1 // SPDX-License-Identifier: GPL-2.0-only
3 * Based on arch/arm/mm/fault.c
5 * Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1995-2004 Russell King
7 * Copyright (C) 2012 ARM Ltd.
10 #include <linux/acpi.h>
11 #include <linux/extable.h>
12 #include <linux/signal.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/highmem.h>
22 #include <linux/perf_event.h>
23 #include <linux/preempt.h>
24 #include <linux/hugetlb.h>
28 #include <asm/cmpxchg.h>
29 #include <asm/cpufeature.h>
30 #include <asm/exception.h>
31 #include <asm/daifflags.h>
32 #include <asm/debug-monitors.h>
34 #include <asm/kasan.h>
35 #include <asm/sysreg.h>
36 #include <asm/system_misc.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <asm/traps.h>
42 int (*fn
)(unsigned long addr
, unsigned int esr
,
43 struct pt_regs
*regs
);
49 static const struct fault_info fault_info
[];
50 static struct fault_info debug_fault_info
[];
52 static inline const struct fault_info
*esr_to_fault_info(unsigned int esr
)
54 return fault_info
+ (esr
& ESR_ELx_FSC
);
57 static inline const struct fault_info
*esr_to_debug_fault_info(unsigned int esr
)
59 return debug_fault_info
+ DBG_ESR_EVT(esr
);
62 static void data_abort_decode(unsigned int esr
)
64 pr_alert("Data abort info:\n");
66 if (esr
& ESR_ELx_ISV
) {
67 pr_alert(" Access size = %u byte(s)\n",
68 1U << ((esr
& ESR_ELx_SAS
) >> ESR_ELx_SAS_SHIFT
));
69 pr_alert(" SSE = %lu, SRT = %lu\n",
70 (esr
& ESR_ELx_SSE
) >> ESR_ELx_SSE_SHIFT
,
71 (esr
& ESR_ELx_SRT_MASK
) >> ESR_ELx_SRT_SHIFT
);
72 pr_alert(" SF = %lu, AR = %lu\n",
73 (esr
& ESR_ELx_SF
) >> ESR_ELx_SF_SHIFT
,
74 (esr
& ESR_ELx_AR
) >> ESR_ELx_AR_SHIFT
);
76 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr
& ESR_ELx_ISS_MASK
);
79 pr_alert(" CM = %lu, WnR = %lu\n",
80 (esr
& ESR_ELx_CM
) >> ESR_ELx_CM_SHIFT
,
81 (esr
& ESR_ELx_WNR
) >> ESR_ELx_WNR_SHIFT
);
84 static void mem_abort_decode(unsigned int esr
)
86 pr_alert("Mem abort info:\n");
88 pr_alert(" ESR = 0x%08x\n", esr
);
89 pr_alert(" Exception class = %s, IL = %u bits\n",
90 esr_get_class_string(esr
),
91 (esr
& ESR_ELx_IL
) ? 32 : 16);
92 pr_alert(" SET = %lu, FnV = %lu\n",
93 (esr
& ESR_ELx_SET_MASK
) >> ESR_ELx_SET_SHIFT
,
94 (esr
& ESR_ELx_FnV
) >> ESR_ELx_FnV_SHIFT
);
95 pr_alert(" EA = %lu, S1PTW = %lu\n",
96 (esr
& ESR_ELx_EA
) >> ESR_ELx_EA_SHIFT
,
97 (esr
& ESR_ELx_S1PTW
) >> ESR_ELx_S1PTW_SHIFT
);
99 if (esr_is_data_abort(esr
))
100 data_abort_decode(esr
);
103 static inline bool is_ttbr0_addr(unsigned long addr
)
105 /* entry assembly clears tags for TTBR0 addrs */
106 return addr
< TASK_SIZE
;
109 static inline bool is_ttbr1_addr(unsigned long addr
)
111 /* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
112 return arch_kasan_reset_tag(addr
) >= VA_START
;
116 * Dump out the page tables associated with 'addr' in the currently active mm.
118 static void show_pte(unsigned long addr
)
120 struct mm_struct
*mm
;
124 if (is_ttbr0_addr(addr
)) {
126 mm
= current
->active_mm
;
127 if (mm
== &init_mm
) {
128 pr_alert("[%016lx] user address but active_mm is swapper\n",
132 } else if (is_ttbr1_addr(addr
)) {
136 pr_alert("[%016lx] address between user and kernel address ranges\n",
141 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp=%016lx\n",
142 mm
== &init_mm
? "swapper" : "user", PAGE_SIZE
/ SZ_1K
,
143 mm
== &init_mm
? VA_BITS
: (int)vabits_user
,
144 (unsigned long)virt_to_phys(mm
->pgd
));
145 pgdp
= pgd_offset(mm
, addr
);
146 pgd
= READ_ONCE(*pgdp
);
147 pr_alert("[%016lx] pgd=%016llx", addr
, pgd_val(pgd
));
154 if (pgd_none(pgd
) || pgd_bad(pgd
))
157 pudp
= pud_offset(pgdp
, addr
);
158 pud
= READ_ONCE(*pudp
);
159 pr_cont(", pud=%016llx", pud_val(pud
));
160 if (pud_none(pud
) || pud_bad(pud
))
163 pmdp
= pmd_offset(pudp
, addr
);
164 pmd
= READ_ONCE(*pmdp
);
165 pr_cont(", pmd=%016llx", pmd_val(pmd
));
166 if (pmd_none(pmd
) || pmd_bad(pmd
))
169 ptep
= pte_offset_map(pmdp
, addr
);
170 pte
= READ_ONCE(*ptep
);
171 pr_cont(", pte=%016llx", pte_val(pte
));
179 * This function sets the access flags (dirty, accessed), as well as write
180 * permission, and only to a more permissive setting.
182 * It needs to cope with hardware update of the accessed/dirty state by other
183 * agents in the system and can safely skip the __sync_icache_dcache() call as,
184 * like set_pte_at(), the PTE is never changed from no-exec to exec here.
186 * Returns whether or not the PTE actually changed.
188 int ptep_set_access_flags(struct vm_area_struct
*vma
,
189 unsigned long address
, pte_t
*ptep
,
190 pte_t entry
, int dirty
)
192 pteval_t old_pteval
, pteval
;
193 pte_t pte
= READ_ONCE(*ptep
);
195 if (pte_same(pte
, entry
))
198 /* only preserve the access flags and write permission */
199 pte_val(entry
) &= PTE_RDONLY
| PTE_AF
| PTE_WRITE
| PTE_DIRTY
;
202 * Setting the flags must be done atomically to avoid racing with the
203 * hardware update of the access/dirty state. The PTE_RDONLY bit must
204 * be set to the most permissive (lowest value) of *ptep and entry
205 * (calculated as: a & b == ~(~a | ~b)).
207 pte_val(entry
) ^= PTE_RDONLY
;
208 pteval
= pte_val(pte
);
211 pteval
^= PTE_RDONLY
;
212 pteval
|= pte_val(entry
);
213 pteval
^= PTE_RDONLY
;
214 pteval
= cmpxchg_relaxed(&pte_val(*ptep
), old_pteval
, pteval
);
215 } while (pteval
!= old_pteval
);
217 flush_tlb_fix_spurious_fault(vma
, address
);
221 static bool is_el1_instruction_abort(unsigned int esr
)
223 return ESR_ELx_EC(esr
) == ESR_ELx_EC_IABT_CUR
;
226 static inline bool is_el1_permission_fault(unsigned long addr
, unsigned int esr
,
227 struct pt_regs
*regs
)
229 unsigned int ec
= ESR_ELx_EC(esr
);
230 unsigned int fsc_type
= esr
& ESR_ELx_FSC_TYPE
;
232 if (ec
!= ESR_ELx_EC_DABT_CUR
&& ec
!= ESR_ELx_EC_IABT_CUR
)
235 if (fsc_type
== ESR_ELx_FSC_PERM
)
238 if (is_ttbr0_addr(addr
) && system_uses_ttbr0_pan())
239 return fsc_type
== ESR_ELx_FSC_FAULT
&&
240 (regs
->pstate
& PSR_PAN_BIT
);
245 static void die_kernel_fault(const char *msg
, unsigned long addr
,
246 unsigned int esr
, struct pt_regs
*regs
)
250 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg
,
253 mem_abort_decode(esr
);
256 die("Oops", regs
, esr
);
261 static void __do_kernel_fault(unsigned long addr
, unsigned int esr
,
262 struct pt_regs
*regs
)
267 * Are we prepared to handle this kernel fault?
268 * We are almost certainly not prepared to handle instruction faults.
270 if (!is_el1_instruction_abort(esr
) && fixup_exception(regs
))
273 if (is_el1_permission_fault(addr
, esr
, regs
)) {
274 if (esr
& ESR_ELx_WNR
)
275 msg
= "write to read-only memory";
277 msg
= "read from unreadable memory";
278 } else if (addr
< PAGE_SIZE
) {
279 msg
= "NULL pointer dereference";
281 msg
= "paging request";
284 die_kernel_fault(msg
, addr
, esr
, regs
);
287 static void set_thread_esr(unsigned long address
, unsigned int esr
)
289 current
->thread
.fault_address
= address
;
292 * If the faulting address is in the kernel, we must sanitize the ESR.
293 * From userspace's point of view, kernel-only mappings don't exist
294 * at all, so we report them as level 0 translation faults.
295 * (This is not quite the way that "no mapping there at all" behaves:
296 * an alignment fault not caused by the memory type would take
297 * precedence over translation fault for a real access to empty
298 * space. Unfortunately we can't easily distinguish "alignment fault
299 * not caused by memory type" from "alignment fault caused by memory
300 * type", so we ignore this wrinkle and just return the translation
303 if (!is_ttbr0_addr(current
->thread
.fault_address
)) {
304 switch (ESR_ELx_EC(esr
)) {
305 case ESR_ELx_EC_DABT_LOW
:
307 * These bits provide only information about the
308 * faulting instruction, which userspace knows already.
309 * We explicitly clear bits which are architecturally
310 * RES0 in case they are given meanings in future.
311 * We always report the ESR as if the fault was taken
312 * to EL1 and so ISV and the bits in ISS[23:14] are
313 * clear. (In fact it always will be a fault to EL1.)
315 esr
&= ESR_ELx_EC_MASK
| ESR_ELx_IL
|
316 ESR_ELx_CM
| ESR_ELx_WNR
;
317 esr
|= ESR_ELx_FSC_FAULT
;
319 case ESR_ELx_EC_IABT_LOW
:
321 * Claim a level 0 translation fault.
322 * All other bits are architecturally RES0 for faults
323 * reported with that DFSC value, so we clear them.
325 esr
&= ESR_ELx_EC_MASK
| ESR_ELx_IL
;
326 esr
|= ESR_ELx_FSC_FAULT
;
330 * This should never happen (entry.S only brings us
331 * into this code for insn and data aborts from a lower
332 * exception level). Fail safe by not providing an ESR
333 * context record at all.
335 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr
);
341 current
->thread
.fault_code
= esr
;
344 static void do_bad_area(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
347 * If we are in kernel mode at this point, we have no context to
348 * handle this fault with.
350 if (user_mode(regs
)) {
351 const struct fault_info
*inf
= esr_to_fault_info(esr
);
353 set_thread_esr(addr
, esr
);
354 arm64_force_sig_fault(inf
->sig
, inf
->code
, (void __user
*)addr
,
357 __do_kernel_fault(addr
, esr
, regs
);
361 #define VM_FAULT_BADMAP 0x010000
362 #define VM_FAULT_BADACCESS 0x020000
364 static vm_fault_t
__do_page_fault(struct mm_struct
*mm
, unsigned long addr
,
365 unsigned int mm_flags
, unsigned long vm_flags
)
367 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
370 return VM_FAULT_BADMAP
;
373 * Ok, we have a good vm_area for this memory access, so we can handle
376 if (unlikely(vma
->vm_start
> addr
)) {
377 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
378 return VM_FAULT_BADMAP
;
379 if (expand_stack(vma
, addr
))
380 return VM_FAULT_BADMAP
;
384 * Check that the permissions on the VMA allow for the fault which
387 if (!(vma
->vm_flags
& vm_flags
))
388 return VM_FAULT_BADACCESS
;
389 return handle_mm_fault(vma
, addr
& PAGE_MASK
, mm_flags
);
392 static bool is_el0_instruction_abort(unsigned int esr
)
394 return ESR_ELx_EC(esr
) == ESR_ELx_EC_IABT_LOW
;
398 * Note: not valid for EL1 DC IVAC, but we never use that such that it
399 * should fault. EL0 cannot issue DC IVAC (undef).
401 static bool is_write_abort(unsigned int esr
)
403 return (esr
& ESR_ELx_WNR
) && !(esr
& ESR_ELx_CM
);
406 static int __kprobes
do_page_fault(unsigned long addr
, unsigned int esr
,
407 struct pt_regs
*regs
)
409 const struct fault_info
*inf
;
410 struct mm_struct
*mm
= current
->mm
;
411 vm_fault_t fault
, major
= 0;
412 unsigned long vm_flags
= VM_READ
| VM_WRITE
;
413 unsigned int mm_flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
415 if (kprobe_page_fault(regs
, esr
))
419 * If we're in an interrupt or have no user context, we must not take
422 if (faulthandler_disabled() || !mm
)
426 mm_flags
|= FAULT_FLAG_USER
;
428 if (is_el0_instruction_abort(esr
)) {
430 mm_flags
|= FAULT_FLAG_INSTRUCTION
;
431 } else if (is_write_abort(esr
)) {
433 mm_flags
|= FAULT_FLAG_WRITE
;
436 if (is_ttbr0_addr(addr
) && is_el1_permission_fault(addr
, esr
, regs
)) {
437 /* regs->orig_addr_limit may be 0 if we entered from EL0 */
438 if (regs
->orig_addr_limit
== KERNEL_DS
)
439 die_kernel_fault("access to user memory with fs=KERNEL_DS",
442 if (is_el1_instruction_abort(esr
))
443 die_kernel_fault("execution of user memory",
446 if (!search_exception_tables(regs
->pc
))
447 die_kernel_fault("access to user memory outside uaccess routines",
451 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, addr
);
454 * As per x86, we may deadlock here. However, since the kernel only
455 * validly references user space from well defined areas of the code,
456 * we can bug out early if this is from code which shouldn't.
458 if (!down_read_trylock(&mm
->mmap_sem
)) {
459 if (!user_mode(regs
) && !search_exception_tables(regs
->pc
))
462 down_read(&mm
->mmap_sem
);
465 * The above down_read_trylock() might have succeeded in which
466 * case, we'll have missed the might_sleep() from down_read().
469 #ifdef CONFIG_DEBUG_VM
470 if (!user_mode(regs
) && !search_exception_tables(regs
->pc
)) {
471 up_read(&mm
->mmap_sem
);
477 fault
= __do_page_fault(mm
, addr
, mm_flags
, vm_flags
);
478 major
|= fault
& VM_FAULT_MAJOR
;
480 if (fault
& VM_FAULT_RETRY
) {
482 * If we need to retry but a fatal signal is pending,
483 * handle the signal first. We do not need to release
484 * the mmap_sem because it would already be released
485 * in __lock_page_or_retry in mm/filemap.c.
487 if (fatal_signal_pending(current
)) {
488 if (!user_mode(regs
))
494 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
497 if (mm_flags
& FAULT_FLAG_ALLOW_RETRY
) {
498 mm_flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
499 mm_flags
|= FAULT_FLAG_TRIED
;
503 up_read(&mm
->mmap_sem
);
506 * Handle the "normal" (no error) case first.
508 if (likely(!(fault
& (VM_FAULT_ERROR
| VM_FAULT_BADMAP
|
509 VM_FAULT_BADACCESS
)))) {
511 * Major/minor page fault accounting is only done
512 * once. If we go through a retry, it is extremely
513 * likely that the page will be found in page cache at
518 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
,
522 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
,
530 * If we are in kernel mode at this point, we have no context to
531 * handle this fault with.
533 if (!user_mode(regs
))
536 if (fault
& VM_FAULT_OOM
) {
538 * We ran out of memory, call the OOM killer, and return to
539 * userspace (which will retry the fault, or kill us if we got
542 pagefault_out_of_memory();
546 inf
= esr_to_fault_info(esr
);
547 set_thread_esr(addr
, esr
);
548 if (fault
& VM_FAULT_SIGBUS
) {
550 * We had some memory, but were unable to successfully fix up
553 arm64_force_sig_fault(SIGBUS
, BUS_ADRERR
, (void __user
*)addr
,
555 } else if (fault
& (VM_FAULT_HWPOISON_LARGE
| VM_FAULT_HWPOISON
)) {
559 if (fault
& VM_FAULT_HWPOISON_LARGE
)
560 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
562 arm64_force_sig_mceerr(BUS_MCEERR_AR
, (void __user
*)addr
, lsb
,
566 * Something tried to access memory that isn't in our memory
569 arm64_force_sig_fault(SIGSEGV
,
570 fault
== VM_FAULT_BADACCESS
? SEGV_ACCERR
: SEGV_MAPERR
,
578 __do_kernel_fault(addr
, esr
, regs
);
582 static int __kprobes
do_translation_fault(unsigned long addr
,
584 struct pt_regs
*regs
)
586 if (is_ttbr0_addr(addr
))
587 return do_page_fault(addr
, esr
, regs
);
589 do_bad_area(addr
, esr
, regs
);
593 static int do_alignment_fault(unsigned long addr
, unsigned int esr
,
594 struct pt_regs
*regs
)
596 do_bad_area(addr
, esr
, regs
);
600 static int do_bad(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
602 return 1; /* "fault" */
605 static int do_sea(unsigned long addr
, unsigned int esr
, struct pt_regs
*regs
)
607 const struct fault_info
*inf
;
610 inf
= esr_to_fault_info(esr
);
613 * Return value ignored as we rely on signal merging.
614 * Future patches will make this more robust.
616 apei_claim_sea(regs
);
618 if (esr
& ESR_ELx_FnV
)
621 siaddr
= (void __user
*)addr
;
622 arm64_notify_die(inf
->name
, regs
, inf
->sig
, inf
->code
, siaddr
, esr
);
627 static const struct fault_info fault_info
[] = {
628 { do_bad
, SIGKILL
, SI_KERNEL
, "ttbr address size fault" },
629 { do_bad
, SIGKILL
, SI_KERNEL
, "level 1 address size fault" },
630 { do_bad
, SIGKILL
, SI_KERNEL
, "level 2 address size fault" },
631 { do_bad
, SIGKILL
, SI_KERNEL
, "level 3 address size fault" },
632 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 0 translation fault" },
633 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 1 translation fault" },
634 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 2 translation fault" },
635 { do_translation_fault
, SIGSEGV
, SEGV_MAPERR
, "level 3 translation fault" },
636 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 8" },
637 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 1 access flag fault" },
638 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 2 access flag fault" },
639 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 3 access flag fault" },
640 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 12" },
641 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 1 permission fault" },
642 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 2 permission fault" },
643 { do_page_fault
, SIGSEGV
, SEGV_ACCERR
, "level 3 permission fault" },
644 { do_sea
, SIGBUS
, BUS_OBJERR
, "synchronous external abort" },
645 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 17" },
646 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 18" },
647 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 19" },
648 { do_sea
, SIGKILL
, SI_KERNEL
, "level 0 (translation table walk)" },
649 { do_sea
, SIGKILL
, SI_KERNEL
, "level 1 (translation table walk)" },
650 { do_sea
, SIGKILL
, SI_KERNEL
, "level 2 (translation table walk)" },
651 { do_sea
, SIGKILL
, SI_KERNEL
, "level 3 (translation table walk)" },
652 { do_sea
, SIGBUS
, BUS_OBJERR
, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
653 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 25" },
654 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 26" },
655 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 27" },
656 { do_sea
, SIGKILL
, SI_KERNEL
, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
657 { do_sea
, SIGKILL
, SI_KERNEL
, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
658 { do_sea
, SIGKILL
, SI_KERNEL
, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
659 { do_sea
, SIGKILL
, SI_KERNEL
, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
660 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 32" },
661 { do_alignment_fault
, SIGBUS
, BUS_ADRALN
, "alignment fault" },
662 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 34" },
663 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 35" },
664 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 36" },
665 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 37" },
666 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 38" },
667 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 39" },
668 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 40" },
669 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 41" },
670 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 42" },
671 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 43" },
672 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 44" },
673 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 45" },
674 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 46" },
675 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 47" },
676 { do_bad
, SIGKILL
, SI_KERNEL
, "TLB conflict abort" },
677 { do_bad
, SIGKILL
, SI_KERNEL
, "Unsupported atomic hardware update fault" },
678 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 50" },
679 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 51" },
680 { do_bad
, SIGKILL
, SI_KERNEL
, "implementation fault (lockdown abort)" },
681 { do_bad
, SIGBUS
, BUS_OBJERR
, "implementation fault (unsupported exclusive)" },
682 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 54" },
683 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 55" },
684 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 56" },
685 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 57" },
686 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 58" },
687 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 59" },
688 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 60" },
689 { do_bad
, SIGKILL
, SI_KERNEL
, "section domain fault" },
690 { do_bad
, SIGKILL
, SI_KERNEL
, "page domain fault" },
691 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 63" },
694 asmlinkage
void __exception
do_mem_abort(unsigned long addr
, unsigned int esr
,
695 struct pt_regs
*regs
)
697 const struct fault_info
*inf
= esr_to_fault_info(esr
);
699 if (!inf
->fn(addr
, esr
, regs
))
702 if (!user_mode(regs
)) {
703 pr_alert("Unhandled fault at 0x%016lx\n", addr
);
704 mem_abort_decode(esr
);
708 arm64_notify_die(inf
->name
, regs
,
709 inf
->sig
, inf
->code
, (void __user
*)addr
, esr
);
712 asmlinkage
void __exception
do_el0_irq_bp_hardening(void)
714 /* PC has already been checked in entry.S */
715 arm64_apply_bp_hardening();
718 asmlinkage
void __exception
do_el0_ia_bp_hardening(unsigned long addr
,
720 struct pt_regs
*regs
)
723 * We've taken an instruction abort from userspace and not yet
724 * re-enabled IRQs. If the address is a kernel address, apply
725 * BP hardening prior to enabling IRQs and pre-emption.
727 if (!is_ttbr0_addr(addr
))
728 arm64_apply_bp_hardening();
730 local_daif_restore(DAIF_PROCCTX
);
731 do_mem_abort(addr
, esr
, regs
);
735 asmlinkage
void __exception
do_sp_pc_abort(unsigned long addr
,
737 struct pt_regs
*regs
)
739 if (user_mode(regs
)) {
740 if (!is_ttbr0_addr(instruction_pointer(regs
)))
741 arm64_apply_bp_hardening();
742 local_daif_restore(DAIF_PROCCTX
);
745 arm64_notify_die("SP/PC alignment exception", regs
,
746 SIGBUS
, BUS_ADRALN
, (void __user
*)addr
, esr
);
749 int __init
early_brk64(unsigned long addr
, unsigned int esr
,
750 struct pt_regs
*regs
);
753 * __refdata because early_brk64 is __init, but the reference to it is
754 * clobbered at arch_initcall time.
755 * See traps.c and debug-monitors.c:debug_traps_init().
757 static struct fault_info __refdata debug_fault_info
[] = {
758 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware breakpoint" },
759 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware single-step" },
760 { do_bad
, SIGTRAP
, TRAP_HWBKPT
, "hardware watchpoint" },
761 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 3" },
762 { do_bad
, SIGTRAP
, TRAP_BRKPT
, "aarch32 BKPT" },
763 { do_bad
, SIGKILL
, SI_KERNEL
, "aarch32 vector catch" },
764 { early_brk64
, SIGTRAP
, TRAP_BRKPT
, "aarch64 BRK" },
765 { do_bad
, SIGKILL
, SI_KERNEL
, "unknown 7" },
768 void __init
hook_debug_fault_code(int nr
,
769 int (*fn
)(unsigned long, unsigned int, struct pt_regs
*),
770 int sig
, int code
, const char *name
)
772 BUG_ON(nr
< 0 || nr
>= ARRAY_SIZE(debug_fault_info
));
774 debug_fault_info
[nr
].fn
= fn
;
775 debug_fault_info
[nr
].sig
= sig
;
776 debug_fault_info
[nr
].code
= code
;
777 debug_fault_info
[nr
].name
= name
;
781 * In debug exception context, we explicitly disable preemption despite
782 * having interrupts disabled.
783 * This serves two purposes: it makes it much less likely that we would
784 * accidentally schedule in exception context and it will force a warning
785 * if we somehow manage to schedule by accident.
787 static void debug_exception_enter(struct pt_regs
*regs
)
790 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
791 * already disabled to preserve the last enabled/disabled addresses.
793 if (interrupts_enabled(regs
))
794 trace_hardirqs_off();
796 if (user_mode(regs
)) {
797 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
800 * We might have interrupted pretty much anything. In
801 * fact, if we're a debug exception, we can even interrupt
802 * NMI processing. We don't want this code makes in_nmi()
803 * to return true, but we need to notify RCU.
810 /* This code is a bit fragile. Test it. */
811 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
813 NOKPROBE_SYMBOL(debug_exception_enter
);
815 static void debug_exception_exit(struct pt_regs
*regs
)
817 preempt_enable_no_resched();
819 if (!user_mode(regs
))
822 if (interrupts_enabled(regs
))
825 NOKPROBE_SYMBOL(debug_exception_exit
);
827 #ifdef CONFIG_ARM64_ERRATUM_1463225
828 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa
);
830 static int __exception
831 cortex_a76_erratum_1463225_debug_handler(struct pt_regs
*regs
)
836 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa
))
840 * We've taken a dummy step exception from the kernel to ensure
841 * that interrupts are re-enabled on the syscall path. Return back
842 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
843 * masked so that we can safely restore the mdscr and get on with
844 * handling the syscall.
846 regs
->pstate
|= PSR_D_BIT
;
850 static int __exception
851 cortex_a76_erratum_1463225_debug_handler(struct pt_regs
*regs
)
855 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
857 asmlinkage
void __exception
do_debug_exception(unsigned long addr_if_watchpoint
,
859 struct pt_regs
*regs
)
861 const struct fault_info
*inf
= esr_to_debug_fault_info(esr
);
862 unsigned long pc
= instruction_pointer(regs
);
864 if (cortex_a76_erratum_1463225_debug_handler(regs
))
867 debug_exception_enter(regs
);
869 if (user_mode(regs
) && !is_ttbr0_addr(pc
))
870 arm64_apply_bp_hardening();
872 if (inf
->fn(addr_if_watchpoint
, esr
, regs
)) {
873 arm64_notify_die(inf
->name
, regs
,
874 inf
->sig
, inf
->code
, (void __user
*)pc
, esr
);
877 debug_exception_exit(regs
);
879 NOKPROBE_SYMBOL(do_debug_exception
);