1 // SPDX-License-Identifier: GPL-2.0-only
3 * AArch64 loadable module support.
5 * Copyright (C) 2012 ARM Limited
7 * Author: Will Deacon <will.deacon@arm.com>
10 #include <linux/bitops.h>
11 #include <linux/elf.h>
12 #include <linux/gfp.h>
13 #include <linux/kasan.h>
14 #include <linux/kernel.h>
16 #include <linux/moduleloader.h>
17 #include <linux/vmalloc.h>
18 #include <asm/alternative.h>
20 #include <asm/sections.h>
22 void *module_alloc(unsigned long size
)
24 u64 module_alloc_end
= module_alloc_base
+ MODULES_VSIZE
;
25 gfp_t gfp_mask
= GFP_KERNEL
;
28 /* Silence the initial allocation */
29 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS
))
30 gfp_mask
|= __GFP_NOWARN
;
32 if (IS_ENABLED(CONFIG_KASAN
))
33 /* don't exceed the static module region - see below */
34 module_alloc_end
= MODULES_END
;
36 p
= __vmalloc_node_range(size
, MODULE_ALIGN
, module_alloc_base
,
37 module_alloc_end
, gfp_mask
, PAGE_KERNEL
, 0,
38 NUMA_NO_NODE
, __builtin_return_address(0));
40 if (!p
&& IS_ENABLED(CONFIG_ARM64_MODULE_PLTS
) &&
41 !IS_ENABLED(CONFIG_KASAN
))
43 * KASAN can only deal with module allocations being served
44 * from the reserved module region, since the remainder of
45 * the vmalloc region is already backed by zero shadow pages,
46 * and punching holes into it is non-trivial. Since the module
47 * region is not randomized when KASAN is enabled, it is even
48 * less likely that the module region gets exhausted, so we
49 * can simply omit this fallback in that case.
51 p
= __vmalloc_node_range(size
, MODULE_ALIGN
, module_alloc_base
,
52 module_alloc_base
+ SZ_2G
, GFP_KERNEL
,
53 PAGE_KERNEL
, 0, NUMA_NO_NODE
,
54 __builtin_return_address(0));
56 if (p
&& (kasan_module_alloc(p
, size
) < 0)) {
64 enum aarch64_reloc_op
{
71 static u64
do_reloc(enum aarch64_reloc_op reloc_op
, __le32
*place
, u64 val
)
77 return val
- (u64
)place
;
79 return (val
& ~0xfff) - ((u64
)place
& ~0xfff);
84 pr_err("do_reloc: unknown relocation operation %d\n", reloc_op
);
88 static int reloc_data(enum aarch64_reloc_op op
, void *place
, u64 val
, int len
)
90 s64 sval
= do_reloc(op
, place
, val
);
93 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
94 * relative and absolute relocations as having a range of [-2^15, 2^16)
95 * or [-2^31, 2^32), respectively. However, in order to be able to
96 * detect overflows reliably, we have to choose whether we interpret
97 * such quantities as signed or as unsigned, and stick with it.
98 * The way we organize our address space requires a signed
99 * interpretation of 32-bit relative references, so let's use that
100 * for all R_AARCH64_PRELxx relocations. This means our upper
101 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
106 *(s16
*)place
= sval
;
109 if (sval
< 0 || sval
> U16_MAX
)
113 if (sval
< S16_MIN
|| sval
> S16_MAX
)
117 pr_err("Invalid 16-bit data relocation (%d)\n", op
);
122 *(s32
*)place
= sval
;
125 if (sval
< 0 || sval
> U32_MAX
)
129 if (sval
< S32_MIN
|| sval
> S32_MAX
)
133 pr_err("Invalid 32-bit data relocation (%d)\n", op
);
138 *(s64
*)place
= sval
;
141 pr_err("Invalid length (%d) for data relocation\n", len
);
147 enum aarch64_insn_movw_imm_type
{
148 AARCH64_INSN_IMM_MOVNZ
,
149 AARCH64_INSN_IMM_MOVKZ
,
152 static int reloc_insn_movw(enum aarch64_reloc_op op
, __le32
*place
, u64 val
,
153 int lsb
, enum aarch64_insn_movw_imm_type imm_type
)
157 u32 insn
= le32_to_cpu(*place
);
159 sval
= do_reloc(op
, place
, val
);
162 if (imm_type
== AARCH64_INSN_IMM_MOVNZ
) {
164 * For signed MOVW relocations, we have to manipulate the
165 * instruction encoding depending on whether or not the
166 * immediate is less than zero.
170 /* >=0: Set the instruction to MOVZ (opcode 10b). */
174 * <0: Set the instruction to MOVN (opcode 00b).
175 * Since we've masked the opcode already, we
176 * don't need to do anything other than
177 * inverting the new immediate field.
183 /* Update the instruction with the new encoding. */
184 insn
= aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16
, insn
, imm
);
185 *place
= cpu_to_le32(insn
);
193 static int reloc_insn_imm(enum aarch64_reloc_op op
, __le32
*place
, u64 val
,
194 int lsb
, int len
, enum aarch64_insn_imm_type imm_type
)
198 u32 insn
= le32_to_cpu(*place
);
200 /* Calculate the relocation value. */
201 sval
= do_reloc(op
, place
, val
);
204 /* Extract the value bits and shift them to bit 0. */
205 imm_mask
= (BIT(lsb
+ len
) - 1) >> lsb
;
206 imm
= sval
& imm_mask
;
208 /* Update the instruction's immediate field. */
209 insn
= aarch64_insn_encode_immediate(imm_type
, insn
, imm
);
210 *place
= cpu_to_le32(insn
);
213 * Extract the upper value bits (including the sign bit) and
214 * shift them to bit 0.
216 sval
= (s64
)(sval
& ~(imm_mask
>> 1)) >> (len
- 1);
219 * Overflow has occurred if the upper bits are not all equal to
220 * the sign bit of the value.
222 if ((u64
)(sval
+ 1) >= 2)
228 static int reloc_insn_adrp(struct module
*mod
, Elf64_Shdr
*sechdrs
,
229 __le32
*place
, u64 val
)
233 if (!is_forbidden_offset_for_adrp(place
))
234 return reloc_insn_imm(RELOC_OP_PAGE
, place
, val
, 12, 21,
235 AARCH64_INSN_IMM_ADR
);
237 /* patch ADRP to ADR if it is in range */
238 if (!reloc_insn_imm(RELOC_OP_PREL
, place
, val
& ~0xfff, 0, 21,
239 AARCH64_INSN_IMM_ADR
)) {
240 insn
= le32_to_cpu(*place
);
243 /* out of range for ADR -> emit a veneer */
244 val
= module_emit_veneer_for_adrp(mod
, sechdrs
, place
, val
& ~0xfff);
247 insn
= aarch64_insn_gen_branch_imm((u64
)place
, val
,
248 AARCH64_INSN_BRANCH_NOLINK
);
251 *place
= cpu_to_le32(insn
);
255 int apply_relocate_add(Elf64_Shdr
*sechdrs
,
257 unsigned int symindex
,
267 Elf64_Rela
*rel
= (void *)sechdrs
[relsec
].sh_addr
;
269 for (i
= 0; i
< sechdrs
[relsec
].sh_size
/ sizeof(*rel
); i
++) {
270 /* loc corresponds to P in the AArch64 ELF document. */
271 loc
= (void *)sechdrs
[sechdrs
[relsec
].sh_info
].sh_addr
274 /* sym is the ELF symbol we're referring to. */
275 sym
= (Elf64_Sym
*)sechdrs
[symindex
].sh_addr
276 + ELF64_R_SYM(rel
[i
].r_info
);
278 /* val corresponds to (S + A) in the AArch64 ELF document. */
279 val
= sym
->st_value
+ rel
[i
].r_addend
;
281 /* Check for overflow by default. */
282 overflow_check
= true;
284 /* Perform the static relocation. */
285 switch (ELF64_R_TYPE(rel
[i
].r_info
)) {
286 /* Null relocations. */
292 /* Data relocations. */
293 case R_AARCH64_ABS64
:
294 overflow_check
= false;
295 ovf
= reloc_data(RELOC_OP_ABS
, loc
, val
, 64);
297 case R_AARCH64_ABS32
:
298 ovf
= reloc_data(RELOC_OP_ABS
, loc
, val
, 32);
300 case R_AARCH64_ABS16
:
301 ovf
= reloc_data(RELOC_OP_ABS
, loc
, val
, 16);
303 case R_AARCH64_PREL64
:
304 overflow_check
= false;
305 ovf
= reloc_data(RELOC_OP_PREL
, loc
, val
, 64);
307 case R_AARCH64_PREL32
:
308 ovf
= reloc_data(RELOC_OP_PREL
, loc
, val
, 32);
310 case R_AARCH64_PREL16
:
311 ovf
= reloc_data(RELOC_OP_PREL
, loc
, val
, 16);
314 /* MOVW instruction relocations. */
315 case R_AARCH64_MOVW_UABS_G0_NC
:
316 overflow_check
= false;
318 case R_AARCH64_MOVW_UABS_G0
:
319 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 0,
320 AARCH64_INSN_IMM_MOVKZ
);
322 case R_AARCH64_MOVW_UABS_G1_NC
:
323 overflow_check
= false;
325 case R_AARCH64_MOVW_UABS_G1
:
326 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 16,
327 AARCH64_INSN_IMM_MOVKZ
);
329 case R_AARCH64_MOVW_UABS_G2_NC
:
330 overflow_check
= false;
332 case R_AARCH64_MOVW_UABS_G2
:
333 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 32,
334 AARCH64_INSN_IMM_MOVKZ
);
336 case R_AARCH64_MOVW_UABS_G3
:
337 /* We're using the top bits so we can't overflow. */
338 overflow_check
= false;
339 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 48,
340 AARCH64_INSN_IMM_MOVKZ
);
342 case R_AARCH64_MOVW_SABS_G0
:
343 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 0,
344 AARCH64_INSN_IMM_MOVNZ
);
346 case R_AARCH64_MOVW_SABS_G1
:
347 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 16,
348 AARCH64_INSN_IMM_MOVNZ
);
350 case R_AARCH64_MOVW_SABS_G2
:
351 ovf
= reloc_insn_movw(RELOC_OP_ABS
, loc
, val
, 32,
352 AARCH64_INSN_IMM_MOVNZ
);
354 case R_AARCH64_MOVW_PREL_G0_NC
:
355 overflow_check
= false;
356 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 0,
357 AARCH64_INSN_IMM_MOVKZ
);
359 case R_AARCH64_MOVW_PREL_G0
:
360 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 0,
361 AARCH64_INSN_IMM_MOVNZ
);
363 case R_AARCH64_MOVW_PREL_G1_NC
:
364 overflow_check
= false;
365 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 16,
366 AARCH64_INSN_IMM_MOVKZ
);
368 case R_AARCH64_MOVW_PREL_G1
:
369 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 16,
370 AARCH64_INSN_IMM_MOVNZ
);
372 case R_AARCH64_MOVW_PREL_G2_NC
:
373 overflow_check
= false;
374 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 32,
375 AARCH64_INSN_IMM_MOVKZ
);
377 case R_AARCH64_MOVW_PREL_G2
:
378 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 32,
379 AARCH64_INSN_IMM_MOVNZ
);
381 case R_AARCH64_MOVW_PREL_G3
:
382 /* We're using the top bits so we can't overflow. */
383 overflow_check
= false;
384 ovf
= reloc_insn_movw(RELOC_OP_PREL
, loc
, val
, 48,
385 AARCH64_INSN_IMM_MOVNZ
);
388 /* Immediate instruction relocations. */
389 case R_AARCH64_LD_PREL_LO19
:
390 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 19,
391 AARCH64_INSN_IMM_19
);
393 case R_AARCH64_ADR_PREL_LO21
:
394 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 0, 21,
395 AARCH64_INSN_IMM_ADR
);
397 case R_AARCH64_ADR_PREL_PG_HI21_NC
:
398 overflow_check
= false;
400 case R_AARCH64_ADR_PREL_PG_HI21
:
401 ovf
= reloc_insn_adrp(me
, sechdrs
, loc
, val
);
402 if (ovf
&& ovf
!= -ERANGE
)
405 case R_AARCH64_ADD_ABS_LO12_NC
:
406 case R_AARCH64_LDST8_ABS_LO12_NC
:
407 overflow_check
= false;
408 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 0, 12,
409 AARCH64_INSN_IMM_12
);
411 case R_AARCH64_LDST16_ABS_LO12_NC
:
412 overflow_check
= false;
413 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 1, 11,
414 AARCH64_INSN_IMM_12
);
416 case R_AARCH64_LDST32_ABS_LO12_NC
:
417 overflow_check
= false;
418 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 2, 10,
419 AARCH64_INSN_IMM_12
);
421 case R_AARCH64_LDST64_ABS_LO12_NC
:
422 overflow_check
= false;
423 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 3, 9,
424 AARCH64_INSN_IMM_12
);
426 case R_AARCH64_LDST128_ABS_LO12_NC
:
427 overflow_check
= false;
428 ovf
= reloc_insn_imm(RELOC_OP_ABS
, loc
, val
, 4, 8,
429 AARCH64_INSN_IMM_12
);
431 case R_AARCH64_TSTBR14
:
432 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 14,
433 AARCH64_INSN_IMM_14
);
435 case R_AARCH64_CONDBR19
:
436 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 19,
437 AARCH64_INSN_IMM_19
);
439 case R_AARCH64_JUMP26
:
440 case R_AARCH64_CALL26
:
441 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2, 26,
442 AARCH64_INSN_IMM_26
);
444 if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS
) &&
446 val
= module_emit_plt_entry(me
, sechdrs
, loc
, &rel
[i
], sym
);
449 ovf
= reloc_insn_imm(RELOC_OP_PREL
, loc
, val
, 2,
450 26, AARCH64_INSN_IMM_26
);
455 pr_err("module %s: unsupported RELA relocation: %llu\n",
456 me
->name
, ELF64_R_TYPE(rel
[i
].r_info
));
460 if (overflow_check
&& ovf
== -ERANGE
)
468 pr_err("module %s: overflow in relocation type %d val %Lx\n",
469 me
->name
, (int)ELF64_R_TYPE(rel
[i
].r_info
), val
);
473 int module_finalize(const Elf_Ehdr
*hdr
,
474 const Elf_Shdr
*sechdrs
,
477 const Elf_Shdr
*s
, *se
;
478 const char *secstrs
= (void *)hdr
+ sechdrs
[hdr
->e_shstrndx
].sh_offset
;
480 for (s
= sechdrs
, se
= sechdrs
+ hdr
->e_shnum
; s
< se
; s
++) {
481 if (strcmp(".altinstructions", secstrs
+ s
->sh_name
) == 0)
482 apply_alternatives_module((void *)s
->sh_addr
, s
->sh_size
);
483 #ifdef CONFIG_ARM64_MODULE_PLTS
484 if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE
) &&
485 !strcmp(".text.ftrace_trampoline", secstrs
+ s
->sh_name
))
486 me
->arch
.ftrace_trampoline
= (void *)s
->sh_addr
;