staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / arm64 / kernel / probes / kprobes.c
blobc4452827419b0b4d947fb92c8bd2d281fc5d825e
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * arch/arm64/kernel/probes/kprobes.c
5 * Kprobes support for ARM64
7 * Copyright (C) 2013 Linaro Limited.
8 * Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
9 */
10 #include <linux/kasan.h>
11 #include <linux/kernel.h>
12 #include <linux/kprobes.h>
13 #include <linux/extable.h>
14 #include <linux/slab.h>
15 #include <linux/stop_machine.h>
16 #include <linux/sched/debug.h>
17 #include <linux/set_memory.h>
18 #include <linux/stringify.h>
19 #include <linux/vmalloc.h>
20 #include <asm/traps.h>
21 #include <asm/ptrace.h>
22 #include <asm/cacheflush.h>
23 #include <asm/debug-monitors.h>
24 #include <asm/daifflags.h>
25 #include <asm/system_misc.h>
26 #include <asm/insn.h>
27 #include <linux/uaccess.h>
28 #include <asm/irq.h>
29 #include <asm/sections.h>
31 #include "decode-insn.h"
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
36 static void __kprobes
37 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
39 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
41 void *addrs[1];
42 u32 insns[1];
44 addrs[0] = addr;
45 insns[0] = opcode;
47 return aarch64_insn_patch_text(addrs, insns, 1);
50 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
52 /* prepare insn slot */
53 patch_text(p->ainsn.api.insn, p->opcode);
55 flush_icache_range((uintptr_t) (p->ainsn.api.insn),
56 (uintptr_t) (p->ainsn.api.insn) +
57 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
60 * Needs restoring of return address after stepping xol.
62 p->ainsn.api.restore = (unsigned long) p->addr +
63 sizeof(kprobe_opcode_t);
66 static void __kprobes arch_prepare_simulate(struct kprobe *p)
68 /* This instructions is not executed xol. No need to adjust the PC */
69 p->ainsn.api.restore = 0;
72 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
74 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
76 if (p->ainsn.api.handler)
77 p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
79 /* single step simulated, now go for post processing */
80 post_kprobe_handler(kcb, regs);
83 int __kprobes arch_prepare_kprobe(struct kprobe *p)
85 unsigned long probe_addr = (unsigned long)p->addr;
87 if (probe_addr & 0x3)
88 return -EINVAL;
90 /* copy instruction */
91 p->opcode = le32_to_cpu(*p->addr);
93 if (search_exception_tables(probe_addr))
94 return -EINVAL;
96 /* decode instruction */
97 switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
98 case INSN_REJECTED: /* insn not supported */
99 return -EINVAL;
101 case INSN_GOOD_NO_SLOT: /* insn need simulation */
102 p->ainsn.api.insn = NULL;
103 break;
105 case INSN_GOOD: /* instruction uses slot */
106 p->ainsn.api.insn = get_insn_slot();
107 if (!p->ainsn.api.insn)
108 return -ENOMEM;
109 break;
112 /* prepare the instruction */
113 if (p->ainsn.api.insn)
114 arch_prepare_ss_slot(p);
115 else
116 arch_prepare_simulate(p);
118 return 0;
121 void *alloc_insn_page(void)
123 void *page;
125 page = vmalloc_exec(PAGE_SIZE);
126 if (page) {
127 set_memory_ro((unsigned long)page, 1);
128 set_vm_flush_reset_perms(page);
131 return page;
134 /* arm kprobe: install breakpoint in text */
135 void __kprobes arch_arm_kprobe(struct kprobe *p)
137 patch_text(p->addr, BRK64_OPCODE_KPROBES);
140 /* disarm kprobe: remove breakpoint from text */
141 void __kprobes arch_disarm_kprobe(struct kprobe *p)
143 patch_text(p->addr, p->opcode);
146 void __kprobes arch_remove_kprobe(struct kprobe *p)
148 if (p->ainsn.api.insn) {
149 free_insn_slot(p->ainsn.api.insn, 0);
150 p->ainsn.api.insn = NULL;
154 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
156 kcb->prev_kprobe.kp = kprobe_running();
157 kcb->prev_kprobe.status = kcb->kprobe_status;
160 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
162 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
163 kcb->kprobe_status = kcb->prev_kprobe.status;
166 static void __kprobes set_current_kprobe(struct kprobe *p)
168 __this_cpu_write(current_kprobe, p);
172 * Interrupts need to be disabled before single-step mode is set, and not
173 * reenabled until after single-step mode ends.
174 * Without disabling interrupt on local CPU, there is a chance of
175 * interrupt occurrence in the period of exception return and start of
176 * out-of-line single-step, that result in wrongly single stepping
177 * into the interrupt handler.
179 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
180 struct pt_regs *regs)
182 kcb->saved_irqflag = regs->pstate & DAIF_MASK;
183 regs->pstate |= PSR_I_BIT;
184 /* Unmask PSTATE.D for enabling software step exceptions. */
185 regs->pstate &= ~PSR_D_BIT;
188 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
189 struct pt_regs *regs)
191 regs->pstate &= ~DAIF_MASK;
192 regs->pstate |= kcb->saved_irqflag;
195 static void __kprobes
196 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
198 kcb->ss_ctx.ss_pending = true;
199 kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
202 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
204 kcb->ss_ctx.ss_pending = false;
205 kcb->ss_ctx.match_addr = 0;
208 static void __kprobes setup_singlestep(struct kprobe *p,
209 struct pt_regs *regs,
210 struct kprobe_ctlblk *kcb, int reenter)
212 unsigned long slot;
214 if (reenter) {
215 save_previous_kprobe(kcb);
216 set_current_kprobe(p);
217 kcb->kprobe_status = KPROBE_REENTER;
218 } else {
219 kcb->kprobe_status = KPROBE_HIT_SS;
223 if (p->ainsn.api.insn) {
224 /* prepare for single stepping */
225 slot = (unsigned long)p->ainsn.api.insn;
227 set_ss_context(kcb, slot); /* mark pending ss */
229 /* IRQs and single stepping do not mix well. */
230 kprobes_save_local_irqflag(kcb, regs);
231 kernel_enable_single_step(regs);
232 instruction_pointer_set(regs, slot);
233 } else {
234 /* insn simulation */
235 arch_simulate_insn(p, regs);
239 static int __kprobes reenter_kprobe(struct kprobe *p,
240 struct pt_regs *regs,
241 struct kprobe_ctlblk *kcb)
243 switch (kcb->kprobe_status) {
244 case KPROBE_HIT_SSDONE:
245 case KPROBE_HIT_ACTIVE:
246 kprobes_inc_nmissed_count(p);
247 setup_singlestep(p, regs, kcb, 1);
248 break;
249 case KPROBE_HIT_SS:
250 case KPROBE_REENTER:
251 pr_warn("Unrecoverable kprobe detected.\n");
252 dump_kprobe(p);
253 BUG();
254 break;
255 default:
256 WARN_ON(1);
257 return 0;
260 return 1;
263 static void __kprobes
264 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
266 struct kprobe *cur = kprobe_running();
268 if (!cur)
269 return;
271 /* return addr restore if non-branching insn */
272 if (cur->ainsn.api.restore != 0)
273 instruction_pointer_set(regs, cur->ainsn.api.restore);
275 /* restore back original saved kprobe variables and continue */
276 if (kcb->kprobe_status == KPROBE_REENTER) {
277 restore_previous_kprobe(kcb);
278 return;
280 /* call post handler */
281 kcb->kprobe_status = KPROBE_HIT_SSDONE;
282 if (cur->post_handler) {
283 /* post_handler can hit breakpoint and single step
284 * again, so we enable D-flag for recursive exception.
286 cur->post_handler(cur, regs, 0);
289 reset_current_kprobe();
292 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
294 struct kprobe *cur = kprobe_running();
295 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
297 switch (kcb->kprobe_status) {
298 case KPROBE_HIT_SS:
299 case KPROBE_REENTER:
301 * We are here because the instruction being single
302 * stepped caused a page fault. We reset the current
303 * kprobe and the ip points back to the probe address
304 * and allow the page fault handler to continue as a
305 * normal page fault.
307 instruction_pointer_set(regs, (unsigned long) cur->addr);
308 if (!instruction_pointer(regs))
309 BUG();
311 kernel_disable_single_step();
313 if (kcb->kprobe_status == KPROBE_REENTER)
314 restore_previous_kprobe(kcb);
315 else
316 reset_current_kprobe();
318 break;
319 case KPROBE_HIT_ACTIVE:
320 case KPROBE_HIT_SSDONE:
322 * We increment the nmissed count for accounting,
323 * we can also use npre/npostfault count for accounting
324 * these specific fault cases.
326 kprobes_inc_nmissed_count(cur);
329 * We come here because instructions in the pre/post
330 * handler caused the page_fault, this could happen
331 * if handler tries to access user space by
332 * copy_from_user(), get_user() etc. Let the
333 * user-specified handler try to fix it first.
335 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
336 return 1;
339 * In case the user-specified fault handler returned
340 * zero, try to fix up.
342 if (fixup_exception(regs))
343 return 1;
345 return 0;
348 static void __kprobes kprobe_handler(struct pt_regs *regs)
350 struct kprobe *p, *cur_kprobe;
351 struct kprobe_ctlblk *kcb;
352 unsigned long addr = instruction_pointer(regs);
354 kcb = get_kprobe_ctlblk();
355 cur_kprobe = kprobe_running();
357 p = get_kprobe((kprobe_opcode_t *) addr);
359 if (p) {
360 if (cur_kprobe) {
361 if (reenter_kprobe(p, regs, kcb))
362 return;
363 } else {
364 /* Probe hit */
365 set_current_kprobe(p);
366 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
369 * If we have no pre-handler or it returned 0, we
370 * continue with normal processing. If we have a
371 * pre-handler and it returned non-zero, it will
372 * modify the execution path and no need to single
373 * stepping. Let's just reset current kprobe and exit.
375 * pre_handler can hit a breakpoint and can step thru
376 * before return, keep PSTATE D-flag enabled until
377 * pre_handler return back.
379 if (!p->pre_handler || !p->pre_handler(p, regs)) {
380 setup_singlestep(p, regs, kcb, 0);
381 } else
382 reset_current_kprobe();
386 * The breakpoint instruction was removed right
387 * after we hit it. Another cpu has removed
388 * either a probepoint or a debugger breakpoint
389 * at this address. In either case, no further
390 * handling of this interrupt is appropriate.
391 * Return back to original instruction, and continue.
395 static int __kprobes
396 kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
398 if ((kcb->ss_ctx.ss_pending)
399 && (kcb->ss_ctx.match_addr == addr)) {
400 clear_ss_context(kcb); /* clear pending ss */
401 return DBG_HOOK_HANDLED;
403 /* not ours, kprobes should ignore it */
404 return DBG_HOOK_ERROR;
407 static int __kprobes
408 kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
410 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
411 int retval;
413 /* return error if this is not our step */
414 retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
416 if (retval == DBG_HOOK_HANDLED) {
417 kprobes_restore_local_irqflag(kcb, regs);
418 kernel_disable_single_step();
420 post_kprobe_handler(kcb, regs);
423 return retval;
426 static struct step_hook kprobes_step_hook = {
427 .fn = kprobe_single_step_handler,
430 static int __kprobes
431 kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
433 kprobe_handler(regs);
434 return DBG_HOOK_HANDLED;
437 static struct break_hook kprobes_break_hook = {
438 .imm = KPROBES_BRK_IMM,
439 .fn = kprobe_breakpoint_handler,
443 * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
444 * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
446 int __init arch_populate_kprobe_blacklist(void)
448 int ret;
450 ret = kprobe_add_area_blacklist((unsigned long)__entry_text_start,
451 (unsigned long)__entry_text_end);
452 if (ret)
453 return ret;
454 ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
455 (unsigned long)__irqentry_text_end);
456 if (ret)
457 return ret;
458 ret = kprobe_add_area_blacklist((unsigned long)__exception_text_start,
459 (unsigned long)__exception_text_end);
460 if (ret)
461 return ret;
462 ret = kprobe_add_area_blacklist((unsigned long)__idmap_text_start,
463 (unsigned long)__idmap_text_end);
464 if (ret)
465 return ret;
466 ret = kprobe_add_area_blacklist((unsigned long)__hyp_text_start,
467 (unsigned long)__hyp_text_end);
468 if (ret || is_kernel_in_hyp_mode())
469 return ret;
470 ret = kprobe_add_area_blacklist((unsigned long)__hyp_idmap_text_start,
471 (unsigned long)__hyp_idmap_text_end);
472 return ret;
475 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
477 struct kretprobe_instance *ri = NULL;
478 struct hlist_head *head, empty_rp;
479 struct hlist_node *tmp;
480 unsigned long flags, orig_ret_address = 0;
481 unsigned long trampoline_address =
482 (unsigned long)&kretprobe_trampoline;
483 kprobe_opcode_t *correct_ret_addr = NULL;
485 INIT_HLIST_HEAD(&empty_rp);
486 kretprobe_hash_lock(current, &head, &flags);
489 * It is possible to have multiple instances associated with a given
490 * task either because multiple functions in the call path have
491 * return probes installed on them, and/or more than one
492 * return probe was registered for a target function.
494 * We can handle this because:
495 * - instances are always pushed into the head of the list
496 * - when multiple return probes are registered for the same
497 * function, the (chronologically) first instance's ret_addr
498 * will be the real return address, and all the rest will
499 * point to kretprobe_trampoline.
501 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
502 if (ri->task != current)
503 /* another task is sharing our hash bucket */
504 continue;
506 orig_ret_address = (unsigned long)ri->ret_addr;
508 if (orig_ret_address != trampoline_address)
510 * This is the real return address. Any other
511 * instances associated with this task are for
512 * other calls deeper on the call stack
514 break;
517 kretprobe_assert(ri, orig_ret_address, trampoline_address);
519 correct_ret_addr = ri->ret_addr;
520 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
521 if (ri->task != current)
522 /* another task is sharing our hash bucket */
523 continue;
525 orig_ret_address = (unsigned long)ri->ret_addr;
526 if (ri->rp && ri->rp->handler) {
527 __this_cpu_write(current_kprobe, &ri->rp->kp);
528 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
529 ri->ret_addr = correct_ret_addr;
530 ri->rp->handler(ri, regs);
531 __this_cpu_write(current_kprobe, NULL);
534 recycle_rp_inst(ri, &empty_rp);
536 if (orig_ret_address != trampoline_address)
538 * This is the real return address. Any other
539 * instances associated with this task are for
540 * other calls deeper on the call stack
542 break;
545 kretprobe_hash_unlock(current, &flags);
547 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
548 hlist_del(&ri->hlist);
549 kfree(ri);
551 return (void *)orig_ret_address;
554 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
555 struct pt_regs *regs)
557 ri->ret_addr = (kprobe_opcode_t *)regs->regs[30];
559 /* replace return addr (x30) with trampoline */
560 regs->regs[30] = (long)&kretprobe_trampoline;
563 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
565 return 0;
568 int __init arch_init_kprobes(void)
570 register_kernel_break_hook(&kprobes_break_hook);
571 register_kernel_step_hook(&kprobes_step_hook);
573 return 0;