1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
23 #include <asm/traps.h> /* dotraplinkage, ... */
24 #include <asm/pgalloc.h> /* pgd_*(), ... */
25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 #include <asm/vsyscall.h> /* emulate_vsyscall */
27 #include <asm/vm86.h> /* struct vm86 */
28 #include <asm/mmu_context.h> /* vma_pkey() */
29 #include <asm/efi.h> /* efi_recover_from_page_fault()*/
30 #include <asm/desc.h> /* store_idt(), ... */
31 #include <asm/cpu_entry_area.h> /* exception stack */
33 #define CREATE_TRACE_POINTS
34 #include <asm/trace/exceptions.h>
37 * Returns 0 if mmiotrace is disabled, or if the fault is not
38 * handled by mmiotrace:
40 static nokprobe_inline
int
41 kmmio_fault(struct pt_regs
*regs
, unsigned long addr
)
43 if (unlikely(is_kmmio_active()))
44 if (kmmio_handler(regs
, addr
) == 1)
54 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
55 * Check that here and ignore it.
59 * Sometimes the CPU reports invalid exceptions on prefetch.
60 * Check that here and ignore it.
62 * Opcode checker based on code by Richard Brunner.
65 check_prefetch_opcode(struct pt_regs
*regs
, unsigned char *instr
,
66 unsigned char opcode
, int *prefetch
)
68 unsigned char instr_hi
= opcode
& 0xf0;
69 unsigned char instr_lo
= opcode
& 0x0f;
75 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
76 * In X86_64 long mode, the CPU will signal invalid
77 * opcode if some of these prefixes are present so
78 * X86_64 will never get here anyway
80 return ((instr_lo
& 7) == 0x6);
84 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
85 * Need to figure out under what instruction mode the
86 * instruction was issued. Could check the LDT for lm,
87 * but for now it's good enough to assume that long
88 * mode only uses well known segments or kernel.
90 return (!user_mode(regs
) || user_64bit_mode(regs
));
93 /* 0x64 thru 0x67 are valid prefixes in all modes. */
94 return (instr_lo
& 0xC) == 0x4;
96 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
97 return !instr_lo
|| (instr_lo
>>1) == 1;
99 /* Prefetch instruction is 0x0F0D or 0x0F18 */
100 if (probe_kernel_address(instr
, opcode
))
103 *prefetch
= (instr_lo
== 0xF) &&
104 (opcode
== 0x0D || opcode
== 0x18);
112 is_prefetch(struct pt_regs
*regs
, unsigned long error_code
, unsigned long addr
)
114 unsigned char *max_instr
;
115 unsigned char *instr
;
119 * If it was a exec (instruction fetch) fault on NX page, then
120 * do not ignore the fault:
122 if (error_code
& X86_PF_INSTR
)
125 instr
= (void *)convert_ip_to_linear(current
, regs
);
126 max_instr
= instr
+ 15;
128 if (user_mode(regs
) && instr
>= (unsigned char *)TASK_SIZE_MAX
)
131 while (instr
< max_instr
) {
132 unsigned char opcode
;
134 if (probe_kernel_address(instr
, opcode
))
139 if (!check_prefetch_opcode(regs
, instr
, opcode
, &prefetch
))
145 DEFINE_SPINLOCK(pgd_lock
);
149 static inline pmd_t
*vmalloc_sync_one(pgd_t
*pgd
, unsigned long address
)
151 unsigned index
= pgd_index(address
);
158 pgd_k
= init_mm
.pgd
+ index
;
160 if (!pgd_present(*pgd_k
))
164 * set_pgd(pgd, *pgd_k); here would be useless on PAE
165 * and redundant with the set_pmd() on non-PAE. As would
168 p4d
= p4d_offset(pgd
, address
);
169 p4d_k
= p4d_offset(pgd_k
, address
);
170 if (!p4d_present(*p4d_k
))
173 pud
= pud_offset(p4d
, address
);
174 pud_k
= pud_offset(p4d_k
, address
);
175 if (!pud_present(*pud_k
))
178 pmd
= pmd_offset(pud
, address
);
179 pmd_k
= pmd_offset(pud_k
, address
);
181 if (pmd_present(*pmd
) != pmd_present(*pmd_k
))
182 set_pmd(pmd
, *pmd_k
);
184 if (!pmd_present(*pmd_k
))
187 BUG_ON(pmd_pfn(*pmd
) != pmd_pfn(*pmd_k
));
192 void vmalloc_sync_all(void)
194 unsigned long address
;
196 if (SHARED_KERNEL_PMD
)
199 for (address
= VMALLOC_START
& PMD_MASK
;
200 address
>= TASK_SIZE_MAX
&& address
< FIXADDR_TOP
;
201 address
+= PMD_SIZE
) {
204 spin_lock(&pgd_lock
);
205 list_for_each_entry(page
, &pgd_list
, lru
) {
206 spinlock_t
*pgt_lock
;
208 /* the pgt_lock only for Xen */
209 pgt_lock
= &pgd_page_get_mm(page
)->page_table_lock
;
212 vmalloc_sync_one(page_address(page
), address
);
213 spin_unlock(pgt_lock
);
215 spin_unlock(&pgd_lock
);
222 * Handle a fault on the vmalloc or module mapping area
224 static noinline
int vmalloc_fault(unsigned long address
)
226 unsigned long pgd_paddr
;
230 /* Make sure we are in vmalloc area: */
231 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
235 * Synchronize this task's top level page-table
236 * with the 'reference' page table.
238 * Do _not_ use "current" here. We might be inside
239 * an interrupt in the middle of a task switch..
241 pgd_paddr
= read_cr3_pa();
242 pmd_k
= vmalloc_sync_one(__va(pgd_paddr
), address
);
246 if (pmd_large(*pmd_k
))
249 pte_k
= pte_offset_kernel(pmd_k
, address
);
250 if (!pte_present(*pte_k
))
255 NOKPROBE_SYMBOL(vmalloc_fault
);
258 * Did it hit the DOS screen memory VA from vm86 mode?
261 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
262 struct task_struct
*tsk
)
267 if (!v8086_mode(regs
) || !tsk
->thread
.vm86
)
270 bit
= (address
- 0xA0000) >> PAGE_SHIFT
;
272 tsk
->thread
.vm86
->screen_bitmap
|= 1 << bit
;
276 static bool low_pfn(unsigned long pfn
)
278 return pfn
< max_low_pfn
;
281 static void dump_pagetable(unsigned long address
)
283 pgd_t
*base
= __va(read_cr3_pa());
284 pgd_t
*pgd
= &base
[pgd_index(address
)];
290 #ifdef CONFIG_X86_PAE
291 pr_info("*pdpt = %016Lx ", pgd_val(*pgd
));
292 if (!low_pfn(pgd_val(*pgd
) >> PAGE_SHIFT
) || !pgd_present(*pgd
))
294 #define pr_pde pr_cont
296 #define pr_pde pr_info
298 p4d
= p4d_offset(pgd
, address
);
299 pud
= pud_offset(p4d
, address
);
300 pmd
= pmd_offset(pud
, address
);
301 pr_pde("*pde = %0*Lx ", sizeof(*pmd
) * 2, (u64
)pmd_val(*pmd
));
305 * We must not directly access the pte in the highpte
306 * case if the page table is located in highmem.
307 * And let's rather not kmap-atomic the pte, just in case
308 * it's allocated already:
310 if (!low_pfn(pmd_pfn(*pmd
)) || !pmd_present(*pmd
) || pmd_large(*pmd
))
313 pte
= pte_offset_kernel(pmd
, address
);
314 pr_cont("*pte = %0*Lx ", sizeof(*pte
) * 2, (u64
)pte_val(*pte
));
319 #else /* CONFIG_X86_64: */
321 void vmalloc_sync_all(void)
323 sync_global_pgds(VMALLOC_START
& PGDIR_MASK
, VMALLOC_END
);
329 * Handle a fault on the vmalloc area
331 static noinline
int vmalloc_fault(unsigned long address
)
339 /* Make sure we are in vmalloc area: */
340 if (!(address
>= VMALLOC_START
&& address
< VMALLOC_END
))
344 * Copy kernel mappings over when needed. This can also
345 * happen within a race in page table update. In the later
348 pgd
= (pgd_t
*)__va(read_cr3_pa()) + pgd_index(address
);
349 pgd_k
= pgd_offset_k(address
);
350 if (pgd_none(*pgd_k
))
353 if (pgtable_l5_enabled()) {
354 if (pgd_none(*pgd
)) {
355 set_pgd(pgd
, *pgd_k
);
356 arch_flush_lazy_mmu_mode();
358 BUG_ON(pgd_page_vaddr(*pgd
) != pgd_page_vaddr(*pgd_k
));
362 /* With 4-level paging, copying happens on the p4d level. */
363 p4d
= p4d_offset(pgd
, address
);
364 p4d_k
= p4d_offset(pgd_k
, address
);
365 if (p4d_none(*p4d_k
))
368 if (p4d_none(*p4d
) && !pgtable_l5_enabled()) {
369 set_p4d(p4d
, *p4d_k
);
370 arch_flush_lazy_mmu_mode();
372 BUG_ON(p4d_pfn(*p4d
) != p4d_pfn(*p4d_k
));
375 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS
< 4);
377 pud
= pud_offset(p4d
, address
);
384 pmd
= pmd_offset(pud
, address
);
391 pte
= pte_offset_kernel(pmd
, address
);
392 if (!pte_present(*pte
))
397 NOKPROBE_SYMBOL(vmalloc_fault
);
399 #ifdef CONFIG_CPU_SUP_AMD
400 static const char errata93_warning
[] =
402 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
403 "******* Working around it, but it may cause SEGVs or burn power.\n"
404 "******* Please consider a BIOS update.\n"
405 "******* Disabling USB legacy in the BIOS may also help.\n";
409 * No vm86 mode in 64-bit mode:
412 check_v8086_mode(struct pt_regs
*regs
, unsigned long address
,
413 struct task_struct
*tsk
)
417 static int bad_address(void *p
)
421 return probe_kernel_address((unsigned long *)p
, dummy
);
424 static void dump_pagetable(unsigned long address
)
426 pgd_t
*base
= __va(read_cr3_pa());
427 pgd_t
*pgd
= base
+ pgd_index(address
);
433 if (bad_address(pgd
))
436 pr_info("PGD %lx ", pgd_val(*pgd
));
438 if (!pgd_present(*pgd
))
441 p4d
= p4d_offset(pgd
, address
);
442 if (bad_address(p4d
))
445 pr_cont("P4D %lx ", p4d_val(*p4d
));
446 if (!p4d_present(*p4d
) || p4d_large(*p4d
))
449 pud
= pud_offset(p4d
, address
);
450 if (bad_address(pud
))
453 pr_cont("PUD %lx ", pud_val(*pud
));
454 if (!pud_present(*pud
) || pud_large(*pud
))
457 pmd
= pmd_offset(pud
, address
);
458 if (bad_address(pmd
))
461 pr_cont("PMD %lx ", pmd_val(*pmd
));
462 if (!pmd_present(*pmd
) || pmd_large(*pmd
))
465 pte
= pte_offset_kernel(pmd
, address
);
466 if (bad_address(pte
))
469 pr_cont("PTE %lx", pte_val(*pte
));
477 #endif /* CONFIG_X86_64 */
480 * Workaround for K8 erratum #93 & buggy BIOS.
482 * BIOS SMM functions are required to use a specific workaround
483 * to avoid corruption of the 64bit RIP register on C stepping K8.
485 * A lot of BIOS that didn't get tested properly miss this.
487 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
488 * Try to work around it here.
490 * Note we only handle faults in kernel here.
491 * Does nothing on 32-bit.
493 static int is_errata93(struct pt_regs
*regs
, unsigned long address
)
495 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
496 if (boot_cpu_data
.x86_vendor
!= X86_VENDOR_AMD
497 || boot_cpu_data
.x86
!= 0xf)
500 if (address
!= regs
->ip
)
503 if ((address
>> 32) != 0)
506 address
|= 0xffffffffUL
<< 32;
507 if ((address
>= (u64
)_stext
&& address
<= (u64
)_etext
) ||
508 (address
>= MODULES_VADDR
&& address
<= MODULES_END
)) {
509 printk_once(errata93_warning
);
518 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
519 * to illegal addresses >4GB.
521 * We catch this in the page fault handler because these addresses
522 * are not reachable. Just detect this case and return. Any code
523 * segment in LDT is compatibility mode.
525 static int is_errata100(struct pt_regs
*regs
, unsigned long address
)
528 if ((regs
->cs
== __USER32_CS
|| (regs
->cs
& (1<<2))) && (address
>> 32))
534 static int is_f00f_bug(struct pt_regs
*regs
, unsigned long address
)
536 #ifdef CONFIG_X86_F00F_BUG
540 * Pentium F0 0F C7 C8 bug workaround:
542 if (boot_cpu_has_bug(X86_BUG_F00F
)) {
543 nr
= (address
- idt_descr
.address
) >> 3;
546 do_invalid_op(regs
, 0);
554 static void show_ldttss(const struct desc_ptr
*gdt
, const char *name
, u16 index
)
556 u32 offset
= (index
>> 3) * sizeof(struct desc_struct
);
558 struct ldttss_desc desc
;
561 pr_alert("%s: NULL\n", name
);
565 if (offset
+ sizeof(struct ldttss_desc
) >= gdt
->size
) {
566 pr_alert("%s: 0x%hx -- out of bounds\n", name
, index
);
570 if (probe_kernel_read(&desc
, (void *)(gdt
->address
+ offset
),
571 sizeof(struct ldttss_desc
))) {
572 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
577 addr
= desc
.base0
| (desc
.base1
<< 16) | ((unsigned long)desc
.base2
<< 24);
579 addr
|= ((u64
)desc
.base3
<< 32);
581 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
582 name
, index
, addr
, (desc
.limit0
| (desc
.limit1
<< 16)));
586 show_fault_oops(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
588 if (!oops_may_print())
591 if (error_code
& X86_PF_INSTR
) {
596 pgd
= __va(read_cr3_pa());
597 pgd
+= pgd_index(address
);
599 pte
= lookup_address_in_pgd(pgd
, address
, &level
);
601 if (pte
&& pte_present(*pte
) && !pte_exec(*pte
))
602 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
603 from_kuid(&init_user_ns
, current_uid()));
604 if (pte
&& pte_present(*pte
) && pte_exec(*pte
) &&
605 (pgd_flags(*pgd
) & _PAGE_USER
) &&
606 (__read_cr4() & X86_CR4_SMEP
))
607 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
608 from_kuid(&init_user_ns
, current_uid()));
611 if (address
< PAGE_SIZE
&& !user_mode(regs
))
612 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
615 pr_alert("BUG: unable to handle page fault for address: %px\n",
618 pr_alert("#PF: %s %s in %s mode\n",
619 (error_code
& X86_PF_USER
) ? "user" : "supervisor",
620 (error_code
& X86_PF_INSTR
) ? "instruction fetch" :
621 (error_code
& X86_PF_WRITE
) ? "write access" :
623 user_mode(regs
) ? "user" : "kernel");
624 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code
,
625 !(error_code
& X86_PF_PROT
) ? "not-present page" :
626 (error_code
& X86_PF_RSVD
) ? "reserved bit violation" :
627 (error_code
& X86_PF_PK
) ? "protection keys violation" :
628 "permissions violation");
630 if (!(error_code
& X86_PF_USER
) && user_mode(regs
)) {
631 struct desc_ptr idt
, gdt
;
635 * This can happen for quite a few reasons. The more obvious
636 * ones are faults accessing the GDT, or LDT. Perhaps
637 * surprisingly, if the CPU tries to deliver a benign or
638 * contributory exception from user code and gets a page fault
639 * during delivery, the page fault can be delivered as though
640 * it originated directly from user code. This could happen
641 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
642 * kernel or IST stack.
646 /* Usable even on Xen PV -- it's just slow. */
647 native_store_gdt(&gdt
);
649 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
650 idt
.address
, idt
.size
, gdt
.address
, gdt
.size
);
653 show_ldttss(&gdt
, "LDTR", ldtr
);
656 show_ldttss(&gdt
, "TR", tr
);
659 dump_pagetable(address
);
663 pgtable_bad(struct pt_regs
*regs
, unsigned long error_code
,
664 unsigned long address
)
666 struct task_struct
*tsk
;
670 flags
= oops_begin();
674 printk(KERN_ALERT
"%s: Corrupted page table at address %lx\n",
676 dump_pagetable(address
);
678 if (__die("Bad pagetable", regs
, error_code
))
681 oops_end(flags
, regs
, sig
);
684 static void set_signal_archinfo(unsigned long address
,
685 unsigned long error_code
)
687 struct task_struct
*tsk
= current
;
690 * To avoid leaking information about the kernel page
691 * table layout, pretend that user-mode accesses to
692 * kernel addresses are always protection faults.
694 * NB: This means that failed vsyscalls with vsyscall=none
695 * will have the PROT bit. This doesn't leak any
696 * information and does not appear to cause any problems.
698 if (address
>= TASK_SIZE_MAX
)
699 error_code
|= X86_PF_PROT
;
701 tsk
->thread
.trap_nr
= X86_TRAP_PF
;
702 tsk
->thread
.error_code
= error_code
| X86_PF_USER
;
703 tsk
->thread
.cr2
= address
;
707 no_context(struct pt_regs
*regs
, unsigned long error_code
,
708 unsigned long address
, int signal
, int si_code
)
710 struct task_struct
*tsk
= current
;
714 if (user_mode(regs
)) {
716 * This is an implicit supervisor-mode access from user
717 * mode. Bypass all the kernel-mode recovery code and just
723 /* Are we prepared to handle this kernel fault? */
724 if (fixup_exception(regs
, X86_TRAP_PF
, error_code
, address
)) {
726 * Any interrupt that takes a fault gets the fixup. This makes
727 * the below recursive fault logic only apply to a faults from
734 * Per the above we're !in_interrupt(), aka. task context.
736 * In this case we need to make sure we're not recursively
737 * faulting through the emulate_vsyscall() logic.
739 if (current
->thread
.sig_on_uaccess_err
&& signal
) {
740 set_signal_archinfo(address
, error_code
);
742 /* XXX: hwpoison faults will set the wrong code. */
743 force_sig_fault(signal
, si_code
, (void __user
*)address
);
747 * Barring that, we can do the fixup and be happy.
752 #ifdef CONFIG_VMAP_STACK
754 * Stack overflow? During boot, we can fault near the initial
755 * stack in the direct map, but that's not an overflow -- check
756 * that we're in vmalloc space to avoid this.
758 if (is_vmalloc_addr((void *)address
) &&
759 (((unsigned long)tsk
->stack
- 1 - address
< PAGE_SIZE
) ||
760 address
- ((unsigned long)tsk
->stack
+ THREAD_SIZE
) < PAGE_SIZE
)) {
761 unsigned long stack
= __this_cpu_ist_top_va(DF
) - sizeof(void *);
763 * We're likely to be running with very little stack space
764 * left. It's plausible that we'd hit this condition but
765 * double-fault even before we get this far, in which case
766 * we're fine: the double-fault handler will deal with it.
768 * We don't want to make it all the way into the oops code
769 * and then double-fault, though, because we're likely to
770 * break the console driver and lose most of the stack dump.
772 asm volatile ("movq %[stack], %%rsp\n\t"
773 "call handle_stack_overflow\n\t"
775 : ASM_CALL_CONSTRAINT
776 : "D" ("kernel stack overflow (page fault)"),
777 "S" (regs
), "d" (address
),
778 [stack
] "rm" (stack
));
786 * Valid to do another page fault here, because if this fault
787 * had been triggered by is_prefetch fixup_exception would have
792 * Hall of shame of CPU/BIOS bugs.
794 if (is_prefetch(regs
, error_code
, address
))
797 if (is_errata93(regs
, address
))
801 * Buggy firmware could access regions which might page fault, try to
802 * recover from such faults.
804 if (IS_ENABLED(CONFIG_EFI
))
805 efi_recover_from_page_fault(address
);
809 * Oops. The kernel tried to access some bad page. We'll have to
810 * terminate things with extreme prejudice:
812 flags
= oops_begin();
814 show_fault_oops(regs
, error_code
, address
);
816 if (task_stack_end_corrupted(tsk
))
817 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
820 if (__die("Oops", regs
, error_code
))
823 /* Executive summary in case the body of the oops scrolled away */
824 printk(KERN_DEFAULT
"CR2: %016lx\n", address
);
826 oops_end(flags
, regs
, sig
);
830 * Print out info about fatal segfaults, if the show_unhandled_signals
834 show_signal_msg(struct pt_regs
*regs
, unsigned long error_code
,
835 unsigned long address
, struct task_struct
*tsk
)
837 const char *loglvl
= task_pid_nr(tsk
) > 1 ? KERN_INFO
: KERN_EMERG
;
839 if (!unhandled_signal(tsk
, SIGSEGV
))
842 if (!printk_ratelimit())
845 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
846 loglvl
, tsk
->comm
, task_pid_nr(tsk
), address
,
847 (void *)regs
->ip
, (void *)regs
->sp
, error_code
);
849 print_vma_addr(KERN_CONT
" in ", regs
->ip
);
851 printk(KERN_CONT
"\n");
853 show_opcodes(regs
, loglvl
);
857 * The (legacy) vsyscall page is the long page in the kernel portion
858 * of the address space that has user-accessible permissions.
860 static bool is_vsyscall_vaddr(unsigned long vaddr
)
862 return unlikely((vaddr
& PAGE_MASK
) == VSYSCALL_ADDR
);
866 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
867 unsigned long address
, u32 pkey
, int si_code
)
869 struct task_struct
*tsk
= current
;
871 /* User mode accesses just cause a SIGSEGV */
872 if (user_mode(regs
) && (error_code
& X86_PF_USER
)) {
874 * It's possible to have interrupts off here:
879 * Valid to do another page fault here because this one came
882 if (is_prefetch(regs
, error_code
, address
))
885 if (is_errata100(regs
, address
))
889 * To avoid leaking information about the kernel page table
890 * layout, pretend that user-mode accesses to kernel addresses
891 * are always protection faults.
893 if (address
>= TASK_SIZE_MAX
)
894 error_code
|= X86_PF_PROT
;
896 if (likely(show_unhandled_signals
))
897 show_signal_msg(regs
, error_code
, address
, tsk
);
899 set_signal_archinfo(address
, error_code
);
901 if (si_code
== SEGV_PKUERR
)
902 force_sig_pkuerr((void __user
*)address
, pkey
);
904 force_sig_fault(SIGSEGV
, si_code
, (void __user
*)address
);
909 if (is_f00f_bug(regs
, address
))
912 no_context(regs
, error_code
, address
, SIGSEGV
, si_code
);
916 bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long error_code
,
917 unsigned long address
)
919 __bad_area_nosemaphore(regs
, error_code
, address
, 0, SEGV_MAPERR
);
923 __bad_area(struct pt_regs
*regs
, unsigned long error_code
,
924 unsigned long address
, u32 pkey
, int si_code
)
926 struct mm_struct
*mm
= current
->mm
;
928 * Something tried to access memory that isn't in our memory map..
929 * Fix it, but check if it's kernel or user first..
931 up_read(&mm
->mmap_sem
);
933 __bad_area_nosemaphore(regs
, error_code
, address
, pkey
, si_code
);
937 bad_area(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
939 __bad_area(regs
, error_code
, address
, 0, SEGV_MAPERR
);
942 static inline bool bad_area_access_from_pkeys(unsigned long error_code
,
943 struct vm_area_struct
*vma
)
945 /* This code is always called on the current mm */
946 bool foreign
= false;
948 if (!boot_cpu_has(X86_FEATURE_OSPKE
))
950 if (error_code
& X86_PF_PK
)
952 /* this checks permission keys on the VMA: */
953 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
954 (error_code
& X86_PF_INSTR
), foreign
))
960 bad_area_access_error(struct pt_regs
*regs
, unsigned long error_code
,
961 unsigned long address
, struct vm_area_struct
*vma
)
964 * This OSPKE check is not strictly necessary at runtime.
965 * But, doing it this way allows compiler optimizations
966 * if pkeys are compiled out.
968 if (bad_area_access_from_pkeys(error_code
, vma
)) {
970 * A protection key fault means that the PKRU value did not allow
971 * access to some PTE. Userspace can figure out what PKRU was
972 * from the XSAVE state. This function captures the pkey from
973 * the vma and passes it to userspace so userspace can discover
974 * which protection key was set on the PTE.
976 * If we get here, we know that the hardware signaled a X86_PF_PK
977 * fault and that there was a VMA once we got in the fault
978 * handler. It does *not* guarantee that the VMA we find here
979 * was the one that we faulted on.
981 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
982 * 2. T1 : set PKRU to deny access to pkey=4, touches page
984 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
985 * 5. T1 : enters fault handler, takes mmap_sem, etc...
986 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
987 * faulted on a pte with its pkey=4.
989 u32 pkey
= vma_pkey(vma
);
991 __bad_area(regs
, error_code
, address
, pkey
, SEGV_PKUERR
);
993 __bad_area(regs
, error_code
, address
, 0, SEGV_ACCERR
);
998 do_sigbus(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
,
1001 /* Kernel mode? Handle exceptions or die: */
1002 if (!(error_code
& X86_PF_USER
)) {
1003 no_context(regs
, error_code
, address
, SIGBUS
, BUS_ADRERR
);
1007 /* User-space => ok to do another page fault: */
1008 if (is_prefetch(regs
, error_code
, address
))
1011 set_signal_archinfo(address
, error_code
);
1013 #ifdef CONFIG_MEMORY_FAILURE
1014 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
1015 struct task_struct
*tsk
= current
;
1019 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1020 tsk
->comm
, tsk
->pid
, address
);
1021 if (fault
& VM_FAULT_HWPOISON_LARGE
)
1022 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
1023 if (fault
& VM_FAULT_HWPOISON
)
1025 force_sig_mceerr(BUS_MCEERR_AR
, (void __user
*)address
, lsb
);
1029 force_sig_fault(SIGBUS
, BUS_ADRERR
, (void __user
*)address
);
1032 static noinline
void
1033 mm_fault_error(struct pt_regs
*regs
, unsigned long error_code
,
1034 unsigned long address
, vm_fault_t fault
)
1036 if (fatal_signal_pending(current
) && !(error_code
& X86_PF_USER
)) {
1037 no_context(regs
, error_code
, address
, 0, 0);
1041 if (fault
& VM_FAULT_OOM
) {
1042 /* Kernel mode? Handle exceptions or die: */
1043 if (!(error_code
& X86_PF_USER
)) {
1044 no_context(regs
, error_code
, address
,
1045 SIGSEGV
, SEGV_MAPERR
);
1050 * We ran out of memory, call the OOM killer, and return the
1051 * userspace (which will retry the fault, or kill us if we got
1054 pagefault_out_of_memory();
1056 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
1057 VM_FAULT_HWPOISON_LARGE
))
1058 do_sigbus(regs
, error_code
, address
, fault
);
1059 else if (fault
& VM_FAULT_SIGSEGV
)
1060 bad_area_nosemaphore(regs
, error_code
, address
);
1066 static int spurious_kernel_fault_check(unsigned long error_code
, pte_t
*pte
)
1068 if ((error_code
& X86_PF_WRITE
) && !pte_write(*pte
))
1071 if ((error_code
& X86_PF_INSTR
) && !pte_exec(*pte
))
1078 * Handle a spurious fault caused by a stale TLB entry.
1080 * This allows us to lazily refresh the TLB when increasing the
1081 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1082 * eagerly is very expensive since that implies doing a full
1083 * cross-processor TLB flush, even if no stale TLB entries exist
1084 * on other processors.
1086 * Spurious faults may only occur if the TLB contains an entry with
1087 * fewer permission than the page table entry. Non-present (P = 0)
1088 * and reserved bit (R = 1) faults are never spurious.
1090 * There are no security implications to leaving a stale TLB when
1091 * increasing the permissions on a page.
1093 * Returns non-zero if a spurious fault was handled, zero otherwise.
1095 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1096 * (Optional Invalidation).
1099 spurious_kernel_fault(unsigned long error_code
, unsigned long address
)
1109 * Only writes to RO or instruction fetches from NX may cause
1112 * These could be from user or supervisor accesses but the TLB
1113 * is only lazily flushed after a kernel mapping protection
1114 * change, so user accesses are not expected to cause spurious
1117 if (error_code
!= (X86_PF_WRITE
| X86_PF_PROT
) &&
1118 error_code
!= (X86_PF_INSTR
| X86_PF_PROT
))
1121 pgd
= init_mm
.pgd
+ pgd_index(address
);
1122 if (!pgd_present(*pgd
))
1125 p4d
= p4d_offset(pgd
, address
);
1126 if (!p4d_present(*p4d
))
1129 if (p4d_large(*p4d
))
1130 return spurious_kernel_fault_check(error_code
, (pte_t
*) p4d
);
1132 pud
= pud_offset(p4d
, address
);
1133 if (!pud_present(*pud
))
1136 if (pud_large(*pud
))
1137 return spurious_kernel_fault_check(error_code
, (pte_t
*) pud
);
1139 pmd
= pmd_offset(pud
, address
);
1140 if (!pmd_present(*pmd
))
1143 if (pmd_large(*pmd
))
1144 return spurious_kernel_fault_check(error_code
, (pte_t
*) pmd
);
1146 pte
= pte_offset_kernel(pmd
, address
);
1147 if (!pte_present(*pte
))
1150 ret
= spurious_kernel_fault_check(error_code
, pte
);
1155 * Make sure we have permissions in PMD.
1156 * If not, then there's a bug in the page tables:
1158 ret
= spurious_kernel_fault_check(error_code
, (pte_t
*) pmd
);
1159 WARN_ONCE(!ret
, "PMD has incorrect permission bits\n");
1163 NOKPROBE_SYMBOL(spurious_kernel_fault
);
1165 int show_unhandled_signals
= 1;
1168 access_error(unsigned long error_code
, struct vm_area_struct
*vma
)
1170 /* This is only called for the current mm, so: */
1171 bool foreign
= false;
1174 * Read or write was blocked by protection keys. This is
1175 * always an unconditional error and can never result in
1176 * a follow-up action to resolve the fault, like a COW.
1178 if (error_code
& X86_PF_PK
)
1182 * Make sure to check the VMA so that we do not perform
1183 * faults just to hit a X86_PF_PK as soon as we fill in a
1186 if (!arch_vma_access_permitted(vma
, (error_code
& X86_PF_WRITE
),
1187 (error_code
& X86_PF_INSTR
), foreign
))
1190 if (error_code
& X86_PF_WRITE
) {
1191 /* write, present and write, not present: */
1192 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
1197 /* read, present: */
1198 if (unlikely(error_code
& X86_PF_PROT
))
1201 /* read, not present: */
1202 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
1208 static int fault_in_kernel_space(unsigned long address
)
1211 * On 64-bit systems, the vsyscall page is at an address above
1212 * TASK_SIZE_MAX, but is not considered part of the kernel
1215 if (IS_ENABLED(CONFIG_X86_64
) && is_vsyscall_vaddr(address
))
1218 return address
>= TASK_SIZE_MAX
;
1222 * Called for all faults where 'address' is part of the kernel address
1223 * space. Might get called for faults that originate from *code* that
1224 * ran in userspace or the kernel.
1227 do_kern_addr_fault(struct pt_regs
*regs
, unsigned long hw_error_code
,
1228 unsigned long address
)
1231 * Protection keys exceptions only happen on user pages. We
1232 * have no user pages in the kernel portion of the address
1233 * space, so do not expect them here.
1235 WARN_ON_ONCE(hw_error_code
& X86_PF_PK
);
1238 * We can fault-in kernel-space virtual memory on-demand. The
1239 * 'reference' page table is init_mm.pgd.
1241 * NOTE! We MUST NOT take any locks for this case. We may
1242 * be in an interrupt or a critical region, and should
1243 * only copy the information from the master page table,
1246 * Before doing this on-demand faulting, ensure that the
1247 * fault is not any of the following:
1248 * 1. A fault on a PTE with a reserved bit set.
1249 * 2. A fault caused by a user-mode access. (Do not demand-
1250 * fault kernel memory due to user-mode accesses).
1251 * 3. A fault caused by a page-level protection violation.
1252 * (A demand fault would be on a non-present page which
1253 * would have X86_PF_PROT==0).
1255 if (!(hw_error_code
& (X86_PF_RSVD
| X86_PF_USER
| X86_PF_PROT
))) {
1256 if (vmalloc_fault(address
) >= 0)
1260 /* Was the fault spurious, caused by lazy TLB invalidation? */
1261 if (spurious_kernel_fault(hw_error_code
, address
))
1264 /* kprobes don't want to hook the spurious faults: */
1265 if (kprobe_page_fault(regs
, X86_TRAP_PF
))
1269 * Note, despite being a "bad area", there are quite a few
1270 * acceptable reasons to get here, such as erratum fixups
1271 * and handling kernel code that can fault, like get_user().
1273 * Don't take the mm semaphore here. If we fixup a prefetch
1274 * fault we could otherwise deadlock:
1276 bad_area_nosemaphore(regs
, hw_error_code
, address
);
1278 NOKPROBE_SYMBOL(do_kern_addr_fault
);
1280 /* Handle faults in the user portion of the address space */
1282 void do_user_addr_fault(struct pt_regs
*regs
,
1283 unsigned long hw_error_code
,
1284 unsigned long address
)
1286 struct vm_area_struct
*vma
;
1287 struct task_struct
*tsk
;
1288 struct mm_struct
*mm
;
1289 vm_fault_t fault
, major
= 0;
1290 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
1295 /* kprobes don't want to hook the spurious faults: */
1296 if (unlikely(kprobe_page_fault(regs
, X86_TRAP_PF
)))
1300 * Reserved bits are never expected to be set on
1301 * entries in the user portion of the page tables.
1303 if (unlikely(hw_error_code
& X86_PF_RSVD
))
1304 pgtable_bad(regs
, hw_error_code
, address
);
1307 * If SMAP is on, check for invalid kernel (supervisor) access to user
1308 * pages in the user address space. The odd case here is WRUSS,
1309 * which, according to the preliminary documentation, does not respect
1310 * SMAP and will have the USER bit set so, in all cases, SMAP
1311 * enforcement appears to be consistent with the USER bit.
1313 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP
) &&
1314 !(hw_error_code
& X86_PF_USER
) &&
1315 !(regs
->flags
& X86_EFLAGS_AC
)))
1317 bad_area_nosemaphore(regs
, hw_error_code
, address
);
1322 * If we're in an interrupt, have no user context or are running
1323 * in a region with pagefaults disabled then we must not take the fault
1325 if (unlikely(faulthandler_disabled() || !mm
)) {
1326 bad_area_nosemaphore(regs
, hw_error_code
, address
);
1331 * It's safe to allow irq's after cr2 has been saved and the
1332 * vmalloc fault has been handled.
1334 * User-mode registers count as a user access even for any
1335 * potential system fault or CPU buglet:
1337 if (user_mode(regs
)) {
1339 flags
|= FAULT_FLAG_USER
;
1341 if (regs
->flags
& X86_EFLAGS_IF
)
1345 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
1347 if (hw_error_code
& X86_PF_WRITE
)
1348 flags
|= FAULT_FLAG_WRITE
;
1349 if (hw_error_code
& X86_PF_INSTR
)
1350 flags
|= FAULT_FLAG_INSTRUCTION
;
1352 #ifdef CONFIG_X86_64
1354 * Faults in the vsyscall page might need emulation. The
1355 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1356 * considered to be part of the user address space.
1358 * The vsyscall page does not have a "real" VMA, so do this
1359 * emulation before we go searching for VMAs.
1361 * PKRU never rejects instruction fetches, so we don't need
1362 * to consider the PF_PK bit.
1364 if (is_vsyscall_vaddr(address
)) {
1365 if (emulate_vsyscall(hw_error_code
, regs
, address
))
1371 * Kernel-mode access to the user address space should only occur
1372 * on well-defined single instructions listed in the exception
1373 * tables. But, an erroneous kernel fault occurring outside one of
1374 * those areas which also holds mmap_sem might deadlock attempting
1375 * to validate the fault against the address space.
1377 * Only do the expensive exception table search when we might be at
1378 * risk of a deadlock. This happens if we
1379 * 1. Failed to acquire mmap_sem, and
1380 * 2. The access did not originate in userspace.
1382 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
1383 if (!user_mode(regs
) && !search_exception_tables(regs
->ip
)) {
1385 * Fault from code in kernel from
1386 * which we do not expect faults.
1388 bad_area_nosemaphore(regs
, hw_error_code
, address
);
1392 down_read(&mm
->mmap_sem
);
1395 * The above down_read_trylock() might have succeeded in
1396 * which case we'll have missed the might_sleep() from
1402 vma
= find_vma(mm
, address
);
1403 if (unlikely(!vma
)) {
1404 bad_area(regs
, hw_error_code
, address
);
1407 if (likely(vma
->vm_start
<= address
))
1409 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
))) {
1410 bad_area(regs
, hw_error_code
, address
);
1413 if (unlikely(expand_stack(vma
, address
))) {
1414 bad_area(regs
, hw_error_code
, address
);
1419 * Ok, we have a good vm_area for this memory access, so
1420 * we can handle it..
1423 if (unlikely(access_error(hw_error_code
, vma
))) {
1424 bad_area_access_error(regs
, hw_error_code
, address
, vma
);
1429 * If for any reason at all we couldn't handle the fault,
1430 * make sure we exit gracefully rather than endlessly redo
1431 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1432 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1434 * Note that handle_userfault() may also release and reacquire mmap_sem
1435 * (and not return with VM_FAULT_RETRY), when returning to userland to
1436 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1437 * (potentially after handling any pending signal during the return to
1438 * userland). The return to userland is identified whenever
1439 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1441 fault
= handle_mm_fault(vma
, address
, flags
);
1442 major
|= fault
& VM_FAULT_MAJOR
;
1445 * If we need to retry the mmap_sem has already been released,
1446 * and if there is a fatal signal pending there is no guarantee
1447 * that we made any progress. Handle this case first.
1449 if (unlikely(fault
& VM_FAULT_RETRY
)) {
1450 /* Retry at most once */
1451 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
1452 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
1453 flags
|= FAULT_FLAG_TRIED
;
1454 if (!fatal_signal_pending(tsk
))
1458 /* User mode? Just return to handle the fatal exception */
1459 if (flags
& FAULT_FLAG_USER
)
1462 /* Not returning to user mode? Handle exceptions or die: */
1463 no_context(regs
, hw_error_code
, address
, SIGBUS
, BUS_ADRERR
);
1467 up_read(&mm
->mmap_sem
);
1468 if (unlikely(fault
& VM_FAULT_ERROR
)) {
1469 mm_fault_error(regs
, hw_error_code
, address
, fault
);
1474 * Major/minor page fault accounting. If any of the events
1475 * returned VM_FAULT_MAJOR, we account it as a major fault.
1479 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
1482 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
1485 check_v8086_mode(regs
, address
, tsk
);
1487 NOKPROBE_SYMBOL(do_user_addr_fault
);
1490 * Explicitly marked noinline such that the function tracer sees this as the
1491 * page_fault entry point.
1493 static noinline
void
1494 __do_page_fault(struct pt_regs
*regs
, unsigned long hw_error_code
,
1495 unsigned long address
)
1497 prefetchw(¤t
->mm
->mmap_sem
);
1499 if (unlikely(kmmio_fault(regs
, address
)))
1502 /* Was the fault on kernel-controlled part of the address space? */
1503 if (unlikely(fault_in_kernel_space(address
)))
1504 do_kern_addr_fault(regs
, hw_error_code
, address
);
1506 do_user_addr_fault(regs
, hw_error_code
, address
);
1508 NOKPROBE_SYMBOL(__do_page_fault
);
1510 static __always_inline
void
1511 trace_page_fault_entries(struct pt_regs
*regs
, unsigned long error_code
,
1512 unsigned long address
)
1514 if (!trace_pagefault_enabled())
1517 if (user_mode(regs
))
1518 trace_page_fault_user(address
, regs
, error_code
);
1520 trace_page_fault_kernel(address
, regs
, error_code
);
1524 do_page_fault(struct pt_regs
*regs
, unsigned long error_code
, unsigned long address
)
1526 enum ctx_state prev_state
;
1528 prev_state
= exception_enter();
1529 trace_page_fault_entries(regs
, error_code
, address
);
1530 __do_page_fault(regs
, error_code
, address
);
1531 exception_exit(prev_state
);
1533 NOKPROBE_SYMBOL(do_page_fault
);