staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / s390 / include / asm / pgtable.h
blob9b274fcaacb680b1d2cc63c2ac7c3fe57ec1cde1
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 * Derived from "include/asm-i386/pgtable.h"
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
26 enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
35 static inline void update_page_count(int level, long count)
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
48 #define update_mmu_cache(vma, address, ptep) do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
59 #define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
64 /* TODO: s390 cannot support io_remap_pfn_range... */
66 #define FIRST_USER_ADDRESS 0UL
68 #define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 extern struct page *vmemmap;
91 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
93 extern unsigned long MODULES_VADDR;
94 extern unsigned long MODULES_END;
95 #define MODULES_VADDR MODULES_VADDR
96 #define MODULES_END MODULES_END
97 #define MODULES_LEN (1UL << 31)
99 static inline int is_module_addr(void *addr)
101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 if (addr < (void *)MODULES_VADDR)
103 return 0;
104 if (addr > (void *)MODULES_END)
105 return 0;
106 return 1;
110 * A 64 bit pagetable entry of S390 has following format:
111 * | PFRA |0IPC| OS |
112 * 0000000000111111111122222222223333333333444444444455555555556666
113 * 0123456789012345678901234567890123456789012345678901234567890123
115 * I Page-Invalid Bit: Page is not available for address-translation
116 * P Page-Protection Bit: Store access not possible for page
117 * C Change-bit override: HW is not required to set change bit
119 * A 64 bit segmenttable entry of S390 has following format:
120 * | P-table origin | TT
121 * 0000000000111111111122222222223333333333444444444455555555556666
122 * 0123456789012345678901234567890123456789012345678901234567890123
124 * I Segment-Invalid Bit: Segment is not available for address-translation
125 * C Common-Segment Bit: Segment is not private (PoP 3-30)
126 * P Page-Protection Bit: Store access not possible for page
127 * TT Type 00
129 * A 64 bit region table entry of S390 has following format:
130 * | S-table origin | TF TTTL
131 * 0000000000111111111122222222223333333333444444444455555555556666
132 * 0123456789012345678901234567890123456789012345678901234567890123
134 * I Segment-Invalid Bit: Segment is not available for address-translation
135 * TT Type 01
136 * TF
137 * TL Table length
139 * The 64 bit regiontable origin of S390 has following format:
140 * | region table origon | DTTL
141 * 0000000000111111111122222222223333333333444444444455555555556666
142 * 0123456789012345678901234567890123456789012345678901234567890123
144 * X Space-Switch event:
145 * G Segment-Invalid Bit:
146 * P Private-Space Bit:
147 * S Storage-Alteration:
148 * R Real space
149 * TL Table-Length:
151 * A storage key has the following format:
152 * | ACC |F|R|C|0|
153 * 0 3 4 5 6 7
154 * ACC: access key
155 * F : fetch protection bit
156 * R : referenced bit
157 * C : changed bit
160 /* Hardware bits in the page table entry */
161 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
162 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
163 #define _PAGE_INVALID 0x400 /* HW invalid bit */
164 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
166 /* Software bits in the page table entry */
167 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
168 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
169 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
170 #define _PAGE_READ 0x010 /* SW pte read bit */
171 #define _PAGE_WRITE 0x020 /* SW pte write bit */
172 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
173 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
175 #ifdef CONFIG_MEM_SOFT_DIRTY
176 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
177 #else
178 #define _PAGE_SOFT_DIRTY 0x000
179 #endif
181 /* Set of bits not changed in pte_modify */
182 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
183 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
186 * handle_pte_fault uses pte_present and pte_none to find out the pte type
187 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
188 * distinguish present from not-present ptes. It is changed only with the page
189 * table lock held.
191 * The following table gives the different possible bit combinations for
192 * the pte hardware and software bits in the last 12 bits of a pte
193 * (. unassigned bit, x don't care, t swap type):
195 * 842100000000
196 * 000084210000
197 * 000000008421
198 * .IR.uswrdy.p
199 * empty .10.00000000
200 * swap .11..ttttt.0
201 * prot-none, clean, old .11.xx0000.1
202 * prot-none, clean, young .11.xx0001.1
203 * prot-none, dirty, old .11.xx0010.1
204 * prot-none, dirty, young .11.xx0011.1
205 * read-only, clean, old .11.xx0100.1
206 * read-only, clean, young .01.xx0101.1
207 * read-only, dirty, old .11.xx0110.1
208 * read-only, dirty, young .01.xx0111.1
209 * read-write, clean, old .11.xx1100.1
210 * read-write, clean, young .01.xx1101.1
211 * read-write, dirty, old .10.xx1110.1
212 * read-write, dirty, young .00.xx1111.1
213 * HW-bits: R read-only, I invalid
214 * SW-bits: p present, y young, d dirty, r read, w write, s special,
215 * u unused, l large
217 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
218 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
219 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
222 /* Bits in the segment/region table address-space-control-element */
223 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
224 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
225 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
226 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
227 #define _ASCE_REAL_SPACE 0x20 /* real space control */
228 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
229 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
230 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
231 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
232 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
233 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
235 /* Bits in the region table entry */
236 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
237 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
238 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
239 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
240 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
241 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
242 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
243 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
244 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
245 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
247 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
248 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
249 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
250 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
251 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
252 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
254 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
255 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
256 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
257 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
258 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
259 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
261 #ifdef CONFIG_MEM_SOFT_DIRTY
262 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
263 #else
264 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
265 #endif
267 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
268 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
270 /* Bits in the segment table entry */
271 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
272 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
273 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
275 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
276 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
277 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
278 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
279 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
280 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
282 #define _SEGMENT_ENTRY (0)
283 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
285 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
286 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
287 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
288 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
289 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
291 #ifdef CONFIG_MEM_SOFT_DIRTY
292 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
293 #else
294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
295 #endif
297 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
298 #define _PAGE_ENTRIES 256 /* number of page table entries */
300 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
301 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303 #define _REGION1_SHIFT 53
304 #define _REGION2_SHIFT 42
305 #define _REGION3_SHIFT 31
306 #define _SEGMENT_SHIFT 20
308 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
309 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
310 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
311 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
312 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
314 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
315 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
316 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
317 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
319 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
320 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
321 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
322 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
324 #define PMD_SHIFT _SEGMENT_SHIFT
325 #define PUD_SHIFT _REGION3_SHIFT
326 #define P4D_SHIFT _REGION2_SHIFT
327 #define PGDIR_SHIFT _REGION1_SHIFT
329 #define PMD_SIZE _SEGMENT_SIZE
330 #define PUD_SIZE _REGION3_SIZE
331 #define P4D_SIZE _REGION2_SIZE
332 #define PGDIR_SIZE _REGION1_SIZE
334 #define PMD_MASK _SEGMENT_MASK
335 #define PUD_MASK _REGION3_MASK
336 #define P4D_MASK _REGION2_MASK
337 #define PGDIR_MASK _REGION1_MASK
339 #define PTRS_PER_PTE _PAGE_ENTRIES
340 #define PTRS_PER_PMD _CRST_ENTRIES
341 #define PTRS_PER_PUD _CRST_ENTRIES
342 #define PTRS_PER_P4D _CRST_ENTRIES
343 #define PTRS_PER_PGD _CRST_ENTRIES
345 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
348 * Segment table and region3 table entry encoding
349 * (R = read-only, I = invalid, y = young bit):
350 * dy..R...I...wr
351 * prot-none, clean, old 00..1...1...00
352 * prot-none, clean, young 01..1...1...00
353 * prot-none, dirty, old 10..1...1...00
354 * prot-none, dirty, young 11..1...1...00
355 * read-only, clean, old 00..1...1...01
356 * read-only, clean, young 01..1...0...01
357 * read-only, dirty, old 10..1...1...01
358 * read-only, dirty, young 11..1...0...01
359 * read-write, clean, old 00..1...1...11
360 * read-write, clean, young 01..1...0...11
361 * read-write, dirty, old 10..0...1...11
362 * read-write, dirty, young 11..0...0...11
363 * The segment table origin is used to distinguish empty (origin==0) from
364 * read-write, old segment table entries (origin!=0)
365 * HW-bits: R read-only, I invalid
366 * SW-bits: y young, d dirty, r read, w write
369 /* Page status table bits for virtualization */
370 #define PGSTE_ACC_BITS 0xf000000000000000UL
371 #define PGSTE_FP_BIT 0x0800000000000000UL
372 #define PGSTE_PCL_BIT 0x0080000000000000UL
373 #define PGSTE_HR_BIT 0x0040000000000000UL
374 #define PGSTE_HC_BIT 0x0020000000000000UL
375 #define PGSTE_GR_BIT 0x0004000000000000UL
376 #define PGSTE_GC_BIT 0x0002000000000000UL
377 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
378 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
379 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
381 /* Guest Page State used for virtualization */
382 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
383 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
384 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
385 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
386 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
387 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
388 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
391 * A user page table pointer has the space-switch-event bit, the
392 * private-space-control bit and the storage-alteration-event-control
393 * bit set. A kernel page table pointer doesn't need them.
395 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
396 _ASCE_ALT_EVENT)
399 * Page protection definitions.
401 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
402 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
403 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
404 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
405 _PAGE_INVALID | _PAGE_PROTECT)
406 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
407 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
408 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 _PAGE_INVALID | _PAGE_PROTECT)
411 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
412 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
413 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
415 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
416 _PAGE_PROTECT | _PAGE_NOEXEC)
417 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
418 _PAGE_YOUNG | _PAGE_DIRTY)
421 * On s390 the page table entry has an invalid bit and a read-only bit.
422 * Read permission implies execute permission and write permission
423 * implies read permission.
425 /*xwr*/
426 #define __P000 PAGE_NONE
427 #define __P001 PAGE_RO
428 #define __P010 PAGE_RO
429 #define __P011 PAGE_RO
430 #define __P100 PAGE_RX
431 #define __P101 PAGE_RX
432 #define __P110 PAGE_RX
433 #define __P111 PAGE_RX
435 #define __S000 PAGE_NONE
436 #define __S001 PAGE_RO
437 #define __S010 PAGE_RW
438 #define __S011 PAGE_RW
439 #define __S100 PAGE_RX
440 #define __S101 PAGE_RX
441 #define __S110 PAGE_RWX
442 #define __S111 PAGE_RWX
445 * Segment entry (large page) protection definitions.
447 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
448 _SEGMENT_ENTRY_PROTECT)
449 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
450 _SEGMENT_ENTRY_READ | \
451 _SEGMENT_ENTRY_NOEXEC)
452 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
453 _SEGMENT_ENTRY_READ)
454 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
455 _SEGMENT_ENTRY_WRITE | \
456 _SEGMENT_ENTRY_NOEXEC)
457 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
458 _SEGMENT_ENTRY_WRITE)
459 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
460 _SEGMENT_ENTRY_LARGE | \
461 _SEGMENT_ENTRY_READ | \
462 _SEGMENT_ENTRY_WRITE | \
463 _SEGMENT_ENTRY_YOUNG | \
464 _SEGMENT_ENTRY_DIRTY | \
465 _SEGMENT_ENTRY_NOEXEC)
466 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
467 _SEGMENT_ENTRY_LARGE | \
468 _SEGMENT_ENTRY_READ | \
469 _SEGMENT_ENTRY_YOUNG | \
470 _SEGMENT_ENTRY_PROTECT | \
471 _SEGMENT_ENTRY_NOEXEC)
472 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
473 _SEGMENT_ENTRY_LARGE | \
474 _SEGMENT_ENTRY_READ | \
475 _SEGMENT_ENTRY_WRITE | \
476 _SEGMENT_ENTRY_YOUNG | \
477 _SEGMENT_ENTRY_DIRTY)
480 * Region3 entry (large page) protection definitions.
483 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
484 _REGION3_ENTRY_LARGE | \
485 _REGION3_ENTRY_READ | \
486 _REGION3_ENTRY_WRITE | \
487 _REGION3_ENTRY_YOUNG | \
488 _REGION3_ENTRY_DIRTY | \
489 _REGION_ENTRY_NOEXEC)
490 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
491 _REGION3_ENTRY_LARGE | \
492 _REGION3_ENTRY_READ | \
493 _REGION3_ENTRY_YOUNG | \
494 _REGION_ENTRY_PROTECT | \
495 _REGION_ENTRY_NOEXEC)
497 static inline bool mm_p4d_folded(struct mm_struct *mm)
499 return mm->context.asce_limit <= _REGION1_SIZE;
501 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
503 static inline bool mm_pud_folded(struct mm_struct *mm)
505 return mm->context.asce_limit <= _REGION2_SIZE;
507 #define mm_pud_folded(mm) mm_pud_folded(mm)
509 static inline bool mm_pmd_folded(struct mm_struct *mm)
511 return mm->context.asce_limit <= _REGION3_SIZE;
513 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
515 static inline int mm_has_pgste(struct mm_struct *mm)
517 #ifdef CONFIG_PGSTE
518 if (unlikely(mm->context.has_pgste))
519 return 1;
520 #endif
521 return 0;
524 static inline int mm_alloc_pgste(struct mm_struct *mm)
526 #ifdef CONFIG_PGSTE
527 if (unlikely(mm->context.alloc_pgste))
528 return 1;
529 #endif
530 return 0;
534 * In the case that a guest uses storage keys
535 * faults should no longer be backed by zero pages
537 #define mm_forbids_zeropage mm_has_pgste
538 static inline int mm_uses_skeys(struct mm_struct *mm)
540 #ifdef CONFIG_PGSTE
541 if (mm->context.uses_skeys)
542 return 1;
543 #endif
544 return 0;
547 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
549 register unsigned long reg2 asm("2") = old;
550 register unsigned long reg3 asm("3") = new;
551 unsigned long address = (unsigned long)ptr | 1;
553 asm volatile(
554 " csp %0,%3"
555 : "+d" (reg2), "+m" (*ptr)
556 : "d" (reg3), "d" (address)
557 : "cc");
560 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
562 register unsigned long reg2 asm("2") = old;
563 register unsigned long reg3 asm("3") = new;
564 unsigned long address = (unsigned long)ptr | 1;
566 asm volatile(
567 " .insn rre,0xb98a0000,%0,%3"
568 : "+d" (reg2), "+m" (*ptr)
569 : "d" (reg3), "d" (address)
570 : "cc");
573 #define CRDTE_DTT_PAGE 0x00UL
574 #define CRDTE_DTT_SEGMENT 0x10UL
575 #define CRDTE_DTT_REGION3 0x14UL
576 #define CRDTE_DTT_REGION2 0x18UL
577 #define CRDTE_DTT_REGION1 0x1cUL
579 static inline void crdte(unsigned long old, unsigned long new,
580 unsigned long table, unsigned long dtt,
581 unsigned long address, unsigned long asce)
583 register unsigned long reg2 asm("2") = old;
584 register unsigned long reg3 asm("3") = new;
585 register unsigned long reg4 asm("4") = table | dtt;
586 register unsigned long reg5 asm("5") = address;
588 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
589 : "+d" (reg2)
590 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
591 : "memory", "cc");
595 * pgd/p4d/pud/pmd/pte query functions
597 static inline int pgd_folded(pgd_t pgd)
599 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
602 static inline int pgd_present(pgd_t pgd)
604 if (pgd_folded(pgd))
605 return 1;
606 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
609 static inline int pgd_none(pgd_t pgd)
611 if (pgd_folded(pgd))
612 return 0;
613 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
616 static inline int pgd_bad(pgd_t pgd)
618 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
619 return 0;
620 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
623 static inline unsigned long pgd_pfn(pgd_t pgd)
625 unsigned long origin_mask;
627 origin_mask = _REGION_ENTRY_ORIGIN;
628 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
631 static inline int p4d_folded(p4d_t p4d)
633 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
636 static inline int p4d_present(p4d_t p4d)
638 if (p4d_folded(p4d))
639 return 1;
640 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
643 static inline int p4d_none(p4d_t p4d)
645 if (p4d_folded(p4d))
646 return 0;
647 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
650 static inline unsigned long p4d_pfn(p4d_t p4d)
652 unsigned long origin_mask;
654 origin_mask = _REGION_ENTRY_ORIGIN;
655 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
658 static inline int pud_folded(pud_t pud)
660 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
663 static inline int pud_present(pud_t pud)
665 if (pud_folded(pud))
666 return 1;
667 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
670 static inline int pud_none(pud_t pud)
672 if (pud_folded(pud))
673 return 0;
674 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
677 static inline int pud_large(pud_t pud)
679 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
680 return 0;
681 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
684 static inline unsigned long pud_pfn(pud_t pud)
686 unsigned long origin_mask;
688 origin_mask = _REGION_ENTRY_ORIGIN;
689 if (pud_large(pud))
690 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
691 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
694 static inline int pmd_large(pmd_t pmd)
696 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
699 static inline int pmd_bad(pmd_t pmd)
701 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0)
702 return 1;
703 if (pmd_large(pmd))
704 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
705 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
708 static inline int pud_bad(pud_t pud)
710 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
712 if (type > _REGION_ENTRY_TYPE_R3)
713 return 1;
714 if (type < _REGION_ENTRY_TYPE_R3)
715 return 0;
716 if (pud_large(pud))
717 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
718 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
721 static inline int p4d_bad(p4d_t p4d)
723 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
725 if (type > _REGION_ENTRY_TYPE_R2)
726 return 1;
727 if (type < _REGION_ENTRY_TYPE_R2)
728 return 0;
729 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
732 static inline int pmd_present(pmd_t pmd)
734 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
737 static inline int pmd_none(pmd_t pmd)
739 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
742 static inline unsigned long pmd_pfn(pmd_t pmd)
744 unsigned long origin_mask;
746 origin_mask = _SEGMENT_ENTRY_ORIGIN;
747 if (pmd_large(pmd))
748 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
749 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
752 #define pmd_write pmd_write
753 static inline int pmd_write(pmd_t pmd)
755 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
758 static inline int pmd_dirty(pmd_t pmd)
760 int dirty = 1;
761 if (pmd_large(pmd))
762 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
763 return dirty;
766 static inline int pmd_young(pmd_t pmd)
768 int young = 1;
769 if (pmd_large(pmd))
770 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
771 return young;
774 static inline int pte_present(pte_t pte)
776 /* Bit pattern: (pte & 0x001) == 0x001 */
777 return (pte_val(pte) & _PAGE_PRESENT) != 0;
780 static inline int pte_none(pte_t pte)
782 /* Bit pattern: pte == 0x400 */
783 return pte_val(pte) == _PAGE_INVALID;
786 static inline int pte_swap(pte_t pte)
788 /* Bit pattern: (pte & 0x201) == 0x200 */
789 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
790 == _PAGE_PROTECT;
793 static inline int pte_special(pte_t pte)
795 return (pte_val(pte) & _PAGE_SPECIAL);
798 #define __HAVE_ARCH_PTE_SAME
799 static inline int pte_same(pte_t a, pte_t b)
801 return pte_val(a) == pte_val(b);
804 #ifdef CONFIG_NUMA_BALANCING
805 static inline int pte_protnone(pte_t pte)
807 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
810 static inline int pmd_protnone(pmd_t pmd)
812 /* pmd_large(pmd) implies pmd_present(pmd) */
813 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
815 #endif
817 static inline int pte_soft_dirty(pte_t pte)
819 return pte_val(pte) & _PAGE_SOFT_DIRTY;
821 #define pte_swp_soft_dirty pte_soft_dirty
823 static inline pte_t pte_mksoft_dirty(pte_t pte)
825 pte_val(pte) |= _PAGE_SOFT_DIRTY;
826 return pte;
828 #define pte_swp_mksoft_dirty pte_mksoft_dirty
830 static inline pte_t pte_clear_soft_dirty(pte_t pte)
832 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
833 return pte;
835 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
837 static inline int pmd_soft_dirty(pmd_t pmd)
839 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
842 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
844 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
845 return pmd;
848 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
850 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
851 return pmd;
855 * query functions pte_write/pte_dirty/pte_young only work if
856 * pte_present() is true. Undefined behaviour if not..
858 static inline int pte_write(pte_t pte)
860 return (pte_val(pte) & _PAGE_WRITE) != 0;
863 static inline int pte_dirty(pte_t pte)
865 return (pte_val(pte) & _PAGE_DIRTY) != 0;
868 static inline int pte_young(pte_t pte)
870 return (pte_val(pte) & _PAGE_YOUNG) != 0;
873 #define __HAVE_ARCH_PTE_UNUSED
874 static inline int pte_unused(pte_t pte)
876 return pte_val(pte) & _PAGE_UNUSED;
880 * pgd/pmd/pte modification functions
883 static inline void pgd_clear(pgd_t *pgd)
885 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
886 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
889 static inline void p4d_clear(p4d_t *p4d)
891 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
892 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
895 static inline void pud_clear(pud_t *pud)
897 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
898 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
901 static inline void pmd_clear(pmd_t *pmdp)
903 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
906 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
908 pte_val(*ptep) = _PAGE_INVALID;
912 * The following pte modification functions only work if
913 * pte_present() is true. Undefined behaviour if not..
915 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
917 pte_val(pte) &= _PAGE_CHG_MASK;
918 pte_val(pte) |= pgprot_val(newprot);
920 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
921 * has the invalid bit set, clear it again for readable, young pages
923 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
924 pte_val(pte) &= ~_PAGE_INVALID;
926 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
927 * protection bit set, clear it again for writable, dirty pages
929 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
930 pte_val(pte) &= ~_PAGE_PROTECT;
931 return pte;
934 static inline pte_t pte_wrprotect(pte_t pte)
936 pte_val(pte) &= ~_PAGE_WRITE;
937 pte_val(pte) |= _PAGE_PROTECT;
938 return pte;
941 static inline pte_t pte_mkwrite(pte_t pte)
943 pte_val(pte) |= _PAGE_WRITE;
944 if (pte_val(pte) & _PAGE_DIRTY)
945 pte_val(pte) &= ~_PAGE_PROTECT;
946 return pte;
949 static inline pte_t pte_mkclean(pte_t pte)
951 pte_val(pte) &= ~_PAGE_DIRTY;
952 pte_val(pte) |= _PAGE_PROTECT;
953 return pte;
956 static inline pte_t pte_mkdirty(pte_t pte)
958 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
959 if (pte_val(pte) & _PAGE_WRITE)
960 pte_val(pte) &= ~_PAGE_PROTECT;
961 return pte;
964 static inline pte_t pte_mkold(pte_t pte)
966 pte_val(pte) &= ~_PAGE_YOUNG;
967 pte_val(pte) |= _PAGE_INVALID;
968 return pte;
971 static inline pte_t pte_mkyoung(pte_t pte)
973 pte_val(pte) |= _PAGE_YOUNG;
974 if (pte_val(pte) & _PAGE_READ)
975 pte_val(pte) &= ~_PAGE_INVALID;
976 return pte;
979 static inline pte_t pte_mkspecial(pte_t pte)
981 pte_val(pte) |= _PAGE_SPECIAL;
982 return pte;
985 #ifdef CONFIG_HUGETLB_PAGE
986 static inline pte_t pte_mkhuge(pte_t pte)
988 pte_val(pte) |= _PAGE_LARGE;
989 return pte;
991 #endif
993 #define IPTE_GLOBAL 0
994 #define IPTE_LOCAL 1
996 #define IPTE_NODAT 0x400
997 #define IPTE_GUEST_ASCE 0x800
999 static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1000 unsigned long opt, unsigned long asce,
1001 int local)
1003 unsigned long pto = (unsigned long) ptep;
1005 if (__builtin_constant_p(opt) && opt == 0) {
1006 /* Invalidation + TLB flush for the pte */
1007 asm volatile(
1008 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1009 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1010 [m4] "i" (local));
1011 return;
1014 /* Invalidate ptes with options + TLB flush of the ptes */
1015 opt = opt | (asce & _ASCE_ORIGIN);
1016 asm volatile(
1017 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1018 : [r2] "+a" (address), [r3] "+a" (opt)
1019 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1022 static inline void __ptep_ipte_range(unsigned long address, int nr,
1023 pte_t *ptep, int local)
1025 unsigned long pto = (unsigned long) ptep;
1027 /* Invalidate a range of ptes + TLB flush of the ptes */
1028 do {
1029 asm volatile(
1030 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1031 : [r2] "+a" (address), [r3] "+a" (nr)
1032 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1033 } while (nr != 255);
1037 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1038 * both clear the TLB for the unmapped pte. The reason is that
1039 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1040 * to modify an active pte. The sequence is
1041 * 1) ptep_get_and_clear
1042 * 2) set_pte_at
1043 * 3) flush_tlb_range
1044 * On s390 the tlb needs to get flushed with the modification of the pte
1045 * if the pte is active. The only way how this can be implemented is to
1046 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1047 * is a nop.
1049 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1050 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1052 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1053 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1054 unsigned long addr, pte_t *ptep)
1056 pte_t pte = *ptep;
1058 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1059 return pte_young(pte);
1062 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1063 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1064 unsigned long address, pte_t *ptep)
1066 return ptep_test_and_clear_young(vma, address, ptep);
1069 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1070 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1071 unsigned long addr, pte_t *ptep)
1073 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1076 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1077 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1078 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1079 pte_t *, pte_t, pte_t);
1081 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1082 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1083 unsigned long addr, pte_t *ptep)
1085 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1089 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1090 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1091 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1092 * cannot be accessed while the batched unmap is running. In this case
1093 * full==1 and a simple pte_clear is enough. See tlb.h.
1095 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1096 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1097 unsigned long addr,
1098 pte_t *ptep, int full)
1100 if (full) {
1101 pte_t pte = *ptep;
1102 *ptep = __pte(_PAGE_INVALID);
1103 return pte;
1105 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1108 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1109 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1110 unsigned long addr, pte_t *ptep)
1112 pte_t pte = *ptep;
1114 if (pte_write(pte))
1115 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1118 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1119 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1120 unsigned long addr, pte_t *ptep,
1121 pte_t entry, int dirty)
1123 if (pte_same(*ptep, entry))
1124 return 0;
1125 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1126 return 1;
1130 * Additional functions to handle KVM guest page tables
1132 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1133 pte_t *ptep, pte_t entry);
1134 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1135 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1136 pte_t *ptep, unsigned long bits);
1137 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1138 pte_t *ptep, int prot, unsigned long bit);
1139 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1140 pte_t *ptep , int reset);
1141 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1142 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1143 pte_t *sptep, pte_t *tptep, pte_t pte);
1144 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1146 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1147 pte_t *ptep);
1148 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1149 unsigned char key, bool nq);
1150 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1151 unsigned char key, unsigned char *oldkey,
1152 bool nq, bool mr, bool mc);
1153 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1154 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1155 unsigned char *key);
1157 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1158 unsigned long bits, unsigned long value);
1159 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1160 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1161 unsigned long *oldpte, unsigned long *oldpgste);
1162 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1163 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1164 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1165 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1168 * Certain architectures need to do special things when PTEs
1169 * within a page table are directly modified. Thus, the following
1170 * hook is made available.
1172 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1173 pte_t *ptep, pte_t entry)
1175 if (!MACHINE_HAS_NX)
1176 pte_val(entry) &= ~_PAGE_NOEXEC;
1177 if (pte_present(entry))
1178 pte_val(entry) &= ~_PAGE_UNUSED;
1179 if (mm_has_pgste(mm))
1180 ptep_set_pte_at(mm, addr, ptep, entry);
1181 else
1182 *ptep = entry;
1186 * Conversion functions: convert a page and protection to a page entry,
1187 * and a page entry and page directory to the page they refer to.
1189 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1191 pte_t __pte;
1192 pte_val(__pte) = physpage + pgprot_val(pgprot);
1193 return pte_mkyoung(__pte);
1196 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1198 unsigned long physpage = page_to_phys(page);
1199 pte_t __pte = mk_pte_phys(physpage, pgprot);
1201 if (pte_write(__pte) && PageDirty(page))
1202 __pte = pte_mkdirty(__pte);
1203 return __pte;
1206 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1207 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1208 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1209 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1210 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1212 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1213 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1214 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1215 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1218 * The pgd_offset function *always* adds the index for the top-level
1219 * region/segment table. This is done to get a sequence like the
1220 * following to work:
1221 * pgdp = pgd_offset(current->mm, addr);
1222 * pgd = READ_ONCE(*pgdp);
1223 * p4dp = p4d_offset(&pgd, addr);
1224 * ...
1225 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1226 * only add an index if they dereferenced the pointer.
1228 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1230 unsigned long rste;
1231 unsigned int shift;
1233 /* Get the first entry of the top level table */
1234 rste = pgd_val(*pgd);
1235 /* Pick up the shift from the table type of the first entry */
1236 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1237 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1240 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1241 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1243 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1245 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1246 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1247 return (p4d_t *) pgd;
1250 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1252 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1253 return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1254 return (pud_t *) p4d;
1257 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1259 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1260 return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1261 return (pmd_t *) pud;
1264 static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1266 return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1269 #define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1270 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1271 #define pte_unmap(pte) do { } while (0)
1273 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1275 return end <= current->mm->context.asce_limit;
1277 #define gup_fast_permitted gup_fast_permitted
1279 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1280 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1281 #define pte_page(x) pfn_to_page(pte_pfn(x))
1283 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1284 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1285 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1286 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1288 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1290 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1291 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1292 return pmd;
1295 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1297 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1298 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1299 return pmd;
1300 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1301 return pmd;
1304 static inline pmd_t pmd_mkclean(pmd_t pmd)
1306 if (pmd_large(pmd)) {
1307 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1308 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1310 return pmd;
1313 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1315 if (pmd_large(pmd)) {
1316 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1317 _SEGMENT_ENTRY_SOFT_DIRTY;
1318 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1319 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1321 return pmd;
1324 static inline pud_t pud_wrprotect(pud_t pud)
1326 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1327 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1328 return pud;
1331 static inline pud_t pud_mkwrite(pud_t pud)
1333 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1334 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1335 return pud;
1336 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1337 return pud;
1340 static inline pud_t pud_mkclean(pud_t pud)
1342 if (pud_large(pud)) {
1343 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1344 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1346 return pud;
1349 static inline pud_t pud_mkdirty(pud_t pud)
1351 if (pud_large(pud)) {
1352 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1353 _REGION3_ENTRY_SOFT_DIRTY;
1354 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1355 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1357 return pud;
1360 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1361 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1364 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1365 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1367 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1368 return pgprot_val(SEGMENT_NONE);
1369 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1370 return pgprot_val(SEGMENT_RO);
1371 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1372 return pgprot_val(SEGMENT_RX);
1373 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1374 return pgprot_val(SEGMENT_RW);
1375 return pgprot_val(SEGMENT_RWX);
1378 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1380 if (pmd_large(pmd)) {
1381 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1382 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1383 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1385 return pmd;
1388 static inline pmd_t pmd_mkold(pmd_t pmd)
1390 if (pmd_large(pmd)) {
1391 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1392 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1394 return pmd;
1397 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1399 if (pmd_large(pmd)) {
1400 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1401 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1402 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1403 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1404 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1405 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1406 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1407 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1408 return pmd;
1410 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1411 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1412 return pmd;
1415 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1417 pmd_t __pmd;
1418 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1419 return __pmd;
1422 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1424 static inline void __pmdp_csp(pmd_t *pmdp)
1426 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1427 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1430 #define IDTE_GLOBAL 0
1431 #define IDTE_LOCAL 1
1433 #define IDTE_PTOA 0x0800
1434 #define IDTE_NODAT 0x1000
1435 #define IDTE_GUEST_ASCE 0x2000
1437 static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1438 unsigned long opt, unsigned long asce,
1439 int local)
1441 unsigned long sto;
1443 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1444 if (__builtin_constant_p(opt) && opt == 0) {
1445 /* flush without guest asce */
1446 asm volatile(
1447 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1448 : "+m" (*pmdp)
1449 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1450 [m4] "i" (local)
1451 : "cc" );
1452 } else {
1453 /* flush with guest asce */
1454 asm volatile(
1455 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1456 : "+m" (*pmdp)
1457 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1458 [r3] "a" (asce), [m4] "i" (local)
1459 : "cc" );
1463 static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1464 unsigned long opt, unsigned long asce,
1465 int local)
1467 unsigned long r3o;
1469 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1470 r3o |= _ASCE_TYPE_REGION3;
1471 if (__builtin_constant_p(opt) && opt == 0) {
1472 /* flush without guest asce */
1473 asm volatile(
1474 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1475 : "+m" (*pudp)
1476 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1477 [m4] "i" (local)
1478 : "cc");
1479 } else {
1480 /* flush with guest asce */
1481 asm volatile(
1482 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1483 : "+m" (*pudp)
1484 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1485 [r3] "a" (asce), [m4] "i" (local)
1486 : "cc" );
1490 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1491 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1492 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1496 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1497 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1498 pgtable_t pgtable);
1500 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1501 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1503 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1504 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1505 unsigned long addr, pmd_t *pmdp,
1506 pmd_t entry, int dirty)
1508 VM_BUG_ON(addr & ~HPAGE_MASK);
1510 entry = pmd_mkyoung(entry);
1511 if (dirty)
1512 entry = pmd_mkdirty(entry);
1513 if (pmd_val(*pmdp) == pmd_val(entry))
1514 return 0;
1515 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1516 return 1;
1519 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1520 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1521 unsigned long addr, pmd_t *pmdp)
1523 pmd_t pmd = *pmdp;
1525 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1526 return pmd_young(pmd);
1529 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1530 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1531 unsigned long addr, pmd_t *pmdp)
1533 VM_BUG_ON(addr & ~HPAGE_MASK);
1534 return pmdp_test_and_clear_young(vma, addr, pmdp);
1537 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1538 pmd_t *pmdp, pmd_t entry)
1540 if (!MACHINE_HAS_NX)
1541 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1542 *pmdp = entry;
1545 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1547 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1548 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1549 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1550 return pmd;
1553 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1554 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1555 unsigned long addr, pmd_t *pmdp)
1557 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1560 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1561 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1562 unsigned long addr,
1563 pmd_t *pmdp, int full)
1565 if (full) {
1566 pmd_t pmd = *pmdp;
1567 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1568 return pmd;
1570 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1573 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1574 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1575 unsigned long addr, pmd_t *pmdp)
1577 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1580 #define __HAVE_ARCH_PMDP_INVALIDATE
1581 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1582 unsigned long addr, pmd_t *pmdp)
1584 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1586 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1589 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1590 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1591 unsigned long addr, pmd_t *pmdp)
1593 pmd_t pmd = *pmdp;
1595 if (pmd_write(pmd))
1596 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1599 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1600 unsigned long address,
1601 pmd_t *pmdp)
1603 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1605 #define pmdp_collapse_flush pmdp_collapse_flush
1607 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1608 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1610 static inline int pmd_trans_huge(pmd_t pmd)
1612 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1615 #define has_transparent_hugepage has_transparent_hugepage
1616 static inline int has_transparent_hugepage(void)
1618 return MACHINE_HAS_EDAT1 ? 1 : 0;
1620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1623 * 64 bit swap entry format:
1624 * A page-table entry has some bits we have to treat in a special way.
1625 * Bits 52 and bit 55 have to be zero, otherwise a specification
1626 * exception will occur instead of a page translation exception. The
1627 * specification exception has the bad habit not to store necessary
1628 * information in the lowcore.
1629 * Bits 54 and 63 are used to indicate the page type.
1630 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1631 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1632 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1633 * for the offset.
1634 * | offset |01100|type |00|
1635 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1636 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1639 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1640 #define __SWP_OFFSET_SHIFT 12
1641 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1642 #define __SWP_TYPE_SHIFT 2
1644 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1646 pte_t pte;
1648 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1649 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1650 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1651 return pte;
1654 static inline unsigned long __swp_type(swp_entry_t entry)
1656 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1659 static inline unsigned long __swp_offset(swp_entry_t entry)
1661 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1664 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1666 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1669 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1670 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1672 #define kern_addr_valid(addr) (1)
1674 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1675 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1676 extern int s390_enable_sie(void);
1677 extern int s390_enable_skey(void);
1678 extern void s390_reset_cmma(struct mm_struct *mm);
1680 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1681 #define HAVE_ARCH_UNMAPPED_AREA
1682 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1685 * No page table caches to initialise
1687 static inline void pgtable_cache_init(void) { }
1688 static inline void check_pgt_cache(void) { }
1690 #include <asm-generic/pgtable.h>
1692 #endif /* _S390_PAGE_H */