2 * Low-level CPU initialisation
3 * Based on arch/arm/kernel/head.S
5 * Copyright (C) 1994-2002 Russell King
6 * Copyright (C) 2003-2012 ARM Ltd.
7 * Authors: Catalin Marinas <catalin.marinas@arm.com>
8 * Will Deacon <will.deacon@arm.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/linkage.h>
24 #include <linux/init.h>
26 #include <asm/assembler.h>
27 #include <asm/ptrace.h>
28 #include <asm/asm-offsets.h>
29 #include <asm/memory.h>
30 #include <asm/thread_info.h>
31 #include <asm/pgtable-hwdef.h>
32 #include <asm/pgtable.h>
37 * swapper_pg_dir is the virtual address of the initial page table. We place
38 * the page tables 3 * PAGE_SIZE below KERNEL_RAM_VADDR. The idmap_pg_dir has
39 * 2 pages and is placed below swapper_pg_dir.
41 #define KERNEL_RAM_VADDR (PAGE_OFFSET + TEXT_OFFSET)
43 #if (KERNEL_RAM_VADDR & 0xfffff) != 0x80000
44 #error KERNEL_RAM_VADDR must start at 0xXXX80000
47 #define SWAPPER_DIR_SIZE (3 * PAGE_SIZE)
48 #define IDMAP_DIR_SIZE (2 * PAGE_SIZE)
51 .equ swapper_pg_dir, KERNEL_RAM_VADDR - SWAPPER_DIR_SIZE
54 .equ idmap_pg_dir, swapper_pg_dir - IDMAP_DIR_SIZE
56 .macro pgtbl, ttb0, ttb1, phys
57 add \ttb1, \phys, #TEXT_OFFSET - SWAPPER_DIR_SIZE
58 sub \ttb0, \ttb1, #IDMAP_DIR_SIZE
61 #ifdef CONFIG_ARM64_64K_PAGES
62 #define BLOCK_SHIFT PAGE_SHIFT
63 #define BLOCK_SIZE PAGE_SIZE
65 #define BLOCK_SHIFT SECTION_SHIFT
66 #define BLOCK_SIZE SECTION_SIZE
69 #define KERNEL_START KERNEL_RAM_VADDR
70 #define KERNEL_END _end
73 * Initial memory map attributes.
76 #define PTE_FLAGS PTE_TYPE_PAGE | PTE_AF
77 #define PMD_FLAGS PMD_TYPE_SECT | PMD_SECT_AF
79 #define PTE_FLAGS PTE_TYPE_PAGE | PTE_AF | PTE_SHARED
80 #define PMD_FLAGS PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S
83 #ifdef CONFIG_ARM64_64K_PAGES
84 #define MM_MMUFLAGS PTE_ATTRINDX(MT_NORMAL) | PTE_FLAGS
86 #define MM_MMUFLAGS PMD_ATTRINDX(MT_NORMAL) | PMD_FLAGS
90 * Kernel startup entry point.
91 * ---------------------------
93 * The requirements are:
94 * MMU = off, D-cache = off, I-cache = on or off,
95 * x0 = physical address to the FDT blob.
97 * This code is mostly position independent so you call this at
98 * __pa(PAGE_OFFSET + TEXT_OFFSET).
100 * Note that the callee-saved registers are used for storing variables
101 * that are useful before the MMU is enabled. The allocations are described
102 * in the entry routines.
107 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
109 b stext // branch to kernel start, magic
111 .quad TEXT_OFFSET // Image load offset from start of RAM
116 mov x21, x0 // x21=FDT
117 bl __calc_phys_offset // x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET
118 bl el2_setup // Drop to EL1
119 mrs x22, midr_el1 // x22=cpuid
121 bl lookup_processor_type
122 mov x23, x0 // x23=current cpu_table
123 cbz x23, __error_p // invalid processor (x23=0)?
125 bl __create_page_tables // x25=TTBR0, x26=TTBR1
127 * The following calls CPU specific code in a position independent
128 * manner. See arch/arm64/mm/proc.S for details. x23 = base of
129 * cpu_info structure selected by lookup_processor_type above.
130 * On return, the CPU will be ready for the MMU to be turned on and
131 * the TCR will have been set.
133 ldr x27, __switch_data // address to jump to after
134 // MMU has been enabled
135 adr lr, __enable_mmu // return (PIC) address
136 ldr x12, [x23, #CPU_INFO_SETUP]
137 add x12, x12, x28 // __virt_to_phys
138 br x12 // initialise processor
142 * If we're fortunate enough to boot at EL2, ensure that the world is
143 * sane before dropping to EL1.
147 cmp x0, #PSR_MODE_EL2t
148 ccmp x0, #PSR_MODE_EL2h, #0x4, ne
149 ldr x0, =__boot_cpu_mode // Compute __boot_cpu_mode
152 str wzr, [x0] // Remember we don't have EL2...
155 /* Hyp configuration. */
156 1: ldr w1, =BOOT_CPU_MODE_EL2
157 str w1, [x0, #4] // This CPU has EL2
158 mov x0, #(1 << 31) // 64-bit EL1
161 /* Generic timers. */
163 orr x0, x0, #3 // Enable EL1 physical timers
165 msr cntvoff_el2, xzr // Clear virtual offset
167 /* Populate ID registers. */
174 mov x0, #0x0800 // Set/clear RES{1,0} bits
175 movk x0, #0x30d0, lsl #16
178 /* Coprocessor traps. */
180 msr cptr_el2, x0 // Disable copro. traps to EL2
183 msr hstr_el2, xzr // Disable CP15 traps to EL2
186 /* Stage-2 translation */
189 /* Hypervisor stub */
190 adr x0, __hyp_stub_vectors
194 mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\
202 * We need to find out the CPU boot mode long after boot, so we need to
203 * store it in a writable variable.
205 * This is not in .bss, because we set it sufficiently early that the boot-time
206 * zeroing of .bss would clobber it.
209 ENTRY(__boot_cpu_mode)
210 .long BOOT_CPU_MODE_EL2
219 .pushsection .smp.pen.text, "ax"
222 .quad secondary_holding_pen_release
225 * This provides a "holding pen" for platforms to hold all secondary
226 * cores are held until we're ready for them to initialise.
228 ENTRY(secondary_holding_pen)
229 bl __calc_phys_offset // x24=phys offset
230 bl el2_setup // Drop to EL1
232 and x0, x0, #15 // CPU number
239 b.eq secondary_startup
242 ENDPROC(secondary_holding_pen)
245 ENTRY(secondary_startup)
247 * Common entry point for secondary CPUs.
249 mrs x22, midr_el1 // x22=cpuid
251 bl lookup_processor_type
252 mov x23, x0 // x23=current cpu_table
253 cbz x23, __error_p // invalid processor (x23=0)?
255 pgtbl x25, x26, x24 // x25=TTBR0, x26=TTBR1
256 ldr x12, [x23, #CPU_INFO_SETUP]
257 add x12, x12, x28 // __virt_to_phys
258 blr x12 // initialise processor
260 ldr x21, =secondary_data
261 ldr x27, =__secondary_switched // address to jump to after enabling the MMU
263 ENDPROC(secondary_startup)
265 ENTRY(__secondary_switched)
266 ldr x0, [x21] // get secondary_data.stack
269 b secondary_start_kernel
270 ENDPROC(__secondary_switched)
271 #endif /* CONFIG_SMP */
274 * Setup common bits before finally enabling the MMU. Essentially this is just
275 * loading the page table pointer and vector base registers.
277 * On entry to this code, x0 must contain the SCTLR_EL1 value for turning on
283 msr ttbr0_el1, x25 // load TTBR0
284 msr ttbr1_el1, x26 // load TTBR1
287 ENDPROC(__enable_mmu)
290 * Enable the MMU. This completely changes the structure of the visible memory
291 * space. You will not be able to trace execution through this.
293 * x0 = system control register
294 * x27 = *virtual* address to jump to upon completion
296 * other registers depend on the function called upon completion
303 ENDPROC(__turn_mmu_on)
306 * Calculate the start of physical memory.
311 sub x28, x0, x1 // x28 = PHYS_OFFSET - PAGE_OFFSET
312 add x24, x2, x28 // x24 = PHYS_OFFSET
314 ENDPROC(__calc_phys_offset)
321 * Macro to populate the PGD for the corresponding block entry in the next
322 * level (tbl) for the given virtual address.
324 * Preserves: pgd, tbl, virt
325 * Corrupts: tmp1, tmp2
327 .macro create_pgd_entry, pgd, tbl, virt, tmp1, tmp2
328 lsr \tmp1, \virt, #PGDIR_SHIFT
329 and \tmp1, \tmp1, #PTRS_PER_PGD - 1 // PGD index
330 orr \tmp2, \tbl, #3 // PGD entry table type
331 str \tmp2, [\pgd, \tmp1, lsl #3]
335 * Macro to populate block entries in the page table for the start..end
336 * virtual range (inclusive).
338 * Preserves: tbl, flags
339 * Corrupts: phys, start, end, pstate
341 .macro create_block_map, tbl, flags, phys, start, end, idmap=0
342 lsr \phys, \phys, #BLOCK_SHIFT
344 and \start, \phys, #PTRS_PER_PTE - 1 // table index
346 lsr \start, \start, #BLOCK_SHIFT
347 and \start, \start, #PTRS_PER_PTE - 1 // table index
349 orr \phys, \flags, \phys, lsl #BLOCK_SHIFT // table entry
351 lsr \end, \end, #BLOCK_SHIFT
352 and \end, \end, #PTRS_PER_PTE - 1 // table end index
354 9999: str \phys, [\tbl, \start, lsl #3] // store the entry
356 add \start, \start, #1 // next entry
357 add \phys, \phys, #BLOCK_SIZE // next block
364 * Setup the initial page tables. We only setup the barest amount which is
365 * required to get the kernel running. The following sections are required:
366 * - identity mapping to enable the MMU (low address, TTBR0)
367 * - first few MB of the kernel linear mapping to jump to once the MMU has
368 * been enabled, including the FDT blob (TTBR1)
369 * - UART mapping if CONFIG_EARLY_PRINTK is enabled (TTBR1)
371 __create_page_tables:
372 pgtbl x25, x26, x24 // idmap_pg_dir and swapper_pg_dir addresses
375 * Clear the idmap and swapper page tables.
378 add x6, x26, #SWAPPER_DIR_SIZE
379 1: stp xzr, xzr, [x0], #16
380 stp xzr, xzr, [x0], #16
381 stp xzr, xzr, [x0], #16
382 stp xzr, xzr, [x0], #16
389 * Create the identity mapping.
391 add x0, x25, #PAGE_SIZE // section table address
392 adr x3, __turn_mmu_on // virtual/physical address
393 create_pgd_entry x25, x0, x3, x5, x6
394 create_block_map x0, x7, x3, x5, x5, idmap=1
397 * Map the kernel image (starting with PHYS_OFFSET).
399 add x0, x26, #PAGE_SIZE // section table address
401 create_pgd_entry x26, x0, x5, x3, x6
402 ldr x6, =KERNEL_END - 1
403 mov x3, x24 // phys offset
404 create_block_map x0, x7, x3, x5, x6
407 * Map the FDT blob (maximum 2MB; must be within 512MB of
410 mov x3, x21 // FDT phys address
411 and x3, x3, #~((1 << 21) - 1) // 2MB aligned
413 sub x5, x3, x24 // subtract PHYS_OFFSET
414 tst x5, #~((1 << 29) - 1) // within 512MB?
415 csel x21, xzr, x21, ne // zero the FDT pointer
417 add x5, x5, x6 // __va(FDT blob)
418 add x6, x5, #1 << 21 // 2MB for the FDT blob
419 sub x6, x6, #1 // inclusive range
420 create_block_map x0, x7, x3, x5, x6
422 #ifdef CONFIG_EARLY_PRINTK
424 * Create the pgd entry for the UART mapping. The full mapping is done
425 * later based earlyprintk kernel parameter.
427 ldr x5, =EARLYCON_IOBASE // UART virtual address
428 add x0, x26, #2 * PAGE_SIZE // section table address
429 create_pgd_entry x26, x0, x5, x6, x7
432 ENDPROC(__create_page_tables)
436 .type __switch_data, %object
438 .quad __mmap_switched
439 .quad __data_loc // x4
441 .quad __bss_start // x6
443 .quad processor_id // x4
444 .quad __fdt_pointer // x5
445 .quad memstart_addr // x6
446 .quad init_thread_union + THREAD_START_SP // sp
449 * The following fragment of code is executed with the MMU on in MMU mode, and
450 * uses absolute addresses; this is not position independent.
453 adr x3, __switch_data + 8
455 ldp x4, x5, [x3], #16
456 ldp x6, x7, [x3], #16
457 cmp x4, x5 // Copy data segment if needed
458 1: ccmp x5, x6, #4, ne
466 str xzr, [x6], #8 // Clear BSS
469 ldp x4, x5, [x3], #16
473 str x22, [x4] // Save processor ID
474 str x21, [x5] // Save FDT pointer
475 str x24, [x6] // Save PHYS_OFFSET
478 ENDPROC(__mmap_switched)
481 * Exception handling. Something went wrong and we can't proceed. We ought to
482 * tell the user, but since we don't have any guarantee that we're even
483 * running on the right architecture, we do virtually nothing.
494 * This function gets the processor ID in w0 and searches the cpu_table[] for
495 * a match. It returns a pointer to the struct cpu_info it found. The
496 * cpu_table[] must end with an empty (all zeros) structure.
498 * This routine can be called via C code and it needs to work with the MMU
499 * both disabled and enabled (the offset is calculated automatically).
501 ENTRY(lookup_processor_type)
502 adr x1, __lookup_processor_type_data
504 sub x1, x1, x2 // get offset between VA and PA
505 add x3, x3, x1 // convert VA to PA
507 ldp w5, w6, [x3] // load cpu_id_val and cpu_id_mask
508 cbz w5, 2f // end of list?
512 add x3, x3, #CPU_INFO_SZ
515 mov x3, #0 // unknown processor
519 ENDPROC(lookup_processor_type)
522 .type __lookup_processor_type_data, %object
523 __lookup_processor_type_data:
526 .size __lookup_processor_type_data, . - __lookup_processor_type_data
529 * Determine validity of the x21 FDT pointer.
530 * The dtb must be 8-byte aligned and live in the first 512M of memory.