powerpc/dma: Fix dma_map_ops::get_required_mask
[linux/fpc-iii.git] / mm / swap_state.c
blobf5cb6b23cedaff46c003e9a0720f79465ba451d5
1 /*
2 * linux/mm/swap_state.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
8 */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
21 #include <asm/pgtable.h>
22 #include "internal.h"
25 * swapper_space is a fiction, retained to simplify the path through
26 * vmscan's shrink_page_list.
28 static const struct address_space_operations swap_aops = {
29 .writepage = swap_writepage,
30 .set_page_dirty = swap_set_page_dirty,
31 #ifdef CONFIG_MIGRATION
32 .migratepage = migrate_page,
33 #endif
36 struct address_space swapper_spaces[MAX_SWAPFILES] = {
37 [0 ... MAX_SWAPFILES - 1] = {
38 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
39 .i_mmap_writable = ATOMIC_INIT(0),
40 .a_ops = &swap_aops,
41 /* swap cache doesn't use writeback related tags */
42 .flags = 1 << AS_NO_WRITEBACK_TAGS,
46 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
48 static struct {
49 unsigned long add_total;
50 unsigned long del_total;
51 unsigned long find_success;
52 unsigned long find_total;
53 } swap_cache_info;
55 unsigned long total_swapcache_pages(void)
57 int i;
58 unsigned long ret = 0;
60 for (i = 0; i < MAX_SWAPFILES; i++)
61 ret += swapper_spaces[i].nrpages;
62 return ret;
65 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
67 void show_swap_cache_info(void)
69 printk("%lu pages in swap cache\n", total_swapcache_pages());
70 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
71 swap_cache_info.add_total, swap_cache_info.del_total,
72 swap_cache_info.find_success, swap_cache_info.find_total);
73 printk("Free swap = %ldkB\n",
74 get_nr_swap_pages() << (PAGE_SHIFT - 10));
75 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
79 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
80 * but sets SwapCache flag and private instead of mapping and index.
82 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
84 int error;
85 struct address_space *address_space;
87 VM_BUG_ON_PAGE(!PageLocked(page), page);
88 VM_BUG_ON_PAGE(PageSwapCache(page), page);
89 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
91 get_page(page);
92 SetPageSwapCache(page);
93 set_page_private(page, entry.val);
95 address_space = swap_address_space(entry);
96 spin_lock_irq(&address_space->tree_lock);
97 error = radix_tree_insert(&address_space->page_tree,
98 swp_offset(entry), page);
99 if (likely(!error)) {
100 address_space->nrpages++;
101 __inc_node_page_state(page, NR_FILE_PAGES);
102 INC_CACHE_INFO(add_total);
104 spin_unlock_irq(&address_space->tree_lock);
106 if (unlikely(error)) {
108 * Only the context which have set SWAP_HAS_CACHE flag
109 * would call add_to_swap_cache().
110 * So add_to_swap_cache() doesn't returns -EEXIST.
112 VM_BUG_ON(error == -EEXIST);
113 set_page_private(page, 0UL);
114 ClearPageSwapCache(page);
115 put_page(page);
118 return error;
122 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
124 int error;
126 error = radix_tree_maybe_preload(gfp_mask);
127 if (!error) {
128 error = __add_to_swap_cache(page, entry);
129 radix_tree_preload_end();
131 return error;
135 * This must be called only on pages that have
136 * been verified to be in the swap cache.
138 void __delete_from_swap_cache(struct page *page)
140 swp_entry_t entry;
141 struct address_space *address_space;
143 VM_BUG_ON_PAGE(!PageLocked(page), page);
144 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
145 VM_BUG_ON_PAGE(PageWriteback(page), page);
147 entry.val = page_private(page);
148 address_space = swap_address_space(entry);
149 radix_tree_delete(&address_space->page_tree, swp_offset(entry));
150 set_page_private(page, 0);
151 ClearPageSwapCache(page);
152 address_space->nrpages--;
153 __dec_node_page_state(page, NR_FILE_PAGES);
154 INC_CACHE_INFO(del_total);
158 * add_to_swap - allocate swap space for a page
159 * @page: page we want to move to swap
161 * Allocate swap space for the page and add the page to the
162 * swap cache. Caller needs to hold the page lock.
164 int add_to_swap(struct page *page, struct list_head *list)
166 swp_entry_t entry;
167 int err;
169 VM_BUG_ON_PAGE(!PageLocked(page), page);
170 VM_BUG_ON_PAGE(!PageUptodate(page), page);
172 entry = get_swap_page();
173 if (!entry.val)
174 return 0;
176 if (mem_cgroup_try_charge_swap(page, entry)) {
177 swapcache_free(entry);
178 return 0;
181 if (unlikely(PageTransHuge(page)))
182 if (unlikely(split_huge_page_to_list(page, list))) {
183 swapcache_free(entry);
184 return 0;
188 * Radix-tree node allocations from PF_MEMALLOC contexts could
189 * completely exhaust the page allocator. __GFP_NOMEMALLOC
190 * stops emergency reserves from being allocated.
192 * TODO: this could cause a theoretical memory reclaim
193 * deadlock in the swap out path.
196 * Add it to the swap cache.
198 err = add_to_swap_cache(page, entry,
199 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
201 if (!err) {
202 return 1;
203 } else { /* -ENOMEM radix-tree allocation failure */
205 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206 * clear SWAP_HAS_CACHE flag.
208 swapcache_free(entry);
209 return 0;
214 * This must be called only on pages that have
215 * been verified to be in the swap cache and locked.
216 * It will never put the page into the free list,
217 * the caller has a reference on the page.
219 void delete_from_swap_cache(struct page *page)
221 swp_entry_t entry;
222 struct address_space *address_space;
224 entry.val = page_private(page);
226 address_space = swap_address_space(entry);
227 spin_lock_irq(&address_space->tree_lock);
228 __delete_from_swap_cache(page);
229 spin_unlock_irq(&address_space->tree_lock);
231 swapcache_free(entry);
232 put_page(page);
236 * If we are the only user, then try to free up the swap cache.
238 * Its ok to check for PageSwapCache without the page lock
239 * here because we are going to recheck again inside
240 * try_to_free_swap() _with_ the lock.
241 * - Marcelo
243 static inline void free_swap_cache(struct page *page)
245 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
246 try_to_free_swap(page);
247 unlock_page(page);
252 * Perform a free_page(), also freeing any swap cache associated with
253 * this page if it is the last user of the page.
255 void free_page_and_swap_cache(struct page *page)
257 free_swap_cache(page);
258 if (!is_huge_zero_page(page))
259 put_page(page);
263 * Passed an array of pages, drop them all from swapcache and then release
264 * them. They are removed from the LRU and freed if this is their last use.
266 void free_pages_and_swap_cache(struct page **pages, int nr)
268 struct page **pagep = pages;
269 int i;
271 lru_add_drain();
272 for (i = 0; i < nr; i++)
273 free_swap_cache(pagep[i]);
274 release_pages(pagep, nr, false);
278 * Lookup a swap entry in the swap cache. A found page will be returned
279 * unlocked and with its refcount incremented - we rely on the kernel
280 * lock getting page table operations atomic even if we drop the page
281 * lock before returning.
283 struct page * lookup_swap_cache(swp_entry_t entry)
285 struct page *page;
287 page = find_get_page(swap_address_space(entry), swp_offset(entry));
289 if (page) {
290 INC_CACHE_INFO(find_success);
291 if (TestClearPageReadahead(page))
292 atomic_inc(&swapin_readahead_hits);
295 INC_CACHE_INFO(find_total);
296 return page;
299 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
300 struct vm_area_struct *vma, unsigned long addr,
301 bool *new_page_allocated)
303 struct page *found_page, *new_page = NULL;
304 struct address_space *swapper_space = swap_address_space(entry);
305 int err;
306 *new_page_allocated = false;
308 do {
310 * First check the swap cache. Since this is normally
311 * called after lookup_swap_cache() failed, re-calling
312 * that would confuse statistics.
314 found_page = find_get_page(swapper_space, swp_offset(entry));
315 if (found_page)
316 break;
319 * Get a new page to read into from swap.
321 if (!new_page) {
322 new_page = alloc_page_vma(gfp_mask, vma, addr);
323 if (!new_page)
324 break; /* Out of memory */
328 * call radix_tree_preload() while we can wait.
330 err = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
331 if (err)
332 break;
335 * Swap entry may have been freed since our caller observed it.
337 err = swapcache_prepare(entry);
338 if (err == -EEXIST) {
339 radix_tree_preload_end();
341 * We might race against get_swap_page() and stumble
342 * across a SWAP_HAS_CACHE swap_map entry whose page
343 * has not been brought into the swapcache yet, while
344 * the other end is scheduled away waiting on discard
345 * I/O completion at scan_swap_map().
347 * In order to avoid turning this transitory state
348 * into a permanent loop around this -EEXIST case
349 * if !CONFIG_PREEMPT and the I/O completion happens
350 * to be waiting on the CPU waitqueue where we are now
351 * busy looping, we just conditionally invoke the
352 * scheduler here, if there are some more important
353 * tasks to run.
355 cond_resched();
356 continue;
358 if (err) { /* swp entry is obsolete ? */
359 radix_tree_preload_end();
360 break;
363 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
364 __SetPageLocked(new_page);
365 __SetPageSwapBacked(new_page);
366 err = __add_to_swap_cache(new_page, entry);
367 if (likely(!err)) {
368 radix_tree_preload_end();
370 * Initiate read into locked page and return.
372 lru_cache_add_anon(new_page);
373 *new_page_allocated = true;
374 return new_page;
376 radix_tree_preload_end();
377 __ClearPageLocked(new_page);
379 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
380 * clear SWAP_HAS_CACHE flag.
382 swapcache_free(entry);
383 } while (err != -ENOMEM);
385 if (new_page)
386 put_page(new_page);
387 return found_page;
391 * Locate a page of swap in physical memory, reserving swap cache space
392 * and reading the disk if it is not already cached.
393 * A failure return means that either the page allocation failed or that
394 * the swap entry is no longer in use.
396 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
397 struct vm_area_struct *vma, unsigned long addr)
399 bool page_was_allocated;
400 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
401 vma, addr, &page_was_allocated);
403 if (page_was_allocated)
404 swap_readpage(retpage);
406 return retpage;
409 static unsigned long swapin_nr_pages(unsigned long offset)
411 static unsigned long prev_offset;
412 unsigned int pages, max_pages, last_ra;
413 static atomic_t last_readahead_pages;
415 max_pages = 1 << READ_ONCE(page_cluster);
416 if (max_pages <= 1)
417 return 1;
420 * This heuristic has been found to work well on both sequential and
421 * random loads, swapping to hard disk or to SSD: please don't ask
422 * what the "+ 2" means, it just happens to work well, that's all.
424 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
425 if (pages == 2) {
427 * We can have no readahead hits to judge by: but must not get
428 * stuck here forever, so check for an adjacent offset instead
429 * (and don't even bother to check whether swap type is same).
431 if (offset != prev_offset + 1 && offset != prev_offset - 1)
432 pages = 1;
433 prev_offset = offset;
434 } else {
435 unsigned int roundup = 4;
436 while (roundup < pages)
437 roundup <<= 1;
438 pages = roundup;
441 if (pages > max_pages)
442 pages = max_pages;
444 /* Don't shrink readahead too fast */
445 last_ra = atomic_read(&last_readahead_pages) / 2;
446 if (pages < last_ra)
447 pages = last_ra;
448 atomic_set(&last_readahead_pages, pages);
450 return pages;
454 * swapin_readahead - swap in pages in hope we need them soon
455 * @entry: swap entry of this memory
456 * @gfp_mask: memory allocation flags
457 * @vma: user vma this address belongs to
458 * @addr: target address for mempolicy
460 * Returns the struct page for entry and addr, after queueing swapin.
462 * Primitive swap readahead code. We simply read an aligned block of
463 * (1 << page_cluster) entries in the swap area. This method is chosen
464 * because it doesn't cost us any seek time. We also make sure to queue
465 * the 'original' request together with the readahead ones...
467 * This has been extended to use the NUMA policies from the mm triggering
468 * the readahead.
470 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
472 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
473 struct vm_area_struct *vma, unsigned long addr)
475 struct page *page;
476 unsigned long entry_offset = swp_offset(entry);
477 unsigned long offset = entry_offset;
478 unsigned long start_offset, end_offset;
479 unsigned long mask;
480 struct blk_plug plug;
482 mask = swapin_nr_pages(offset) - 1;
483 if (!mask)
484 goto skip;
486 /* Read a page_cluster sized and aligned cluster around offset. */
487 start_offset = offset & ~mask;
488 end_offset = offset | mask;
489 if (!start_offset) /* First page is swap header. */
490 start_offset++;
492 blk_start_plug(&plug);
493 for (offset = start_offset; offset <= end_offset ; offset++) {
494 /* Ok, do the async read-ahead now */
495 page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
496 gfp_mask, vma, addr);
497 if (!page)
498 continue;
499 if (offset != entry_offset)
500 SetPageReadahead(page);
501 put_page(page);
503 blk_finish_plug(&plug);
505 lru_add_drain(); /* Push any new pages onto the LRU now */
506 skip:
507 return read_swap_cache_async(entry, gfp_mask, vma, addr);