staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / arm64 / kernel / module.c
blob03ff15bffbb6db2d2e2cca75a20df06e6f174df0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AArch64 loadable module support.
5 * Copyright (C) 2012 ARM Limited
7 * Author: Will Deacon <will.deacon@arm.com>
8 */
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/gfp.h>
13 #include <linux/kasan.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/moduleloader.h>
17 #include <linux/vmalloc.h>
18 #include <asm/alternative.h>
19 #include <asm/insn.h>
20 #include <asm/sections.h>
22 void *module_alloc(unsigned long size)
24 u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
25 gfp_t gfp_mask = GFP_KERNEL;
26 void *p;
28 /* Silence the initial allocation */
29 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
30 gfp_mask |= __GFP_NOWARN;
32 if (IS_ENABLED(CONFIG_KASAN))
33 /* don't exceed the static module region - see below */
34 module_alloc_end = MODULES_END;
36 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
37 module_alloc_end, gfp_mask, PAGE_KERNEL, 0,
38 NUMA_NO_NODE, __builtin_return_address(0));
40 if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
41 !IS_ENABLED(CONFIG_KASAN))
43 * KASAN can only deal with module allocations being served
44 * from the reserved module region, since the remainder of
45 * the vmalloc region is already backed by zero shadow pages,
46 * and punching holes into it is non-trivial. Since the module
47 * region is not randomized when KASAN is enabled, it is even
48 * less likely that the module region gets exhausted, so we
49 * can simply omit this fallback in that case.
51 p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
52 module_alloc_base + SZ_2G, GFP_KERNEL,
53 PAGE_KERNEL, 0, NUMA_NO_NODE,
54 __builtin_return_address(0));
56 if (p && (kasan_module_alloc(p, size) < 0)) {
57 vfree(p);
58 return NULL;
61 return p;
64 enum aarch64_reloc_op {
65 RELOC_OP_NONE,
66 RELOC_OP_ABS,
67 RELOC_OP_PREL,
68 RELOC_OP_PAGE,
71 static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
73 switch (reloc_op) {
74 case RELOC_OP_ABS:
75 return val;
76 case RELOC_OP_PREL:
77 return val - (u64)place;
78 case RELOC_OP_PAGE:
79 return (val & ~0xfff) - ((u64)place & ~0xfff);
80 case RELOC_OP_NONE:
81 return 0;
84 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
85 return 0;
88 static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
90 s64 sval = do_reloc(op, place, val);
93 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
94 * relative and absolute relocations as having a range of [-2^15, 2^16)
95 * or [-2^31, 2^32), respectively. However, in order to be able to
96 * detect overflows reliably, we have to choose whether we interpret
97 * such quantities as signed or as unsigned, and stick with it.
98 * The way we organize our address space requires a signed
99 * interpretation of 32-bit relative references, so let's use that
100 * for all R_AARCH64_PRELxx relocations. This means our upper
101 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
104 switch (len) {
105 case 16:
106 *(s16 *)place = sval;
107 switch (op) {
108 case RELOC_OP_ABS:
109 if (sval < 0 || sval > U16_MAX)
110 return -ERANGE;
111 break;
112 case RELOC_OP_PREL:
113 if (sval < S16_MIN || sval > S16_MAX)
114 return -ERANGE;
115 break;
116 default:
117 pr_err("Invalid 16-bit data relocation (%d)\n", op);
118 return 0;
120 break;
121 case 32:
122 *(s32 *)place = sval;
123 switch (op) {
124 case RELOC_OP_ABS:
125 if (sval < 0 || sval > U32_MAX)
126 return -ERANGE;
127 break;
128 case RELOC_OP_PREL:
129 if (sval < S32_MIN || sval > S32_MAX)
130 return -ERANGE;
131 break;
132 default:
133 pr_err("Invalid 32-bit data relocation (%d)\n", op);
134 return 0;
136 break;
137 case 64:
138 *(s64 *)place = sval;
139 break;
140 default:
141 pr_err("Invalid length (%d) for data relocation\n", len);
142 return 0;
144 return 0;
147 enum aarch64_insn_movw_imm_type {
148 AARCH64_INSN_IMM_MOVNZ,
149 AARCH64_INSN_IMM_MOVKZ,
152 static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
153 int lsb, enum aarch64_insn_movw_imm_type imm_type)
155 u64 imm;
156 s64 sval;
157 u32 insn = le32_to_cpu(*place);
159 sval = do_reloc(op, place, val);
160 imm = sval >> lsb;
162 if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
164 * For signed MOVW relocations, we have to manipulate the
165 * instruction encoding depending on whether or not the
166 * immediate is less than zero.
168 insn &= ~(3 << 29);
169 if (sval >= 0) {
170 /* >=0: Set the instruction to MOVZ (opcode 10b). */
171 insn |= 2 << 29;
172 } else {
174 * <0: Set the instruction to MOVN (opcode 00b).
175 * Since we've masked the opcode already, we
176 * don't need to do anything other than
177 * inverting the new immediate field.
179 imm = ~imm;
183 /* Update the instruction with the new encoding. */
184 insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
185 *place = cpu_to_le32(insn);
187 if (imm > U16_MAX)
188 return -ERANGE;
190 return 0;
193 static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
194 int lsb, int len, enum aarch64_insn_imm_type imm_type)
196 u64 imm, imm_mask;
197 s64 sval;
198 u32 insn = le32_to_cpu(*place);
200 /* Calculate the relocation value. */
201 sval = do_reloc(op, place, val);
202 sval >>= lsb;
204 /* Extract the value bits and shift them to bit 0. */
205 imm_mask = (BIT(lsb + len) - 1) >> lsb;
206 imm = sval & imm_mask;
208 /* Update the instruction's immediate field. */
209 insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
210 *place = cpu_to_le32(insn);
213 * Extract the upper value bits (including the sign bit) and
214 * shift them to bit 0.
216 sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
219 * Overflow has occurred if the upper bits are not all equal to
220 * the sign bit of the value.
222 if ((u64)(sval + 1) >= 2)
223 return -ERANGE;
225 return 0;
228 static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
229 __le32 *place, u64 val)
231 u32 insn;
233 if (!is_forbidden_offset_for_adrp(place))
234 return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
235 AARCH64_INSN_IMM_ADR);
237 /* patch ADRP to ADR if it is in range */
238 if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
239 AARCH64_INSN_IMM_ADR)) {
240 insn = le32_to_cpu(*place);
241 insn &= ~BIT(31);
242 } else {
243 /* out of range for ADR -> emit a veneer */
244 val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
245 if (!val)
246 return -ENOEXEC;
247 insn = aarch64_insn_gen_branch_imm((u64)place, val,
248 AARCH64_INSN_BRANCH_NOLINK);
251 *place = cpu_to_le32(insn);
252 return 0;
255 int apply_relocate_add(Elf64_Shdr *sechdrs,
256 const char *strtab,
257 unsigned int symindex,
258 unsigned int relsec,
259 struct module *me)
261 unsigned int i;
262 int ovf;
263 bool overflow_check;
264 Elf64_Sym *sym;
265 void *loc;
266 u64 val;
267 Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
269 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
270 /* loc corresponds to P in the AArch64 ELF document. */
271 loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
272 + rel[i].r_offset;
274 /* sym is the ELF symbol we're referring to. */
275 sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
276 + ELF64_R_SYM(rel[i].r_info);
278 /* val corresponds to (S + A) in the AArch64 ELF document. */
279 val = sym->st_value + rel[i].r_addend;
281 /* Check for overflow by default. */
282 overflow_check = true;
284 /* Perform the static relocation. */
285 switch (ELF64_R_TYPE(rel[i].r_info)) {
286 /* Null relocations. */
287 case R_ARM_NONE:
288 case R_AARCH64_NONE:
289 ovf = 0;
290 break;
292 /* Data relocations. */
293 case R_AARCH64_ABS64:
294 overflow_check = false;
295 ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
296 break;
297 case R_AARCH64_ABS32:
298 ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
299 break;
300 case R_AARCH64_ABS16:
301 ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
302 break;
303 case R_AARCH64_PREL64:
304 overflow_check = false;
305 ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
306 break;
307 case R_AARCH64_PREL32:
308 ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
309 break;
310 case R_AARCH64_PREL16:
311 ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
312 break;
314 /* MOVW instruction relocations. */
315 case R_AARCH64_MOVW_UABS_G0_NC:
316 overflow_check = false;
317 /* Fall through */
318 case R_AARCH64_MOVW_UABS_G0:
319 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
320 AARCH64_INSN_IMM_MOVKZ);
321 break;
322 case R_AARCH64_MOVW_UABS_G1_NC:
323 overflow_check = false;
324 /* Fall through */
325 case R_AARCH64_MOVW_UABS_G1:
326 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
327 AARCH64_INSN_IMM_MOVKZ);
328 break;
329 case R_AARCH64_MOVW_UABS_G2_NC:
330 overflow_check = false;
331 /* Fall through */
332 case R_AARCH64_MOVW_UABS_G2:
333 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
334 AARCH64_INSN_IMM_MOVKZ);
335 break;
336 case R_AARCH64_MOVW_UABS_G3:
337 /* We're using the top bits so we can't overflow. */
338 overflow_check = false;
339 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
340 AARCH64_INSN_IMM_MOVKZ);
341 break;
342 case R_AARCH64_MOVW_SABS_G0:
343 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
344 AARCH64_INSN_IMM_MOVNZ);
345 break;
346 case R_AARCH64_MOVW_SABS_G1:
347 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
348 AARCH64_INSN_IMM_MOVNZ);
349 break;
350 case R_AARCH64_MOVW_SABS_G2:
351 ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
352 AARCH64_INSN_IMM_MOVNZ);
353 break;
354 case R_AARCH64_MOVW_PREL_G0_NC:
355 overflow_check = false;
356 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
357 AARCH64_INSN_IMM_MOVKZ);
358 break;
359 case R_AARCH64_MOVW_PREL_G0:
360 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
361 AARCH64_INSN_IMM_MOVNZ);
362 break;
363 case R_AARCH64_MOVW_PREL_G1_NC:
364 overflow_check = false;
365 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
366 AARCH64_INSN_IMM_MOVKZ);
367 break;
368 case R_AARCH64_MOVW_PREL_G1:
369 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
370 AARCH64_INSN_IMM_MOVNZ);
371 break;
372 case R_AARCH64_MOVW_PREL_G2_NC:
373 overflow_check = false;
374 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
375 AARCH64_INSN_IMM_MOVKZ);
376 break;
377 case R_AARCH64_MOVW_PREL_G2:
378 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
379 AARCH64_INSN_IMM_MOVNZ);
380 break;
381 case R_AARCH64_MOVW_PREL_G3:
382 /* We're using the top bits so we can't overflow. */
383 overflow_check = false;
384 ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
385 AARCH64_INSN_IMM_MOVNZ);
386 break;
388 /* Immediate instruction relocations. */
389 case R_AARCH64_LD_PREL_LO19:
390 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
391 AARCH64_INSN_IMM_19);
392 break;
393 case R_AARCH64_ADR_PREL_LO21:
394 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
395 AARCH64_INSN_IMM_ADR);
396 break;
397 case R_AARCH64_ADR_PREL_PG_HI21_NC:
398 overflow_check = false;
399 /* Fall through */
400 case R_AARCH64_ADR_PREL_PG_HI21:
401 ovf = reloc_insn_adrp(me, sechdrs, loc, val);
402 if (ovf && ovf != -ERANGE)
403 return ovf;
404 break;
405 case R_AARCH64_ADD_ABS_LO12_NC:
406 case R_AARCH64_LDST8_ABS_LO12_NC:
407 overflow_check = false;
408 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
409 AARCH64_INSN_IMM_12);
410 break;
411 case R_AARCH64_LDST16_ABS_LO12_NC:
412 overflow_check = false;
413 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
414 AARCH64_INSN_IMM_12);
415 break;
416 case R_AARCH64_LDST32_ABS_LO12_NC:
417 overflow_check = false;
418 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
419 AARCH64_INSN_IMM_12);
420 break;
421 case R_AARCH64_LDST64_ABS_LO12_NC:
422 overflow_check = false;
423 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
424 AARCH64_INSN_IMM_12);
425 break;
426 case R_AARCH64_LDST128_ABS_LO12_NC:
427 overflow_check = false;
428 ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
429 AARCH64_INSN_IMM_12);
430 break;
431 case R_AARCH64_TSTBR14:
432 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
433 AARCH64_INSN_IMM_14);
434 break;
435 case R_AARCH64_CONDBR19:
436 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
437 AARCH64_INSN_IMM_19);
438 break;
439 case R_AARCH64_JUMP26:
440 case R_AARCH64_CALL26:
441 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
442 AARCH64_INSN_IMM_26);
444 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
445 ovf == -ERANGE) {
446 val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
447 if (!val)
448 return -ENOEXEC;
449 ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
450 26, AARCH64_INSN_IMM_26);
452 break;
454 default:
455 pr_err("module %s: unsupported RELA relocation: %llu\n",
456 me->name, ELF64_R_TYPE(rel[i].r_info));
457 return -ENOEXEC;
460 if (overflow_check && ovf == -ERANGE)
461 goto overflow;
465 return 0;
467 overflow:
468 pr_err("module %s: overflow in relocation type %d val %Lx\n",
469 me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
470 return -ENOEXEC;
473 int module_finalize(const Elf_Ehdr *hdr,
474 const Elf_Shdr *sechdrs,
475 struct module *me)
477 const Elf_Shdr *s, *se;
478 const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
480 for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
481 if (strcmp(".altinstructions", secstrs + s->sh_name) == 0)
482 apply_alternatives_module((void *)s->sh_addr, s->sh_size);
483 #ifdef CONFIG_ARM64_MODULE_PLTS
484 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
485 !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
486 me->arch.ftrace_trampoline = (void *)s->sh_addr;
487 #endif
490 return 0;