1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/kernel/setup.c
5 * Copyright (C) 1995-2001 Russell King
8 #include <linux/export.h>
9 #include <linux/kernel.h>
10 #include <linux/stddef.h>
11 #include <linux/ioport.h>
12 #include <linux/delay.h>
13 #include <linux/utsname.h>
14 #include <linux/initrd.h>
15 #include <linux/console.h>
16 #include <linux/seq_file.h>
17 #include <linux/screen_info.h>
18 #include <linux/of_platform.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/of_fdt.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/proc_fs.h>
26 #include <linux/memblock.h>
27 #include <linux/bug.h>
28 #include <linux/compiler.h>
29 #include <linux/sort.h>
30 #include <linux/psci.h>
32 #include <asm/unified.h>
35 #include <asm/cputype.h>
38 #include <asm/early_ioremap.h>
39 #include <asm/fixmap.h>
40 #include <asm/procinfo.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <asm/smp_plat.h>
45 #include <asm/mach-types.h>
46 #include <asm/cacheflush.h>
47 #include <asm/cachetype.h>
48 #include <asm/tlbflush.h>
49 #include <asm/xen/hypervisor.h>
52 #include <asm/mach/arch.h>
53 #include <asm/mach/irq.h>
54 #include <asm/mach/time.h>
55 #include <asm/system_info.h>
56 #include <asm/system_misc.h>
57 #include <asm/traps.h>
58 #include <asm/unwind.h>
59 #include <asm/memblock.h>
65 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
68 static int __init
fpe_setup(char *line
)
70 memcpy(fpe_type
, line
, 8);
74 __setup("fpe=", fpe_setup
);
77 extern void init_default_cache_policy(unsigned long);
78 extern void paging_init(const struct machine_desc
*desc
);
79 extern void early_mm_init(const struct machine_desc
*);
80 extern void adjust_lowmem_bounds(void);
81 extern enum reboot_mode reboot_mode
;
82 extern void setup_dma_zone(const struct machine_desc
*desc
);
84 unsigned int processor_id
;
85 EXPORT_SYMBOL(processor_id
);
86 unsigned int __machine_arch_type __read_mostly
;
87 EXPORT_SYMBOL(__machine_arch_type
);
88 unsigned int cacheid __read_mostly
;
89 EXPORT_SYMBOL(cacheid
);
91 unsigned int __atags_pointer __initdata
;
93 unsigned int system_rev
;
94 EXPORT_SYMBOL(system_rev
);
96 const char *system_serial
;
97 EXPORT_SYMBOL(system_serial
);
99 unsigned int system_serial_low
;
100 EXPORT_SYMBOL(system_serial_low
);
102 unsigned int system_serial_high
;
103 EXPORT_SYMBOL(system_serial_high
);
105 unsigned int elf_hwcap __read_mostly
;
106 EXPORT_SYMBOL(elf_hwcap
);
108 unsigned int elf_hwcap2 __read_mostly
;
109 EXPORT_SYMBOL(elf_hwcap2
);
113 struct processor processor __ro_after_init
;
114 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
115 struct processor
*cpu_vtable
[NR_CPUS
] = {
121 struct cpu_tlb_fns cpu_tlb __ro_after_init
;
124 struct cpu_user_fns cpu_user __ro_after_init
;
127 struct cpu_cache_fns cpu_cache __ro_after_init
;
129 #ifdef CONFIG_OUTER_CACHE
130 struct outer_cache_fns outer_cache __ro_after_init
;
131 EXPORT_SYMBOL(outer_cache
);
135 * Cached cpu_architecture() result for use by assembler code.
136 * C code should use the cpu_architecture() function instead of accessing this
139 int __cpu_architecture __read_mostly
= CPU_ARCH_UNKNOWN
;
146 } ____cacheline_aligned
;
148 #ifndef CONFIG_CPU_V7M
149 static struct stack stacks
[NR_CPUS
];
152 char elf_platform
[ELF_PLATFORM_SIZE
];
153 EXPORT_SYMBOL(elf_platform
);
155 static const char *cpu_name
;
156 static const char *machine_name
;
157 static char __initdata cmd_line
[COMMAND_LINE_SIZE
];
158 const struct machine_desc
*machine_desc __initdata
;
160 static union { char c
[4]; unsigned long l
; } endian_test __initdata
= { { 'l', '?', '?', 'b' } };
161 #define ENDIANNESS ((char)endian_test.l)
163 DEFINE_PER_CPU(struct cpuinfo_arm
, cpu_data
);
166 * Standard memory resources
168 static struct resource mem_res
[] = {
173 .flags
= IORESOURCE_MEM
176 .name
= "Kernel code",
179 .flags
= IORESOURCE_SYSTEM_RAM
182 .name
= "Kernel data",
185 .flags
= IORESOURCE_SYSTEM_RAM
189 #define video_ram mem_res[0]
190 #define kernel_code mem_res[1]
191 #define kernel_data mem_res[2]
193 static struct resource io_res
[] = {
198 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
204 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
210 .flags
= IORESOURCE_IO
| IORESOURCE_BUSY
214 #define lp0 io_res[0]
215 #define lp1 io_res[1]
216 #define lp2 io_res[2]
218 static const char *proc_arch
[] = {
238 #ifdef CONFIG_CPU_V7M
239 static int __get_cpu_architecture(void)
241 return CPU_ARCH_ARMv7M
;
244 static int __get_cpu_architecture(void)
248 if ((read_cpuid_id() & 0x0008f000) == 0) {
249 cpu_arch
= CPU_ARCH_UNKNOWN
;
250 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
251 cpu_arch
= (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T
: CPU_ARCH_ARMv3
;
252 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
253 cpu_arch
= (read_cpuid_id() >> 16) & 7;
255 cpu_arch
+= CPU_ARCH_ARMv3
;
256 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
257 /* Revised CPUID format. Read the Memory Model Feature
258 * Register 0 and check for VMSAv7 or PMSAv7 */
259 unsigned int mmfr0
= read_cpuid_ext(CPUID_EXT_MMFR0
);
260 if ((mmfr0
& 0x0000000f) >= 0x00000003 ||
261 (mmfr0
& 0x000000f0) >= 0x00000030)
262 cpu_arch
= CPU_ARCH_ARMv7
;
263 else if ((mmfr0
& 0x0000000f) == 0x00000002 ||
264 (mmfr0
& 0x000000f0) == 0x00000020)
265 cpu_arch
= CPU_ARCH_ARMv6
;
267 cpu_arch
= CPU_ARCH_UNKNOWN
;
269 cpu_arch
= CPU_ARCH_UNKNOWN
;
275 int __pure
cpu_architecture(void)
277 BUG_ON(__cpu_architecture
== CPU_ARCH_UNKNOWN
);
279 return __cpu_architecture
;
282 static int cpu_has_aliasing_icache(unsigned int arch
)
285 unsigned int id_reg
, num_sets
, line_size
;
287 /* PIPT caches never alias. */
288 if (icache_is_pipt())
291 /* arch specifies the register format */
294 set_csselr(CSSELR_ICACHE
| CSSELR_L1
);
296 id_reg
= read_ccsidr();
297 line_size
= 4 << ((id_reg
& 0x7) + 2);
298 num_sets
= ((id_reg
>> 13) & 0x7fff) + 1;
299 aliasing_icache
= (line_size
* num_sets
) > PAGE_SIZE
;
302 aliasing_icache
= read_cpuid_cachetype() & (1 << 11);
305 /* I-cache aliases will be handled by D-cache aliasing code */
309 return aliasing_icache
;
312 static void __init
cacheid_init(void)
314 unsigned int arch
= cpu_architecture();
316 if (arch
>= CPU_ARCH_ARMv6
) {
317 unsigned int cachetype
= read_cpuid_cachetype();
319 if ((arch
== CPU_ARCH_ARMv7M
) && !(cachetype
& 0xf000f)) {
321 } else if ((cachetype
& (7 << 29)) == 4 << 29) {
322 /* ARMv7 register format */
323 arch
= CPU_ARCH_ARMv7
;
324 cacheid
= CACHEID_VIPT_NONALIASING
;
325 switch (cachetype
& (3 << 14)) {
327 cacheid
|= CACHEID_ASID_TAGGED
;
330 cacheid
|= CACHEID_PIPT
;
334 arch
= CPU_ARCH_ARMv6
;
335 if (cachetype
& (1 << 23))
336 cacheid
= CACHEID_VIPT_ALIASING
;
338 cacheid
= CACHEID_VIPT_NONALIASING
;
340 if (cpu_has_aliasing_icache(arch
))
341 cacheid
|= CACHEID_VIPT_I_ALIASING
;
343 cacheid
= CACHEID_VIVT
;
346 pr_info("CPU: %s data cache, %s instruction cache\n",
347 cache_is_vivt() ? "VIVT" :
348 cache_is_vipt_aliasing() ? "VIPT aliasing" :
349 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
350 cache_is_vivt() ? "VIVT" :
351 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
352 icache_is_vipt_aliasing() ? "VIPT aliasing" :
353 icache_is_pipt() ? "PIPT" :
354 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
358 * These functions re-use the assembly code in head.S, which
359 * already provide the required functionality.
361 extern struct proc_info_list
*lookup_processor_type(unsigned int);
363 void __init
early_print(const char *str
, ...)
365 extern void printascii(const char *);
370 vsnprintf(buf
, sizeof(buf
), str
, ap
);
373 #ifdef CONFIG_DEBUG_LL
379 #ifdef CONFIG_ARM_PATCH_IDIV
381 static inline u32 __attribute_const__
sdiv_instruction(void)
383 if (IS_ENABLED(CONFIG_THUMB2_KERNEL
)) {
384 /* "sdiv r0, r0, r1" */
385 u32 insn
= __opcode_thumb32_compose(0xfb90, 0xf0f1);
386 return __opcode_to_mem_thumb32(insn
);
389 /* "sdiv r0, r0, r1" */
390 return __opcode_to_mem_arm(0xe710f110);
393 static inline u32 __attribute_const__
udiv_instruction(void)
395 if (IS_ENABLED(CONFIG_THUMB2_KERNEL
)) {
396 /* "udiv r0, r0, r1" */
397 u32 insn
= __opcode_thumb32_compose(0xfbb0, 0xf0f1);
398 return __opcode_to_mem_thumb32(insn
);
401 /* "udiv r0, r0, r1" */
402 return __opcode_to_mem_arm(0xe730f110);
405 static inline u32 __attribute_const__
bx_lr_instruction(void)
407 if (IS_ENABLED(CONFIG_THUMB2_KERNEL
)) {
409 u32 insn
= __opcode_thumb32_compose(0x4770, 0x46c0);
410 return __opcode_to_mem_thumb32(insn
);
414 return __opcode_to_mem_arm(0xe12fff1e);
417 static void __init
patch_aeabi_idiv(void)
419 extern void __aeabi_uidiv(void);
420 extern void __aeabi_idiv(void);
424 mask
= IS_ENABLED(CONFIG_THUMB2_KERNEL
) ? HWCAP_IDIVT
: HWCAP_IDIVA
;
425 if (!(elf_hwcap
& mask
))
428 pr_info("CPU: div instructions available: patching division code\n");
430 fn_addr
= ((uintptr_t)&__aeabi_uidiv
) & ~1;
431 asm ("" : "+g" (fn_addr
));
432 ((u32
*)fn_addr
)[0] = udiv_instruction();
433 ((u32
*)fn_addr
)[1] = bx_lr_instruction();
434 flush_icache_range(fn_addr
, fn_addr
+ 8);
436 fn_addr
= ((uintptr_t)&__aeabi_idiv
) & ~1;
437 asm ("" : "+g" (fn_addr
));
438 ((u32
*)fn_addr
)[0] = sdiv_instruction();
439 ((u32
*)fn_addr
)[1] = bx_lr_instruction();
440 flush_icache_range(fn_addr
, fn_addr
+ 8);
444 static inline void patch_aeabi_idiv(void) { }
447 static void __init
cpuid_init_hwcaps(void)
452 if (cpu_architecture() < CPU_ARCH_ARMv7
)
455 block
= cpuid_feature_extract(CPUID_EXT_ISAR0
, 24);
457 elf_hwcap
|= HWCAP_IDIVA
;
459 elf_hwcap
|= HWCAP_IDIVT
;
461 /* LPAE implies atomic ldrd/strd instructions */
462 block
= cpuid_feature_extract(CPUID_EXT_MMFR0
, 0);
464 elf_hwcap
|= HWCAP_LPAE
;
466 /* check for supported v8 Crypto instructions */
467 isar5
= read_cpuid_ext(CPUID_EXT_ISAR5
);
469 block
= cpuid_feature_extract_field(isar5
, 4);
471 elf_hwcap2
|= HWCAP2_PMULL
;
473 elf_hwcap2
|= HWCAP2_AES
;
475 block
= cpuid_feature_extract_field(isar5
, 8);
477 elf_hwcap2
|= HWCAP2_SHA1
;
479 block
= cpuid_feature_extract_field(isar5
, 12);
481 elf_hwcap2
|= HWCAP2_SHA2
;
483 block
= cpuid_feature_extract_field(isar5
, 16);
485 elf_hwcap2
|= HWCAP2_CRC32
;
488 static void __init
elf_hwcap_fixup(void)
490 unsigned id
= read_cpuid_id();
493 * HWCAP_TLS is available only on 1136 r1p0 and later,
494 * see also kuser_get_tls_init.
496 if (read_cpuid_part() == ARM_CPU_PART_ARM1136
&&
497 ((id
>> 20) & 3) == 0) {
498 elf_hwcap
&= ~HWCAP_TLS
;
502 /* Verify if CPUID scheme is implemented */
503 if ((id
& 0x000f0000) != 0x000f0000)
507 * If the CPU supports LDREX/STREX and LDREXB/STREXB,
508 * avoid advertising SWP; it may not be atomic with
509 * multiprocessing cores.
511 if (cpuid_feature_extract(CPUID_EXT_ISAR3
, 12) > 1 ||
512 (cpuid_feature_extract(CPUID_EXT_ISAR3
, 12) == 1 &&
513 cpuid_feature_extract(CPUID_EXT_ISAR4
, 20) >= 3))
514 elf_hwcap
&= ~HWCAP_SWP
;
518 * cpu_init - initialise one CPU.
520 * cpu_init sets up the per-CPU stacks.
522 void notrace
cpu_init(void)
524 #ifndef CONFIG_CPU_V7M
525 unsigned int cpu
= smp_processor_id();
526 struct stack
*stk
= &stacks
[cpu
];
528 if (cpu
>= NR_CPUS
) {
529 pr_crit("CPU%u: bad primary CPU number\n", cpu
);
534 * This only works on resume and secondary cores. For booting on the
535 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
537 set_my_cpu_offset(per_cpu_offset(cpu
));
542 * Define the placement constraint for the inline asm directive below.
543 * In Thumb-2, msr with an immediate value is not allowed.
545 #ifdef CONFIG_THUMB2_KERNEL
552 * setup stacks for re-entrant exception handlers
556 "add r14, %0, %2\n\t"
559 "add r14, %0, %4\n\t"
562 "add r14, %0, %6\n\t"
565 "add r14, %0, %8\n\t"
570 PLC (PSR_F_BIT
| PSR_I_BIT
| IRQ_MODE
),
571 "I" (offsetof(struct stack
, irq
[0])),
572 PLC (PSR_F_BIT
| PSR_I_BIT
| ABT_MODE
),
573 "I" (offsetof(struct stack
, abt
[0])),
574 PLC (PSR_F_BIT
| PSR_I_BIT
| UND_MODE
),
575 "I" (offsetof(struct stack
, und
[0])),
576 PLC (PSR_F_BIT
| PSR_I_BIT
| FIQ_MODE
),
577 "I" (offsetof(struct stack
, fiq
[0])),
578 PLC (PSR_F_BIT
| PSR_I_BIT
| SVC_MODE
)
583 u32 __cpu_logical_map
[NR_CPUS
] = { [0 ... NR_CPUS
-1] = MPIDR_INVALID
};
585 void __init
smp_setup_processor_id(void)
588 u32 mpidr
= is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK
: 0;
589 u32 cpu
= MPIDR_AFFINITY_LEVEL(mpidr
, 0);
591 cpu_logical_map(0) = cpu
;
592 for (i
= 1; i
< nr_cpu_ids
; ++i
)
593 cpu_logical_map(i
) = i
== cpu
? 0 : i
;
596 * clear __my_cpu_offset on boot CPU to avoid hang caused by
597 * using percpu variable early, for example, lockdep will
598 * access percpu variable inside lock_release
600 set_my_cpu_offset(0);
602 pr_info("Booting Linux on physical CPU 0x%x\n", mpidr
);
605 struct mpidr_hash mpidr_hash
;
608 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
609 * level in order to build a linear index from an
610 * MPIDR value. Resulting algorithm is a collision
611 * free hash carried out through shifting and ORing
613 static void __init
smp_build_mpidr_hash(void)
616 u32 fs
[3], bits
[3], ls
, mask
= 0;
618 * Pre-scan the list of MPIDRS and filter out bits that do
619 * not contribute to affinity levels, ie they never toggle.
621 for_each_possible_cpu(i
)
622 mask
|= (cpu_logical_map(i
) ^ cpu_logical_map(0));
623 pr_debug("mask of set bits 0x%x\n", mask
);
625 * Find and stash the last and first bit set at all affinity levels to
626 * check how many bits are required to represent them.
628 for (i
= 0; i
< 3; i
++) {
629 affinity
= MPIDR_AFFINITY_LEVEL(mask
, i
);
631 * Find the MSB bit and LSB bits position
632 * to determine how many bits are required
633 * to express the affinity level.
636 fs
[i
] = affinity
? ffs(affinity
) - 1 : 0;
637 bits
[i
] = ls
- fs
[i
];
640 * An index can be created from the MPIDR by isolating the
641 * significant bits at each affinity level and by shifting
642 * them in order to compress the 24 bits values space to a
643 * compressed set of values. This is equivalent to hashing
644 * the MPIDR through shifting and ORing. It is a collision free
645 * hash though not minimal since some levels might contain a number
646 * of CPUs that is not an exact power of 2 and their bit
647 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
649 mpidr_hash
.shift_aff
[0] = fs
[0];
650 mpidr_hash
.shift_aff
[1] = MPIDR_LEVEL_BITS
+ fs
[1] - bits
[0];
651 mpidr_hash
.shift_aff
[2] = 2*MPIDR_LEVEL_BITS
+ fs
[2] -
653 mpidr_hash
.mask
= mask
;
654 mpidr_hash
.bits
= bits
[2] + bits
[1] + bits
[0];
655 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
656 mpidr_hash
.shift_aff
[0],
657 mpidr_hash
.shift_aff
[1],
658 mpidr_hash
.shift_aff
[2],
662 * 4x is an arbitrary value used to warn on a hash table much bigger
663 * than expected on most systems.
665 if (mpidr_hash_size() > 4 * num_possible_cpus())
666 pr_warn("Large number of MPIDR hash buckets detected\n");
667 sync_cache_w(&mpidr_hash
);
672 * locate processor in the list of supported processor types. The linker
673 * builds this table for us from the entries in arch/arm/mm/proc-*.S
675 struct proc_info_list
*lookup_processor(u32 midr
)
677 struct proc_info_list
*list
= lookup_processor_type(midr
);
680 pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n",
681 smp_processor_id(), midr
);
683 /* can't use cpu_relax() here as it may require MMU setup */;
689 static void __init
setup_processor(void)
691 unsigned int midr
= read_cpuid_id();
692 struct proc_info_list
*list
= lookup_processor(midr
);
694 cpu_name
= list
->cpu_name
;
695 __cpu_architecture
= __get_cpu_architecture();
697 init_proc_vtable(list
->proc
);
699 cpu_tlb
= *list
->tlb
;
702 cpu_user
= *list
->user
;
705 cpu_cache
= *list
->cache
;
708 pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
709 list
->cpu_name
, midr
, midr
& 15,
710 proc_arch
[cpu_architecture()], get_cr());
712 snprintf(init_utsname()->machine
, __NEW_UTS_LEN
+ 1, "%s%c",
713 list
->arch_name
, ENDIANNESS
);
714 snprintf(elf_platform
, ELF_PLATFORM_SIZE
, "%s%c",
715 list
->elf_name
, ENDIANNESS
);
716 elf_hwcap
= list
->elf_hwcap
;
721 #ifndef CONFIG_ARM_THUMB
722 elf_hwcap
&= ~(HWCAP_THUMB
| HWCAP_IDIVT
);
725 init_default_cache_policy(list
->__cpu_mm_mmu_flags
);
727 erratum_a15_798181_init();
735 void __init
dump_machine_table(void)
737 const struct machine_desc
*p
;
739 early_print("Available machine support:\n\nID (hex)\tNAME\n");
740 for_each_machine_desc(p
)
741 early_print("%08x\t%s\n", p
->nr
, p
->name
);
743 early_print("\nPlease check your kernel config and/or bootloader.\n");
746 /* can't use cpu_relax() here as it may require MMU setup */;
749 int __init
arm_add_memory(u64 start
, u64 size
)
754 * Ensure that start/size are aligned to a page boundary.
755 * Size is rounded down, start is rounded up.
757 aligned_start
= PAGE_ALIGN(start
);
758 if (aligned_start
> start
+ size
)
761 size
-= aligned_start
- start
;
763 #ifndef CONFIG_PHYS_ADDR_T_64BIT
764 if (aligned_start
> ULONG_MAX
) {
765 pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n",
770 if (aligned_start
+ size
> ULONG_MAX
) {
771 pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n",
774 * To ensure bank->start + bank->size is representable in
775 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
776 * This means we lose a page after masking.
778 size
= ULONG_MAX
- aligned_start
;
782 if (aligned_start
< PHYS_OFFSET
) {
783 if (aligned_start
+ size
<= PHYS_OFFSET
) {
784 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
785 aligned_start
, aligned_start
+ size
);
789 pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n",
790 aligned_start
, (u64
)PHYS_OFFSET
);
792 size
-= PHYS_OFFSET
- aligned_start
;
793 aligned_start
= PHYS_OFFSET
;
796 start
= aligned_start
;
797 size
= size
& ~(phys_addr_t
)(PAGE_SIZE
- 1);
800 * Check whether this memory region has non-zero size or
801 * invalid node number.
806 memblock_add(start
, size
);
811 * Pick out the memory size. We look for mem=size@start,
812 * where start and size are "size[KkMm]"
815 static int __init
early_mem(char *p
)
817 static int usermem __initdata
= 0;
823 * If the user specifies memory size, we
824 * blow away any automatically generated
829 memblock_remove(memblock_start_of_DRAM(),
830 memblock_end_of_DRAM() - memblock_start_of_DRAM());
834 size
= memparse(p
, &endp
);
836 start
= memparse(endp
+ 1, NULL
);
838 arm_add_memory(start
, size
);
842 early_param("mem", early_mem
);
844 static void __init
request_standard_resources(const struct machine_desc
*mdesc
)
846 struct memblock_region
*region
;
847 struct resource
*res
;
849 kernel_code
.start
= virt_to_phys(_text
);
850 kernel_code
.end
= virt_to_phys(__init_begin
- 1);
851 kernel_data
.start
= virt_to_phys(_sdata
);
852 kernel_data
.end
= virt_to_phys(_end
- 1);
854 for_each_memblock(memory
, region
) {
855 phys_addr_t start
= __pfn_to_phys(memblock_region_memory_base_pfn(region
));
856 phys_addr_t end
= __pfn_to_phys(memblock_region_memory_end_pfn(region
)) - 1;
857 unsigned long boot_alias_start
;
860 * Some systems have a special memory alias which is only
861 * used for booting. We need to advertise this region to
862 * kexec-tools so they know where bootable RAM is located.
864 boot_alias_start
= phys_to_idmap(start
);
865 if (arm_has_idmap_alias() && boot_alias_start
!= IDMAP_INVALID_ADDR
) {
866 res
= memblock_alloc(sizeof(*res
), SMP_CACHE_BYTES
);
868 panic("%s: Failed to allocate %zu bytes\n",
869 __func__
, sizeof(*res
));
870 res
->name
= "System RAM (boot alias)";
871 res
->start
= boot_alias_start
;
872 res
->end
= phys_to_idmap(end
);
873 res
->flags
= IORESOURCE_MEM
| IORESOURCE_BUSY
;
874 request_resource(&iomem_resource
, res
);
877 res
= memblock_alloc(sizeof(*res
), SMP_CACHE_BYTES
);
879 panic("%s: Failed to allocate %zu bytes\n", __func__
,
881 res
->name
= "System RAM";
884 res
->flags
= IORESOURCE_SYSTEM_RAM
| IORESOURCE_BUSY
;
886 request_resource(&iomem_resource
, res
);
888 if (kernel_code
.start
>= res
->start
&&
889 kernel_code
.end
<= res
->end
)
890 request_resource(res
, &kernel_code
);
891 if (kernel_data
.start
>= res
->start
&&
892 kernel_data
.end
<= res
->end
)
893 request_resource(res
, &kernel_data
);
896 if (mdesc
->video_start
) {
897 video_ram
.start
= mdesc
->video_start
;
898 video_ram
.end
= mdesc
->video_end
;
899 request_resource(&iomem_resource
, &video_ram
);
903 * Some machines don't have the possibility of ever
904 * possessing lp0, lp1 or lp2
906 if (mdesc
->reserve_lp0
)
907 request_resource(&ioport_resource
, &lp0
);
908 if (mdesc
->reserve_lp1
)
909 request_resource(&ioport_resource
, &lp1
);
910 if (mdesc
->reserve_lp2
)
911 request_resource(&ioport_resource
, &lp2
);
914 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE) || \
916 struct screen_info screen_info
= {
917 .orig_video_lines
= 30,
918 .orig_video_cols
= 80,
919 .orig_video_mode
= 0,
920 .orig_video_ega_bx
= 0,
921 .orig_video_isVGA
= 1,
922 .orig_video_points
= 8
926 static int __init
customize_machine(void)
929 * customizes platform devices, or adds new ones
930 * On DT based machines, we fall back to populating the
931 * machine from the device tree, if no callback is provided,
932 * otherwise we would always need an init_machine callback.
934 if (machine_desc
->init_machine
)
935 machine_desc
->init_machine();
939 arch_initcall(customize_machine
);
941 static int __init
init_machine_late(void)
943 struct device_node
*root
;
946 if (machine_desc
->init_late
)
947 machine_desc
->init_late();
949 root
= of_find_node_by_path("/");
951 ret
= of_property_read_string(root
, "serial-number",
954 system_serial
= NULL
;
958 system_serial
= kasprintf(GFP_KERNEL
, "%08x%08x",
964 late_initcall(init_machine_late
);
968 * The crash region must be aligned to 128MB to avoid
969 * zImage relocating below the reserved region.
971 #define CRASH_ALIGN (128 << 20)
973 static inline unsigned long long get_total_mem(void)
977 total
= max_low_pfn
- min_low_pfn
;
978 return total
<< PAGE_SHIFT
;
982 * reserve_crashkernel() - reserves memory are for crash kernel
984 * This function reserves memory area given in "crashkernel=" kernel command
985 * line parameter. The memory reserved is used by a dump capture kernel when
986 * primary kernel is crashing.
988 static void __init
reserve_crashkernel(void)
990 unsigned long long crash_size
, crash_base
;
991 unsigned long long total_mem
;
994 total_mem
= get_total_mem();
995 ret
= parse_crashkernel(boot_command_line
, total_mem
,
996 &crash_size
, &crash_base
);
1000 if (crash_base
<= 0) {
1001 unsigned long long crash_max
= idmap_to_phys((u32
)~0);
1002 unsigned long long lowmem_max
= __pa(high_memory
- 1) + 1;
1003 if (crash_max
> lowmem_max
)
1004 crash_max
= lowmem_max
;
1005 crash_base
= memblock_find_in_range(CRASH_ALIGN
, crash_max
,
1006 crash_size
, CRASH_ALIGN
);
1008 pr_err("crashkernel reservation failed - No suitable area found.\n");
1012 unsigned long long start
;
1014 start
= memblock_find_in_range(crash_base
,
1015 crash_base
+ crash_size
,
1016 crash_size
, SECTION_SIZE
);
1017 if (start
!= crash_base
) {
1018 pr_err("crashkernel reservation failed - memory is in use.\n");
1023 ret
= memblock_reserve(crash_base
, crash_size
);
1025 pr_warn("crashkernel reservation failed - memory is in use (0x%lx)\n",
1026 (unsigned long)crash_base
);
1030 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
1031 (unsigned long)(crash_size
>> 20),
1032 (unsigned long)(crash_base
>> 20),
1033 (unsigned long)(total_mem
>> 20));
1035 /* The crashk resource must always be located in normal mem */
1036 crashk_res
.start
= crash_base
;
1037 crashk_res
.end
= crash_base
+ crash_size
- 1;
1038 insert_resource(&iomem_resource
, &crashk_res
);
1040 if (arm_has_idmap_alias()) {
1042 * If we have a special RAM alias for use at boot, we
1043 * need to advertise to kexec tools where the alias is.
1045 static struct resource crashk_boot_res
= {
1046 .name
= "Crash kernel (boot alias)",
1047 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
,
1050 crashk_boot_res
.start
= phys_to_idmap(crash_base
);
1051 crashk_boot_res
.end
= crashk_boot_res
.start
+ crash_size
- 1;
1052 insert_resource(&iomem_resource
, &crashk_boot_res
);
1056 static inline void reserve_crashkernel(void) {}
1057 #endif /* CONFIG_KEXEC */
1059 void __init
hyp_mode_check(void)
1061 #ifdef CONFIG_ARM_VIRT_EXT
1064 if (is_hyp_mode_available()) {
1065 pr_info("CPU: All CPU(s) started in HYP mode.\n");
1066 pr_info("CPU: Virtualization extensions available.\n");
1067 } else if (is_hyp_mode_mismatched()) {
1068 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
1069 __boot_cpu_mode
& MODE_MASK
);
1070 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
1072 pr_info("CPU: All CPU(s) started in SVC mode.\n");
1076 void __init
setup_arch(char **cmdline_p
)
1078 const struct machine_desc
*mdesc
;
1081 mdesc
= setup_machine_fdt(__atags_pointer
);
1083 mdesc
= setup_machine_tags(__atags_pointer
, __machine_arch_type
);
1085 early_print("\nError: invalid dtb and unrecognized/unsupported machine ID\n");
1086 early_print(" r1=0x%08x, r2=0x%08x\n", __machine_arch_type
,
1088 if (__atags_pointer
)
1089 early_print(" r2[]=%*ph\n", 16,
1090 phys_to_virt(__atags_pointer
));
1091 dump_machine_table();
1094 machine_desc
= mdesc
;
1095 machine_name
= mdesc
->name
;
1096 dump_stack_set_arch_desc("%s", mdesc
->name
);
1098 if (mdesc
->reboot_mode
!= REBOOT_HARD
)
1099 reboot_mode
= mdesc
->reboot_mode
;
1101 init_mm
.start_code
= (unsigned long) _text
;
1102 init_mm
.end_code
= (unsigned long) _etext
;
1103 init_mm
.end_data
= (unsigned long) _edata
;
1104 init_mm
.brk
= (unsigned long) _end
;
1106 /* populate cmd_line too for later use, preserving boot_command_line */
1107 strlcpy(cmd_line
, boot_command_line
, COMMAND_LINE_SIZE
);
1108 *cmdline_p
= cmd_line
;
1110 early_fixmap_init();
1111 early_ioremap_init();
1113 parse_early_param();
1116 early_mm_init(mdesc
);
1118 setup_dma_zone(mdesc
);
1122 * Make sure the calculation for lowmem/highmem is set appropriately
1123 * before reserving/allocating any mmeory
1125 adjust_lowmem_bounds();
1126 arm_memblock_init(mdesc
);
1127 /* Memory may have been removed so recalculate the bounds. */
1128 adjust_lowmem_bounds();
1130 early_ioremap_reset();
1133 request_standard_resources(mdesc
);
1136 arm_pm_restart
= mdesc
->restart
;
1138 unflatten_device_tree();
1140 arm_dt_init_cpu_maps();
1144 if (!mdesc
->smp_init
|| !mdesc
->smp_init()) {
1145 if (psci_smp_available())
1146 smp_set_ops(&psci_smp_ops
);
1147 else if (mdesc
->smp
)
1148 smp_set_ops(mdesc
->smp
);
1151 smp_build_mpidr_hash();
1158 reserve_crashkernel();
1160 #ifdef CONFIG_GENERIC_IRQ_MULTI_HANDLER
1161 handle_arch_irq
= mdesc
->handle_irq
;
1165 #if defined(CONFIG_VGA_CONSOLE)
1166 conswitchp
= &vga_con
;
1167 #elif defined(CONFIG_DUMMY_CONSOLE)
1168 conswitchp
= &dummy_con
;
1172 if (mdesc
->init_early
)
1173 mdesc
->init_early();
1177 static int __init
topology_init(void)
1181 for_each_possible_cpu(cpu
) {
1182 struct cpuinfo_arm
*cpuinfo
= &per_cpu(cpu_data
, cpu
);
1183 cpuinfo
->cpu
.hotpluggable
= platform_can_hotplug_cpu(cpu
);
1184 register_cpu(&cpuinfo
->cpu
, cpu
);
1189 subsys_initcall(topology_init
);
1191 #ifdef CONFIG_HAVE_PROC_CPU
1192 static int __init
proc_cpu_init(void)
1194 struct proc_dir_entry
*res
;
1196 res
= proc_mkdir("cpu", NULL
);
1201 fs_initcall(proc_cpu_init
);
1204 static const char *hwcap_str
[] = {
1230 static const char *hwcap2_str
[] = {
1239 static int c_show(struct seq_file
*m
, void *v
)
1244 for_each_online_cpu(i
) {
1246 * glibc reads /proc/cpuinfo to determine the number of
1247 * online processors, looking for lines beginning with
1248 * "processor". Give glibc what it expects.
1250 seq_printf(m
, "processor\t: %d\n", i
);
1251 cpuid
= is_smp() ? per_cpu(cpu_data
, i
).cpuid
: read_cpuid_id();
1252 seq_printf(m
, "model name\t: %s rev %d (%s)\n",
1253 cpu_name
, cpuid
& 15, elf_platform
);
1255 #if defined(CONFIG_SMP)
1256 seq_printf(m
, "BogoMIPS\t: %lu.%02lu\n",
1257 per_cpu(cpu_data
, i
).loops_per_jiffy
/ (500000UL/HZ
),
1258 (per_cpu(cpu_data
, i
).loops_per_jiffy
/ (5000UL/HZ
)) % 100);
1260 seq_printf(m
, "BogoMIPS\t: %lu.%02lu\n",
1261 loops_per_jiffy
/ (500000/HZ
),
1262 (loops_per_jiffy
/ (5000/HZ
)) % 100);
1264 /* dump out the processor features */
1265 seq_puts(m
, "Features\t: ");
1267 for (j
= 0; hwcap_str
[j
]; j
++)
1268 if (elf_hwcap
& (1 << j
))
1269 seq_printf(m
, "%s ", hwcap_str
[j
]);
1271 for (j
= 0; hwcap2_str
[j
]; j
++)
1272 if (elf_hwcap2
& (1 << j
))
1273 seq_printf(m
, "%s ", hwcap2_str
[j
]);
1275 seq_printf(m
, "\nCPU implementer\t: 0x%02x\n", cpuid
>> 24);
1276 seq_printf(m
, "CPU architecture: %s\n",
1277 proc_arch
[cpu_architecture()]);
1279 if ((cpuid
& 0x0008f000) == 0x00000000) {
1281 seq_printf(m
, "CPU part\t: %07x\n", cpuid
>> 4);
1283 if ((cpuid
& 0x0008f000) == 0x00007000) {
1285 seq_printf(m
, "CPU variant\t: 0x%02x\n",
1286 (cpuid
>> 16) & 127);
1289 seq_printf(m
, "CPU variant\t: 0x%x\n",
1290 (cpuid
>> 20) & 15);
1292 seq_printf(m
, "CPU part\t: 0x%03x\n",
1293 (cpuid
>> 4) & 0xfff);
1295 seq_printf(m
, "CPU revision\t: %d\n\n", cpuid
& 15);
1298 seq_printf(m
, "Hardware\t: %s\n", machine_name
);
1299 seq_printf(m
, "Revision\t: %04x\n", system_rev
);
1300 seq_printf(m
, "Serial\t\t: %s\n", system_serial
);
1305 static void *c_start(struct seq_file
*m
, loff_t
*pos
)
1307 return *pos
< 1 ? (void *)1 : NULL
;
1310 static void *c_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1316 static void c_stop(struct seq_file
*m
, void *v
)
1320 const struct seq_operations cpuinfo_op
= {