2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
11 extern __read_mostly
int scheduler_running
;
14 * Convert user-nice values [ -20 ... 0 ... 19 ]
15 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
18 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
19 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
20 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
23 * 'User priority' is the nice value converted to something we
24 * can work with better when scaling various scheduler parameters,
25 * it's a [ 0 ... 39 ] range.
27 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
28 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
29 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
32 * Helpers for converting nanosecond timing to jiffy resolution
34 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
36 #define NICE_0_LOAD SCHED_LOAD_SCALE
37 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
40 * These are the 'tuning knobs' of the scheduler:
44 * single value that denotes runtime == period, ie unlimited time.
46 #define RUNTIME_INF ((u64)~0ULL)
48 static inline int rt_policy(int policy
)
50 if (policy
== SCHED_FIFO
|| policy
== SCHED_RR
)
55 static inline int task_has_rt_policy(struct task_struct
*p
)
57 return rt_policy(p
->policy
);
61 * This is the priority-queue data structure of the RT scheduling class:
63 struct rt_prio_array
{
64 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
65 struct list_head queue
[MAX_RT_PRIO
];
69 /* nests inside the rq lock: */
70 raw_spinlock_t rt_runtime_lock
;
73 struct hrtimer rt_period_timer
;
76 extern struct mutex sched_domains_mutex
;
78 #ifdef CONFIG_CGROUP_SCHED
80 #include <linux/cgroup.h>
85 extern struct list_head task_groups
;
87 struct cfs_bandwidth
{
88 #ifdef CONFIG_CFS_BANDWIDTH
95 int idle
, timer_active
;
96 struct hrtimer period_timer
, slack_timer
;
97 struct list_head throttled_cfs_rq
;
100 int nr_periods
, nr_throttled
;
105 /* task group related information */
107 struct cgroup_subsys_state css
;
109 #ifdef CONFIG_FAIR_GROUP_SCHED
110 /* schedulable entities of this group on each cpu */
111 struct sched_entity
**se
;
112 /* runqueue "owned" by this group on each cpu */
113 struct cfs_rq
**cfs_rq
;
114 unsigned long shares
;
116 atomic_t load_weight
;
118 atomic_t runnable_avg
;
121 #ifdef CONFIG_RT_GROUP_SCHED
122 struct sched_rt_entity
**rt_se
;
123 struct rt_rq
**rt_rq
;
125 struct rt_bandwidth rt_bandwidth
;
129 struct list_head list
;
131 struct task_group
*parent
;
132 struct list_head siblings
;
133 struct list_head children
;
135 #ifdef CONFIG_SCHED_AUTOGROUP
136 struct autogroup
*autogroup
;
139 struct cfs_bandwidth cfs_bandwidth
;
142 #ifdef CONFIG_FAIR_GROUP_SCHED
143 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
146 * A weight of 0 or 1 can cause arithmetics problems.
147 * A weight of a cfs_rq is the sum of weights of which entities
148 * are queued on this cfs_rq, so a weight of a entity should not be
149 * too large, so as the shares value of a task group.
150 * (The default weight is 1024 - so there's no practical
151 * limitation from this.)
153 #define MIN_SHARES (1UL << 1)
154 #define MAX_SHARES (1UL << 18)
157 /* Default task group.
158 * Every task in system belong to this group at bootup.
160 extern struct task_group root_task_group
;
162 typedef int (*tg_visitor
)(struct task_group
*, void *);
164 extern int walk_tg_tree_from(struct task_group
*from
,
165 tg_visitor down
, tg_visitor up
, void *data
);
168 * Iterate the full tree, calling @down when first entering a node and @up when
169 * leaving it for the final time.
171 * Caller must hold rcu_lock or sufficient equivalent.
173 static inline int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
175 return walk_tg_tree_from(&root_task_group
, down
, up
, data
);
178 extern int tg_nop(struct task_group
*tg
, void *data
);
180 extern void free_fair_sched_group(struct task_group
*tg
);
181 extern int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
);
182 extern void unregister_fair_sched_group(struct task_group
*tg
, int cpu
);
183 extern void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
184 struct sched_entity
*se
, int cpu
,
185 struct sched_entity
*parent
);
186 extern void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
187 extern int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
);
189 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
);
190 extern void __start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
);
191 extern void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
);
193 extern void free_rt_sched_group(struct task_group
*tg
);
194 extern int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
);
195 extern void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
196 struct sched_rt_entity
*rt_se
, int cpu
,
197 struct sched_rt_entity
*parent
);
199 #else /* CONFIG_CGROUP_SCHED */
201 struct cfs_bandwidth
{ };
203 #endif /* CONFIG_CGROUP_SCHED */
205 /* CFS-related fields in a runqueue */
207 struct load_weight load
;
208 unsigned int nr_running
, h_nr_running
;
213 u64 min_vruntime_copy
;
216 struct rb_root tasks_timeline
;
217 struct rb_node
*rb_leftmost
;
220 * 'curr' points to currently running entity on this cfs_rq.
221 * It is set to NULL otherwise (i.e when none are currently running).
223 struct sched_entity
*curr
, *next
, *last
, *skip
;
225 #ifdef CONFIG_SCHED_DEBUG
226 unsigned int nr_spread_over
;
231 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
232 * removed when useful for applications beyond shares distribution (e.g.
235 #ifdef CONFIG_FAIR_GROUP_SCHED
238 * Under CFS, load is tracked on a per-entity basis and aggregated up.
239 * This allows for the description of both thread and group usage (in
240 * the FAIR_GROUP_SCHED case).
242 u64 runnable_load_avg
, blocked_load_avg
;
243 atomic64_t decay_counter
, removed_load
;
245 #endif /* CONFIG_FAIR_GROUP_SCHED */
246 /* These always depend on CONFIG_FAIR_GROUP_SCHED */
247 #ifdef CONFIG_FAIR_GROUP_SCHED
248 u32 tg_runnable_contrib
;
250 #endif /* CONFIG_FAIR_GROUP_SCHED */
253 * h_load = weight * f(tg)
255 * Where f(tg) is the recursive weight fraction assigned to
258 unsigned long h_load
;
259 #endif /* CONFIG_SMP */
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
265 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
266 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
267 * (like users, containers etc.)
269 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
270 * list is used during load balance.
273 struct list_head leaf_cfs_rq_list
;
274 struct task_group
*tg
; /* group that "owns" this runqueue */
276 #ifdef CONFIG_CFS_BANDWIDTH
279 s64 runtime_remaining
;
281 u64 throttled_clock
, throttled_clock_task
;
282 u64 throttled_clock_task_time
;
283 int throttled
, throttle_count
;
284 struct list_head throttled_list
;
285 #endif /* CONFIG_CFS_BANDWIDTH */
286 #endif /* CONFIG_FAIR_GROUP_SCHED */
289 static inline int rt_bandwidth_enabled(void)
291 return sysctl_sched_rt_runtime
>= 0;
294 /* Real-Time classes' related field in a runqueue: */
296 struct rt_prio_array active
;
297 unsigned int rt_nr_running
;
298 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
300 int curr
; /* highest queued rt task prio */
302 int next
; /* next highest */
307 unsigned long rt_nr_migratory
;
308 unsigned long rt_nr_total
;
310 struct plist_head pushable_tasks
;
315 /* Nests inside the rq lock: */
316 raw_spinlock_t rt_runtime_lock
;
318 #ifdef CONFIG_RT_GROUP_SCHED
319 unsigned long rt_nr_boosted
;
322 struct list_head leaf_rt_rq_list
;
323 struct task_group
*tg
;
330 * We add the notion of a root-domain which will be used to define per-domain
331 * variables. Each exclusive cpuset essentially defines an island domain by
332 * fully partitioning the member cpus from any other cpuset. Whenever a new
333 * exclusive cpuset is created, we also create and attach a new root-domain
342 cpumask_var_t online
;
345 * The "RT overload" flag: it gets set if a CPU has more than
346 * one runnable RT task.
348 cpumask_var_t rto_mask
;
349 struct cpupri cpupri
;
352 extern struct root_domain def_root_domain
;
354 #endif /* CONFIG_SMP */
357 * This is the main, per-CPU runqueue data structure.
359 * Locking rule: those places that want to lock multiple runqueues
360 * (such as the load balancing or the thread migration code), lock
361 * acquire operations must be ordered by ascending &runqueue.
368 * nr_running and cpu_load should be in the same cacheline because
369 * remote CPUs use both these fields when doing load calculation.
371 unsigned int nr_running
;
372 #define CPU_LOAD_IDX_MAX 5
373 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
374 unsigned long last_load_update_tick
;
377 unsigned long nohz_flags
;
379 int skip_clock_update
;
381 /* capture load from *all* tasks on this cpu: */
382 struct load_weight load
;
383 unsigned long nr_load_updates
;
389 #ifdef CONFIG_FAIR_GROUP_SCHED
390 /* list of leaf cfs_rq on this cpu: */
391 struct list_head leaf_cfs_rq_list
;
393 unsigned long h_load_throttle
;
394 #endif /* CONFIG_SMP */
395 #endif /* CONFIG_FAIR_GROUP_SCHED */
397 #ifdef CONFIG_RT_GROUP_SCHED
398 struct list_head leaf_rt_rq_list
;
402 * This is part of a global counter where only the total sum
403 * over all CPUs matters. A task can increase this counter on
404 * one CPU and if it got migrated afterwards it may decrease
405 * it on another CPU. Always updated under the runqueue lock:
407 unsigned long nr_uninterruptible
;
409 struct task_struct
*curr
, *idle
, *stop
;
410 unsigned long next_balance
;
411 struct mm_struct
*prev_mm
;
419 struct root_domain
*rd
;
420 struct sched_domain
*sd
;
422 unsigned long cpu_power
;
424 unsigned char idle_balance
;
425 /* For active balancing */
429 struct cpu_stop_work active_balance_work
;
430 /* cpu of this runqueue: */
434 struct list_head cfs_tasks
;
442 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
445 #ifdef CONFIG_PARAVIRT
448 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
449 u64 prev_steal_time_rq
;
452 /* calc_load related fields */
453 unsigned long calc_load_update
;
454 long calc_load_active
;
456 #ifdef CONFIG_SCHED_HRTICK
458 int hrtick_csd_pending
;
459 struct call_single_data hrtick_csd
;
461 struct hrtimer hrtick_timer
;
464 #ifdef CONFIG_SCHEDSTATS
466 struct sched_info rq_sched_info
;
467 unsigned long long rq_cpu_time
;
468 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
470 /* sys_sched_yield() stats */
471 unsigned int yld_count
;
473 /* schedule() stats */
474 unsigned int sched_count
;
475 unsigned int sched_goidle
;
477 /* try_to_wake_up() stats */
478 unsigned int ttwu_count
;
479 unsigned int ttwu_local
;
483 struct llist_head wake_list
;
486 struct sched_avg avg
;
489 static inline int cpu_of(struct rq
*rq
)
498 DECLARE_PER_CPU(struct rq
, runqueues
);
500 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
501 #define this_rq() (&__get_cpu_var(runqueues))
502 #define task_rq(p) cpu_rq(task_cpu(p))
503 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
504 #define raw_rq() (&__raw_get_cpu_var(runqueues))
508 #define rcu_dereference_check_sched_domain(p) \
509 rcu_dereference_check((p), \
510 lockdep_is_held(&sched_domains_mutex))
513 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
514 * See detach_destroy_domains: synchronize_sched for details.
516 * The domain tree of any CPU may only be accessed from within
517 * preempt-disabled sections.
519 #define for_each_domain(cpu, __sd) \
520 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
521 __sd; __sd = __sd->parent)
523 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
526 * highest_flag_domain - Return highest sched_domain containing flag.
527 * @cpu: The cpu whose highest level of sched domain is to
529 * @flag: The flag to check for the highest sched_domain
532 * Returns the highest sched_domain of a cpu which contains the given flag.
534 static inline struct sched_domain
*highest_flag_domain(int cpu
, int flag
)
536 struct sched_domain
*sd
, *hsd
= NULL
;
538 for_each_domain(cpu
, sd
) {
539 if (!(sd
->flags
& flag
))
547 DECLARE_PER_CPU(struct sched_domain
*, sd_llc
);
548 DECLARE_PER_CPU(int, sd_llc_id
);
550 extern int group_balance_cpu(struct sched_group
*sg
);
552 #endif /* CONFIG_SMP */
555 #include "auto_group.h"
557 #ifdef CONFIG_CGROUP_SCHED
560 * Return the group to which this tasks belongs.
562 * We cannot use task_subsys_state() and friends because the cgroup
563 * subsystem changes that value before the cgroup_subsys::attach() method
564 * is called, therefore we cannot pin it and might observe the wrong value.
566 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
567 * core changes this before calling sched_move_task().
569 * Instead we use a 'copy' which is updated from sched_move_task() while
570 * holding both task_struct::pi_lock and rq::lock.
572 static inline struct task_group
*task_group(struct task_struct
*p
)
574 return p
->sched_task_group
;
577 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
578 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
580 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
581 struct task_group
*tg
= task_group(p
);
584 #ifdef CONFIG_FAIR_GROUP_SCHED
585 p
->se
.cfs_rq
= tg
->cfs_rq
[cpu
];
586 p
->se
.parent
= tg
->se
[cpu
];
589 #ifdef CONFIG_RT_GROUP_SCHED
590 p
->rt
.rt_rq
= tg
->rt_rq
[cpu
];
591 p
->rt
.parent
= tg
->rt_se
[cpu
];
595 #else /* CONFIG_CGROUP_SCHED */
597 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
598 static inline struct task_group
*task_group(struct task_struct
*p
)
603 #endif /* CONFIG_CGROUP_SCHED */
605 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
610 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
611 * successfuly executed on another CPU. We must ensure that updates of
612 * per-task data have been completed by this moment.
615 task_thread_info(p
)->cpu
= cpu
;
620 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
622 #ifdef CONFIG_SCHED_DEBUG
623 # include <linux/static_key.h>
624 # define const_debug __read_mostly
626 # define const_debug const
629 extern const_debug
unsigned int sysctl_sched_features
;
631 #define SCHED_FEAT(name, enabled) \
632 __SCHED_FEAT_##name ,
635 #include "features.h"
641 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
642 static __always_inline
bool static_branch__true(struct static_key
*key
)
644 return static_key_true(key
); /* Not out of line branch. */
647 static __always_inline
bool static_branch__false(struct static_key
*key
)
649 return static_key_false(key
); /* Out of line branch. */
652 #define SCHED_FEAT(name, enabled) \
653 static __always_inline bool static_branch_##name(struct static_key *key) \
655 return static_branch__##enabled(key); \
658 #include "features.h"
662 extern struct static_key sched_feat_keys
[__SCHED_FEAT_NR
];
663 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
664 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
665 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
666 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
668 #ifdef CONFIG_NUMA_BALANCING
669 #define sched_feat_numa(x) sched_feat(x)
670 #ifdef CONFIG_SCHED_DEBUG
671 #define numabalancing_enabled sched_feat_numa(NUMA)
673 extern bool numabalancing_enabled
;
674 #endif /* CONFIG_SCHED_DEBUG */
676 #define sched_feat_numa(x) (0)
677 #define numabalancing_enabled (0)
678 #endif /* CONFIG_NUMA_BALANCING */
680 static inline u64
global_rt_period(void)
682 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
685 static inline u64
global_rt_runtime(void)
687 if (sysctl_sched_rt_runtime
< 0)
690 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
695 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
697 return rq
->curr
== p
;
700 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
705 return task_current(rq
, p
);
710 #ifndef prepare_arch_switch
711 # define prepare_arch_switch(next) do { } while (0)
713 #ifndef finish_arch_switch
714 # define finish_arch_switch(prev) do { } while (0)
716 #ifndef finish_arch_post_lock_switch
717 # define finish_arch_post_lock_switch() do { } while (0)
720 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
721 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
725 * We can optimise this out completely for !SMP, because the
726 * SMP rebalancing from interrupt is the only thing that cares
733 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
737 * After ->on_cpu is cleared, the task can be moved to a different CPU.
738 * We must ensure this doesn't happen until the switch is completely
744 #ifdef CONFIG_DEBUG_SPINLOCK
745 /* this is a valid case when another task releases the spinlock */
746 rq
->lock
.owner
= current
;
749 * If we are tracking spinlock dependencies then we have to
750 * fix up the runqueue lock - which gets 'carried over' from
753 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
755 raw_spin_unlock_irq(&rq
->lock
);
758 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
759 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
763 * We can optimise this out completely for !SMP, because the
764 * SMP rebalancing from interrupt is the only thing that cares
769 raw_spin_unlock(&rq
->lock
);
772 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
776 * After ->on_cpu is cleared, the task can be moved to a different CPU.
777 * We must ensure this doesn't happen until the switch is completely
785 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
788 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
794 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
800 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
807 * To aid in avoiding the subversion of "niceness" due to uneven distribution
808 * of tasks with abnormal "nice" values across CPUs the contribution that
809 * each task makes to its run queue's load is weighted according to its
810 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
811 * scaled version of the new time slice allocation that they receive on time
815 #define WEIGHT_IDLEPRIO 3
816 #define WMULT_IDLEPRIO 1431655765
819 * Nice levels are multiplicative, with a gentle 10% change for every
820 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
821 * nice 1, it will get ~10% less CPU time than another CPU-bound task
822 * that remained on nice 0.
824 * The "10% effect" is relative and cumulative: from _any_ nice level,
825 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
826 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
827 * If a task goes up by ~10% and another task goes down by ~10% then
828 * the relative distance between them is ~25%.)
830 static const int prio_to_weight
[40] = {
831 /* -20 */ 88761, 71755, 56483, 46273, 36291,
832 /* -15 */ 29154, 23254, 18705, 14949, 11916,
833 /* -10 */ 9548, 7620, 6100, 4904, 3906,
834 /* -5 */ 3121, 2501, 1991, 1586, 1277,
835 /* 0 */ 1024, 820, 655, 526, 423,
836 /* 5 */ 335, 272, 215, 172, 137,
837 /* 10 */ 110, 87, 70, 56, 45,
838 /* 15 */ 36, 29, 23, 18, 15,
842 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
844 * In cases where the weight does not change often, we can use the
845 * precalculated inverse to speed up arithmetics by turning divisions
846 * into multiplications:
848 static const u32 prio_to_wmult
[40] = {
849 /* -20 */ 48388, 59856, 76040, 92818, 118348,
850 /* -15 */ 147320, 184698, 229616, 287308, 360437,
851 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
852 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
853 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
854 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
855 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
856 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
859 /* Time spent by the tasks of the cpu accounting group executing in ... */
860 enum cpuacct_stat_index
{
861 CPUACCT_STAT_USER
, /* ... user mode */
862 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
868 #define sched_class_highest (&stop_sched_class)
869 #define for_each_class(class) \
870 for (class = sched_class_highest; class; class = class->next)
872 extern const struct sched_class stop_sched_class
;
873 extern const struct sched_class rt_sched_class
;
874 extern const struct sched_class fair_sched_class
;
875 extern const struct sched_class idle_sched_class
;
880 extern void trigger_load_balance(struct rq
*rq
, int cpu
);
881 extern void idle_balance(int this_cpu
, struct rq
*this_rq
);
883 #else /* CONFIG_SMP */
885 static inline void idle_balance(int cpu
, struct rq
*rq
)
891 extern void sysrq_sched_debug_show(void);
892 extern void sched_init_granularity(void);
893 extern void update_max_interval(void);
894 extern void update_group_power(struct sched_domain
*sd
, int cpu
);
895 extern int update_runtime(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
);
896 extern void init_sched_rt_class(void);
897 extern void init_sched_fair_class(void);
899 extern void resched_task(struct task_struct
*p
);
900 extern void resched_cpu(int cpu
);
902 extern struct rt_bandwidth def_rt_bandwidth
;
903 extern void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
);
905 extern void update_idle_cpu_load(struct rq
*this_rq
);
907 #ifdef CONFIG_CGROUP_CPUACCT
908 #include <linux/cgroup.h>
909 /* track cpu usage of a group of tasks and its child groups */
911 struct cgroup_subsys_state css
;
912 /* cpuusage holds pointer to a u64-type object on every cpu */
913 u64 __percpu
*cpuusage
;
914 struct kernel_cpustat __percpu
*cpustat
;
917 extern struct cgroup_subsys cpuacct_subsys
;
918 extern struct cpuacct root_cpuacct
;
920 /* return cpu accounting group corresponding to this container */
921 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
923 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
924 struct cpuacct
, css
);
927 /* return cpu accounting group to which this task belongs */
928 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
930 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
931 struct cpuacct
, css
);
934 static inline struct cpuacct
*parent_ca(struct cpuacct
*ca
)
936 if (!ca
|| !ca
->css
.cgroup
->parent
)
938 return cgroup_ca(ca
->css
.cgroup
->parent
);
941 extern void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
943 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
946 #ifdef CONFIG_PARAVIRT
947 static inline u64
steal_ticks(u64 steal
)
949 if (unlikely(steal
> NSEC_PER_SEC
))
950 return div_u64(steal
, TICK_NSEC
);
952 return __iter_div_u64_rem(steal
, TICK_NSEC
, &steal
);
956 static inline void inc_nr_running(struct rq
*rq
)
961 static inline void dec_nr_running(struct rq
*rq
)
966 extern void update_rq_clock(struct rq
*rq
);
968 extern void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
969 extern void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
);
971 extern void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
973 extern const_debug
unsigned int sysctl_sched_time_avg
;
974 extern const_debug
unsigned int sysctl_sched_nr_migrate
;
975 extern const_debug
unsigned int sysctl_sched_migration_cost
;
977 static inline u64
sched_avg_period(void)
979 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
982 #ifdef CONFIG_SCHED_HRTICK
986 * - enabled by features
987 * - hrtimer is actually high res
989 static inline int hrtick_enabled(struct rq
*rq
)
991 if (!sched_feat(HRTICK
))
993 if (!cpu_active(cpu_of(rq
)))
995 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
998 void hrtick_start(struct rq
*rq
, u64 delay
);
1002 static inline int hrtick_enabled(struct rq
*rq
)
1007 #endif /* CONFIG_SCHED_HRTICK */
1010 extern void sched_avg_update(struct rq
*rq
);
1011 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1013 rq
->rt_avg
+= rt_delta
;
1014 sched_avg_update(rq
);
1017 static inline void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
) { }
1018 static inline void sched_avg_update(struct rq
*rq
) { }
1021 extern void start_bandwidth_timer(struct hrtimer
*period_timer
, ktime_t period
);
1024 #ifdef CONFIG_PREEMPT
1026 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1029 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1030 * way at the expense of forcing extra atomic operations in all
1031 * invocations. This assures that the double_lock is acquired using the
1032 * same underlying policy as the spinlock_t on this architecture, which
1033 * reduces latency compared to the unfair variant below. However, it
1034 * also adds more overhead and therefore may reduce throughput.
1036 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1037 __releases(this_rq
->lock
)
1038 __acquires(busiest
->lock
)
1039 __acquires(this_rq
->lock
)
1041 raw_spin_unlock(&this_rq
->lock
);
1042 double_rq_lock(this_rq
, busiest
);
1049 * Unfair double_lock_balance: Optimizes throughput at the expense of
1050 * latency by eliminating extra atomic operations when the locks are
1051 * already in proper order on entry. This favors lower cpu-ids and will
1052 * grant the double lock to lower cpus over higher ids under contention,
1053 * regardless of entry order into the function.
1055 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1056 __releases(this_rq
->lock
)
1057 __acquires(busiest
->lock
)
1058 __acquires(this_rq
->lock
)
1062 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1063 if (busiest
< this_rq
) {
1064 raw_spin_unlock(&this_rq
->lock
);
1065 raw_spin_lock(&busiest
->lock
);
1066 raw_spin_lock_nested(&this_rq
->lock
,
1067 SINGLE_DEPTH_NESTING
);
1070 raw_spin_lock_nested(&busiest
->lock
,
1071 SINGLE_DEPTH_NESTING
);
1076 #endif /* CONFIG_PREEMPT */
1079 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1081 static inline int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1083 if (unlikely(!irqs_disabled())) {
1084 /* printk() doesn't work good under rq->lock */
1085 raw_spin_unlock(&this_rq
->lock
);
1089 return _double_lock_balance(this_rq
, busiest
);
1092 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1093 __releases(busiest
->lock
)
1095 raw_spin_unlock(&busiest
->lock
);
1096 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1100 * double_rq_lock - safely lock two runqueues
1102 * Note this does not disable interrupts like task_rq_lock,
1103 * you need to do so manually before calling.
1105 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1106 __acquires(rq1
->lock
)
1107 __acquires(rq2
->lock
)
1109 BUG_ON(!irqs_disabled());
1111 raw_spin_lock(&rq1
->lock
);
1112 __acquire(rq2
->lock
); /* Fake it out ;) */
1115 raw_spin_lock(&rq1
->lock
);
1116 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1118 raw_spin_lock(&rq2
->lock
);
1119 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1125 * double_rq_unlock - safely unlock two runqueues
1127 * Note this does not restore interrupts like task_rq_unlock,
1128 * you need to do so manually after calling.
1130 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1131 __releases(rq1
->lock
)
1132 __releases(rq2
->lock
)
1134 raw_spin_unlock(&rq1
->lock
);
1136 raw_spin_unlock(&rq2
->lock
);
1138 __release(rq2
->lock
);
1141 #else /* CONFIG_SMP */
1144 * double_rq_lock - safely lock two runqueues
1146 * Note this does not disable interrupts like task_rq_lock,
1147 * you need to do so manually before calling.
1149 static inline void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1150 __acquires(rq1
->lock
)
1151 __acquires(rq2
->lock
)
1153 BUG_ON(!irqs_disabled());
1155 raw_spin_lock(&rq1
->lock
);
1156 __acquire(rq2
->lock
); /* Fake it out ;) */
1160 * double_rq_unlock - safely unlock two runqueues
1162 * Note this does not restore interrupts like task_rq_unlock,
1163 * you need to do so manually after calling.
1165 static inline void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1166 __releases(rq1
->lock
)
1167 __releases(rq2
->lock
)
1170 raw_spin_unlock(&rq1
->lock
);
1171 __release(rq2
->lock
);
1176 extern struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
);
1177 extern struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
);
1178 extern void print_cfs_stats(struct seq_file
*m
, int cpu
);
1179 extern void print_rt_stats(struct seq_file
*m
, int cpu
);
1181 extern void init_cfs_rq(struct cfs_rq
*cfs_rq
);
1182 extern void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
);
1184 extern void account_cfs_bandwidth_used(int enabled
, int was_enabled
);
1187 enum rq_nohz_flag_bits
{
1193 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1196 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1198 DECLARE_PER_CPU(u64
, cpu_hardirq_time
);
1199 DECLARE_PER_CPU(u64
, cpu_softirq_time
);
1201 #ifndef CONFIG_64BIT
1202 DECLARE_PER_CPU(seqcount_t
, irq_time_seq
);
1204 static inline void irq_time_write_begin(void)
1206 __this_cpu_inc(irq_time_seq
.sequence
);
1210 static inline void irq_time_write_end(void)
1213 __this_cpu_inc(irq_time_seq
.sequence
);
1216 static inline u64
irq_time_read(int cpu
)
1222 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1223 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1224 per_cpu(cpu_hardirq_time
, cpu
);
1225 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1229 #else /* CONFIG_64BIT */
1230 static inline void irq_time_write_begin(void)
1234 static inline void irq_time_write_end(void)
1238 static inline u64
irq_time_read(int cpu
)
1240 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1242 #endif /* CONFIG_64BIT */
1243 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */