staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / arm64 / kernel / smp.c
blob018a33e01b0ed2fdac2997b34d6065979bc343e1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * SMP initialisation and IPI support
4 * Based on arch/arm/kernel/smp.c
6 * Copyright (C) 2012 ARM Ltd.
7 */
9 #include <linux/acpi.h>
10 #include <linux/arm_sdei.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/smp.h>
25 #include <linux/seq_file.h>
26 #include <linux/irq.h>
27 #include <linux/irqchip/arm-gic-v3.h>
28 #include <linux/percpu.h>
29 #include <linux/clockchips.h>
30 #include <linux/completion.h>
31 #include <linux/of.h>
32 #include <linux/irq_work.h>
33 #include <linux/kexec.h>
35 #include <asm/alternative.h>
36 #include <asm/atomic.h>
37 #include <asm/cacheflush.h>
38 #include <asm/cpu.h>
39 #include <asm/cputype.h>
40 #include <asm/cpu_ops.h>
41 #include <asm/daifflags.h>
42 #include <asm/mmu_context.h>
43 #include <asm/numa.h>
44 #include <asm/pgtable.h>
45 #include <asm/pgalloc.h>
46 #include <asm/processor.h>
47 #include <asm/smp_plat.h>
48 #include <asm/sections.h>
49 #include <asm/tlbflush.h>
50 #include <asm/ptrace.h>
51 #include <asm/virt.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/ipi.h>
56 DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
57 EXPORT_PER_CPU_SYMBOL(cpu_number);
60 * as from 2.5, kernels no longer have an init_tasks structure
61 * so we need some other way of telling a new secondary core
62 * where to place its SVC stack
64 struct secondary_data secondary_data;
65 /* Number of CPUs which aren't online, but looping in kernel text. */
66 int cpus_stuck_in_kernel;
68 enum ipi_msg_type {
69 IPI_RESCHEDULE,
70 IPI_CALL_FUNC,
71 IPI_CPU_STOP,
72 IPI_CPU_CRASH_STOP,
73 IPI_TIMER,
74 IPI_IRQ_WORK,
75 IPI_WAKEUP
78 #ifdef CONFIG_HOTPLUG_CPU
79 static int op_cpu_kill(unsigned int cpu);
80 #else
81 static inline int op_cpu_kill(unsigned int cpu)
83 return -ENOSYS;
85 #endif
89 * Boot a secondary CPU, and assign it the specified idle task.
90 * This also gives us the initial stack to use for this CPU.
92 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
94 if (cpu_ops[cpu]->cpu_boot)
95 return cpu_ops[cpu]->cpu_boot(cpu);
97 return -EOPNOTSUPP;
100 static DECLARE_COMPLETION(cpu_running);
102 int __cpu_up(unsigned int cpu, struct task_struct *idle)
104 int ret;
105 long status;
108 * We need to tell the secondary core where to find its stack and the
109 * page tables.
111 secondary_data.task = idle;
112 secondary_data.stack = task_stack_page(idle) + THREAD_SIZE;
113 update_cpu_boot_status(CPU_MMU_OFF);
114 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
117 * Now bring the CPU into our world.
119 ret = boot_secondary(cpu, idle);
120 if (ret == 0) {
122 * CPU was successfully started, wait for it to come online or
123 * time out.
125 wait_for_completion_timeout(&cpu_running,
126 msecs_to_jiffies(1000));
128 if (!cpu_online(cpu)) {
129 pr_crit("CPU%u: failed to come online\n", cpu);
130 ret = -EIO;
132 } else {
133 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
134 return ret;
137 secondary_data.task = NULL;
138 secondary_data.stack = NULL;
139 status = READ_ONCE(secondary_data.status);
140 if (ret && status) {
142 if (status == CPU_MMU_OFF)
143 status = READ_ONCE(__early_cpu_boot_status);
145 switch (status & CPU_BOOT_STATUS_MASK) {
146 default:
147 pr_err("CPU%u: failed in unknown state : 0x%lx\n",
148 cpu, status);
149 break;
150 case CPU_KILL_ME:
151 if (!op_cpu_kill(cpu)) {
152 pr_crit("CPU%u: died during early boot\n", cpu);
153 break;
155 pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
156 /* Fall through */
157 case CPU_STUCK_IN_KERNEL:
158 pr_crit("CPU%u: is stuck in kernel\n", cpu);
159 if (status & CPU_STUCK_REASON_52_BIT_VA)
160 pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
161 if (status & CPU_STUCK_REASON_NO_GRAN)
162 pr_crit("CPU%u: does not support %luK granule \n", cpu, PAGE_SIZE / SZ_1K);
163 cpus_stuck_in_kernel++;
164 break;
165 case CPU_PANIC_KERNEL:
166 panic("CPU%u detected unsupported configuration\n", cpu);
170 return ret;
173 static void init_gic_priority_masking(void)
175 u32 cpuflags;
177 if (WARN_ON(!gic_enable_sre()))
178 return;
180 cpuflags = read_sysreg(daif);
182 WARN_ON(!(cpuflags & PSR_I_BIT));
184 gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
188 * This is the secondary CPU boot entry. We're using this CPUs
189 * idle thread stack, but a set of temporary page tables.
191 asmlinkage notrace void secondary_start_kernel(void)
193 u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
194 struct mm_struct *mm = &init_mm;
195 unsigned int cpu;
197 cpu = task_cpu(current);
198 set_my_cpu_offset(per_cpu_offset(cpu));
201 * All kernel threads share the same mm context; grab a
202 * reference and switch to it.
204 mmgrab(mm);
205 current->active_mm = mm;
208 * TTBR0 is only used for the identity mapping at this stage. Make it
209 * point to zero page to avoid speculatively fetching new entries.
211 cpu_uninstall_idmap();
213 if (system_uses_irq_prio_masking())
214 init_gic_priority_masking();
216 preempt_disable();
217 trace_hardirqs_off();
220 * If the system has established the capabilities, make sure
221 * this CPU ticks all of those. If it doesn't, the CPU will
222 * fail to come online.
224 check_local_cpu_capabilities();
226 if (cpu_ops[cpu]->cpu_postboot)
227 cpu_ops[cpu]->cpu_postboot();
230 * Log the CPU info before it is marked online and might get read.
232 cpuinfo_store_cpu();
235 * Enable GIC and timers.
237 notify_cpu_starting(cpu);
239 store_cpu_topology(cpu);
240 numa_add_cpu(cpu);
243 * OK, now it's safe to let the boot CPU continue. Wait for
244 * the CPU migration code to notice that the CPU is online
245 * before we continue.
247 pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
248 cpu, (unsigned long)mpidr,
249 read_cpuid_id());
250 update_cpu_boot_status(CPU_BOOT_SUCCESS);
251 set_cpu_online(cpu, true);
252 complete(&cpu_running);
254 local_daif_restore(DAIF_PROCCTX);
257 * OK, it's off to the idle thread for us
259 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
262 #ifdef CONFIG_HOTPLUG_CPU
263 static int op_cpu_disable(unsigned int cpu)
266 * If we don't have a cpu_die method, abort before we reach the point
267 * of no return. CPU0 may not have an cpu_ops, so test for it.
269 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
270 return -EOPNOTSUPP;
273 * We may need to abort a hot unplug for some other mechanism-specific
274 * reason.
276 if (cpu_ops[cpu]->cpu_disable)
277 return cpu_ops[cpu]->cpu_disable(cpu);
279 return 0;
283 * __cpu_disable runs on the processor to be shutdown.
285 int __cpu_disable(void)
287 unsigned int cpu = smp_processor_id();
288 int ret;
290 ret = op_cpu_disable(cpu);
291 if (ret)
292 return ret;
294 remove_cpu_topology(cpu);
295 numa_remove_cpu(cpu);
298 * Take this CPU offline. Once we clear this, we can't return,
299 * and we must not schedule until we're ready to give up the cpu.
301 set_cpu_online(cpu, false);
304 * OK - migrate IRQs away from this CPU
306 irq_migrate_all_off_this_cpu();
308 return 0;
311 static int op_cpu_kill(unsigned int cpu)
314 * If we have no means of synchronising with the dying CPU, then assume
315 * that it is really dead. We can only wait for an arbitrary length of
316 * time and hope that it's dead, so let's skip the wait and just hope.
318 if (!cpu_ops[cpu]->cpu_kill)
319 return 0;
321 return cpu_ops[cpu]->cpu_kill(cpu);
325 * called on the thread which is asking for a CPU to be shutdown -
326 * waits until shutdown has completed, or it is timed out.
328 void __cpu_die(unsigned int cpu)
330 int err;
332 if (!cpu_wait_death(cpu, 5)) {
333 pr_crit("CPU%u: cpu didn't die\n", cpu);
334 return;
336 pr_notice("CPU%u: shutdown\n", cpu);
339 * Now that the dying CPU is beyond the point of no return w.r.t.
340 * in-kernel synchronisation, try to get the firwmare to help us to
341 * verify that it has really left the kernel before we consider
342 * clobbering anything it might still be using.
344 err = op_cpu_kill(cpu);
345 if (err)
346 pr_warn("CPU%d may not have shut down cleanly: %d\n",
347 cpu, err);
351 * Called from the idle thread for the CPU which has been shutdown.
354 void cpu_die(void)
356 unsigned int cpu = smp_processor_id();
358 idle_task_exit();
360 local_daif_mask();
362 /* Tell __cpu_die() that this CPU is now safe to dispose of */
363 (void)cpu_report_death();
366 * Actually shutdown the CPU. This must never fail. The specific hotplug
367 * mechanism must perform all required cache maintenance to ensure that
368 * no dirty lines are lost in the process of shutting down the CPU.
370 cpu_ops[cpu]->cpu_die(cpu);
372 BUG();
374 #endif
377 * Kill the calling secondary CPU, early in bringup before it is turned
378 * online.
380 void cpu_die_early(void)
382 int cpu = smp_processor_id();
384 pr_crit("CPU%d: will not boot\n", cpu);
386 /* Mark this CPU absent */
387 set_cpu_present(cpu, 0);
389 #ifdef CONFIG_HOTPLUG_CPU
390 update_cpu_boot_status(CPU_KILL_ME);
391 /* Check if we can park ourselves */
392 if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
393 cpu_ops[cpu]->cpu_die(cpu);
394 #endif
395 update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
397 cpu_park_loop();
400 static void __init hyp_mode_check(void)
402 if (is_hyp_mode_available())
403 pr_info("CPU: All CPU(s) started at EL2\n");
404 else if (is_hyp_mode_mismatched())
405 WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
406 "CPU: CPUs started in inconsistent modes");
407 else
408 pr_info("CPU: All CPU(s) started at EL1\n");
411 void __init smp_cpus_done(unsigned int max_cpus)
413 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
414 setup_cpu_features();
415 hyp_mode_check();
416 apply_alternatives_all();
417 mark_linear_text_alias_ro();
420 void __init smp_prepare_boot_cpu(void)
422 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
423 cpuinfo_store_boot_cpu();
426 * We now know enough about the boot CPU to apply the
427 * alternatives that cannot wait until interrupt handling
428 * and/or scheduling is enabled.
430 apply_boot_alternatives();
432 /* Conditionally switch to GIC PMR for interrupt masking */
433 if (system_uses_irq_prio_masking())
434 init_gic_priority_masking();
437 static u64 __init of_get_cpu_mpidr(struct device_node *dn)
439 const __be32 *cell;
440 u64 hwid;
443 * A cpu node with missing "reg" property is
444 * considered invalid to build a cpu_logical_map
445 * entry.
447 cell = of_get_property(dn, "reg", NULL);
448 if (!cell) {
449 pr_err("%pOF: missing reg property\n", dn);
450 return INVALID_HWID;
453 hwid = of_read_number(cell, of_n_addr_cells(dn));
455 * Non affinity bits must be set to 0 in the DT
457 if (hwid & ~MPIDR_HWID_BITMASK) {
458 pr_err("%pOF: invalid reg property\n", dn);
459 return INVALID_HWID;
461 return hwid;
465 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
466 * entries and check for duplicates. If any is found just ignore the
467 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
468 * matching valid MPIDR values.
470 static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
472 unsigned int i;
474 for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
475 if (cpu_logical_map(i) == hwid)
476 return true;
477 return false;
481 * Initialize cpu operations for a logical cpu and
482 * set it in the possible mask on success
484 static int __init smp_cpu_setup(int cpu)
486 if (cpu_read_ops(cpu))
487 return -ENODEV;
489 if (cpu_ops[cpu]->cpu_init(cpu))
490 return -ENODEV;
492 set_cpu_possible(cpu, true);
494 return 0;
497 static bool bootcpu_valid __initdata;
498 static unsigned int cpu_count = 1;
500 #ifdef CONFIG_ACPI
501 static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
503 struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
505 return &cpu_madt_gicc[cpu];
509 * acpi_map_gic_cpu_interface - parse processor MADT entry
511 * Carry out sanity checks on MADT processor entry and initialize
512 * cpu_logical_map on success
514 static void __init
515 acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
517 u64 hwid = processor->arm_mpidr;
519 if (!(processor->flags & ACPI_MADT_ENABLED)) {
520 pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
521 return;
524 if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
525 pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
526 return;
529 if (is_mpidr_duplicate(cpu_count, hwid)) {
530 pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
531 return;
534 /* Check if GICC structure of boot CPU is available in the MADT */
535 if (cpu_logical_map(0) == hwid) {
536 if (bootcpu_valid) {
537 pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
538 hwid);
539 return;
541 bootcpu_valid = true;
542 cpu_madt_gicc[0] = *processor;
543 return;
546 if (cpu_count >= NR_CPUS)
547 return;
549 /* map the logical cpu id to cpu MPIDR */
550 cpu_logical_map(cpu_count) = hwid;
552 cpu_madt_gicc[cpu_count] = *processor;
555 * Set-up the ACPI parking protocol cpu entries
556 * while initializing the cpu_logical_map to
557 * avoid parsing MADT entries multiple times for
558 * nothing (ie a valid cpu_logical_map entry should
559 * contain a valid parking protocol data set to
560 * initialize the cpu if the parking protocol is
561 * the only available enable method).
563 acpi_set_mailbox_entry(cpu_count, processor);
565 cpu_count++;
568 static int __init
569 acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
570 const unsigned long end)
572 struct acpi_madt_generic_interrupt *processor;
574 processor = (struct acpi_madt_generic_interrupt *)header;
575 if (BAD_MADT_GICC_ENTRY(processor, end))
576 return -EINVAL;
578 acpi_table_print_madt_entry(&header->common);
580 acpi_map_gic_cpu_interface(processor);
582 return 0;
585 static void __init acpi_parse_and_init_cpus(void)
587 int i;
590 * do a walk of MADT to determine how many CPUs
591 * we have including disabled CPUs, and get information
592 * we need for SMP init.
594 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
595 acpi_parse_gic_cpu_interface, 0);
598 * In ACPI, SMP and CPU NUMA information is provided in separate
599 * static tables, namely the MADT and the SRAT.
601 * Thus, it is simpler to first create the cpu logical map through
602 * an MADT walk and then map the logical cpus to their node ids
603 * as separate steps.
605 acpi_map_cpus_to_nodes();
607 for (i = 0; i < nr_cpu_ids; i++)
608 early_map_cpu_to_node(i, acpi_numa_get_nid(i));
610 #else
611 #define acpi_parse_and_init_cpus(...) do { } while (0)
612 #endif
615 * Enumerate the possible CPU set from the device tree and build the
616 * cpu logical map array containing MPIDR values related to logical
617 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
619 static void __init of_parse_and_init_cpus(void)
621 struct device_node *dn;
623 for_each_of_cpu_node(dn) {
624 u64 hwid = of_get_cpu_mpidr(dn);
626 if (hwid == INVALID_HWID)
627 goto next;
629 if (is_mpidr_duplicate(cpu_count, hwid)) {
630 pr_err("%pOF: duplicate cpu reg properties in the DT\n",
631 dn);
632 goto next;
636 * The numbering scheme requires that the boot CPU
637 * must be assigned logical id 0. Record it so that
638 * the logical map built from DT is validated and can
639 * be used.
641 if (hwid == cpu_logical_map(0)) {
642 if (bootcpu_valid) {
643 pr_err("%pOF: duplicate boot cpu reg property in DT\n",
644 dn);
645 goto next;
648 bootcpu_valid = true;
649 early_map_cpu_to_node(0, of_node_to_nid(dn));
652 * cpu_logical_map has already been
653 * initialized and the boot cpu doesn't need
654 * the enable-method so continue without
655 * incrementing cpu.
657 continue;
660 if (cpu_count >= NR_CPUS)
661 goto next;
663 pr_debug("cpu logical map 0x%llx\n", hwid);
664 cpu_logical_map(cpu_count) = hwid;
666 early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
667 next:
668 cpu_count++;
673 * Enumerate the possible CPU set from the device tree or ACPI and build the
674 * cpu logical map array containing MPIDR values related to logical
675 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
677 void __init smp_init_cpus(void)
679 int i;
681 if (acpi_disabled)
682 of_parse_and_init_cpus();
683 else
684 acpi_parse_and_init_cpus();
686 if (cpu_count > nr_cpu_ids)
687 pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
688 cpu_count, nr_cpu_ids);
690 if (!bootcpu_valid) {
691 pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
692 return;
696 * We need to set the cpu_logical_map entries before enabling
697 * the cpus so that cpu processor description entries (DT cpu nodes
698 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
699 * with entries in cpu_logical_map while initializing the cpus.
700 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
702 for (i = 1; i < nr_cpu_ids; i++) {
703 if (cpu_logical_map(i) != INVALID_HWID) {
704 if (smp_cpu_setup(i))
705 cpu_logical_map(i) = INVALID_HWID;
710 void __init smp_prepare_cpus(unsigned int max_cpus)
712 int err;
713 unsigned int cpu;
714 unsigned int this_cpu;
716 init_cpu_topology();
718 this_cpu = smp_processor_id();
719 store_cpu_topology(this_cpu);
720 numa_store_cpu_info(this_cpu);
721 numa_add_cpu(this_cpu);
724 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
725 * secondary CPUs present.
727 if (max_cpus == 0)
728 return;
731 * Initialise the present map (which describes the set of CPUs
732 * actually populated at the present time) and release the
733 * secondaries from the bootloader.
735 for_each_possible_cpu(cpu) {
737 per_cpu(cpu_number, cpu) = cpu;
739 if (cpu == smp_processor_id())
740 continue;
742 if (!cpu_ops[cpu])
743 continue;
745 err = cpu_ops[cpu]->cpu_prepare(cpu);
746 if (err)
747 continue;
749 set_cpu_present(cpu, true);
750 numa_store_cpu_info(cpu);
754 void (*__smp_cross_call)(const struct cpumask *, unsigned int);
756 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
758 __smp_cross_call = fn;
761 static const char *ipi_types[NR_IPI] __tracepoint_string = {
762 #define S(x,s) [x] = s
763 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
764 S(IPI_CALL_FUNC, "Function call interrupts"),
765 S(IPI_CPU_STOP, "CPU stop interrupts"),
766 S(IPI_CPU_CRASH_STOP, "CPU stop (for crash dump) interrupts"),
767 S(IPI_TIMER, "Timer broadcast interrupts"),
768 S(IPI_IRQ_WORK, "IRQ work interrupts"),
769 S(IPI_WAKEUP, "CPU wake-up interrupts"),
772 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
774 trace_ipi_raise(target, ipi_types[ipinr]);
775 __smp_cross_call(target, ipinr);
778 void show_ipi_list(struct seq_file *p, int prec)
780 unsigned int cpu, i;
782 for (i = 0; i < NR_IPI; i++) {
783 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
784 prec >= 4 ? " " : "");
785 for_each_online_cpu(cpu)
786 seq_printf(p, "%10u ",
787 __get_irq_stat(cpu, ipi_irqs[i]));
788 seq_printf(p, " %s\n", ipi_types[i]);
792 u64 smp_irq_stat_cpu(unsigned int cpu)
794 u64 sum = 0;
795 int i;
797 for (i = 0; i < NR_IPI; i++)
798 sum += __get_irq_stat(cpu, ipi_irqs[i]);
800 return sum;
803 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
805 smp_cross_call(mask, IPI_CALL_FUNC);
808 void arch_send_call_function_single_ipi(int cpu)
810 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
813 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
814 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
816 smp_cross_call(mask, IPI_WAKEUP);
818 #endif
820 #ifdef CONFIG_IRQ_WORK
821 void arch_irq_work_raise(void)
823 if (__smp_cross_call)
824 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
826 #endif
828 static void local_cpu_stop(void)
830 set_cpu_online(smp_processor_id(), false);
832 local_daif_mask();
833 sdei_mask_local_cpu();
834 cpu_park_loop();
838 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
839 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
840 * CPUs that have already stopped themselves.
842 void panic_smp_self_stop(void)
844 local_cpu_stop();
847 #ifdef CONFIG_KEXEC_CORE
848 static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
849 #endif
851 static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
853 #ifdef CONFIG_KEXEC_CORE
854 crash_save_cpu(regs, cpu);
856 atomic_dec(&waiting_for_crash_ipi);
858 local_irq_disable();
859 sdei_mask_local_cpu();
861 #ifdef CONFIG_HOTPLUG_CPU
862 if (cpu_ops[cpu]->cpu_die)
863 cpu_ops[cpu]->cpu_die(cpu);
864 #endif
866 /* just in case */
867 cpu_park_loop();
868 #endif
872 * Main handler for inter-processor interrupts
874 void handle_IPI(int ipinr, struct pt_regs *regs)
876 unsigned int cpu = smp_processor_id();
877 struct pt_regs *old_regs = set_irq_regs(regs);
879 if ((unsigned)ipinr < NR_IPI) {
880 trace_ipi_entry_rcuidle(ipi_types[ipinr]);
881 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
884 switch (ipinr) {
885 case IPI_RESCHEDULE:
886 scheduler_ipi();
887 break;
889 case IPI_CALL_FUNC:
890 irq_enter();
891 generic_smp_call_function_interrupt();
892 irq_exit();
893 break;
895 case IPI_CPU_STOP:
896 irq_enter();
897 local_cpu_stop();
898 irq_exit();
899 break;
901 case IPI_CPU_CRASH_STOP:
902 if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
903 irq_enter();
904 ipi_cpu_crash_stop(cpu, regs);
906 unreachable();
908 break;
910 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
911 case IPI_TIMER:
912 irq_enter();
913 tick_receive_broadcast();
914 irq_exit();
915 break;
916 #endif
918 #ifdef CONFIG_IRQ_WORK
919 case IPI_IRQ_WORK:
920 irq_enter();
921 irq_work_run();
922 irq_exit();
923 break;
924 #endif
926 #ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
927 case IPI_WAKEUP:
928 WARN_ONCE(!acpi_parking_protocol_valid(cpu),
929 "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
930 cpu);
931 break;
932 #endif
934 default:
935 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
936 break;
939 if ((unsigned)ipinr < NR_IPI)
940 trace_ipi_exit_rcuidle(ipi_types[ipinr]);
941 set_irq_regs(old_regs);
944 void smp_send_reschedule(int cpu)
946 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
949 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
950 void tick_broadcast(const struct cpumask *mask)
952 smp_cross_call(mask, IPI_TIMER);
954 #endif
956 void smp_send_stop(void)
958 unsigned long timeout;
960 if (num_online_cpus() > 1) {
961 cpumask_t mask;
963 cpumask_copy(&mask, cpu_online_mask);
964 cpumask_clear_cpu(smp_processor_id(), &mask);
966 if (system_state <= SYSTEM_RUNNING)
967 pr_crit("SMP: stopping secondary CPUs\n");
968 smp_cross_call(&mask, IPI_CPU_STOP);
971 /* Wait up to one second for other CPUs to stop */
972 timeout = USEC_PER_SEC;
973 while (num_online_cpus() > 1 && timeout--)
974 udelay(1);
976 if (num_online_cpus() > 1)
977 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
978 cpumask_pr_args(cpu_online_mask));
980 sdei_mask_local_cpu();
983 #ifdef CONFIG_KEXEC_CORE
984 void crash_smp_send_stop(void)
986 static int cpus_stopped;
987 cpumask_t mask;
988 unsigned long timeout;
991 * This function can be called twice in panic path, but obviously
992 * we execute this only once.
994 if (cpus_stopped)
995 return;
997 cpus_stopped = 1;
999 if (num_online_cpus() == 1) {
1000 sdei_mask_local_cpu();
1001 return;
1004 cpumask_copy(&mask, cpu_online_mask);
1005 cpumask_clear_cpu(smp_processor_id(), &mask);
1007 atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1);
1009 pr_crit("SMP: stopping secondary CPUs\n");
1010 smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
1012 /* Wait up to one second for other CPUs to stop */
1013 timeout = USEC_PER_SEC;
1014 while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
1015 udelay(1);
1017 if (atomic_read(&waiting_for_crash_ipi) > 0)
1018 pr_warning("SMP: failed to stop secondary CPUs %*pbl\n",
1019 cpumask_pr_args(&mask));
1021 sdei_mask_local_cpu();
1024 bool smp_crash_stop_failed(void)
1026 return (atomic_read(&waiting_for_crash_ipi) > 0);
1028 #endif
1031 * not supported here
1033 int setup_profiling_timer(unsigned int multiplier)
1035 return -EINVAL;
1038 static bool have_cpu_die(void)
1040 #ifdef CONFIG_HOTPLUG_CPU
1041 int any_cpu = raw_smp_processor_id();
1043 if (cpu_ops[any_cpu] && cpu_ops[any_cpu]->cpu_die)
1044 return true;
1045 #endif
1046 return false;
1049 bool cpus_are_stuck_in_kernel(void)
1051 bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
1053 return !!cpus_stuck_in_kernel || smp_spin_tables;