1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
7 #ifndef __ARM64_KVM_MMU_H__
8 #define __ARM64_KVM_MMU_H__
11 #include <asm/memory.h>
12 #include <asm/cpufeature.h>
15 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
16 * "negative" addresses. This makes it impossible to directly share
17 * mappings with the kernel.
19 * Instead, give the HYP mode its own VA region at a fixed offset from
20 * the kernel by just masking the top bits (which are all ones for a
21 * kernel address). We need to find out how many bits to mask.
23 * We want to build a set of page tables that cover both parts of the
24 * idmap (the trampoline page used to initialize EL2), and our normal
25 * runtime VA space, at the same time.
27 * Given that the kernel uses VA_BITS for its entire address space,
28 * and that half of that space (VA_BITS - 1) is used for the linear
29 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
31 * The main question is "Within the VA_BITS space, does EL2 use the
32 * top or the bottom half of that space to shadow the kernel's linear
33 * mapping?". As we need to idmap the trampoline page, this is
34 * determined by the range in which this page lives.
36 * If the page is in the bottom half, we have to use the top half. If
37 * the page is in the top half, we have to use the bottom half:
39 * T = __pa_symbol(__hyp_idmap_text_start)
40 * if (T & BIT(VA_BITS - 1))
41 * HYP_VA_MIN = 0 //idmap in upper half
43 * HYP_VA_MIN = 1 << (VA_BITS - 1)
44 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
46 * This of course assumes that the trampoline page exists within the
47 * VA_BITS range. If it doesn't, then it means we're in the odd case
48 * where the kernel idmap (as well as HYP) uses more levels than the
49 * kernel runtime page tables (as seen when the kernel is configured
50 * for 4k pages, 39bits VA, and yet memory lives just above that
51 * limit, forcing the idmap to use 4 levels of page tables while the
52 * kernel itself only uses 3). In this particular case, it doesn't
53 * matter which side of VA_BITS we use, as we're guaranteed not to
54 * conflict with anything.
56 * When using VHE, there are no separate hyp mappings and all KVM
57 * functionality is already mapped as part of the main kernel
58 * mappings, and none of this applies in that case.
63 #include <asm/alternative.h>
66 * Convert a kernel VA into a HYP VA.
67 * reg: VA to be converted.
69 * The actual code generation takes place in kvm_update_va_mask, and
70 * the instructions below are only there to reserve the space and
71 * perform the register allocation (kvm_update_va_mask uses the
72 * specific registers encoded in the instructions).
74 .macro kern_hyp_va reg
75 alternative_cb kvm_update_va_mask
76 and \reg
, \reg
, #1 /* mask with va_mask */
77 ror
\reg
, \reg
, #1 /* rotate to the first tag bit */
78 add
\reg
, \reg
, #0 /* insert the low 12 bits of the tag */
79 add
\reg
, \reg
, #0, lsl 12 /* insert the top 12 bits of the tag */
80 ror
\reg
, \reg
, #63 /* rotate back */
86 #include <asm/pgalloc.h>
87 #include <asm/cache.h>
88 #include <asm/cacheflush.h>
89 #include <asm/mmu_context.h>
90 #include <asm/pgtable.h>
92 void kvm_update_va_mask(struct alt_instr
*alt
,
93 __le32
*origptr
, __le32
*updptr
, int nr_inst
);
95 static inline unsigned long __kern_hyp_va(unsigned long v
)
97 asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
100 "add %0, %0, #0, lsl 12\n"
107 #define kern_hyp_va(v) ((typeof(v))(__kern_hyp_va((unsigned long)(v))))
110 * Obtain the PC-relative address of a kernel symbol
113 * The goal of this macro is to return a symbol's address based on a
114 * PC-relative computation, as opposed to a loading the VA from a
115 * constant pool or something similar. This works well for HYP, as an
116 * absolute VA is guaranteed to be wrong. Only use this if trying to
117 * obtain the address of a symbol (i.e. not something you obtained by
118 * following a pointer).
120 #define hyp_symbol_addr(s) \
123 asm("adrp %0, %1\n" \
124 "add %0, %0, :lo12:%1\n" \
125 : "=r" (addr) : "S" (&s)); \
130 * We currently support using a VM-specified IPA size. For backward
131 * compatibility, the default IPA size is fixed to 40bits.
133 #define KVM_PHYS_SHIFT (40)
135 #define kvm_phys_shift(kvm) VTCR_EL2_IPA(kvm->arch.vtcr)
136 #define kvm_phys_size(kvm) (_AC(1, ULL) << kvm_phys_shift(kvm))
137 #define kvm_phys_mask(kvm) (kvm_phys_size(kvm) - _AC(1, ULL))
139 static inline bool kvm_page_empty(void *ptr
)
141 struct page
*ptr_page
= virt_to_page(ptr
);
142 return page_count(ptr_page
) == 1;
145 #include <asm/stage2_pgtable.h>
147 int create_hyp_mappings(void *from
, void *to
, pgprot_t prot
);
148 int create_hyp_io_mappings(phys_addr_t phys_addr
, size_t size
,
149 void __iomem
**kaddr
,
150 void __iomem
**haddr
);
151 int create_hyp_exec_mappings(phys_addr_t phys_addr
, size_t size
,
153 void free_hyp_pgds(void);
155 void stage2_unmap_vm(struct kvm
*kvm
);
156 int kvm_alloc_stage2_pgd(struct kvm
*kvm
);
157 void kvm_free_stage2_pgd(struct kvm
*kvm
);
158 int kvm_phys_addr_ioremap(struct kvm
*kvm
, phys_addr_t guest_ipa
,
159 phys_addr_t pa
, unsigned long size
, bool writable
);
161 int kvm_handle_guest_abort(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
);
163 void kvm_mmu_free_memory_caches(struct kvm_vcpu
*vcpu
);
165 phys_addr_t
kvm_mmu_get_httbr(void);
166 phys_addr_t
kvm_get_idmap_vector(void);
167 int kvm_mmu_init(void);
168 void kvm_clear_hyp_idmap(void);
170 #define kvm_mk_pmd(ptep) \
171 __pmd(__phys_to_pmd_val(__pa(ptep)) | PMD_TYPE_TABLE)
172 #define kvm_mk_pud(pmdp) \
173 __pud(__phys_to_pud_val(__pa(pmdp)) | PMD_TYPE_TABLE)
174 #define kvm_mk_pgd(pudp) \
175 __pgd(__phys_to_pgd_val(__pa(pudp)) | PUD_TYPE_TABLE)
177 #define kvm_set_pud(pudp, pud) set_pud(pudp, pud)
179 #define kvm_pfn_pte(pfn, prot) pfn_pte(pfn, prot)
180 #define kvm_pfn_pmd(pfn, prot) pfn_pmd(pfn, prot)
181 #define kvm_pfn_pud(pfn, prot) pfn_pud(pfn, prot)
183 #define kvm_pud_pfn(pud) pud_pfn(pud)
185 #define kvm_pmd_mkhuge(pmd) pmd_mkhuge(pmd)
186 #define kvm_pud_mkhuge(pud) pud_mkhuge(pud)
188 static inline pte_t
kvm_s2pte_mkwrite(pte_t pte
)
190 pte_val(pte
) |= PTE_S2_RDWR
;
194 static inline pmd_t
kvm_s2pmd_mkwrite(pmd_t pmd
)
196 pmd_val(pmd
) |= PMD_S2_RDWR
;
200 static inline pud_t
kvm_s2pud_mkwrite(pud_t pud
)
202 pud_val(pud
) |= PUD_S2_RDWR
;
206 static inline pte_t
kvm_s2pte_mkexec(pte_t pte
)
208 pte_val(pte
) &= ~PTE_S2_XN
;
212 static inline pmd_t
kvm_s2pmd_mkexec(pmd_t pmd
)
214 pmd_val(pmd
) &= ~PMD_S2_XN
;
218 static inline pud_t
kvm_s2pud_mkexec(pud_t pud
)
220 pud_val(pud
) &= ~PUD_S2_XN
;
224 static inline void kvm_set_s2pte_readonly(pte_t
*ptep
)
226 pteval_t old_pteval
, pteval
;
228 pteval
= READ_ONCE(pte_val(*ptep
));
231 pteval
&= ~PTE_S2_RDWR
;
232 pteval
|= PTE_S2_RDONLY
;
233 pteval
= cmpxchg_relaxed(&pte_val(*ptep
), old_pteval
, pteval
);
234 } while (pteval
!= old_pteval
);
237 static inline bool kvm_s2pte_readonly(pte_t
*ptep
)
239 return (READ_ONCE(pte_val(*ptep
)) & PTE_S2_RDWR
) == PTE_S2_RDONLY
;
242 static inline bool kvm_s2pte_exec(pte_t
*ptep
)
244 return !(READ_ONCE(pte_val(*ptep
)) & PTE_S2_XN
);
247 static inline void kvm_set_s2pmd_readonly(pmd_t
*pmdp
)
249 kvm_set_s2pte_readonly((pte_t
*)pmdp
);
252 static inline bool kvm_s2pmd_readonly(pmd_t
*pmdp
)
254 return kvm_s2pte_readonly((pte_t
*)pmdp
);
257 static inline bool kvm_s2pmd_exec(pmd_t
*pmdp
)
259 return !(READ_ONCE(pmd_val(*pmdp
)) & PMD_S2_XN
);
262 static inline void kvm_set_s2pud_readonly(pud_t
*pudp
)
264 kvm_set_s2pte_readonly((pte_t
*)pudp
);
267 static inline bool kvm_s2pud_readonly(pud_t
*pudp
)
269 return kvm_s2pte_readonly((pte_t
*)pudp
);
272 static inline bool kvm_s2pud_exec(pud_t
*pudp
)
274 return !(READ_ONCE(pud_val(*pudp
)) & PUD_S2_XN
);
277 static inline pud_t
kvm_s2pud_mkyoung(pud_t pud
)
279 return pud_mkyoung(pud
);
282 static inline bool kvm_s2pud_young(pud_t pud
)
284 return pud_young(pud
);
287 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
289 #ifdef __PAGETABLE_PMD_FOLDED
290 #define hyp_pmd_table_empty(pmdp) (0)
292 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
295 #ifdef __PAGETABLE_PUD_FOLDED
296 #define hyp_pud_table_empty(pudp) (0)
298 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
303 #define kvm_flush_dcache_to_poc(a,l) __flush_dcache_area((a), (l))
305 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu
*vcpu
)
307 return (vcpu_read_sys_reg(vcpu
, SCTLR_EL1
) & 0b101) == 0b101;
310 static inline void __clean_dcache_guest_page(kvm_pfn_t pfn
, unsigned long size
)
312 void *va
= page_address(pfn_to_page(pfn
));
315 * With FWB, we ensure that the guest always accesses memory using
316 * cacheable attributes, and we don't have to clean to PoC when
317 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
318 * PoU is not required either in this case.
320 if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB
))
323 kvm_flush_dcache_to_poc(va
, size
);
326 static inline void __invalidate_icache_guest_page(kvm_pfn_t pfn
,
329 if (icache_is_aliasing()) {
330 /* any kind of VIPT cache */
331 __flush_icache_all();
332 } else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
333 /* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
334 void *va
= page_address(pfn_to_page(pfn
));
336 invalidate_icache_range((unsigned long)va
,
337 (unsigned long)va
+ size
);
341 static inline void __kvm_flush_dcache_pte(pte_t pte
)
343 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB
)) {
344 struct page
*page
= pte_page(pte
);
345 kvm_flush_dcache_to_poc(page_address(page
), PAGE_SIZE
);
349 static inline void __kvm_flush_dcache_pmd(pmd_t pmd
)
351 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB
)) {
352 struct page
*page
= pmd_page(pmd
);
353 kvm_flush_dcache_to_poc(page_address(page
), PMD_SIZE
);
357 static inline void __kvm_flush_dcache_pud(pud_t pud
)
359 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB
)) {
360 struct page
*page
= pud_page(pud
);
361 kvm_flush_dcache_to_poc(page_address(page
), PUD_SIZE
);
365 #define kvm_virt_to_phys(x) __pa_symbol(x)
367 void kvm_set_way_flush(struct kvm_vcpu
*vcpu
);
368 void kvm_toggle_cache(struct kvm_vcpu
*vcpu
, bool was_enabled
);
370 static inline bool __kvm_cpu_uses_extended_idmap(void)
372 return __cpu_uses_extended_idmap_level();
375 static inline unsigned long __kvm_idmap_ptrs_per_pgd(void)
377 return idmap_ptrs_per_pgd
;
381 * Can't use pgd_populate here, because the extended idmap adds an extra level
382 * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
383 * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
385 static inline void __kvm_extend_hypmap(pgd_t
*boot_hyp_pgd
,
387 pgd_t
*merged_hyp_pgd
,
388 unsigned long hyp_idmap_start
)
394 * Use the first entry to access the HYP mappings. It is
395 * guaranteed to be free, otherwise we wouldn't use an
398 VM_BUG_ON(pgd_val(merged_hyp_pgd
[0]));
399 pgd_addr
= __phys_to_pgd_val(__pa(hyp_pgd
));
400 merged_hyp_pgd
[0] = __pgd(pgd_addr
| PMD_TYPE_TABLE
);
403 * Create another extended level entry that points to the boot HYP map,
404 * which contains an ID mapping of the HYP init code. We essentially
405 * merge the boot and runtime HYP maps by doing so, but they don't
406 * overlap anyway, so this is fine.
408 idmap_idx
= hyp_idmap_start
>> VA_BITS
;
409 VM_BUG_ON(pgd_val(merged_hyp_pgd
[idmap_idx
]));
410 pgd_addr
= __phys_to_pgd_val(__pa(boot_hyp_pgd
));
411 merged_hyp_pgd
[idmap_idx
] = __pgd(pgd_addr
| PMD_TYPE_TABLE
);
414 static inline unsigned int kvm_get_vmid_bits(void)
416 int reg
= read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1
);
418 return (cpuid_feature_extract_unsigned_field(reg
, ID_AA64MMFR1_VMIDBITS_SHIFT
) == 2) ? 16 : 8;
422 * We are not in the kvm->srcu critical section most of the time, so we take
423 * the SRCU read lock here. Since we copy the data from the user page, we
424 * can immediately drop the lock again.
426 static inline int kvm_read_guest_lock(struct kvm
*kvm
,
427 gpa_t gpa
, void *data
, unsigned long len
)
429 int srcu_idx
= srcu_read_lock(&kvm
->srcu
);
430 int ret
= kvm_read_guest(kvm
, gpa
, data
, len
);
432 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
437 static inline int kvm_write_guest_lock(struct kvm
*kvm
, gpa_t gpa
,
438 const void *data
, unsigned long len
)
440 int srcu_idx
= srcu_read_lock(&kvm
->srcu
);
441 int ret
= kvm_write_guest(kvm
, gpa
, data
, len
);
443 srcu_read_unlock(&kvm
->srcu
, srcu_idx
);
448 #ifdef CONFIG_KVM_INDIRECT_VECTORS
450 * EL2 vectors can be mapped and rerouted in a number of ways,
451 * depending on the kernel configuration and CPU present:
453 * - If the CPU has the ARM64_HARDEN_BRANCH_PREDICTOR cap, the
454 * hardening sequence is placed in one of the vector slots, which is
455 * executed before jumping to the real vectors.
457 * - If the CPU has both the ARM64_HARDEN_EL2_VECTORS cap and the
458 * ARM64_HARDEN_BRANCH_PREDICTOR cap, the slot containing the
459 * hardening sequence is mapped next to the idmap page, and executed
460 * before jumping to the real vectors.
462 * - If the CPU only has the ARM64_HARDEN_EL2_VECTORS cap, then an
463 * empty slot is selected, mapped next to the idmap page, and
464 * executed before jumping to the real vectors.
466 * Note that ARM64_HARDEN_EL2_VECTORS is somewhat incompatible with
467 * VHE, as we don't have hypervisor-specific mappings. If the system
468 * is VHE and yet selects this capability, it will be ignored.
472 extern void *__kvm_bp_vect_base
;
473 extern int __kvm_harden_el2_vector_slot
;
475 static inline void *kvm_get_hyp_vector(void)
477 struct bp_hardening_data
*data
= arm64_get_bp_hardening_data();
478 void *vect
= kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector
));
481 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR
) && data
->fn
) {
482 vect
= kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs_start
));
483 slot
= data
->hyp_vectors_slot
;
486 if (this_cpu_has_cap(ARM64_HARDEN_EL2_VECTORS
) && !has_vhe()) {
487 vect
= __kvm_bp_vect_base
;
489 slot
= __kvm_harden_el2_vector_slot
;
493 vect
+= slot
* SZ_2K
;
498 /* This is only called on a !VHE system */
499 static inline int kvm_map_vectors(void)
502 * HBP = ARM64_HARDEN_BRANCH_PREDICTOR
503 * HEL2 = ARM64_HARDEN_EL2_VECTORS
505 * !HBP + !HEL2 -> use direct vectors
506 * HBP + !HEL2 -> use hardened vectors in place
507 * !HBP + HEL2 -> allocate one vector slot and use exec mapping
508 * HBP + HEL2 -> use hardened vertors and use exec mapping
510 if (cpus_have_const_cap(ARM64_HARDEN_BRANCH_PREDICTOR
)) {
511 __kvm_bp_vect_base
= kvm_ksym_ref(__bp_harden_hyp_vecs_start
);
512 __kvm_bp_vect_base
= kern_hyp_va(__kvm_bp_vect_base
);
515 if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS
)) {
516 phys_addr_t vect_pa
= __pa_symbol(__bp_harden_hyp_vecs_start
);
517 unsigned long size
= (__bp_harden_hyp_vecs_end
-
518 __bp_harden_hyp_vecs_start
);
521 * Always allocate a spare vector slot, as we don't
522 * know yet which CPUs have a BP hardening slot that
525 __kvm_harden_el2_vector_slot
= atomic_inc_return(&arm64_el2_vector_last_slot
);
526 BUG_ON(__kvm_harden_el2_vector_slot
>= BP_HARDEN_EL2_SLOTS
);
527 return create_hyp_exec_mappings(vect_pa
, size
,
528 &__kvm_bp_vect_base
);
534 static inline void *kvm_get_hyp_vector(void)
536 return kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector
));
539 static inline int kvm_map_vectors(void)
545 #ifdef CONFIG_ARM64_SSBD
546 DECLARE_PER_CPU_READ_MOSTLY(u64
, arm64_ssbd_callback_required
);
548 static inline int hyp_map_aux_data(void)
552 for_each_possible_cpu(cpu
) {
555 ptr
= per_cpu_ptr(&arm64_ssbd_callback_required
, cpu
);
556 err
= create_hyp_mappings(ptr
, ptr
+ 1, PAGE_HYP
);
563 static inline int hyp_map_aux_data(void)
569 #define kvm_phys_to_vttbr(addr) phys_to_ttbr(addr)
572 * Get the magic number 'x' for VTTBR:BADDR of this KVM instance.
573 * With v8.2 LVA extensions, 'x' should be a minimum of 6 with
576 static inline int arm64_vttbr_x(u32 ipa_shift
, u32 levels
)
578 int x
= ARM64_VTTBR_X(ipa_shift
, levels
);
580 return (IS_ENABLED(CONFIG_ARM64_PA_BITS_52
) && x
< 6) ? 6 : x
;
583 static inline u64
vttbr_baddr_mask(u32 ipa_shift
, u32 levels
)
585 unsigned int x
= arm64_vttbr_x(ipa_shift
, levels
);
587 return GENMASK_ULL(PHYS_MASK_SHIFT
- 1, x
);
590 static inline u64
kvm_vttbr_baddr_mask(struct kvm
*kvm
)
592 return vttbr_baddr_mask(kvm_phys_shift(kvm
), kvm_stage2_levels(kvm
));
595 static __always_inline u64
kvm_get_vttbr(struct kvm
*kvm
)
597 struct kvm_vmid
*vmid
= &kvm
->arch
.vmid
;
598 u64 vmid_field
, baddr
;
599 u64 cnp
= system_supports_cnp() ? VTTBR_CNP_BIT
: 0;
601 baddr
= kvm
->arch
.pgd_phys
;
602 vmid_field
= (u64
)vmid
->vmid
<< VTTBR_VMID_SHIFT
;
603 return kvm_phys_to_vttbr(baddr
) | vmid_field
| cnp
;
606 #endif /* __ASSEMBLY__ */
607 #endif /* __ARM64_KVM_MMU_H__ */