staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / arm64 / include / asm / cpufeature.h
blobc96ffa4722d33cba234afdc64ce4483926eba26c
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
9 #include <asm/cpucaps.h>
10 #include <asm/cputype.h>
11 #include <asm/hwcap.h>
12 #include <asm/sysreg.h>
14 #define MAX_CPU_FEATURES 64
15 #define cpu_feature(x) KERNEL_HWCAP_ ## x
17 #ifndef __ASSEMBLY__
19 #include <linux/bug.h>
20 #include <linux/jump_label.h>
21 #include <linux/kernel.h>
24 * CPU feature register tracking
26 * The safe value of a CPUID feature field is dependent on the implications
27 * of the values assigned to it by the architecture. Based on the relationship
28 * between the values, the features are classified into 3 types - LOWER_SAFE,
29 * HIGHER_SAFE and EXACT.
31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
33 * a field when EXACT is specified, failing which, the safe value specified
34 * in the table is chosen.
37 enum ftr_type {
38 FTR_EXACT, /* Use a predefined safe value */
39 FTR_LOWER_SAFE, /* Smaller value is safe */
40 FTR_HIGHER_SAFE, /* Bigger value is safe */
41 FTR_HIGHER_OR_ZERO_SAFE, /* Bigger value is safe, but 0 is biggest */
44 #define FTR_STRICT true /* SANITY check strict matching required */
45 #define FTR_NONSTRICT false /* SANITY check ignored */
47 #define FTR_SIGNED true /* Value should be treated as signed */
48 #define FTR_UNSIGNED false /* Value should be treated as unsigned */
50 #define FTR_VISIBLE true /* Feature visible to the user space */
51 #define FTR_HIDDEN false /* Feature is hidden from the user */
53 #define FTR_VISIBLE_IF_IS_ENABLED(config) \
54 (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
56 struct arm64_ftr_bits {
57 bool sign; /* Value is signed ? */
58 bool visible;
59 bool strict; /* CPU Sanity check: strict matching required ? */
60 enum ftr_type type;
61 u8 shift;
62 u8 width;
63 s64 safe_val; /* safe value for FTR_EXACT features */
67 * @arm64_ftr_reg - Feature register
68 * @strict_mask Bits which should match across all CPUs for sanity.
69 * @sys_val Safe value across the CPUs (system view)
71 struct arm64_ftr_reg {
72 const char *name;
73 u64 strict_mask;
74 u64 user_mask;
75 u64 sys_val;
76 u64 user_val;
77 const struct arm64_ftr_bits *ftr_bits;
80 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
83 * CPU capabilities:
85 * We use arm64_cpu_capabilities to represent system features, errata work
86 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
87 * ELF HWCAPs (which are exposed to user).
89 * To support systems with heterogeneous CPUs, we need to make sure that we
90 * detect the capabilities correctly on the system and take appropriate
91 * measures to ensure there are no incompatibilities.
93 * This comment tries to explain how we treat the capabilities.
94 * Each capability has the following list of attributes :
96 * 1) Scope of Detection : The system detects a given capability by
97 * performing some checks at runtime. This could be, e.g, checking the
98 * value of a field in CPU ID feature register or checking the cpu
99 * model. The capability provides a call back ( @matches() ) to
100 * perform the check. Scope defines how the checks should be performed.
101 * There are three cases:
103 * a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
104 * matches. This implies, we have to run the check on all the
105 * booting CPUs, until the system decides that state of the
106 * capability is finalised. (See section 2 below)
107 * Or
108 * b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
109 * matches. This implies, we run the check only once, when the
110 * system decides to finalise the state of the capability. If the
111 * capability relies on a field in one of the CPU ID feature
112 * registers, we use the sanitised value of the register from the
113 * CPU feature infrastructure to make the decision.
114 * Or
115 * c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
116 * feature. This category is for features that are "finalised"
117 * (or used) by the kernel very early even before the SMP cpus
118 * are brought up.
120 * The process of detection is usually denoted by "update" capability
121 * state in the code.
123 * 2) Finalise the state : The kernel should finalise the state of a
124 * capability at some point during its execution and take necessary
125 * actions if any. Usually, this is done, after all the boot-time
126 * enabled CPUs are brought up by the kernel, so that it can make
127 * better decision based on the available set of CPUs. However, there
128 * are some special cases, where the action is taken during the early
129 * boot by the primary boot CPU. (e.g, running the kernel at EL2 with
130 * Virtualisation Host Extensions). The kernel usually disallows any
131 * changes to the state of a capability once it finalises the capability
132 * and takes any action, as it may be impossible to execute the actions
133 * safely. A CPU brought up after a capability is "finalised" is
134 * referred to as "Late CPU" w.r.t the capability. e.g, all secondary
135 * CPUs are treated "late CPUs" for capabilities determined by the boot
136 * CPU.
138 * At the moment there are two passes of finalising the capabilities.
139 * a) Boot CPU scope capabilities - Finalised by primary boot CPU via
140 * setup_boot_cpu_capabilities().
141 * b) Everything except (a) - Run via setup_system_capabilities().
143 * 3) Verification: When a CPU is brought online (e.g, by user or by the
144 * kernel), the kernel should make sure that it is safe to use the CPU,
145 * by verifying that the CPU is compliant with the state of the
146 * capabilities finalised already. This happens via :
148 * secondary_start_kernel()-> check_local_cpu_capabilities()
150 * As explained in (2) above, capabilities could be finalised at
151 * different points in the execution. Each newly booted CPU is verified
152 * against the capabilities that have been finalised by the time it
153 * boots.
155 * a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
156 * except for the primary boot CPU.
158 * b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
159 * user after the kernel boot are verified against the capability.
161 * If there is a conflict, the kernel takes an action, based on the
162 * severity (e.g, a CPU could be prevented from booting or cause a
163 * kernel panic). The CPU is allowed to "affect" the state of the
164 * capability, if it has not been finalised already. See section 5
165 * for more details on conflicts.
167 * 4) Action: As mentioned in (2), the kernel can take an action for each
168 * detected capability, on all CPUs on the system. Appropriate actions
169 * include, turning on an architectural feature, modifying the control
170 * registers (e.g, SCTLR, TCR etc.) or patching the kernel via
171 * alternatives. The kernel patching is batched and performed at later
172 * point. The actions are always initiated only after the capability
173 * is finalised. This is usally denoted by "enabling" the capability.
174 * The actions are initiated as follows :
175 * a) Action is triggered on all online CPUs, after the capability is
176 * finalised, invoked within the stop_machine() context from
177 * enable_cpu_capabilitie().
179 * b) Any late CPU, brought up after (1), the action is triggered via:
181 * check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
183 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
184 * the system state, we could have the following combinations :
186 * x-----------------------------x
187 * | Type | System | Late CPU |
188 * |-----------------------------|
189 * | a | y | n |
190 * |-----------------------------|
191 * | b | n | y |
192 * x-----------------------------x
194 * Two separate flag bits are defined to indicate whether each kind of
195 * conflict can be allowed:
196 * ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
197 * ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
199 * Case (a) is not permitted for a capability that the system requires
200 * all CPUs to have in order for the capability to be enabled. This is
201 * typical for capabilities that represent enhanced functionality.
203 * Case (b) is not permitted for a capability that must be enabled
204 * during boot if any CPU in the system requires it in order to run
205 * safely. This is typical for erratum work arounds that cannot be
206 * enabled after the corresponding capability is finalised.
208 * In some non-typical cases either both (a) and (b), or neither,
209 * should be permitted. This can be described by including neither
210 * or both flags in the capability's type field.
215 * Decide how the capability is detected.
216 * On any local CPU vs System wide vs the primary boot CPU
218 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU ((u16)BIT(0))
219 #define ARM64_CPUCAP_SCOPE_SYSTEM ((u16)BIT(1))
221 * The capabilitiy is detected on the Boot CPU and is used by kernel
222 * during early boot. i.e, the capability should be "detected" and
223 * "enabled" as early as possibly on all booting CPUs.
225 #define ARM64_CPUCAP_SCOPE_BOOT_CPU ((u16)BIT(2))
226 #define ARM64_CPUCAP_SCOPE_MASK \
227 (ARM64_CPUCAP_SCOPE_SYSTEM | \
228 ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
229 ARM64_CPUCAP_SCOPE_BOOT_CPU)
231 #define SCOPE_SYSTEM ARM64_CPUCAP_SCOPE_SYSTEM
232 #define SCOPE_LOCAL_CPU ARM64_CPUCAP_SCOPE_LOCAL_CPU
233 #define SCOPE_BOOT_CPU ARM64_CPUCAP_SCOPE_BOOT_CPU
234 #define SCOPE_ALL ARM64_CPUCAP_SCOPE_MASK
237 * Is it permitted for a late CPU to have this capability when system
238 * hasn't already enabled it ?
240 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU ((u16)BIT(4))
241 /* Is it safe for a late CPU to miss this capability when system has it */
242 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU ((u16)BIT(5))
245 * CPU errata workarounds that need to be enabled at boot time if one or
246 * more CPUs in the system requires it. When one of these capabilities
247 * has been enabled, it is safe to allow any CPU to boot that doesn't
248 * require the workaround. However, it is not safe if a "late" CPU
249 * requires a workaround and the system hasn't enabled it already.
251 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM \
252 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
254 * CPU feature detected at boot time based on system-wide value of a
255 * feature. It is safe for a late CPU to have this feature even though
256 * the system hasn't enabled it, although the feature will not be used
257 * by Linux in this case. If the system has enabled this feature already,
258 * then every late CPU must have it.
260 #define ARM64_CPUCAP_SYSTEM_FEATURE \
261 (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
263 * CPU feature detected at boot time based on feature of one or more CPUs.
264 * All possible conflicts for a late CPU are ignored.
266 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE \
267 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
268 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU | \
269 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
272 * CPU feature detected at boot time, on one or more CPUs. A late CPU
273 * is not allowed to have the capability when the system doesn't have it.
274 * It is Ok for a late CPU to miss the feature.
276 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE \
277 (ARM64_CPUCAP_SCOPE_LOCAL_CPU | \
278 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
281 * CPU feature used early in the boot based on the boot CPU. All secondary
282 * CPUs must match the state of the capability as detected by the boot CPU.
284 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
286 struct arm64_cpu_capabilities {
287 const char *desc;
288 u16 capability;
289 u16 type;
290 bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
292 * Take the appropriate actions to enable this capability for this CPU.
293 * For each successfully booted CPU, this method is called for each
294 * globally detected capability.
296 void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
297 union {
298 struct { /* To be used for erratum handling only */
299 struct midr_range midr_range;
300 const struct arm64_midr_revidr {
301 u32 midr_rv; /* revision/variant */
302 u32 revidr_mask;
303 } * const fixed_revs;
306 const struct midr_range *midr_range_list;
307 struct { /* Feature register checking */
308 u32 sys_reg;
309 u8 field_pos;
310 u8 min_field_value;
311 u8 hwcap_type;
312 bool sign;
313 unsigned long hwcap;
318 * An optional list of "matches/cpu_enable" pair for the same
319 * "capability" of the same "type" as described by the parent.
320 * Only matches(), cpu_enable() and fields relevant to these
321 * methods are significant in the list. The cpu_enable is
322 * invoked only if the corresponding entry "matches()".
323 * However, if a cpu_enable() method is associated
324 * with multiple matches(), care should be taken that either
325 * the match criteria are mutually exclusive, or that the
326 * method is robust against being called multiple times.
328 const struct arm64_cpu_capabilities *match_list;
331 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
333 return cap->type & ARM64_CPUCAP_SCOPE_MASK;
336 static inline bool
337 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
339 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
342 static inline bool
343 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
345 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
349 * Generic helper for handling capabilties with multiple (match,enable) pairs
350 * of call backs, sharing the same capability bit.
351 * Iterate over each entry to see if at least one matches.
353 static inline bool
354 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
355 int scope)
357 const struct arm64_cpu_capabilities *caps;
359 for (caps = entry->match_list; caps->matches; caps++)
360 if (caps->matches(caps, scope))
361 return true;
363 return false;
367 * Take appropriate action for all matching entries in the shared capability
368 * entry.
370 static inline void
371 cpucap_multi_entry_cap_cpu_enable(const struct arm64_cpu_capabilities *entry)
373 const struct arm64_cpu_capabilities *caps;
375 for (caps = entry->match_list; caps->matches; caps++)
376 if (caps->matches(caps, SCOPE_LOCAL_CPU) &&
377 caps->cpu_enable)
378 caps->cpu_enable(caps);
381 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
382 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
383 extern struct static_key_false arm64_const_caps_ready;
385 /* ARM64 CAPS + alternative_cb */
386 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
387 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
389 #define for_each_available_cap(cap) \
390 for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
392 bool this_cpu_has_cap(unsigned int cap);
393 void cpu_set_feature(unsigned int num);
394 bool cpu_have_feature(unsigned int num);
395 unsigned long cpu_get_elf_hwcap(void);
396 unsigned long cpu_get_elf_hwcap2(void);
398 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
399 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
401 /* System capability check for constant caps */
402 static __always_inline bool __cpus_have_const_cap(int num)
404 if (num >= ARM64_NCAPS)
405 return false;
406 return static_branch_unlikely(&cpu_hwcap_keys[num]);
409 static inline bool cpus_have_cap(unsigned int num)
411 if (num >= ARM64_NCAPS)
412 return false;
413 return test_bit(num, cpu_hwcaps);
416 static __always_inline bool cpus_have_const_cap(int num)
418 if (static_branch_likely(&arm64_const_caps_ready))
419 return __cpus_have_const_cap(num);
420 else
421 return cpus_have_cap(num);
424 static inline void cpus_set_cap(unsigned int num)
426 if (num >= ARM64_NCAPS) {
427 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
428 num, ARM64_NCAPS);
429 } else {
430 __set_bit(num, cpu_hwcaps);
434 static inline int __attribute_const__
435 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
437 return (s64)(features << (64 - width - field)) >> (64 - width);
440 static inline int __attribute_const__
441 cpuid_feature_extract_signed_field(u64 features, int field)
443 return cpuid_feature_extract_signed_field_width(features, field, 4);
446 static inline unsigned int __attribute_const__
447 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
449 return (u64)(features << (64 - width - field)) >> (64 - width);
452 static inline unsigned int __attribute_const__
453 cpuid_feature_extract_unsigned_field(u64 features, int field)
455 return cpuid_feature_extract_unsigned_field_width(features, field, 4);
458 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
460 return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
463 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
465 return (reg->user_val | (reg->sys_val & reg->user_mask));
468 static inline int __attribute_const__
469 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
471 return (sign) ?
472 cpuid_feature_extract_signed_field_width(features, field, width) :
473 cpuid_feature_extract_unsigned_field_width(features, field, width);
476 static inline int __attribute_const__
477 cpuid_feature_extract_field(u64 features, int field, bool sign)
479 return cpuid_feature_extract_field_width(features, field, 4, sign);
482 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
484 return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
487 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
489 return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
490 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
493 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
495 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
497 return val == ID_AA64PFR0_EL0_32BIT_64BIT;
500 static inline bool id_aa64pfr0_sve(u64 pfr0)
502 u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
504 return val > 0;
507 void __init setup_cpu_features(void);
508 void check_local_cpu_capabilities(void);
510 u64 read_sanitised_ftr_reg(u32 id);
512 static inline bool cpu_supports_mixed_endian_el0(void)
514 return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
517 static inline bool system_supports_32bit_el0(void)
519 return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
522 static inline bool system_supports_4kb_granule(void)
524 u64 mmfr0;
525 u32 val;
527 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
528 val = cpuid_feature_extract_unsigned_field(mmfr0,
529 ID_AA64MMFR0_TGRAN4_SHIFT);
531 return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
534 static inline bool system_supports_64kb_granule(void)
536 u64 mmfr0;
537 u32 val;
539 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
540 val = cpuid_feature_extract_unsigned_field(mmfr0,
541 ID_AA64MMFR0_TGRAN64_SHIFT);
543 return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
546 static inline bool system_supports_16kb_granule(void)
548 u64 mmfr0;
549 u32 val;
551 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
552 val = cpuid_feature_extract_unsigned_field(mmfr0,
553 ID_AA64MMFR0_TGRAN16_SHIFT);
555 return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
558 static inline bool system_supports_mixed_endian_el0(void)
560 return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
563 static inline bool system_supports_mixed_endian(void)
565 u64 mmfr0;
566 u32 val;
568 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
569 val = cpuid_feature_extract_unsigned_field(mmfr0,
570 ID_AA64MMFR0_BIGENDEL_SHIFT);
572 return val == 0x1;
575 static inline bool system_supports_fpsimd(void)
577 return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
580 static inline bool system_uses_ttbr0_pan(void)
582 return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
583 !cpus_have_const_cap(ARM64_HAS_PAN);
586 static inline bool system_supports_sve(void)
588 return IS_ENABLED(CONFIG_ARM64_SVE) &&
589 cpus_have_const_cap(ARM64_SVE);
592 static inline bool system_supports_cnp(void)
594 return IS_ENABLED(CONFIG_ARM64_CNP) &&
595 cpus_have_const_cap(ARM64_HAS_CNP);
598 static inline bool system_supports_address_auth(void)
600 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
601 (cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
602 cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF));
605 static inline bool system_supports_generic_auth(void)
607 return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
608 (cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
609 cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF));
612 static inline bool system_uses_irq_prio_masking(void)
614 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
615 cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
618 static inline bool system_has_prio_mask_debugging(void)
620 return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
621 system_uses_irq_prio_masking();
624 #define ARM64_BP_HARDEN_UNKNOWN -1
625 #define ARM64_BP_HARDEN_WA_NEEDED 0
626 #define ARM64_BP_HARDEN_NOT_REQUIRED 1
628 int get_spectre_v2_workaround_state(void);
630 #define ARM64_SSBD_UNKNOWN -1
631 #define ARM64_SSBD_FORCE_DISABLE 0
632 #define ARM64_SSBD_KERNEL 1
633 #define ARM64_SSBD_FORCE_ENABLE 2
634 #define ARM64_SSBD_MITIGATED 3
636 static inline int arm64_get_ssbd_state(void)
638 #ifdef CONFIG_ARM64_SSBD
639 extern int ssbd_state;
640 return ssbd_state;
641 #else
642 return ARM64_SSBD_UNKNOWN;
643 #endif
646 void arm64_set_ssbd_mitigation(bool state);
648 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
650 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
652 switch (parange) {
653 case 0: return 32;
654 case 1: return 36;
655 case 2: return 40;
656 case 3: return 42;
657 case 4: return 44;
658 case 5: return 48;
659 case 6: return 52;
661 * A future PE could use a value unknown to the kernel.
662 * However, by the "D10.1.4 Principles of the ID scheme
663 * for fields in ID registers", ARM DDI 0487C.a, any new
664 * value is guaranteed to be higher than what we know already.
665 * As a safe limit, we return the limit supported by the kernel.
667 default: return CONFIG_ARM64_PA_BITS;
670 #endif /* __ASSEMBLY__ */
672 #endif