staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / arm64 / mm / init.c
blobf3c795278def0ea01704c6b38fe3d2d140351224
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/init.c
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dma-contiguous.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
32 #include <asm/boot.h>
33 #include <asm/fixmap.h>
34 #include <asm/kasan.h>
35 #include <asm/kernel-pgtable.h>
36 #include <asm/memory.h>
37 #include <asm/numa.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <linux/sizes.h>
41 #include <asm/tlb.h>
42 #include <asm/alternative.h>
45 * We need to be able to catch inadvertent references to memstart_addr
46 * that occur (potentially in generic code) before arm64_memblock_init()
47 * executes, which assigns it its actual value. So use a default value
48 * that cannot be mistaken for a real physical address.
50 s64 memstart_addr __ro_after_init = -1;
51 EXPORT_SYMBOL(memstart_addr);
53 phys_addr_t arm64_dma_phys_limit __ro_after_init;
55 #ifdef CONFIG_KEXEC_CORE
57 * reserve_crashkernel() - reserves memory for crash kernel
59 * This function reserves memory area given in "crashkernel=" kernel command
60 * line parameter. The memory reserved is used by dump capture kernel when
61 * primary kernel is crashing.
63 static void __init reserve_crashkernel(void)
65 unsigned long long crash_base, crash_size;
66 int ret;
68 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
69 &crash_size, &crash_base);
70 /* no crashkernel= or invalid value specified */
71 if (ret || !crash_size)
72 return;
74 crash_size = PAGE_ALIGN(crash_size);
76 if (crash_base == 0) {
77 /* Current arm64 boot protocol requires 2MB alignment */
78 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
79 crash_size, SZ_2M);
80 if (crash_base == 0) {
81 pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
82 crash_size);
83 return;
85 } else {
86 /* User specifies base address explicitly. */
87 if (!memblock_is_region_memory(crash_base, crash_size)) {
88 pr_warn("cannot reserve crashkernel: region is not memory\n");
89 return;
92 if (memblock_is_region_reserved(crash_base, crash_size)) {
93 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
94 return;
97 if (!IS_ALIGNED(crash_base, SZ_2M)) {
98 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
99 return;
102 memblock_reserve(crash_base, crash_size);
104 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
105 crash_base, crash_base + crash_size, crash_size >> 20);
107 crashk_res.start = crash_base;
108 crashk_res.end = crash_base + crash_size - 1;
110 #else
111 static void __init reserve_crashkernel(void)
114 #endif /* CONFIG_KEXEC_CORE */
116 #ifdef CONFIG_CRASH_DUMP
117 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
118 const char *uname, int depth, void *data)
120 const __be32 *reg;
121 int len;
123 if (depth != 1 || strcmp(uname, "chosen") != 0)
124 return 0;
126 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
127 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
128 return 1;
130 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
131 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
133 return 1;
137 * reserve_elfcorehdr() - reserves memory for elf core header
139 * This function reserves the memory occupied by an elf core header
140 * described in the device tree. This region contains all the
141 * information about primary kernel's core image and is used by a dump
142 * capture kernel to access the system memory on primary kernel.
144 static void __init reserve_elfcorehdr(void)
146 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
148 if (!elfcorehdr_size)
149 return;
151 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
152 pr_warn("elfcorehdr is overlapped\n");
153 return;
156 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
158 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
159 elfcorehdr_size >> 10, elfcorehdr_addr);
161 #else
162 static void __init reserve_elfcorehdr(void)
165 #endif /* CONFIG_CRASH_DUMP */
167 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
168 * currently assumes that for memory starting above 4G, 32-bit devices will
169 * use a DMA offset.
171 static phys_addr_t __init max_zone_dma_phys(void)
173 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
174 return min(offset + (1ULL << 32), memblock_end_of_DRAM());
177 #ifdef CONFIG_NUMA
179 static void __init zone_sizes_init(unsigned long min, unsigned long max)
181 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
183 #ifdef CONFIG_ZONE_DMA32
184 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
185 #endif
186 max_zone_pfns[ZONE_NORMAL] = max;
188 free_area_init_nodes(max_zone_pfns);
191 #else
193 static void __init zone_sizes_init(unsigned long min, unsigned long max)
195 struct memblock_region *reg;
196 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
197 unsigned long max_dma = min;
199 memset(zone_size, 0, sizeof(zone_size));
201 /* 4GB maximum for 32-bit only capable devices */
202 #ifdef CONFIG_ZONE_DMA32
203 max_dma = PFN_DOWN(arm64_dma_phys_limit);
204 zone_size[ZONE_DMA32] = max_dma - min;
205 #endif
206 zone_size[ZONE_NORMAL] = max - max_dma;
208 memcpy(zhole_size, zone_size, sizeof(zhole_size));
210 for_each_memblock(memory, reg) {
211 unsigned long start = memblock_region_memory_base_pfn(reg);
212 unsigned long end = memblock_region_memory_end_pfn(reg);
214 if (start >= max)
215 continue;
217 #ifdef CONFIG_ZONE_DMA32
218 if (start < max_dma) {
219 unsigned long dma_end = min(end, max_dma);
220 zhole_size[ZONE_DMA32] -= dma_end - start;
222 #endif
223 if (end > max_dma) {
224 unsigned long normal_end = min(end, max);
225 unsigned long normal_start = max(start, max_dma);
226 zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
230 free_area_init_node(0, zone_size, min, zhole_size);
233 #endif /* CONFIG_NUMA */
235 int pfn_valid(unsigned long pfn)
237 phys_addr_t addr = pfn << PAGE_SHIFT;
239 if ((addr >> PAGE_SHIFT) != pfn)
240 return 0;
242 #ifdef CONFIG_SPARSEMEM
243 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
244 return 0;
246 if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
247 return 0;
248 #endif
249 return memblock_is_map_memory(addr);
251 EXPORT_SYMBOL(pfn_valid);
253 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
256 * Limit the memory size that was specified via FDT.
258 static int __init early_mem(char *p)
260 if (!p)
261 return 1;
263 memory_limit = memparse(p, &p) & PAGE_MASK;
264 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
266 return 0;
268 early_param("mem", early_mem);
270 static int __init early_init_dt_scan_usablemem(unsigned long node,
271 const char *uname, int depth, void *data)
273 struct memblock_region *usablemem = data;
274 const __be32 *reg;
275 int len;
277 if (depth != 1 || strcmp(uname, "chosen") != 0)
278 return 0;
280 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
281 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
282 return 1;
284 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
285 usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
287 return 1;
290 static void __init fdt_enforce_memory_region(void)
292 struct memblock_region reg = {
293 .size = 0,
296 of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
298 if (reg.size)
299 memblock_cap_memory_range(reg.base, reg.size);
302 void __init arm64_memblock_init(void)
304 const s64 linear_region_size = -(s64)PAGE_OFFSET;
306 /* Handle linux,usable-memory-range property */
307 fdt_enforce_memory_region();
309 /* Remove memory above our supported physical address size */
310 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
313 * Ensure that the linear region takes up exactly half of the kernel
314 * virtual address space. This way, we can distinguish a linear address
315 * from a kernel/module/vmalloc address by testing a single bit.
317 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
320 * Select a suitable value for the base of physical memory.
322 memstart_addr = round_down(memblock_start_of_DRAM(),
323 ARM64_MEMSTART_ALIGN);
326 * Remove the memory that we will not be able to cover with the
327 * linear mapping. Take care not to clip the kernel which may be
328 * high in memory.
330 memblock_remove(max_t(u64, memstart_addr + linear_region_size,
331 __pa_symbol(_end)), ULLONG_MAX);
332 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
333 /* ensure that memstart_addr remains sufficiently aligned */
334 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
335 ARM64_MEMSTART_ALIGN);
336 memblock_remove(0, memstart_addr);
340 * Apply the memory limit if it was set. Since the kernel may be loaded
341 * high up in memory, add back the kernel region that must be accessible
342 * via the linear mapping.
344 if (memory_limit != PHYS_ADDR_MAX) {
345 memblock_mem_limit_remove_map(memory_limit);
346 memblock_add(__pa_symbol(_text), (u64)(_end - _text));
349 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
351 * Add back the memory we just removed if it results in the
352 * initrd to become inaccessible via the linear mapping.
353 * Otherwise, this is a no-op
355 u64 base = phys_initrd_start & PAGE_MASK;
356 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
359 * We can only add back the initrd memory if we don't end up
360 * with more memory than we can address via the linear mapping.
361 * It is up to the bootloader to position the kernel and the
362 * initrd reasonably close to each other (i.e., within 32 GB of
363 * each other) so that all granule/#levels combinations can
364 * always access both.
366 if (WARN(base < memblock_start_of_DRAM() ||
367 base + size > memblock_start_of_DRAM() +
368 linear_region_size,
369 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
370 phys_initrd_size = 0;
371 } else {
372 memblock_remove(base, size); /* clear MEMBLOCK_ flags */
373 memblock_add(base, size);
374 memblock_reserve(base, size);
378 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
379 extern u16 memstart_offset_seed;
380 u64 range = linear_region_size -
381 (memblock_end_of_DRAM() - memblock_start_of_DRAM());
384 * If the size of the linear region exceeds, by a sufficient
385 * margin, the size of the region that the available physical
386 * memory spans, randomize the linear region as well.
388 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
389 range /= ARM64_MEMSTART_ALIGN;
390 memstart_addr -= ARM64_MEMSTART_ALIGN *
391 ((range * memstart_offset_seed) >> 16);
396 * Register the kernel text, kernel data, initrd, and initial
397 * pagetables with memblock.
399 memblock_reserve(__pa_symbol(_text), _end - _text);
400 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
401 /* the generic initrd code expects virtual addresses */
402 initrd_start = __phys_to_virt(phys_initrd_start);
403 initrd_end = initrd_start + phys_initrd_size;
406 early_init_fdt_scan_reserved_mem();
408 /* 4GB maximum for 32-bit only capable devices */
409 if (IS_ENABLED(CONFIG_ZONE_DMA32))
410 arm64_dma_phys_limit = max_zone_dma_phys();
411 else
412 arm64_dma_phys_limit = PHYS_MASK + 1;
414 reserve_crashkernel();
416 reserve_elfcorehdr();
418 high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
420 dma_contiguous_reserve(arm64_dma_phys_limit);
423 void __init bootmem_init(void)
425 unsigned long min, max;
427 min = PFN_UP(memblock_start_of_DRAM());
428 max = PFN_DOWN(memblock_end_of_DRAM());
430 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
432 max_pfn = max_low_pfn = max;
433 min_low_pfn = min;
435 arm64_numa_init();
437 * Sparsemem tries to allocate bootmem in memory_present(), so must be
438 * done after the fixed reservations.
440 memblocks_present();
442 sparse_init();
443 zone_sizes_init(min, max);
445 memblock_dump_all();
448 #ifndef CONFIG_SPARSEMEM_VMEMMAP
449 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
451 struct page *start_pg, *end_pg;
452 unsigned long pg, pgend;
455 * Convert start_pfn/end_pfn to a struct page pointer.
457 start_pg = pfn_to_page(start_pfn - 1) + 1;
458 end_pg = pfn_to_page(end_pfn - 1) + 1;
461 * Convert to physical addresses, and round start upwards and end
462 * downwards.
464 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
465 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
468 * If there are free pages between these, free the section of the
469 * memmap array.
471 if (pg < pgend)
472 memblock_free(pg, pgend - pg);
476 * The mem_map array can get very big. Free the unused area of the memory map.
478 static void __init free_unused_memmap(void)
480 unsigned long start, prev_end = 0;
481 struct memblock_region *reg;
483 for_each_memblock(memory, reg) {
484 start = __phys_to_pfn(reg->base);
486 #ifdef CONFIG_SPARSEMEM
488 * Take care not to free memmap entries that don't exist due
489 * to SPARSEMEM sections which aren't present.
491 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
492 #endif
494 * If we had a previous bank, and there is a space between the
495 * current bank and the previous, free it.
497 if (prev_end && prev_end < start)
498 free_memmap(prev_end, start);
501 * Align up here since the VM subsystem insists that the
502 * memmap entries are valid from the bank end aligned to
503 * MAX_ORDER_NR_PAGES.
505 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
506 MAX_ORDER_NR_PAGES);
509 #ifdef CONFIG_SPARSEMEM
510 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
511 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
512 #endif
514 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
517 * mem_init() marks the free areas in the mem_map and tells us how much memory
518 * is free. This is done after various parts of the system have claimed their
519 * memory after the kernel image.
521 void __init mem_init(void)
523 if (swiotlb_force == SWIOTLB_FORCE ||
524 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
525 swiotlb_init(1);
526 else
527 swiotlb_force = SWIOTLB_NO_FORCE;
529 set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
531 #ifndef CONFIG_SPARSEMEM_VMEMMAP
532 free_unused_memmap();
533 #endif
534 /* this will put all unused low memory onto the freelists */
535 memblock_free_all();
537 mem_init_print_info(NULL);
540 * Check boundaries twice: Some fundamental inconsistencies can be
541 * detected at build time already.
543 #ifdef CONFIG_COMPAT
544 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
545 #endif
547 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
548 extern int sysctl_overcommit_memory;
550 * On a machine this small we won't get anywhere without
551 * overcommit, so turn it on by default.
553 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
557 void free_initmem(void)
559 free_reserved_area(lm_alias(__init_begin),
560 lm_alias(__init_end),
561 0, "unused kernel");
563 * Unmap the __init region but leave the VM area in place. This
564 * prevents the region from being reused for kernel modules, which
565 * is not supported by kallsyms.
567 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
570 #ifdef CONFIG_BLK_DEV_INITRD
571 void __init free_initrd_mem(unsigned long start, unsigned long end)
573 free_reserved_area((void *)start, (void *)end, 0, "initrd");
574 memblock_free(__virt_to_phys(start), end - start);
576 #endif
579 * Dump out memory limit information on panic.
581 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
583 if (memory_limit != PHYS_ADDR_MAX) {
584 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
585 } else {
586 pr_emerg("Memory Limit: none\n");
588 return 0;
591 static struct notifier_block mem_limit_notifier = {
592 .notifier_call = dump_mem_limit,
595 static int __init register_mem_limit_dumper(void)
597 atomic_notifier_chain_register(&panic_notifier_list,
598 &mem_limit_notifier);
599 return 0;
601 __initcall(register_mem_limit_dumper);