fs/seq_file.c:seq_lseek(): fix switch statement indenting
[linux/fpc-iii.git] / kernel / sched / sched.h
blobcc03cfdf469f6af1bda58d936539c9348b7e9501
2 #include <linux/sched.h>
3 #include <linux/sched/sysctl.h>
4 #include <linux/sched/rt.h>
5 #include <linux/mutex.h>
6 #include <linux/spinlock.h>
7 #include <linux/stop_machine.h>
9 #include "cpupri.h"
11 extern __read_mostly int scheduler_running;
14 * Convert user-nice values [ -20 ... 0 ... 19 ]
15 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
16 * and back.
18 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
19 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
20 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
23 * 'User priority' is the nice value converted to something we
24 * can work with better when scaling various scheduler parameters,
25 * it's a [ 0 ... 39 ] range.
27 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
28 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
29 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
32 * Helpers for converting nanosecond timing to jiffy resolution
34 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
36 #define NICE_0_LOAD SCHED_LOAD_SCALE
37 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
40 * These are the 'tuning knobs' of the scheduler:
44 * single value that denotes runtime == period, ie unlimited time.
46 #define RUNTIME_INF ((u64)~0ULL)
48 static inline int rt_policy(int policy)
50 if (policy == SCHED_FIFO || policy == SCHED_RR)
51 return 1;
52 return 0;
55 static inline int task_has_rt_policy(struct task_struct *p)
57 return rt_policy(p->policy);
61 * This is the priority-queue data structure of the RT scheduling class:
63 struct rt_prio_array {
64 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
65 struct list_head queue[MAX_RT_PRIO];
68 struct rt_bandwidth {
69 /* nests inside the rq lock: */
70 raw_spinlock_t rt_runtime_lock;
71 ktime_t rt_period;
72 u64 rt_runtime;
73 struct hrtimer rt_period_timer;
76 extern struct mutex sched_domains_mutex;
78 #ifdef CONFIG_CGROUP_SCHED
80 #include <linux/cgroup.h>
82 struct cfs_rq;
83 struct rt_rq;
85 extern struct list_head task_groups;
87 struct cfs_bandwidth {
88 #ifdef CONFIG_CFS_BANDWIDTH
89 raw_spinlock_t lock;
90 ktime_t period;
91 u64 quota, runtime;
92 s64 hierarchal_quota;
93 u64 runtime_expires;
95 int idle, timer_active;
96 struct hrtimer period_timer, slack_timer;
97 struct list_head throttled_cfs_rq;
99 /* statistics */
100 int nr_periods, nr_throttled;
101 u64 throttled_time;
102 #endif
105 /* task group related information */
106 struct task_group {
107 struct cgroup_subsys_state css;
109 #ifdef CONFIG_FAIR_GROUP_SCHED
110 /* schedulable entities of this group on each cpu */
111 struct sched_entity **se;
112 /* runqueue "owned" by this group on each cpu */
113 struct cfs_rq **cfs_rq;
114 unsigned long shares;
116 atomic_t load_weight;
117 atomic64_t load_avg;
118 atomic_t runnable_avg;
119 #endif
121 #ifdef CONFIG_RT_GROUP_SCHED
122 struct sched_rt_entity **rt_se;
123 struct rt_rq **rt_rq;
125 struct rt_bandwidth rt_bandwidth;
126 #endif
128 struct rcu_head rcu;
129 struct list_head list;
131 struct task_group *parent;
132 struct list_head siblings;
133 struct list_head children;
135 #ifdef CONFIG_SCHED_AUTOGROUP
136 struct autogroup *autogroup;
137 #endif
139 struct cfs_bandwidth cfs_bandwidth;
142 #ifdef CONFIG_FAIR_GROUP_SCHED
143 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
146 * A weight of 0 or 1 can cause arithmetics problems.
147 * A weight of a cfs_rq is the sum of weights of which entities
148 * are queued on this cfs_rq, so a weight of a entity should not be
149 * too large, so as the shares value of a task group.
150 * (The default weight is 1024 - so there's no practical
151 * limitation from this.)
153 #define MIN_SHARES (1UL << 1)
154 #define MAX_SHARES (1UL << 18)
155 #endif
157 /* Default task group.
158 * Every task in system belong to this group at bootup.
160 extern struct task_group root_task_group;
162 typedef int (*tg_visitor)(struct task_group *, void *);
164 extern int walk_tg_tree_from(struct task_group *from,
165 tg_visitor down, tg_visitor up, void *data);
168 * Iterate the full tree, calling @down when first entering a node and @up when
169 * leaving it for the final time.
171 * Caller must hold rcu_lock or sufficient equivalent.
173 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
175 return walk_tg_tree_from(&root_task_group, down, up, data);
178 extern int tg_nop(struct task_group *tg, void *data);
180 extern void free_fair_sched_group(struct task_group *tg);
181 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
182 extern void unregister_fair_sched_group(struct task_group *tg, int cpu);
183 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
184 struct sched_entity *se, int cpu,
185 struct sched_entity *parent);
186 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
187 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
189 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
190 extern void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
191 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
193 extern void free_rt_sched_group(struct task_group *tg);
194 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
195 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
196 struct sched_rt_entity *rt_se, int cpu,
197 struct sched_rt_entity *parent);
199 #else /* CONFIG_CGROUP_SCHED */
201 struct cfs_bandwidth { };
203 #endif /* CONFIG_CGROUP_SCHED */
205 /* CFS-related fields in a runqueue */
206 struct cfs_rq {
207 struct load_weight load;
208 unsigned int nr_running, h_nr_running;
210 u64 exec_clock;
211 u64 min_vruntime;
212 #ifndef CONFIG_64BIT
213 u64 min_vruntime_copy;
214 #endif
216 struct rb_root tasks_timeline;
217 struct rb_node *rb_leftmost;
220 * 'curr' points to currently running entity on this cfs_rq.
221 * It is set to NULL otherwise (i.e when none are currently running).
223 struct sched_entity *curr, *next, *last, *skip;
225 #ifdef CONFIG_SCHED_DEBUG
226 unsigned int nr_spread_over;
227 #endif
229 #ifdef CONFIG_SMP
231 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
232 * removed when useful for applications beyond shares distribution (e.g.
233 * load-balance).
235 #ifdef CONFIG_FAIR_GROUP_SCHED
237 * CFS Load tracking
238 * Under CFS, load is tracked on a per-entity basis and aggregated up.
239 * This allows for the description of both thread and group usage (in
240 * the FAIR_GROUP_SCHED case).
242 u64 runnable_load_avg, blocked_load_avg;
243 atomic64_t decay_counter, removed_load;
244 u64 last_decay;
245 #endif /* CONFIG_FAIR_GROUP_SCHED */
246 /* These always depend on CONFIG_FAIR_GROUP_SCHED */
247 #ifdef CONFIG_FAIR_GROUP_SCHED
248 u32 tg_runnable_contrib;
249 u64 tg_load_contrib;
250 #endif /* CONFIG_FAIR_GROUP_SCHED */
253 * h_load = weight * f(tg)
255 * Where f(tg) is the recursive weight fraction assigned to
256 * this group.
258 unsigned long h_load;
259 #endif /* CONFIG_SMP */
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
265 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
266 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
267 * (like users, containers etc.)
269 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
270 * list is used during load balance.
272 int on_list;
273 struct list_head leaf_cfs_rq_list;
274 struct task_group *tg; /* group that "owns" this runqueue */
276 #ifdef CONFIG_CFS_BANDWIDTH
277 int runtime_enabled;
278 u64 runtime_expires;
279 s64 runtime_remaining;
281 u64 throttled_clock, throttled_clock_task;
282 u64 throttled_clock_task_time;
283 int throttled, throttle_count;
284 struct list_head throttled_list;
285 #endif /* CONFIG_CFS_BANDWIDTH */
286 #endif /* CONFIG_FAIR_GROUP_SCHED */
289 static inline int rt_bandwidth_enabled(void)
291 return sysctl_sched_rt_runtime >= 0;
294 /* Real-Time classes' related field in a runqueue: */
295 struct rt_rq {
296 struct rt_prio_array active;
297 unsigned int rt_nr_running;
298 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
299 struct {
300 int curr; /* highest queued rt task prio */
301 #ifdef CONFIG_SMP
302 int next; /* next highest */
303 #endif
304 } highest_prio;
305 #endif
306 #ifdef CONFIG_SMP
307 unsigned long rt_nr_migratory;
308 unsigned long rt_nr_total;
309 int overloaded;
310 struct plist_head pushable_tasks;
311 #endif
312 int rt_throttled;
313 u64 rt_time;
314 u64 rt_runtime;
315 /* Nests inside the rq lock: */
316 raw_spinlock_t rt_runtime_lock;
318 #ifdef CONFIG_RT_GROUP_SCHED
319 unsigned long rt_nr_boosted;
321 struct rq *rq;
322 struct list_head leaf_rt_rq_list;
323 struct task_group *tg;
324 #endif
327 #ifdef CONFIG_SMP
330 * We add the notion of a root-domain which will be used to define per-domain
331 * variables. Each exclusive cpuset essentially defines an island domain by
332 * fully partitioning the member cpus from any other cpuset. Whenever a new
333 * exclusive cpuset is created, we also create and attach a new root-domain
334 * object.
337 struct root_domain {
338 atomic_t refcount;
339 atomic_t rto_count;
340 struct rcu_head rcu;
341 cpumask_var_t span;
342 cpumask_var_t online;
345 * The "RT overload" flag: it gets set if a CPU has more than
346 * one runnable RT task.
348 cpumask_var_t rto_mask;
349 struct cpupri cpupri;
352 extern struct root_domain def_root_domain;
354 #endif /* CONFIG_SMP */
357 * This is the main, per-CPU runqueue data structure.
359 * Locking rule: those places that want to lock multiple runqueues
360 * (such as the load balancing or the thread migration code), lock
361 * acquire operations must be ordered by ascending &runqueue.
363 struct rq {
364 /* runqueue lock: */
365 raw_spinlock_t lock;
368 * nr_running and cpu_load should be in the same cacheline because
369 * remote CPUs use both these fields when doing load calculation.
371 unsigned int nr_running;
372 #define CPU_LOAD_IDX_MAX 5
373 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
374 unsigned long last_load_update_tick;
375 #ifdef CONFIG_NO_HZ
376 u64 nohz_stamp;
377 unsigned long nohz_flags;
378 #endif
379 int skip_clock_update;
381 /* capture load from *all* tasks on this cpu: */
382 struct load_weight load;
383 unsigned long nr_load_updates;
384 u64 nr_switches;
386 struct cfs_rq cfs;
387 struct rt_rq rt;
389 #ifdef CONFIG_FAIR_GROUP_SCHED
390 /* list of leaf cfs_rq on this cpu: */
391 struct list_head leaf_cfs_rq_list;
392 #ifdef CONFIG_SMP
393 unsigned long h_load_throttle;
394 #endif /* CONFIG_SMP */
395 #endif /* CONFIG_FAIR_GROUP_SCHED */
397 #ifdef CONFIG_RT_GROUP_SCHED
398 struct list_head leaf_rt_rq_list;
399 #endif
402 * This is part of a global counter where only the total sum
403 * over all CPUs matters. A task can increase this counter on
404 * one CPU and if it got migrated afterwards it may decrease
405 * it on another CPU. Always updated under the runqueue lock:
407 unsigned long nr_uninterruptible;
409 struct task_struct *curr, *idle, *stop;
410 unsigned long next_balance;
411 struct mm_struct *prev_mm;
413 u64 clock;
414 u64 clock_task;
416 atomic_t nr_iowait;
418 #ifdef CONFIG_SMP
419 struct root_domain *rd;
420 struct sched_domain *sd;
422 unsigned long cpu_power;
424 unsigned char idle_balance;
425 /* For active balancing */
426 int post_schedule;
427 int active_balance;
428 int push_cpu;
429 struct cpu_stop_work active_balance_work;
430 /* cpu of this runqueue: */
431 int cpu;
432 int online;
434 struct list_head cfs_tasks;
436 u64 rt_avg;
437 u64 age_stamp;
438 u64 idle_stamp;
439 u64 avg_idle;
440 #endif
442 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
443 u64 prev_irq_time;
444 #endif
445 #ifdef CONFIG_PARAVIRT
446 u64 prev_steal_time;
447 #endif
448 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
449 u64 prev_steal_time_rq;
450 #endif
452 /* calc_load related fields */
453 unsigned long calc_load_update;
454 long calc_load_active;
456 #ifdef CONFIG_SCHED_HRTICK
457 #ifdef CONFIG_SMP
458 int hrtick_csd_pending;
459 struct call_single_data hrtick_csd;
460 #endif
461 struct hrtimer hrtick_timer;
462 #endif
464 #ifdef CONFIG_SCHEDSTATS
465 /* latency stats */
466 struct sched_info rq_sched_info;
467 unsigned long long rq_cpu_time;
468 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
470 /* sys_sched_yield() stats */
471 unsigned int yld_count;
473 /* schedule() stats */
474 unsigned int sched_count;
475 unsigned int sched_goidle;
477 /* try_to_wake_up() stats */
478 unsigned int ttwu_count;
479 unsigned int ttwu_local;
480 #endif
482 #ifdef CONFIG_SMP
483 struct llist_head wake_list;
484 #endif
486 struct sched_avg avg;
489 static inline int cpu_of(struct rq *rq)
491 #ifdef CONFIG_SMP
492 return rq->cpu;
493 #else
494 return 0;
495 #endif
498 DECLARE_PER_CPU(struct rq, runqueues);
500 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
501 #define this_rq() (&__get_cpu_var(runqueues))
502 #define task_rq(p) cpu_rq(task_cpu(p))
503 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
504 #define raw_rq() (&__raw_get_cpu_var(runqueues))
506 #ifdef CONFIG_SMP
508 #define rcu_dereference_check_sched_domain(p) \
509 rcu_dereference_check((p), \
510 lockdep_is_held(&sched_domains_mutex))
513 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
514 * See detach_destroy_domains: synchronize_sched for details.
516 * The domain tree of any CPU may only be accessed from within
517 * preempt-disabled sections.
519 #define for_each_domain(cpu, __sd) \
520 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
521 __sd; __sd = __sd->parent)
523 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
526 * highest_flag_domain - Return highest sched_domain containing flag.
527 * @cpu: The cpu whose highest level of sched domain is to
528 * be returned.
529 * @flag: The flag to check for the highest sched_domain
530 * for the given cpu.
532 * Returns the highest sched_domain of a cpu which contains the given flag.
534 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
536 struct sched_domain *sd, *hsd = NULL;
538 for_each_domain(cpu, sd) {
539 if (!(sd->flags & flag))
540 break;
541 hsd = sd;
544 return hsd;
547 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
548 DECLARE_PER_CPU(int, sd_llc_id);
550 extern int group_balance_cpu(struct sched_group *sg);
552 #endif /* CONFIG_SMP */
554 #include "stats.h"
555 #include "auto_group.h"
557 #ifdef CONFIG_CGROUP_SCHED
560 * Return the group to which this tasks belongs.
562 * We cannot use task_subsys_state() and friends because the cgroup
563 * subsystem changes that value before the cgroup_subsys::attach() method
564 * is called, therefore we cannot pin it and might observe the wrong value.
566 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
567 * core changes this before calling sched_move_task().
569 * Instead we use a 'copy' which is updated from sched_move_task() while
570 * holding both task_struct::pi_lock and rq::lock.
572 static inline struct task_group *task_group(struct task_struct *p)
574 return p->sched_task_group;
577 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
578 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
580 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
581 struct task_group *tg = task_group(p);
582 #endif
584 #ifdef CONFIG_FAIR_GROUP_SCHED
585 p->se.cfs_rq = tg->cfs_rq[cpu];
586 p->se.parent = tg->se[cpu];
587 #endif
589 #ifdef CONFIG_RT_GROUP_SCHED
590 p->rt.rt_rq = tg->rt_rq[cpu];
591 p->rt.parent = tg->rt_se[cpu];
592 #endif
595 #else /* CONFIG_CGROUP_SCHED */
597 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
598 static inline struct task_group *task_group(struct task_struct *p)
600 return NULL;
603 #endif /* CONFIG_CGROUP_SCHED */
605 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
607 set_task_rq(p, cpu);
608 #ifdef CONFIG_SMP
610 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
611 * successfuly executed on another CPU. We must ensure that updates of
612 * per-task data have been completed by this moment.
614 smp_wmb();
615 task_thread_info(p)->cpu = cpu;
616 #endif
620 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
622 #ifdef CONFIG_SCHED_DEBUG
623 # include <linux/static_key.h>
624 # define const_debug __read_mostly
625 #else
626 # define const_debug const
627 #endif
629 extern const_debug unsigned int sysctl_sched_features;
631 #define SCHED_FEAT(name, enabled) \
632 __SCHED_FEAT_##name ,
634 enum {
635 #include "features.h"
636 __SCHED_FEAT_NR,
639 #undef SCHED_FEAT
641 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
642 static __always_inline bool static_branch__true(struct static_key *key)
644 return static_key_true(key); /* Not out of line branch. */
647 static __always_inline bool static_branch__false(struct static_key *key)
649 return static_key_false(key); /* Out of line branch. */
652 #define SCHED_FEAT(name, enabled) \
653 static __always_inline bool static_branch_##name(struct static_key *key) \
655 return static_branch__##enabled(key); \
658 #include "features.h"
660 #undef SCHED_FEAT
662 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
663 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
664 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
665 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
666 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
668 #ifdef CONFIG_NUMA_BALANCING
669 #define sched_feat_numa(x) sched_feat(x)
670 #ifdef CONFIG_SCHED_DEBUG
671 #define numabalancing_enabled sched_feat_numa(NUMA)
672 #else
673 extern bool numabalancing_enabled;
674 #endif /* CONFIG_SCHED_DEBUG */
675 #else
676 #define sched_feat_numa(x) (0)
677 #define numabalancing_enabled (0)
678 #endif /* CONFIG_NUMA_BALANCING */
680 static inline u64 global_rt_period(void)
682 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
685 static inline u64 global_rt_runtime(void)
687 if (sysctl_sched_rt_runtime < 0)
688 return RUNTIME_INF;
690 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
695 static inline int task_current(struct rq *rq, struct task_struct *p)
697 return rq->curr == p;
700 static inline int task_running(struct rq *rq, struct task_struct *p)
702 #ifdef CONFIG_SMP
703 return p->on_cpu;
704 #else
705 return task_current(rq, p);
706 #endif
710 #ifndef prepare_arch_switch
711 # define prepare_arch_switch(next) do { } while (0)
712 #endif
713 #ifndef finish_arch_switch
714 # define finish_arch_switch(prev) do { } while (0)
715 #endif
716 #ifndef finish_arch_post_lock_switch
717 # define finish_arch_post_lock_switch() do { } while (0)
718 #endif
720 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
721 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
723 #ifdef CONFIG_SMP
725 * We can optimise this out completely for !SMP, because the
726 * SMP rebalancing from interrupt is the only thing that cares
727 * here.
729 next->on_cpu = 1;
730 #endif
733 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
735 #ifdef CONFIG_SMP
737 * After ->on_cpu is cleared, the task can be moved to a different CPU.
738 * We must ensure this doesn't happen until the switch is completely
739 * finished.
741 smp_wmb();
742 prev->on_cpu = 0;
743 #endif
744 #ifdef CONFIG_DEBUG_SPINLOCK
745 /* this is a valid case when another task releases the spinlock */
746 rq->lock.owner = current;
747 #endif
749 * If we are tracking spinlock dependencies then we have to
750 * fix up the runqueue lock - which gets 'carried over' from
751 * prev into current:
753 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
755 raw_spin_unlock_irq(&rq->lock);
758 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
759 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
761 #ifdef CONFIG_SMP
763 * We can optimise this out completely for !SMP, because the
764 * SMP rebalancing from interrupt is the only thing that cares
765 * here.
767 next->on_cpu = 1;
768 #endif
769 raw_spin_unlock(&rq->lock);
772 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
774 #ifdef CONFIG_SMP
776 * After ->on_cpu is cleared, the task can be moved to a different CPU.
777 * We must ensure this doesn't happen until the switch is completely
778 * finished.
780 smp_wmb();
781 prev->on_cpu = 0;
782 #endif
783 local_irq_enable();
785 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
788 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
790 lw->weight += inc;
791 lw->inv_weight = 0;
794 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
796 lw->weight -= dec;
797 lw->inv_weight = 0;
800 static inline void update_load_set(struct load_weight *lw, unsigned long w)
802 lw->weight = w;
803 lw->inv_weight = 0;
807 * To aid in avoiding the subversion of "niceness" due to uneven distribution
808 * of tasks with abnormal "nice" values across CPUs the contribution that
809 * each task makes to its run queue's load is weighted according to its
810 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
811 * scaled version of the new time slice allocation that they receive on time
812 * slice expiry etc.
815 #define WEIGHT_IDLEPRIO 3
816 #define WMULT_IDLEPRIO 1431655765
819 * Nice levels are multiplicative, with a gentle 10% change for every
820 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
821 * nice 1, it will get ~10% less CPU time than another CPU-bound task
822 * that remained on nice 0.
824 * The "10% effect" is relative and cumulative: from _any_ nice level,
825 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
826 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
827 * If a task goes up by ~10% and another task goes down by ~10% then
828 * the relative distance between them is ~25%.)
830 static const int prio_to_weight[40] = {
831 /* -20 */ 88761, 71755, 56483, 46273, 36291,
832 /* -15 */ 29154, 23254, 18705, 14949, 11916,
833 /* -10 */ 9548, 7620, 6100, 4904, 3906,
834 /* -5 */ 3121, 2501, 1991, 1586, 1277,
835 /* 0 */ 1024, 820, 655, 526, 423,
836 /* 5 */ 335, 272, 215, 172, 137,
837 /* 10 */ 110, 87, 70, 56, 45,
838 /* 15 */ 36, 29, 23, 18, 15,
842 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
844 * In cases where the weight does not change often, we can use the
845 * precalculated inverse to speed up arithmetics by turning divisions
846 * into multiplications:
848 static const u32 prio_to_wmult[40] = {
849 /* -20 */ 48388, 59856, 76040, 92818, 118348,
850 /* -15 */ 147320, 184698, 229616, 287308, 360437,
851 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
852 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
853 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
854 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
855 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
856 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
859 /* Time spent by the tasks of the cpu accounting group executing in ... */
860 enum cpuacct_stat_index {
861 CPUACCT_STAT_USER, /* ... user mode */
862 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
864 CPUACCT_STAT_NSTATS,
868 #define sched_class_highest (&stop_sched_class)
869 #define for_each_class(class) \
870 for (class = sched_class_highest; class; class = class->next)
872 extern const struct sched_class stop_sched_class;
873 extern const struct sched_class rt_sched_class;
874 extern const struct sched_class fair_sched_class;
875 extern const struct sched_class idle_sched_class;
878 #ifdef CONFIG_SMP
880 extern void trigger_load_balance(struct rq *rq, int cpu);
881 extern void idle_balance(int this_cpu, struct rq *this_rq);
883 #else /* CONFIG_SMP */
885 static inline void idle_balance(int cpu, struct rq *rq)
889 #endif
891 extern void sysrq_sched_debug_show(void);
892 extern void sched_init_granularity(void);
893 extern void update_max_interval(void);
894 extern void update_group_power(struct sched_domain *sd, int cpu);
895 extern int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu);
896 extern void init_sched_rt_class(void);
897 extern void init_sched_fair_class(void);
899 extern void resched_task(struct task_struct *p);
900 extern void resched_cpu(int cpu);
902 extern struct rt_bandwidth def_rt_bandwidth;
903 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
905 extern void update_idle_cpu_load(struct rq *this_rq);
907 #ifdef CONFIG_CGROUP_CPUACCT
908 #include <linux/cgroup.h>
909 /* track cpu usage of a group of tasks and its child groups */
910 struct cpuacct {
911 struct cgroup_subsys_state css;
912 /* cpuusage holds pointer to a u64-type object on every cpu */
913 u64 __percpu *cpuusage;
914 struct kernel_cpustat __percpu *cpustat;
917 extern struct cgroup_subsys cpuacct_subsys;
918 extern struct cpuacct root_cpuacct;
920 /* return cpu accounting group corresponding to this container */
921 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
923 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
924 struct cpuacct, css);
927 /* return cpu accounting group to which this task belongs */
928 static inline struct cpuacct *task_ca(struct task_struct *tsk)
930 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
931 struct cpuacct, css);
934 static inline struct cpuacct *parent_ca(struct cpuacct *ca)
936 if (!ca || !ca->css.cgroup->parent)
937 return NULL;
938 return cgroup_ca(ca->css.cgroup->parent);
941 extern void cpuacct_charge(struct task_struct *tsk, u64 cputime);
942 #else
943 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
944 #endif
946 #ifdef CONFIG_PARAVIRT
947 static inline u64 steal_ticks(u64 steal)
949 if (unlikely(steal > NSEC_PER_SEC))
950 return div_u64(steal, TICK_NSEC);
952 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
954 #endif
956 static inline void inc_nr_running(struct rq *rq)
958 rq->nr_running++;
961 static inline void dec_nr_running(struct rq *rq)
963 rq->nr_running--;
966 extern void update_rq_clock(struct rq *rq);
968 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
969 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
971 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
973 extern const_debug unsigned int sysctl_sched_time_avg;
974 extern const_debug unsigned int sysctl_sched_nr_migrate;
975 extern const_debug unsigned int sysctl_sched_migration_cost;
977 static inline u64 sched_avg_period(void)
979 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
982 #ifdef CONFIG_SCHED_HRTICK
985 * Use hrtick when:
986 * - enabled by features
987 * - hrtimer is actually high res
989 static inline int hrtick_enabled(struct rq *rq)
991 if (!sched_feat(HRTICK))
992 return 0;
993 if (!cpu_active(cpu_of(rq)))
994 return 0;
995 return hrtimer_is_hres_active(&rq->hrtick_timer);
998 void hrtick_start(struct rq *rq, u64 delay);
1000 #else
1002 static inline int hrtick_enabled(struct rq *rq)
1004 return 0;
1007 #endif /* CONFIG_SCHED_HRTICK */
1009 #ifdef CONFIG_SMP
1010 extern void sched_avg_update(struct rq *rq);
1011 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1013 rq->rt_avg += rt_delta;
1014 sched_avg_update(rq);
1016 #else
1017 static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1018 static inline void sched_avg_update(struct rq *rq) { }
1019 #endif
1021 extern void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period);
1023 #ifdef CONFIG_SMP
1024 #ifdef CONFIG_PREEMPT
1026 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1029 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1030 * way at the expense of forcing extra atomic operations in all
1031 * invocations. This assures that the double_lock is acquired using the
1032 * same underlying policy as the spinlock_t on this architecture, which
1033 * reduces latency compared to the unfair variant below. However, it
1034 * also adds more overhead and therefore may reduce throughput.
1036 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1037 __releases(this_rq->lock)
1038 __acquires(busiest->lock)
1039 __acquires(this_rq->lock)
1041 raw_spin_unlock(&this_rq->lock);
1042 double_rq_lock(this_rq, busiest);
1044 return 1;
1047 #else
1049 * Unfair double_lock_balance: Optimizes throughput at the expense of
1050 * latency by eliminating extra atomic operations when the locks are
1051 * already in proper order on entry. This favors lower cpu-ids and will
1052 * grant the double lock to lower cpus over higher ids under contention,
1053 * regardless of entry order into the function.
1055 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1056 __releases(this_rq->lock)
1057 __acquires(busiest->lock)
1058 __acquires(this_rq->lock)
1060 int ret = 0;
1062 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1063 if (busiest < this_rq) {
1064 raw_spin_unlock(&this_rq->lock);
1065 raw_spin_lock(&busiest->lock);
1066 raw_spin_lock_nested(&this_rq->lock,
1067 SINGLE_DEPTH_NESTING);
1068 ret = 1;
1069 } else
1070 raw_spin_lock_nested(&busiest->lock,
1071 SINGLE_DEPTH_NESTING);
1073 return ret;
1076 #endif /* CONFIG_PREEMPT */
1079 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1081 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1083 if (unlikely(!irqs_disabled())) {
1084 /* printk() doesn't work good under rq->lock */
1085 raw_spin_unlock(&this_rq->lock);
1086 BUG_ON(1);
1089 return _double_lock_balance(this_rq, busiest);
1092 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1093 __releases(busiest->lock)
1095 raw_spin_unlock(&busiest->lock);
1096 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1100 * double_rq_lock - safely lock two runqueues
1102 * Note this does not disable interrupts like task_rq_lock,
1103 * you need to do so manually before calling.
1105 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1106 __acquires(rq1->lock)
1107 __acquires(rq2->lock)
1109 BUG_ON(!irqs_disabled());
1110 if (rq1 == rq2) {
1111 raw_spin_lock(&rq1->lock);
1112 __acquire(rq2->lock); /* Fake it out ;) */
1113 } else {
1114 if (rq1 < rq2) {
1115 raw_spin_lock(&rq1->lock);
1116 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1117 } else {
1118 raw_spin_lock(&rq2->lock);
1119 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1125 * double_rq_unlock - safely unlock two runqueues
1127 * Note this does not restore interrupts like task_rq_unlock,
1128 * you need to do so manually after calling.
1130 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1131 __releases(rq1->lock)
1132 __releases(rq2->lock)
1134 raw_spin_unlock(&rq1->lock);
1135 if (rq1 != rq2)
1136 raw_spin_unlock(&rq2->lock);
1137 else
1138 __release(rq2->lock);
1141 #else /* CONFIG_SMP */
1144 * double_rq_lock - safely lock two runqueues
1146 * Note this does not disable interrupts like task_rq_lock,
1147 * you need to do so manually before calling.
1149 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1150 __acquires(rq1->lock)
1151 __acquires(rq2->lock)
1153 BUG_ON(!irqs_disabled());
1154 BUG_ON(rq1 != rq2);
1155 raw_spin_lock(&rq1->lock);
1156 __acquire(rq2->lock); /* Fake it out ;) */
1160 * double_rq_unlock - safely unlock two runqueues
1162 * Note this does not restore interrupts like task_rq_unlock,
1163 * you need to do so manually after calling.
1165 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1166 __releases(rq1->lock)
1167 __releases(rq2->lock)
1169 BUG_ON(rq1 != rq2);
1170 raw_spin_unlock(&rq1->lock);
1171 __release(rq2->lock);
1174 #endif
1176 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1177 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1178 extern void print_cfs_stats(struct seq_file *m, int cpu);
1179 extern void print_rt_stats(struct seq_file *m, int cpu);
1181 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1182 extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq);
1184 extern void account_cfs_bandwidth_used(int enabled, int was_enabled);
1186 #ifdef CONFIG_NO_HZ
1187 enum rq_nohz_flag_bits {
1188 NOHZ_TICK_STOPPED,
1189 NOHZ_BALANCE_KICK,
1190 NOHZ_IDLE,
1193 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
1194 #endif
1196 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1198 DECLARE_PER_CPU(u64, cpu_hardirq_time);
1199 DECLARE_PER_CPU(u64, cpu_softirq_time);
1201 #ifndef CONFIG_64BIT
1202 DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1204 static inline void irq_time_write_begin(void)
1206 __this_cpu_inc(irq_time_seq.sequence);
1207 smp_wmb();
1210 static inline void irq_time_write_end(void)
1212 smp_wmb();
1213 __this_cpu_inc(irq_time_seq.sequence);
1216 static inline u64 irq_time_read(int cpu)
1218 u64 irq_time;
1219 unsigned seq;
1221 do {
1222 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1223 irq_time = per_cpu(cpu_softirq_time, cpu) +
1224 per_cpu(cpu_hardirq_time, cpu);
1225 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1227 return irq_time;
1229 #else /* CONFIG_64BIT */
1230 static inline void irq_time_write_begin(void)
1234 static inline void irq_time_write_end(void)
1238 static inline u64 irq_time_read(int cpu)
1240 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1242 #endif /* CONFIG_64BIT */
1243 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */