1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/arm/mm/flush.c
5 * Copyright (C) 1995-2002 Russell King
7 #include <linux/module.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
12 #include <asm/cacheflush.h>
13 #include <asm/cachetype.h>
14 #include <asm/highmem.h>
15 #include <asm/smp_plat.h>
16 #include <asm/tlbflush.h>
17 #include <linux/hugetlb.h>
21 #ifdef CONFIG_ARM_HEAVY_MB
24 void arm_heavy_mb(void)
26 #ifdef CONFIG_OUTER_CACHE_SYNC
33 EXPORT_SYMBOL(arm_heavy_mb
);
36 #ifdef CONFIG_CPU_CACHE_VIPT
38 static void flush_pfn_alias(unsigned long pfn
, unsigned long vaddr
)
40 unsigned long to
= FLUSH_ALIAS_START
+ (CACHE_COLOUR(vaddr
) << PAGE_SHIFT
);
43 set_top_pte(to
, pfn_pte(pfn
, PAGE_KERNEL
));
45 asm( "mcrr p15, 0, %1, %0, c14\n"
46 " mcr p15, 0, %2, c7, c10, 4"
48 : "r" (to
), "r" (to
+ PAGE_SIZE
- 1), "r" (zero
)
52 static void flush_icache_alias(unsigned long pfn
, unsigned long vaddr
, unsigned long len
)
54 unsigned long va
= FLUSH_ALIAS_START
+ (CACHE_COLOUR(vaddr
) << PAGE_SHIFT
);
55 unsigned long offset
= vaddr
& (PAGE_SIZE
- 1);
58 set_top_pte(va
, pfn_pte(pfn
, PAGE_KERNEL
));
60 flush_icache_range(to
, to
+ len
);
63 void flush_cache_mm(struct mm_struct
*mm
)
65 if (cache_is_vivt()) {
66 vivt_flush_cache_mm(mm
);
70 if (cache_is_vipt_aliasing()) {
71 asm( "mcr p15, 0, %0, c7, c14, 0\n"
72 " mcr p15, 0, %0, c7, c10, 4"
79 void flush_cache_range(struct vm_area_struct
*vma
, unsigned long start
, unsigned long end
)
81 if (cache_is_vivt()) {
82 vivt_flush_cache_range(vma
, start
, end
);
86 if (cache_is_vipt_aliasing()) {
87 asm( "mcr p15, 0, %0, c7, c14, 0\n"
88 " mcr p15, 0, %0, c7, c10, 4"
94 if (vma
->vm_flags
& VM_EXEC
)
98 void flush_cache_page(struct vm_area_struct
*vma
, unsigned long user_addr
, unsigned long pfn
)
100 if (cache_is_vivt()) {
101 vivt_flush_cache_page(vma
, user_addr
, pfn
);
105 if (cache_is_vipt_aliasing()) {
106 flush_pfn_alias(pfn
, user_addr
);
107 __flush_icache_all();
110 if (vma
->vm_flags
& VM_EXEC
&& icache_is_vivt_asid_tagged())
111 __flush_icache_all();
115 #define flush_pfn_alias(pfn,vaddr) do { } while (0)
116 #define flush_icache_alias(pfn,vaddr,len) do { } while (0)
119 #define FLAG_PA_IS_EXEC 1
120 #define FLAG_PA_CORE_IN_MM 2
122 static void flush_ptrace_access_other(void *args
)
124 __flush_icache_all();
128 void __flush_ptrace_access(struct page
*page
, unsigned long uaddr
, void *kaddr
,
129 unsigned long len
, unsigned int flags
)
131 if (cache_is_vivt()) {
132 if (flags
& FLAG_PA_CORE_IN_MM
) {
133 unsigned long addr
= (unsigned long)kaddr
;
134 __cpuc_coherent_kern_range(addr
, addr
+ len
);
139 if (cache_is_vipt_aliasing()) {
140 flush_pfn_alias(page_to_pfn(page
), uaddr
);
141 __flush_icache_all();
145 /* VIPT non-aliasing D-cache */
146 if (flags
& FLAG_PA_IS_EXEC
) {
147 unsigned long addr
= (unsigned long)kaddr
;
148 if (icache_is_vipt_aliasing())
149 flush_icache_alias(page_to_pfn(page
), uaddr
, len
);
151 __cpuc_coherent_kern_range(addr
, addr
+ len
);
152 if (cache_ops_need_broadcast())
153 smp_call_function(flush_ptrace_access_other
,
159 void flush_ptrace_access(struct vm_area_struct
*vma
, struct page
*page
,
160 unsigned long uaddr
, void *kaddr
, unsigned long len
)
162 unsigned int flags
= 0;
163 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma
->vm_mm
)))
164 flags
|= FLAG_PA_CORE_IN_MM
;
165 if (vma
->vm_flags
& VM_EXEC
)
166 flags
|= FLAG_PA_IS_EXEC
;
167 __flush_ptrace_access(page
, uaddr
, kaddr
, len
, flags
);
170 void flush_uprobe_xol_access(struct page
*page
, unsigned long uaddr
,
171 void *kaddr
, unsigned long len
)
173 unsigned int flags
= FLAG_PA_CORE_IN_MM
|FLAG_PA_IS_EXEC
;
175 __flush_ptrace_access(page
, uaddr
, kaddr
, len
, flags
);
179 * Copy user data from/to a page which is mapped into a different
180 * processes address space. Really, we want to allow our "user
181 * space" model to handle this.
183 * Note that this code needs to run on the current CPU.
185 void copy_to_user_page(struct vm_area_struct
*vma
, struct page
*page
,
186 unsigned long uaddr
, void *dst
, const void *src
,
192 memcpy(dst
, src
, len
);
193 flush_ptrace_access(vma
, page
, uaddr
, dst
, len
);
199 void __flush_dcache_page(struct address_space
*mapping
, struct page
*page
)
202 * Writeback any data associated with the kernel mapping of this
203 * page. This ensures that data in the physical page is mutually
204 * coherent with the kernels mapping.
206 if (!PageHighMem(page
)) {
207 size_t page_size
= PAGE_SIZE
<< compound_order(page
);
208 __cpuc_flush_dcache_area(page_address(page
), page_size
);
211 if (cache_is_vipt_nonaliasing()) {
212 for (i
= 0; i
< (1 << compound_order(page
)); i
++) {
213 void *addr
= kmap_atomic(page
+ i
);
214 __cpuc_flush_dcache_area(addr
, PAGE_SIZE
);
218 for (i
= 0; i
< (1 << compound_order(page
)); i
++) {
219 void *addr
= kmap_high_get(page
+ i
);
221 __cpuc_flush_dcache_area(addr
, PAGE_SIZE
);
222 kunmap_high(page
+ i
);
229 * If this is a page cache page, and we have an aliasing VIPT cache,
230 * we only need to do one flush - which would be at the relevant
231 * userspace colour, which is congruent with page->index.
233 if (mapping
&& cache_is_vipt_aliasing())
234 flush_pfn_alias(page_to_pfn(page
),
235 page
->index
<< PAGE_SHIFT
);
238 static void __flush_dcache_aliases(struct address_space
*mapping
, struct page
*page
)
240 struct mm_struct
*mm
= current
->active_mm
;
241 struct vm_area_struct
*mpnt
;
245 * There are possible user space mappings of this page:
246 * - VIVT cache: we need to also write back and invalidate all user
247 * data in the current VM view associated with this page.
248 * - aliasing VIPT: we only need to find one mapping of this page.
252 flush_dcache_mmap_lock(mapping
);
253 vma_interval_tree_foreach(mpnt
, &mapping
->i_mmap
, pgoff
, pgoff
) {
254 unsigned long offset
;
257 * If this VMA is not in our MM, we can ignore it.
259 if (mpnt
->vm_mm
!= mm
)
261 if (!(mpnt
->vm_flags
& VM_MAYSHARE
))
263 offset
= (pgoff
- mpnt
->vm_pgoff
) << PAGE_SHIFT
;
264 flush_cache_page(mpnt
, mpnt
->vm_start
+ offset
, page_to_pfn(page
));
266 flush_dcache_mmap_unlock(mapping
);
269 #if __LINUX_ARM_ARCH__ >= 6
270 void __sync_icache_dcache(pte_t pteval
)
274 struct address_space
*mapping
;
276 if (cache_is_vipt_nonaliasing() && !pte_exec(pteval
))
277 /* only flush non-aliasing VIPT caches for exec mappings */
279 pfn
= pte_pfn(pteval
);
283 page
= pfn_to_page(pfn
);
284 if (cache_is_vipt_aliasing())
285 mapping
= page_mapping_file(page
);
289 if (!test_and_set_bit(PG_dcache_clean
, &page
->flags
))
290 __flush_dcache_page(mapping
, page
);
292 if (pte_exec(pteval
))
293 __flush_icache_all();
298 * Ensure cache coherency between kernel mapping and userspace mapping
301 * We have three cases to consider:
302 * - VIPT non-aliasing cache: fully coherent so nothing required.
303 * - VIVT: fully aliasing, so we need to handle every alias in our
305 * - VIPT aliasing: need to handle one alias in our current VM view.
307 * If we need to handle aliasing:
308 * If the page only exists in the page cache and there are no user
309 * space mappings, we can be lazy and remember that we may have dirty
310 * kernel cache lines for later. Otherwise, we assume we have
313 * Note that we disable the lazy flush for SMP configurations where
314 * the cache maintenance operations are not automatically broadcasted.
316 void flush_dcache_page(struct page
*page
)
318 struct address_space
*mapping
;
321 * The zero page is never written to, so never has any dirty
322 * cache lines, and therefore never needs to be flushed.
324 if (page
== ZERO_PAGE(0))
327 if (!cache_ops_need_broadcast() && cache_is_vipt_nonaliasing()) {
328 if (test_bit(PG_dcache_clean
, &page
->flags
))
329 clear_bit(PG_dcache_clean
, &page
->flags
);
333 mapping
= page_mapping_file(page
);
335 if (!cache_ops_need_broadcast() &&
336 mapping
&& !page_mapcount(page
))
337 clear_bit(PG_dcache_clean
, &page
->flags
);
339 __flush_dcache_page(mapping
, page
);
340 if (mapping
&& cache_is_vivt())
341 __flush_dcache_aliases(mapping
, page
);
343 __flush_icache_all();
344 set_bit(PG_dcache_clean
, &page
->flags
);
347 EXPORT_SYMBOL(flush_dcache_page
);
350 * Ensure cache coherency for the kernel mapping of this page. We can
351 * assume that the page is pinned via kmap.
353 * If the page only exists in the page cache and there are no user
354 * space mappings, this is a no-op since the page was already marked
355 * dirty at creation. Otherwise, we need to flush the dirty kernel
356 * cache lines directly.
358 void flush_kernel_dcache_page(struct page
*page
)
360 if (cache_is_vivt() || cache_is_vipt_aliasing()) {
361 struct address_space
*mapping
;
363 mapping
= page_mapping_file(page
);
365 if (!mapping
|| mapping_mapped(mapping
)) {
368 addr
= page_address(page
);
370 * kmap_atomic() doesn't set the page virtual
371 * address for highmem pages, and
372 * kunmap_atomic() takes care of cache
375 if (!IS_ENABLED(CONFIG_HIGHMEM
) || addr
)
376 __cpuc_flush_dcache_area(addr
, PAGE_SIZE
);
380 EXPORT_SYMBOL(flush_kernel_dcache_page
);
383 * Flush an anonymous page so that users of get_user_pages()
384 * can safely access the data. The expected sequence is:
388 * memcpy() to/from page
389 * if written to page, flush_dcache_page()
391 void __flush_anon_page(struct vm_area_struct
*vma
, struct page
*page
, unsigned long vmaddr
)
395 /* VIPT non-aliasing caches need do nothing */
396 if (cache_is_vipt_nonaliasing())
400 * Write back and invalidate userspace mapping.
402 pfn
= page_to_pfn(page
);
403 if (cache_is_vivt()) {
404 flush_cache_page(vma
, vmaddr
, pfn
);
407 * For aliasing VIPT, we can flush an alias of the
408 * userspace address only.
410 flush_pfn_alias(pfn
, vmaddr
);
411 __flush_icache_all();
415 * Invalidate kernel mapping. No data should be contained
416 * in this mapping of the page. FIXME: this is overkill
417 * since we actually ask for a write-back and invalidate.
419 __cpuc_flush_dcache_area(page_address(page
), PAGE_SIZE
);