2609 offset
= n
->colour_next
;
2611 if (n
->colour_next
>= cachep
->colour
)
2613 spin_unlock(&n
->list_lock
);
2615 offset
*= cachep
->colour_off
;
2617 if (local_flags
& __GFP_WAIT
)
2621 * The test for missing atomic flag is performed here, rather than
2622 * the more obvious place, simply to reduce the critical path length
2623 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2624 * will eventually be caught here (where it matters).
2626 kmem_flagcheck(cachep
, flags
);
2629 * Get mem for the objs. Attempt to allocate a physical page from
2633 page
= kmem_getpages(cachep
, local_flags
, nodeid
);
2637 /* Get slab management. */
2638 freelist
= alloc_slabmgmt(cachep
, page
, offset
,
2639 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2643 slab_map_pages(cachep
, page
, freelist
);
2645 cache_init_objs(cachep
, page
);
2647 if (local_flags
& __GFP_WAIT
)
2648 local_irq_disable();
2650 spin_lock(&n
->list_lock
);
2652 /* Make slab active. */
2653 list_add_tail(&page
->lru
, &(n
->slabs_free
));
2654 STATS_INC_GROWN(cachep
);
2655 n
->free_objects
+= cachep
->num
;
2656 spin_unlock(&n
->list_lock
);
2659 kmem_freepages(cachep
, page
);
2661 if (local_flags
& __GFP_WAIT
)
2662 local_irq_disable();
2669 * Perform extra freeing checks:
2670 * - detect bad pointers.
2671 * - POISON/RED_ZONE checking
2673 static void kfree_debugcheck(const void *objp
)
2675 if (!virt_addr_valid(objp
)) {
2676 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2677 (unsigned long)objp
);
2682 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2684 unsigned long long redzone1
, redzone2
;
2686 redzone1
= *dbg_redzone1(cache
, obj
);
2687 redzone2
= *dbg_redzone2(cache
, obj
);
2692 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2695 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2696 slab_error(cache
, "double free detected");
2698 slab_error(cache
, "memory outside object was overwritten");
2700 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2701 obj
, redzone1
, redzone2
);
2704 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2705 unsigned long caller
)
2710 BUG_ON(virt_to_cache(objp
) != cachep
);
2712 objp
-= obj_offset(cachep
);
2713 kfree_debugcheck(objp
);
2714 page
= virt_to_head_page(objp
);
2716 if (cachep
->flags
& SLAB_RED_ZONE
) {
2717 verify_redzone_free(cachep
, objp
);
2718 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2719 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2721 if (cachep
->flags
& SLAB_STORE_USER
)
2722 *dbg_userword(cachep
, objp
) = (void *)caller
;
2724 objnr
= obj_to_index(cachep
, page
, objp
);
2726 BUG_ON(objnr
>= cachep
->num
);
2727 BUG_ON(objp
!= index_to_obj(cachep
, page
, objnr
));
2729 set_obj_status(page
, objnr
, OBJECT_FREE
);
2730 if (cachep
->flags
& SLAB_POISON
) {
2731 #ifdef CONFIG_DEBUG_PAGEALLOC
2732 if ((cachep
->size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2733 store_stackinfo(cachep
, objp
, caller
);
2734 kernel_map_pages(virt_to_page(objp
),
2735 cachep
->size
/ PAGE_SIZE
, 0);
2737 poison_obj(cachep
, objp
, POISON_FREE
);
2740 poison_obj(cachep
, objp
, POISON_FREE
);
2747 #define kfree_debugcheck(x) do { } while(0)
2748 #define cache_free_debugcheck(x,objp,z) (objp)
2751 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
,
2755 struct kmem_cache_node
*n
;
2756 struct array_cache
*ac
;
2760 node
= numa_mem_id();
2761 if (unlikely(force_refill
))
2764 ac
= cpu_cache_get(cachep
);
2765 batchcount
= ac
->batchcount
;
2766 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2768 * If there was little recent activity on this cache, then
2769 * perform only a partial refill. Otherwise we could generate
2772 batchcount
= BATCHREFILL_LIMIT
;
2774 n
= get_node(cachep
, node
);
2776 BUG_ON(ac
->avail
> 0 || !n
);
2777 spin_lock(&n
->list_lock
);
2779 /* See if we can refill from the shared array */
2780 if (n
->shared
&& transfer_objects(ac
, n
->shared
, batchcount
)) {
2781 n
->shared
->touched
= 1;
2785 while (batchcount
> 0) {
2786 struct list_head
*entry
;
2788 /* Get slab alloc is to come from. */
2789 entry
= n
->slabs_partial
.next
;
2790 if (entry
== &n
->slabs_partial
) {
2791 n
->free_touched
= 1;
2792 entry
= n
->slabs_free
.next
;
2793 if (entry
== &n
->slabs_free
)
2797 page
= list_entry(entry
, struct page
, lru
);
2798 check_spinlock_acquired(cachep
);
2801 * The slab was either on partial or free list so
2802 * there must be at least one object available for
2805 BUG_ON(page
->active
>= cachep
->num
);
2807 while (page
->active
< cachep
->num
&& batchcount
--) {
2808 STATS_INC_ALLOCED(cachep
);
2809 STATS_INC_ACTIVE(cachep
);
2810 STATS_SET_HIGH(cachep
);
2812 ac_put_obj(cachep
, ac
, slab_get_obj(cachep
, page
,
2816 /* move slabp to correct slabp list: */
2817 list_del(&page
->lru
);
2818 if (page
->active
== cachep
->num
)
2819 list_add(&page
->lru
, &n
->slabs_full
);
2821 list_add(&page
->lru
, &n
->slabs_partial
);
2825 n
->free_objects
-= ac
->avail
;
2827 spin_unlock(&n
->list_lock
);
2829 if (unlikely(!ac
->avail
)) {
2832 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
2834 /* cache_grow can reenable interrupts, then ac could change. */
2835 ac
= cpu_cache_get(cachep
);
2836 node
= numa_mem_id();
2838 /* no objects in sight? abort */
2839 if (!x
&& (ac
->avail
== 0 || force_refill
))
2842 if (!ac
->avail
) /* objects refilled by interrupt? */
2847 return ac_get_obj(cachep
, ac
, flags
, force_refill
);
2850 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
2853 might_sleep_if(flags
& __GFP_WAIT
);
2855 kmem_flagcheck(cachep
, flags
);
2860 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
2861 gfp_t flags
, void *objp
, unsigned long caller
)
2867 if (cachep
->flags
& SLAB_POISON
) {
2868 #ifdef CONFIG_DEBUG_PAGEALLOC
2869 if ((cachep
->size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2870 kernel_map_pages(virt_to_page(objp
),
2871 cachep
->size
/ PAGE_SIZE
, 1);
2873 check_poison_obj(cachep
, objp
);
2875 check_poison_obj(cachep
, objp
);
2877 poison_obj(cachep
, objp
, POISON_INUSE
);
2879 if (cachep
->flags
& SLAB_STORE_USER
)
2880 *dbg_userword(cachep
, objp
) = (void *)caller
;
2882 if (cachep
->flags
& SLAB_RED_ZONE
) {
2883 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
2884 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2885 slab_error(cachep
, "double free, or memory outside"
2886 " object was overwritten");
2888 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2889 objp
, *dbg_redzone1(cachep
, objp
),
2890 *dbg_redzone2(cachep
, objp
));
2892 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2893 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2896 page
= virt_to_head_page(objp
);
2897 set_obj_status(page
, obj_to_index(cachep
, page
, objp
), OBJECT_ACTIVE
);
2898 objp
+= obj_offset(cachep
);
2899 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
2901 if (ARCH_SLAB_MINALIGN
&&
2902 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
2903 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
2904 objp
, (int)ARCH_SLAB_MINALIGN
);
2909 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2912 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
2914 if (unlikely(cachep
== kmem_cache
))
2917 return should_failslab(cachep
->object_size
, flags
, cachep
->flags
);
2920 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2923 struct array_cache
*ac
;
2924 bool force_refill
= false;
2928 ac
= cpu_cache_get(cachep
);
2929 if (likely(ac
->avail
)) {
2931 objp
= ac_get_obj(cachep
, ac
, flags
, false);
2934 * Allow for the possibility all avail objects are not allowed
2935 * by the current flags
2938 STATS_INC_ALLOCHIT(cachep
);
2941 force_refill
= true;
2944 STATS_INC_ALLOCMISS(cachep
);
2945 objp
= cache_alloc_refill(cachep
, flags
, force_refill
);
2947 * the 'ac' may be updated by cache_alloc_refill(),
2948 * and kmemleak_erase() requires its correct value.
2950 ac
= cpu_cache_get(cachep
);
2954 * To avoid a false negative, if an object that is in one of the
2955 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
2956 * treat the array pointers as a reference to the object.
2959 kmemleak_erase(&ac
->entry
[ac
->avail
]);
2965 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
2967 * If we are in_interrupt, then process context, including cpusets and
2968 * mempolicy, may not apply and should not be used for allocation policy.
2970 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
2972 int nid_alloc
, nid_here
;
2974 if (in_interrupt() || (flags
& __GFP_THISNODE
))
2976 nid_alloc
= nid_here
= numa_mem_id();
2977 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
2978 nid_alloc
= cpuset_slab_spread_node();
2979 else if (current
->mempolicy
)
2980 nid_alloc
= mempolicy_slab_node();
2981 if (nid_alloc
!= nid_here
)
2982 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
2987 * Fallback function if there was no memory available and no objects on a
2988 * certain node and fall back is permitted. First we scan all the
2989 * available node for available objects. If that fails then we
2990 * perform an allocation without specifying a node. This allows the page
2991 * allocator to do its reclaim / fallback magic. We then insert the
2992 * slab into the proper nodelist and then allocate from it.
2994 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
2996 struct zonelist
*zonelist
;
3000 enum zone_type high_zoneidx
= gfp_zone(flags
);
3003 unsigned int cpuset_mems_cookie
;
3005 if (flags
& __GFP_THISNODE
)
3008 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3011 cpuset_mems_cookie
= read_mems_allowed_begin();
3012 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
3016 * Look through allowed nodes for objects available
3017 * from existing per node queues.
3019 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3020 nid
= zone_to_nid(zone
);
3022 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3023 get_node(cache
, nid
) &&
3024 get_node(cache
, nid
)->free_objects
) {
3025 obj
= ____cache_alloc_node(cache
,
3026 flags
| GFP_THISNODE
, nid
);
3034 * This allocation will be performed within the constraints
3035 * of the current cpuset / memory policy requirements.
3036 * We may trigger various forms of reclaim on the allowed
3037 * set and go into memory reserves if necessary.
3041 if (local_flags
& __GFP_WAIT
)
3043 kmem_flagcheck(cache
, flags
);
3044 page
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3045 if (local_flags
& __GFP_WAIT
)
3046 local_irq_disable();
3049 * Insert into the appropriate per node queues
3051 nid
= page_to_nid(page
);
3052 if (cache_grow(cache
, flags
, nid
, page
)) {
3053 obj
= ____cache_alloc_node(cache
,
3054 flags
| GFP_THISNODE
, nid
);
3057 * Another processor may allocate the
3058 * objects in the slab since we are
3059 * not holding any locks.
3063 /* cache_grow already freed obj */
3069 if (unlikely(!obj
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3075 * A interface to enable slab creation on nodeid
3077 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3080 struct list_head
*entry
;
3082 struct kmem_cache_node
*n
;
3086 VM_BUG_ON(nodeid
< 0 || nodeid
>= MAX_NUMNODES
);
3087 n
= get_node(cachep
, nodeid
);
3092 spin_lock(&n
->list_lock
);
3093 entry
= n
->slabs_partial
.next
;
3094 if (entry
== &n
->slabs_partial
) {
3095 n
->free_touched
= 1;
3096 entry
= n
->slabs_free
.next
;
3097 if (entry
== &n
->slabs_free
)
3101 page
= list_entry(entry
, struct page
, lru
);
3102 check_spinlock_acquired_node(cachep
, nodeid
);
3104 STATS_INC_NODEALLOCS(cachep
);
3105 STATS_INC_ACTIVE(cachep
);
3106 STATS_SET_HIGH(cachep
);
3108 BUG_ON(page
->active
== cachep
->num
);
3110 obj
= slab_get_obj(cachep
, page
, nodeid
);
3112 /* move slabp to correct slabp list: */
3113 list_del(&page
->lru
);
3115 if (page
->active
== cachep
->num
)
3116 list_add(&page
->lru
, &n
->slabs_full
);
3118 list_add(&page
->lru
, &n
->slabs_partial
);
3120 spin_unlock(&n
->list_lock
);
3124 spin_unlock(&n
->list_lock
);
3125 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3129 return fallback_alloc(cachep
, flags
);
3135 static __always_inline
void *
3136 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3137 unsigned long caller
)
3139 unsigned long save_flags
;
3141 int slab_node
= numa_mem_id();
3143 flags
&= gfp_allowed_mask
;
3145 lockdep_trace_alloc(flags
);
3147 if (slab_should_failslab(cachep
, flags
))
3150 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3152 cache_alloc_debugcheck_before(cachep
, flags
);
3153 local_irq_save(save_flags
);
3155 if (nodeid
== NUMA_NO_NODE
)
3158 if (unlikely(!get_node(cachep
, nodeid
))) {
3159 /* Node not bootstrapped yet */
3160 ptr
= fallback_alloc(cachep
, flags
);
3164 if (nodeid
== slab_node
) {
3166 * Use the locally cached objects if possible.
3167 * However ____cache_alloc does not allow fallback
3168 * to other nodes. It may fail while we still have
3169 * objects on other nodes available.
3171 ptr
= ____cache_alloc(cachep
, flags
);
3175 /* ___cache_alloc_node can fall back to other nodes */
3176 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3178 local_irq_restore(save_flags
);
3179 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3180 kmemleak_alloc_recursive(ptr
, cachep
->object_size
, 1, cachep
->flags
,
3184 kmemcheck_slab_alloc(cachep
, flags
, ptr
, cachep
->object_size
);
3185 if (unlikely(flags
& __GFP_ZERO
))
3186 memset(ptr
, 0, cachep
->object_size
);
3192 static __always_inline
void *
3193 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3197 if (current
->mempolicy
|| cpuset_do_slab_mem_spread()) {
3198 objp
= alternate_node_alloc(cache
, flags
);
3202 objp
= ____cache_alloc(cache
, flags
);
3205 * We may just have run out of memory on the local node.
3206 * ____cache_alloc_node() knows how to locate memory on other nodes
3209 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3216 static __always_inline
void *
3217 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3219 return ____cache_alloc(cachep
, flags
);
3222 #endif /* CONFIG_NUMA */
3224 static __always_inline
void *
3225 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3227 unsigned long save_flags
;
3230 flags
&= gfp_allowed_mask
;
3232 lockdep_trace_alloc(flags
);
3234 if (slab_should_failslab(cachep
, flags
))
3237 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3239 cache_alloc_debugcheck_before(cachep
, flags
);
3240 local_irq_save(save_flags
);
3241 objp
= __do_cache_alloc(cachep
, flags
);
3242 local_irq_restore(save_flags
);
3243 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3244 kmemleak_alloc_recursive(objp
, cachep
->object_size
, 1, cachep
->flags
,
3249 kmemcheck_slab_alloc(cachep
, flags
, objp
, cachep
->object_size
);
3250 if (unlikely(flags
& __GFP_ZERO
))
3251 memset(objp
, 0, cachep
->object_size
);
3258 * Caller needs to acquire correct kmem_cache_node's list_lock
3259 * @list: List of detached free slabs should be freed by caller
3261 static void free_block(struct kmem_cache
*cachep
, void **objpp
,
3262 int nr_objects
, int node
, struct list_head
*list
)
3265 struct kmem_cache_node
*n
= get_node(cachep
, node
);
3267 for (i
= 0; i
< nr_objects
; i
++) {
3271 clear_obj_pfmemalloc(&objpp
[i
]);
3274 page
= virt_to_head_page(objp
);
3275 list_del(&page
->lru
);
3276 check_spinlock_acquired_node(cachep
, node
);
3277 slab_put_obj(cachep
, page
, objp
, node
);
3278 STATS_DEC_ACTIVE(cachep
);
3281 /* fixup slab chains */
3282 if (page
->active
== 0) {
3283 if (n
->free_objects
> n
->free_limit
) {
3284 n
->free_objects
-= cachep
->num
;
3285 list_add_tail(&page
->lru
, list
);
3287 list_add(&page
->lru
, &n
->slabs_free
);
3290 /* Unconditionally move a slab to the end of the
3291 * partial list on free - maximum time for the
3292 * other objects to be freed, too.
3294 list_add_tail(&page
->lru
, &n
->slabs_partial
);
3299 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3302 struct kmem_cache_node
*n
;
3303 int node
= numa_mem_id();
3306 batchcount
= ac
->batchcount
;
3308 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3311 n
= get_node(cachep
, node
);
3312 spin_lock(&n
->list_lock
);
3314 struct array_cache
*shared_array
= n
->shared
;
3315 int max
= shared_array
->limit
- shared_array
->avail
;
3317 if (batchcount
> max
)
3319 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3320 ac
->entry
, sizeof(void *) * batchcount
);
3321 shared_array
->avail
+= batchcount
;
3326 free_block(cachep
, ac
->entry
, batchcount
, node
, &list
);
3331 struct list_head
*p
;
3333 p
= n
->slabs_free
.next
;
3334 while (p
!= &(n
->slabs_free
)) {
3337 page
= list_entry(p
, struct page
, lru
);
3338 BUG_ON(page
->active
);
3343 STATS_SET_FREEABLE(cachep
, i
);
3346 spin_unlock(&n
->list_lock
);
3347 slabs_destroy(cachep
, &list
);
3348 ac
->avail
-= batchcount
;
3349 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3353 * Release an obj back to its cache. If the obj has a constructed state, it must
3354 * be in this state _before_ it is released. Called with disabled ints.
3356 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3357 unsigned long caller
)
3359 struct array_cache
*ac
= cpu_cache_get(cachep
);
3362 kmemleak_free_recursive(objp
, cachep
->flags
);
3363 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3365 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3368 * Skip calling cache_free_alien() when the platform is not numa.
3369 * This will avoid cache misses that happen while accessing slabp (which
3370 * is per page memory reference) to get nodeid. Instead use a global
3371 * variable to skip the call, which is mostly likely to be present in
3374 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3377 if (ac
->avail
< ac
->limit
) {
3378 STATS_INC_FREEHIT(cachep
);
3380 STATS_INC_FREEMISS(cachep
);
3381 cache_flusharray(cachep
, ac
);
3384 ac_put_obj(cachep
, ac
, objp
);
3388 * kmem_cache_alloc - Allocate an object
3389 * @cachep: The cache to allocate from.
3390 * @flags: See kmalloc().
3392 * Allocate an object from this cache. The flags are only relevant
3393 * if the cache has no available objects.
3395 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3397 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3399 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3400 cachep
->object_size
, cachep
->size
, flags
);
3404 EXPORT_SYMBOL(kmem_cache_alloc
);
3406 #ifdef CONFIG_TRACING
3408 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3412 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3414 trace_kmalloc(_RET_IP_
, ret
,
3415 size
, cachep
->size
, flags
);
3418 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3423 * kmem_cache_alloc_node - Allocate an object on the specified node
3424 * @cachep: The cache to allocate from.
3425 * @flags: See kmalloc().
3426 * @nodeid: node number of the target node.
3428 * Identical to kmem_cache_alloc but it will allocate memory on the given
3429 * node, which can improve the performance for cpu bound structures.
3431 * Fallback to other node is possible if __GFP_THISNODE is not set.
3433 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3435 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3437 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3438 cachep
->object_size
, cachep
->size
,
3443 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3445 #ifdef CONFIG_TRACING
3446 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3453 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3455 trace_kmalloc_node(_RET_IP_
, ret
,
3460 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3463 static __always_inline
void *
3464 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3466 struct kmem_cache
*cachep
;
3468 cachep
= kmalloc_slab(size
, flags
);
3469 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3471 return kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3474 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3476 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3478 EXPORT_SYMBOL(__kmalloc_node
);
3480 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3481 int node
, unsigned long caller
)
3483 return __do_kmalloc_node(size
, flags
, node
, caller
);
3485 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3486 #endif /* CONFIG_NUMA */
3489 * __do_kmalloc - allocate memory
3490 * @size: how many bytes of memory are required.
3491 * @flags: the type of memory to allocate (see kmalloc).
3492 * @caller: function caller for debug tracking of the caller
3494 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3495 unsigned long caller
)
3497 struct kmem_cache
*cachep
;
3500 cachep
= kmalloc_slab(size
, flags
);
3501 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3503 ret
= slab_alloc(cachep
, flags
, caller
);
3505 trace_kmalloc(caller
, ret
,
3506 size
, cachep
->size
, flags
);
3511 void *__kmalloc(size_t size
, gfp_t flags
)
3513 return __do_kmalloc(size
, flags
, _RET_IP_
);
3515 EXPORT_SYMBOL(__kmalloc
);
3517 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3519 return __do_kmalloc(size
, flags
, caller
);
3521 EXPORT_SYMBOL(__kmalloc_track_caller
);
3524 * kmem_cache_free - Deallocate an object
3525 * @cachep: The cache the allocation was from.
3526 * @objp: The previously allocated object.
3528 * Free an object which was previously allocated from this
3531 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3533 unsigned long flags
;
3534 cachep
= cache_from_obj(cachep
, objp
);
3538 local_irq_save(flags
);
3539 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3540 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3541 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3542 __cache_free(cachep
, objp
, _RET_IP_
);
3543 local_irq_restore(flags
);
3545 trace_kmem_cache_free(_RET_IP_
, objp
);
3547 EXPORT_SYMBOL(kmem_cache_free
);
3550 * kfree - free previously allocated memory
3551 * @objp: pointer returned by kmalloc.
3553 * If @objp is NULL, no operation is performed.
3555 * Don't free memory not originally allocated by kmalloc()
3556 * or you will run into trouble.
3558 void kfree(const void *objp
)
3560 struct kmem_cache
*c
;
3561 unsigned long flags
;
3563 trace_kfree(_RET_IP_
, objp
);
3565 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3567 local_irq_save(flags
);
3568 kfree_debugcheck(objp
);
3569 c
= virt_to_cache(objp
);
3570 debug_check_no_locks_freed(objp
, c
->object_size
);
3572 debug_check_no_obj_freed(objp
, c
->object_size
);
3573 __cache_free(c
, (void *)objp
, _RET_IP_
);
3574 local_irq_restore(flags
);
3576 EXPORT_SYMBOL(kfree
);
3579 * This initializes kmem_cache_node or resizes various caches for all nodes.
3581 static int alloc_kmem_cache_node(struct kmem_cache
*cachep
, gfp_t gfp
)
3584 struct kmem_cache_node
*n
;
3585 struct array_cache
*new_shared
;
3586 struct alien_cache
**new_alien
= NULL
;
3588 for_each_online_node(node
) {
3590 if (use_alien_caches
) {
3591 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3597 if (cachep
->shared
) {
3598 new_shared
= alloc_arraycache(node
,
3599 cachep
->shared
*cachep
->batchcount
,
3602 free_alien_cache(new_alien
);
3607 n
= get_node(cachep
, node
);
3609 struct array_cache
*shared
= n
->shared
;
3612 spin_lock_irq(&n
->list_lock
);
3615 free_block(cachep
, shared
->entry
,
3616 shared
->avail
, node
, &list
);
3618 n
->shared
= new_shared
;
3620 n
->alien
= new_alien
;
3623 n
->free_limit
= (1 + nr_cpus_node(node
)) *
3624 cachep
->batchcount
+ cachep
->num
;
3625 spin_unlock_irq(&n
->list_lock
);
3626 slabs_destroy(cachep
, &list
);
3628 free_alien_cache(new_alien
);
3631 n
= kmalloc_node(sizeof(struct kmem_cache_node
), gfp
, node
);
3633 free_alien_cache(new_alien
);
3638 kmem_cache_node_init(n
);
3639 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
3640 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
3641 n
->shared
= new_shared
;
3642 n
->alien
= new_alien
;
3643 n
->free_limit
= (1 + nr_cpus_node(node
)) *
3644 cachep
->batchcount
+ cachep
->num
;
3645 cachep
->node
[node
] = n
;
3650 if (!cachep
->list
.next
) {
3651 /* Cache is not active yet. Roll back what we did */
3654 n
= get_node(cachep
, node
);
3657 free_alien_cache(n
->alien
);
3659 cachep
->node
[node
] = NULL
;
3667 /* Always called with the slab_mutex held */
3668 static int __do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3669 int batchcount
, int shared
, gfp_t gfp
)
3671 struct array_cache __percpu
*cpu_cache
, *prev
;
3674 cpu_cache
= alloc_kmem_cache_cpus(cachep
, limit
, batchcount
);
3678 prev
= cachep
->cpu_cache
;
3679 cachep
->cpu_cache
= cpu_cache
;
3680 kick_all_cpus_sync();
3683 cachep
->batchcount
= batchcount
;
3684 cachep
->limit
= limit
;
3685 cachep
->shared
= shared
;
3690 for_each_online_cpu(cpu
) {
3693 struct kmem_cache_node
*n
;
3694 struct array_cache
*ac
= per_cpu_ptr(prev
, cpu
);
3696 node
= cpu_to_mem(cpu
);
3697 n
= get_node(cachep
, node
);
3698 spin_lock_irq(&n
->list_lock
);
3699 free_block(cachep
, ac
->entry
, ac
->avail
, node
, &list
);
3700 spin_unlock_irq(&n
->list_lock
);
3701 slabs_destroy(cachep
, &list
);
3706 return alloc_kmem_cache_node(cachep
, gfp
);
3709 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3710 int batchcount
, int shared
, gfp_t gfp
)
3713 struct kmem_cache
*c
= NULL
;
3716 ret
= __do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3718 if (slab_state
< FULL
)
3721 if ((ret
< 0) || !is_root_cache(cachep
))
3724 VM_BUG_ON(!mutex_is_locked(&slab_mutex
));
3725 for_each_memcg_cache_index(i
) {
3726 c
= cache_from_memcg_idx(cachep
, i
);
3728 /* return value determined by the parent cache only */
3729 __do_tune_cpucache(c
, limit
, batchcount
, shared
, gfp
);
3735 /* Called with slab_mutex held always */
3736 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3743 if (!is_root_cache(cachep
)) {
3744 struct kmem_cache
*root
= memcg_root_cache(cachep
);
3745 limit
= root
->limit
;
3746 shared
= root
->shared
;
3747 batchcount
= root
->batchcount
;
3750 if (limit
&& shared
&& batchcount
)
3753 * The head array serves three purposes:
3754 * - create a LIFO ordering, i.e. return objects that are cache-warm
3755 * - reduce the number of spinlock operations.
3756 * - reduce the number of linked list operations on the slab and
3757 * bufctl chains: array operations are cheaper.
3758 * The numbers are guessed, we should auto-tune as described by
3761 if (cachep
->size
> 131072)
3763 else if (cachep
->size
> PAGE_SIZE
)
3765 else if (cachep
->size
> 1024)
3767 else if (cachep
->size
> 256)
3773 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3774 * allocation behaviour: Most allocs on one cpu, most free operations
3775 * on another cpu. For these cases, an efficient object passing between
3776 * cpus is necessary. This is provided by a shared array. The array
3777 * replaces Bonwick's magazine layer.
3778 * On uniprocessor, it's functionally equivalent (but less efficient)
3779 * to a larger limit. Thus disabled by default.
3782 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3787 * With debugging enabled, large batchcount lead to excessively long
3788 * periods with disabled local interrupts. Limit the batchcount
3793 batchcount
= (limit
+ 1) / 2;
3795 err
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3797 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3798 cachep
->name
, -err
);
3803 * Drain an array if it contains any elements taking the node lock only if
3804 * necessary. Note that the node listlock also protects the array_cache
3805 * if drain_array() is used on the shared array.
3807 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
3808 struct array_cache
*ac
, int force
, int node
)
3813 if (!ac
|| !ac
->avail
)
3815 if (ac
->touched
&& !force
) {
3818 spin_lock_irq(&n
->list_lock
);
3820 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3821 if (tofree
> ac
->avail
)
3822 tofree
= (ac
->avail
+ 1) / 2;
3823 free_block(cachep
, ac
->entry
, tofree
, node
, &list
);
3824 ac
->avail
-= tofree
;
3825 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3826 sizeof(void *) * ac
->avail
);
3828 spin_unlock_irq(&n
->list_lock
);
3829 slabs_destroy(cachep
, &list
);
3834 * cache_reap - Reclaim memory from caches.
3835 * @w: work descriptor
3837 * Called from workqueue/eventd every few seconds.
3839 * - clear the per-cpu caches for this CPU.
3840 * - return freeable pages to the main free memory pool.
3842 * If we cannot acquire the cache chain mutex then just give up - we'll try
3843 * again on the next iteration.
3845 static void cache_reap(struct work_struct
*w
)
3847 struct kmem_cache
*searchp
;
3848 struct kmem_cache_node
*n
;
3849 int node
= numa_mem_id();
3850 struct delayed_work
*work
= to_delayed_work(w
);
3852 if (!mutex_trylock(&slab_mutex
))
3853 /* Give up. Setup the next iteration. */
3856 list_for_each_entry(searchp
, &slab_caches
, list
) {
3860 * We only take the node lock if absolutely necessary and we
3861 * have established with reasonable certainty that
3862 * we can do some work if the lock was obtained.
3864 n
= get_node(searchp
, node
);
3866 reap_alien(searchp
, n
);
3868 drain_array(searchp
, n
, cpu_cache_get(searchp
), 0, node
);
3871 * These are racy checks but it does not matter
3872 * if we skip one check or scan twice.
3874 if (time_after(n
->next_reap
, jiffies
))
3877 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
;
3879 drain_array(searchp
, n
, n
->shared
, 0, node
);
3881 if (n
->free_touched
)
3882 n
->free_touched
= 0;
3886 freed
= drain_freelist(searchp
, n
, (n
->free_limit
+
3887 5 * searchp
->num
- 1) / (5 * searchp
->num
));
3888 STATS_ADD_REAPED(searchp
, freed
);
3894 mutex_unlock(&slab_mutex
);
3897 /* Set up the next iteration */
3898 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_AC
));
3901 #ifdef CONFIG_SLABINFO
3902 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
3905 unsigned long active_objs
;
3906 unsigned long num_objs
;
3907 unsigned long active_slabs
= 0;
3908 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3912 struct kmem_cache_node
*n
;
3916 for_each_kmem_cache_node(cachep
, node
, n
) {
3919 spin_lock_irq(&n
->list_lock
);
3921 list_for_each_entry(page
, &n
->slabs_full
, lru
) {
3922 if (page
->active
!= cachep
->num
&& !error
)
3923 error
= "slabs_full accounting error";
3924 active_objs
+= cachep
->num
;
3927 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
3928 if (page
->active
== cachep
->num
&& !error
)
3929 error
= "slabs_partial accounting error";
3930 if (!page
->active
&& !error
)
3931 error
= "slabs_partial accounting error";
3932 active_objs
+= page
->active
;
3935 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
3936 if (page
->active
&& !error
)
3937 error
= "slabs_free accounting error";
3940 free_objects
+= n
->free_objects
;
3942 shared_avail
+= n
->shared
->avail
;
3944 spin_unlock_irq(&n
->list_lock
);
3946 num_slabs
+= active_slabs
;
3947 num_objs
= num_slabs
* cachep
->num
;
3948 if (num_objs
- active_objs
!= free_objects
&& !error
)
3949 error
= "free_objects accounting error";
3951 name
= cachep
->name
;
3953 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3955 sinfo
->active_objs
= active_objs
;
3956 sinfo
->num_objs
= num_objs
;
3957 sinfo
->active_slabs
= active_slabs
;
3958 sinfo
->num_slabs
= num_slabs
;
3959 sinfo
->shared_avail
= shared_avail
;
3960 sinfo
->limit
= cachep
->limit
;
3961 sinfo
->batchcount
= cachep
->batchcount
;
3962 sinfo
->shared
= cachep
->shared
;
3963 sinfo
->objects_per_slab
= cachep
->num
;
3964 sinfo
->cache_order
= cachep
->gfporder
;
3967 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
3971 unsigned long high
= cachep
->high_mark
;
3972 unsigned long allocs
= cachep
->num_allocations
;
3973 unsigned long grown
= cachep
->grown
;
3974 unsigned long reaped
= cachep
->reaped
;
3975 unsigned long errors
= cachep
->errors
;
3976 unsigned long max_freeable
= cachep
->max_freeable
;
3977 unsigned long node_allocs
= cachep
->node_allocs
;
3978 unsigned long node_frees
= cachep
->node_frees
;
3979 unsigned long overflows
= cachep
->node_overflow
;
3981 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
3982 "%4lu %4lu %4lu %4lu %4lu",
3983 allocs
, high
, grown
,
3984 reaped
, errors
, max_freeable
, node_allocs
,
3985 node_frees
, overflows
);
3989 unsigned long allochit
= atomic_read(&cachep
->allochit
);
3990 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
3991 unsigned long freehit
= atomic_read(&cachep
->freehit
);
3992 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
3994 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
3995 allochit
, allocmiss
, freehit
, freemiss
);
4000 #define MAX_SLABINFO_WRITE 128
4002 * slabinfo_write - Tuning for the slab allocator
4004 * @buffer: user buffer
4005 * @count: data length
4008 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4009 size_t count
, loff_t
*ppos
)
4011 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4012 int limit
, batchcount
, shared
, res
;
4013 struct kmem_cache
*cachep
;
4015 if (count
> MAX_SLABINFO_WRITE
)
4017 if (copy_from_user(&kbuf
, buffer
, count
))
4019 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4021 tmp
= strchr(kbuf
, ' ');
4026 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4029 /* Find the cache in the chain of caches. */
4030 mutex_lock(&slab_mutex
);
4032 list_for_each_entry(cachep
, &slab_caches
, list
) {
4033 if (!strcmp(cachep
->name
, kbuf
)) {
4034 if (limit
< 1 || batchcount
< 1 ||
4035 batchcount
> limit
|| shared
< 0) {
4038 res
= do_tune_cpucache(cachep
, limit
,
4045 mutex_unlock(&slab_mutex
);
4051 #ifdef CONFIG_DEBUG_SLAB_LEAK
4053 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4055 mutex_lock(&slab_mutex
);
4056 return seq_list_start(&slab_caches
, *pos
);
4059 static inline int add_caller(unsigned long *n
, unsigned long v
)
4069 unsigned long *q
= p
+ 2 * i
;
4083 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4089 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
,
4097 for (i
= 0, p
= page
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4098 if (get_obj_status(page
, i
) != OBJECT_ACTIVE
)
4101 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4106 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4108 #ifdef CONFIG_KALLSYMS
4109 unsigned long offset
, size
;
4110 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4112 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4113 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4115 seq_printf(m
, " [%s]", modname
);
4119 seq_printf(m
, "%p", (void *)address
);
4122 static int leaks_show(struct seq_file
*m
, void *p
)
4124 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4126 struct kmem_cache_node
*n
;
4128 unsigned long *x
= m
->private;
4132 if (!(cachep
->flags
& SLAB_STORE_USER
))
4134 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4137 /* OK, we can do it */
4141 for_each_kmem_cache_node(cachep
, node
, n
) {
4144 spin_lock_irq(&n
->list_lock
);
4146 list_for_each_entry(page
, &n
->slabs_full
, lru
)
4147 handle_slab(x
, cachep
, page
);
4148 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
4149 handle_slab(x
, cachep
, page
);
4150 spin_unlock_irq(&n
->list_lock
);
4152 name
= cachep
->name
;
4154 /* Increase the buffer size */
4155 mutex_unlock(&slab_mutex
);
4156 m
->private = kzalloc(x
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4158 /* Too bad, we are really out */
4160 mutex_lock(&slab_mutex
);
4163 *(unsigned long *)m
->private = x
[0] * 2;
4165 mutex_lock(&slab_mutex
);
4166 /* Now make sure this entry will be retried */
4170 for (i
= 0; i
< x
[1]; i
++) {
4171 seq_printf(m
, "%s: %lu ", name
, x
[2*i
+3]);
4172 show_symbol(m
, x
[2*i
+2]);
4179 static const struct seq_operations slabstats_op
= {
4180 .start
= leaks_start
,
4186 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4190 n
= __seq_open_private(file
, &slabstats_op
, PAGE_SIZE
);
4194 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4199 static const struct file_operations proc_slabstats_operations
= {
4200 .open
= slabstats_open
,
4202 .llseek
= seq_lseek
,
4203 .release
= seq_release_private
,
4207 static int __init
slab_proc_init(void)
4209 #ifdef CONFIG_DEBUG_SLAB_LEAK
4210 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4214 module_init(slab_proc_init
);
4218 * ksize - get the actual amount of memory allocated for a given object
4219 * @objp: Pointer to the object
4221 * kmalloc may internally round up allocations and return more memory
4222 * than requested. ksize() can be used to determine the actual amount of
4223 * memory allocated. The caller may use this additional memory, even though
4224 * a smaller amount of memory was initially specified with the kmalloc call.
4225 * The caller must guarantee that objp points to a valid object previously
4226 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4227 * must not be freed during the duration of the call.
4229 size_t ksize(const void *objp
)
4232 if (unlikely(objp
== ZERO_SIZE_PTR
))
4235 return virt_to_cache(objp
)->object_size
;
4237 EXPORT_SYMBOL(ksize
);