staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / arm64 / crypto / aes-glue.c
blob8d6c8932c84148e0b5345e251a6a23668b80b98a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
5 * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6 */
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/internal/hash.h>
13 #include <crypto/internal/simd.h>
14 #include <crypto/internal/skcipher.h>
15 #include <crypto/scatterwalk.h>
16 #include <linux/module.h>
17 #include <linux/cpufeature.h>
18 #include <crypto/xts.h>
20 #include "aes-ce-setkey.h"
21 #include "aes-ctr-fallback.h"
23 #ifdef USE_V8_CRYPTO_EXTENSIONS
24 #define MODE "ce"
25 #define PRIO 300
26 #define aes_setkey ce_aes_setkey
27 #define aes_expandkey ce_aes_expandkey
28 #define aes_ecb_encrypt ce_aes_ecb_encrypt
29 #define aes_ecb_decrypt ce_aes_ecb_decrypt
30 #define aes_cbc_encrypt ce_aes_cbc_encrypt
31 #define aes_cbc_decrypt ce_aes_cbc_decrypt
32 #define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt
33 #define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt
34 #define aes_ctr_encrypt ce_aes_ctr_encrypt
35 #define aes_xts_encrypt ce_aes_xts_encrypt
36 #define aes_xts_decrypt ce_aes_xts_decrypt
37 #define aes_mac_update ce_aes_mac_update
38 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
39 #else
40 #define MODE "neon"
41 #define PRIO 200
42 #define aes_setkey crypto_aes_set_key
43 #define aes_expandkey crypto_aes_expand_key
44 #define aes_ecb_encrypt neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt neon_aes_cbc_decrypt
48 #define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt
49 #define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt
50 #define aes_ctr_encrypt neon_aes_ctr_encrypt
51 #define aes_xts_encrypt neon_aes_xts_encrypt
52 #define aes_xts_decrypt neon_aes_xts_decrypt
53 #define aes_mac_update neon_aes_mac_update
54 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
55 MODULE_ALIAS_CRYPTO("ecb(aes)");
56 MODULE_ALIAS_CRYPTO("cbc(aes)");
57 MODULE_ALIAS_CRYPTO("ctr(aes)");
58 MODULE_ALIAS_CRYPTO("xts(aes)");
59 MODULE_ALIAS_CRYPTO("cmac(aes)");
60 MODULE_ALIAS_CRYPTO("xcbc(aes)");
61 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
62 #endif
64 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
65 MODULE_LICENSE("GPL v2");
67 /* defined in aes-modes.S */
68 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
69 int rounds, int blocks);
70 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
71 int rounds, int blocks);
73 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
74 int rounds, int blocks, u8 iv[]);
75 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
76 int rounds, int blocks, u8 iv[]);
78 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
79 int rounds, int bytes, u8 const iv[]);
80 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
81 int rounds, int bytes, u8 const iv[]);
83 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
84 int rounds, int blocks, u8 ctr[]);
86 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
87 int rounds, int blocks, u32 const rk2[], u8 iv[],
88 int first);
89 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
90 int rounds, int blocks, u32 const rk2[], u8 iv[],
91 int first);
93 asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
94 int blocks, u8 dg[], int enc_before,
95 int enc_after);
97 struct cts_cbc_req_ctx {
98 struct scatterlist sg_src[2];
99 struct scatterlist sg_dst[2];
100 struct skcipher_request subreq;
103 struct crypto_aes_xts_ctx {
104 struct crypto_aes_ctx key1;
105 struct crypto_aes_ctx __aligned(8) key2;
108 struct mac_tfm_ctx {
109 struct crypto_aes_ctx key;
110 u8 __aligned(8) consts[];
113 struct mac_desc_ctx {
114 unsigned int len;
115 u8 dg[AES_BLOCK_SIZE];
118 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
119 unsigned int key_len)
121 return aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len);
124 static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
125 unsigned int key_len)
127 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
128 int ret;
130 ret = xts_verify_key(tfm, in_key, key_len);
131 if (ret)
132 return ret;
134 ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
135 if (!ret)
136 ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
137 key_len / 2);
138 if (!ret)
139 return 0;
141 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
142 return -EINVAL;
145 static int ecb_encrypt(struct skcipher_request *req)
147 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
148 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
149 int err, rounds = 6 + ctx->key_length / 4;
150 struct skcipher_walk walk;
151 unsigned int blocks;
153 err = skcipher_walk_virt(&walk, req, false);
155 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
156 kernel_neon_begin();
157 aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
158 ctx->key_enc, rounds, blocks);
159 kernel_neon_end();
160 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
162 return err;
165 static int ecb_decrypt(struct skcipher_request *req)
167 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
168 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
169 int err, rounds = 6 + ctx->key_length / 4;
170 struct skcipher_walk walk;
171 unsigned int blocks;
173 err = skcipher_walk_virt(&walk, req, false);
175 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
176 kernel_neon_begin();
177 aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
178 ctx->key_dec, rounds, blocks);
179 kernel_neon_end();
180 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
182 return err;
185 static int cbc_encrypt(struct skcipher_request *req)
187 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
188 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
189 int err, rounds = 6 + ctx->key_length / 4;
190 struct skcipher_walk walk;
191 unsigned int blocks;
193 err = skcipher_walk_virt(&walk, req, false);
195 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
196 kernel_neon_begin();
197 aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
198 ctx->key_enc, rounds, blocks, walk.iv);
199 kernel_neon_end();
200 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
202 return err;
205 static int cbc_decrypt(struct skcipher_request *req)
207 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
208 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
209 int err, rounds = 6 + ctx->key_length / 4;
210 struct skcipher_walk walk;
211 unsigned int blocks;
213 err = skcipher_walk_virt(&walk, req, false);
215 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
216 kernel_neon_begin();
217 aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
218 ctx->key_dec, rounds, blocks, walk.iv);
219 kernel_neon_end();
220 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
222 return err;
225 static int cts_cbc_init_tfm(struct crypto_skcipher *tfm)
227 crypto_skcipher_set_reqsize(tfm, sizeof(struct cts_cbc_req_ctx));
228 return 0;
231 static int cts_cbc_encrypt(struct skcipher_request *req)
233 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
234 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
235 struct cts_cbc_req_ctx *rctx = skcipher_request_ctx(req);
236 int err, rounds = 6 + ctx->key_length / 4;
237 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
238 struct scatterlist *src = req->src, *dst = req->dst;
239 struct skcipher_walk walk;
241 skcipher_request_set_tfm(&rctx->subreq, tfm);
243 if (req->cryptlen <= AES_BLOCK_SIZE) {
244 if (req->cryptlen < AES_BLOCK_SIZE)
245 return -EINVAL;
246 cbc_blocks = 1;
249 if (cbc_blocks > 0) {
250 unsigned int blocks;
252 skcipher_request_set_crypt(&rctx->subreq, req->src, req->dst,
253 cbc_blocks * AES_BLOCK_SIZE,
254 req->iv);
256 err = skcipher_walk_virt(&walk, &rctx->subreq, false);
258 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
259 kernel_neon_begin();
260 aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
261 ctx->key_enc, rounds, blocks, walk.iv);
262 kernel_neon_end();
263 err = skcipher_walk_done(&walk,
264 walk.nbytes % AES_BLOCK_SIZE);
266 if (err)
267 return err;
269 if (req->cryptlen == AES_BLOCK_SIZE)
270 return 0;
272 dst = src = scatterwalk_ffwd(rctx->sg_src, req->src,
273 rctx->subreq.cryptlen);
274 if (req->dst != req->src)
275 dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
276 rctx->subreq.cryptlen);
279 /* handle ciphertext stealing */
280 skcipher_request_set_crypt(&rctx->subreq, src, dst,
281 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
282 req->iv);
284 err = skcipher_walk_virt(&walk, &rctx->subreq, false);
285 if (err)
286 return err;
288 kernel_neon_begin();
289 aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
290 ctx->key_enc, rounds, walk.nbytes, walk.iv);
291 kernel_neon_end();
293 return skcipher_walk_done(&walk, 0);
296 static int cts_cbc_decrypt(struct skcipher_request *req)
298 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
299 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
300 struct cts_cbc_req_ctx *rctx = skcipher_request_ctx(req);
301 int err, rounds = 6 + ctx->key_length / 4;
302 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
303 struct scatterlist *src = req->src, *dst = req->dst;
304 struct skcipher_walk walk;
306 skcipher_request_set_tfm(&rctx->subreq, tfm);
308 if (req->cryptlen <= AES_BLOCK_SIZE) {
309 if (req->cryptlen < AES_BLOCK_SIZE)
310 return -EINVAL;
311 cbc_blocks = 1;
314 if (cbc_blocks > 0) {
315 unsigned int blocks;
317 skcipher_request_set_crypt(&rctx->subreq, req->src, req->dst,
318 cbc_blocks * AES_BLOCK_SIZE,
319 req->iv);
321 err = skcipher_walk_virt(&walk, &rctx->subreq, false);
323 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
324 kernel_neon_begin();
325 aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
326 ctx->key_dec, rounds, blocks, walk.iv);
327 kernel_neon_end();
328 err = skcipher_walk_done(&walk,
329 walk.nbytes % AES_BLOCK_SIZE);
331 if (err)
332 return err;
334 if (req->cryptlen == AES_BLOCK_SIZE)
335 return 0;
337 dst = src = scatterwalk_ffwd(rctx->sg_src, req->src,
338 rctx->subreq.cryptlen);
339 if (req->dst != req->src)
340 dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
341 rctx->subreq.cryptlen);
344 /* handle ciphertext stealing */
345 skcipher_request_set_crypt(&rctx->subreq, src, dst,
346 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
347 req->iv);
349 err = skcipher_walk_virt(&walk, &rctx->subreq, false);
350 if (err)
351 return err;
353 kernel_neon_begin();
354 aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
355 ctx->key_dec, rounds, walk.nbytes, walk.iv);
356 kernel_neon_end();
358 return skcipher_walk_done(&walk, 0);
361 static int ctr_encrypt(struct skcipher_request *req)
363 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
364 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
365 int err, rounds = 6 + ctx->key_length / 4;
366 struct skcipher_walk walk;
367 int blocks;
369 err = skcipher_walk_virt(&walk, req, false);
371 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
372 kernel_neon_begin();
373 aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
374 ctx->key_enc, rounds, blocks, walk.iv);
375 kernel_neon_end();
376 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
378 if (walk.nbytes) {
379 u8 __aligned(8) tail[AES_BLOCK_SIZE];
380 unsigned int nbytes = walk.nbytes;
381 u8 *tdst = walk.dst.virt.addr;
382 u8 *tsrc = walk.src.virt.addr;
385 * Tell aes_ctr_encrypt() to process a tail block.
387 blocks = -1;
389 kernel_neon_begin();
390 aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
391 blocks, walk.iv);
392 kernel_neon_end();
393 crypto_xor_cpy(tdst, tsrc, tail, nbytes);
394 err = skcipher_walk_done(&walk, 0);
397 return err;
400 static int ctr_encrypt_sync(struct skcipher_request *req)
402 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
403 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
405 if (!crypto_simd_usable())
406 return aes_ctr_encrypt_fallback(ctx, req);
408 return ctr_encrypt(req);
411 static int xts_encrypt(struct skcipher_request *req)
413 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
414 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
415 int err, first, rounds = 6 + ctx->key1.key_length / 4;
416 struct skcipher_walk walk;
417 unsigned int blocks;
419 err = skcipher_walk_virt(&walk, req, false);
421 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
422 kernel_neon_begin();
423 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
424 ctx->key1.key_enc, rounds, blocks,
425 ctx->key2.key_enc, walk.iv, first);
426 kernel_neon_end();
427 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
430 return err;
433 static int xts_decrypt(struct skcipher_request *req)
435 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
436 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
437 int err, first, rounds = 6 + ctx->key1.key_length / 4;
438 struct skcipher_walk walk;
439 unsigned int blocks;
441 err = skcipher_walk_virt(&walk, req, false);
443 for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
444 kernel_neon_begin();
445 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
446 ctx->key1.key_dec, rounds, blocks,
447 ctx->key2.key_enc, walk.iv, first);
448 kernel_neon_end();
449 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
452 return err;
455 static struct skcipher_alg aes_algs[] = { {
456 .base = {
457 .cra_name = "__ecb(aes)",
458 .cra_driver_name = "__ecb-aes-" MODE,
459 .cra_priority = PRIO,
460 .cra_flags = CRYPTO_ALG_INTERNAL,
461 .cra_blocksize = AES_BLOCK_SIZE,
462 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
463 .cra_module = THIS_MODULE,
465 .min_keysize = AES_MIN_KEY_SIZE,
466 .max_keysize = AES_MAX_KEY_SIZE,
467 .setkey = skcipher_aes_setkey,
468 .encrypt = ecb_encrypt,
469 .decrypt = ecb_decrypt,
470 }, {
471 .base = {
472 .cra_name = "__cbc(aes)",
473 .cra_driver_name = "__cbc-aes-" MODE,
474 .cra_priority = PRIO,
475 .cra_flags = CRYPTO_ALG_INTERNAL,
476 .cra_blocksize = AES_BLOCK_SIZE,
477 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
478 .cra_module = THIS_MODULE,
480 .min_keysize = AES_MIN_KEY_SIZE,
481 .max_keysize = AES_MAX_KEY_SIZE,
482 .ivsize = AES_BLOCK_SIZE,
483 .setkey = skcipher_aes_setkey,
484 .encrypt = cbc_encrypt,
485 .decrypt = cbc_decrypt,
486 }, {
487 .base = {
488 .cra_name = "__cts(cbc(aes))",
489 .cra_driver_name = "__cts-cbc-aes-" MODE,
490 .cra_priority = PRIO,
491 .cra_flags = CRYPTO_ALG_INTERNAL,
492 .cra_blocksize = AES_BLOCK_SIZE,
493 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
494 .cra_module = THIS_MODULE,
496 .min_keysize = AES_MIN_KEY_SIZE,
497 .max_keysize = AES_MAX_KEY_SIZE,
498 .ivsize = AES_BLOCK_SIZE,
499 .walksize = 2 * AES_BLOCK_SIZE,
500 .setkey = skcipher_aes_setkey,
501 .encrypt = cts_cbc_encrypt,
502 .decrypt = cts_cbc_decrypt,
503 .init = cts_cbc_init_tfm,
504 }, {
505 .base = {
506 .cra_name = "__ctr(aes)",
507 .cra_driver_name = "__ctr-aes-" MODE,
508 .cra_priority = PRIO,
509 .cra_flags = CRYPTO_ALG_INTERNAL,
510 .cra_blocksize = 1,
511 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
512 .cra_module = THIS_MODULE,
514 .min_keysize = AES_MIN_KEY_SIZE,
515 .max_keysize = AES_MAX_KEY_SIZE,
516 .ivsize = AES_BLOCK_SIZE,
517 .chunksize = AES_BLOCK_SIZE,
518 .setkey = skcipher_aes_setkey,
519 .encrypt = ctr_encrypt,
520 .decrypt = ctr_encrypt,
521 }, {
522 .base = {
523 .cra_name = "ctr(aes)",
524 .cra_driver_name = "ctr-aes-" MODE,
525 .cra_priority = PRIO - 1,
526 .cra_blocksize = 1,
527 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
528 .cra_module = THIS_MODULE,
530 .min_keysize = AES_MIN_KEY_SIZE,
531 .max_keysize = AES_MAX_KEY_SIZE,
532 .ivsize = AES_BLOCK_SIZE,
533 .chunksize = AES_BLOCK_SIZE,
534 .setkey = skcipher_aes_setkey,
535 .encrypt = ctr_encrypt_sync,
536 .decrypt = ctr_encrypt_sync,
537 }, {
538 .base = {
539 .cra_name = "__xts(aes)",
540 .cra_driver_name = "__xts-aes-" MODE,
541 .cra_priority = PRIO,
542 .cra_flags = CRYPTO_ALG_INTERNAL,
543 .cra_blocksize = AES_BLOCK_SIZE,
544 .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
545 .cra_module = THIS_MODULE,
547 .min_keysize = 2 * AES_MIN_KEY_SIZE,
548 .max_keysize = 2 * AES_MAX_KEY_SIZE,
549 .ivsize = AES_BLOCK_SIZE,
550 .setkey = xts_set_key,
551 .encrypt = xts_encrypt,
552 .decrypt = xts_decrypt,
553 } };
555 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
556 unsigned int key_len)
558 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
559 int err;
561 err = aes_expandkey(&ctx->key, in_key, key_len);
562 if (err)
563 crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
565 return err;
568 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
570 u64 a = be64_to_cpu(x->a);
571 u64 b = be64_to_cpu(x->b);
573 y->a = cpu_to_be64((a << 1) | (b >> 63));
574 y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
577 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
578 unsigned int key_len)
580 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
581 be128 *consts = (be128 *)ctx->consts;
582 int rounds = 6 + key_len / 4;
583 int err;
585 err = cbcmac_setkey(tfm, in_key, key_len);
586 if (err)
587 return err;
589 /* encrypt the zero vector */
590 kernel_neon_begin();
591 aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
592 rounds, 1);
593 kernel_neon_end();
595 cmac_gf128_mul_by_x(consts, consts);
596 cmac_gf128_mul_by_x(consts + 1, consts);
598 return 0;
601 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
602 unsigned int key_len)
604 static u8 const ks[3][AES_BLOCK_SIZE] = {
605 { [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
606 { [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
607 { [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
610 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
611 int rounds = 6 + key_len / 4;
612 u8 key[AES_BLOCK_SIZE];
613 int err;
615 err = cbcmac_setkey(tfm, in_key, key_len);
616 if (err)
617 return err;
619 kernel_neon_begin();
620 aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
621 aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
622 kernel_neon_end();
624 return cbcmac_setkey(tfm, key, sizeof(key));
627 static int mac_init(struct shash_desc *desc)
629 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
631 memset(ctx->dg, 0, AES_BLOCK_SIZE);
632 ctx->len = 0;
634 return 0;
637 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
638 u8 dg[], int enc_before, int enc_after)
640 int rounds = 6 + ctx->key_length / 4;
642 if (crypto_simd_usable()) {
643 kernel_neon_begin();
644 aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
645 enc_after);
646 kernel_neon_end();
647 } else {
648 if (enc_before)
649 __aes_arm64_encrypt(ctx->key_enc, dg, dg, rounds);
651 while (blocks--) {
652 crypto_xor(dg, in, AES_BLOCK_SIZE);
653 in += AES_BLOCK_SIZE;
655 if (blocks || enc_after)
656 __aes_arm64_encrypt(ctx->key_enc, dg, dg,
657 rounds);
662 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
664 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
665 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
667 while (len > 0) {
668 unsigned int l;
670 if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
671 (ctx->len + len) > AES_BLOCK_SIZE) {
673 int blocks = len / AES_BLOCK_SIZE;
675 len %= AES_BLOCK_SIZE;
677 mac_do_update(&tctx->key, p, blocks, ctx->dg,
678 (ctx->len != 0), (len != 0));
680 p += blocks * AES_BLOCK_SIZE;
682 if (!len) {
683 ctx->len = AES_BLOCK_SIZE;
684 break;
686 ctx->len = 0;
689 l = min(len, AES_BLOCK_SIZE - ctx->len);
691 if (l <= AES_BLOCK_SIZE) {
692 crypto_xor(ctx->dg + ctx->len, p, l);
693 ctx->len += l;
694 len -= l;
695 p += l;
699 return 0;
702 static int cbcmac_final(struct shash_desc *desc, u8 *out)
704 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
705 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
707 mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
709 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
711 return 0;
714 static int cmac_final(struct shash_desc *desc, u8 *out)
716 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
717 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
718 u8 *consts = tctx->consts;
720 if (ctx->len != AES_BLOCK_SIZE) {
721 ctx->dg[ctx->len] ^= 0x80;
722 consts += AES_BLOCK_SIZE;
725 mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
727 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
729 return 0;
732 static struct shash_alg mac_algs[] = { {
733 .base.cra_name = "cmac(aes)",
734 .base.cra_driver_name = "cmac-aes-" MODE,
735 .base.cra_priority = PRIO,
736 .base.cra_blocksize = AES_BLOCK_SIZE,
737 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
738 2 * AES_BLOCK_SIZE,
739 .base.cra_module = THIS_MODULE,
741 .digestsize = AES_BLOCK_SIZE,
742 .init = mac_init,
743 .update = mac_update,
744 .final = cmac_final,
745 .setkey = cmac_setkey,
746 .descsize = sizeof(struct mac_desc_ctx),
747 }, {
748 .base.cra_name = "xcbc(aes)",
749 .base.cra_driver_name = "xcbc-aes-" MODE,
750 .base.cra_priority = PRIO,
751 .base.cra_blocksize = AES_BLOCK_SIZE,
752 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
753 2 * AES_BLOCK_SIZE,
754 .base.cra_module = THIS_MODULE,
756 .digestsize = AES_BLOCK_SIZE,
757 .init = mac_init,
758 .update = mac_update,
759 .final = cmac_final,
760 .setkey = xcbc_setkey,
761 .descsize = sizeof(struct mac_desc_ctx),
762 }, {
763 .base.cra_name = "cbcmac(aes)",
764 .base.cra_driver_name = "cbcmac-aes-" MODE,
765 .base.cra_priority = PRIO,
766 .base.cra_blocksize = 1,
767 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
768 .base.cra_module = THIS_MODULE,
770 .digestsize = AES_BLOCK_SIZE,
771 .init = mac_init,
772 .update = mac_update,
773 .final = cbcmac_final,
774 .setkey = cbcmac_setkey,
775 .descsize = sizeof(struct mac_desc_ctx),
776 } };
778 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
780 static void aes_exit(void)
782 int i;
784 for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
785 if (aes_simd_algs[i])
786 simd_skcipher_free(aes_simd_algs[i]);
788 crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
789 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
792 static int __init aes_init(void)
794 struct simd_skcipher_alg *simd;
795 const char *basename;
796 const char *algname;
797 const char *drvname;
798 int err;
799 int i;
801 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
802 if (err)
803 return err;
805 err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
806 if (err)
807 goto unregister_ciphers;
809 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
810 if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
811 continue;
813 algname = aes_algs[i].base.cra_name + 2;
814 drvname = aes_algs[i].base.cra_driver_name + 2;
815 basename = aes_algs[i].base.cra_driver_name;
816 simd = simd_skcipher_create_compat(algname, drvname, basename);
817 err = PTR_ERR(simd);
818 if (IS_ERR(simd))
819 goto unregister_simds;
821 aes_simd_algs[i] = simd;
824 return 0;
826 unregister_simds:
827 aes_exit();
828 return err;
829 unregister_ciphers:
830 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
831 return err;
834 #ifdef USE_V8_CRYPTO_EXTENSIONS
835 module_cpu_feature_match(AES, aes_init);
836 #else
837 module_init(aes_init);
838 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
839 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
840 #endif
841 module_exit(aes_exit);