staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / x86 / mm / fault.c
blob9ceacd1156dbc06c801f86c66e9aa79d104a0cde
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/memblock.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/efi.h> /* efi_recover_from_page_fault()*/
20 #include <linux/mm_types.h>
22 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
23 #include <asm/traps.h> /* dotraplinkage, ... */
24 #include <asm/pgalloc.h> /* pgd_*(), ... */
25 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
26 #include <asm/vsyscall.h> /* emulate_vsyscall */
27 #include <asm/vm86.h> /* struct vm86 */
28 #include <asm/mmu_context.h> /* vma_pkey() */
29 #include <asm/efi.h> /* efi_recover_from_page_fault()*/
30 #include <asm/desc.h> /* store_idt(), ... */
31 #include <asm/cpu_entry_area.h> /* exception stack */
33 #define CREATE_TRACE_POINTS
34 #include <asm/trace/exceptions.h>
37 * Returns 0 if mmiotrace is disabled, or if the fault is not
38 * handled by mmiotrace:
40 static nokprobe_inline int
41 kmmio_fault(struct pt_regs *regs, unsigned long addr)
43 if (unlikely(is_kmmio_active()))
44 if (kmmio_handler(regs, addr) == 1)
45 return -1;
46 return 0;
50 * Prefetch quirks:
52 * 32-bit mode:
54 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
55 * Check that here and ignore it.
57 * 64-bit mode:
59 * Sometimes the CPU reports invalid exceptions on prefetch.
60 * Check that here and ignore it.
62 * Opcode checker based on code by Richard Brunner.
64 static inline int
65 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
66 unsigned char opcode, int *prefetch)
68 unsigned char instr_hi = opcode & 0xf0;
69 unsigned char instr_lo = opcode & 0x0f;
71 switch (instr_hi) {
72 case 0x20:
73 case 0x30:
75 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
76 * In X86_64 long mode, the CPU will signal invalid
77 * opcode if some of these prefixes are present so
78 * X86_64 will never get here anyway
80 return ((instr_lo & 7) == 0x6);
81 #ifdef CONFIG_X86_64
82 case 0x40:
84 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
85 * Need to figure out under what instruction mode the
86 * instruction was issued. Could check the LDT for lm,
87 * but for now it's good enough to assume that long
88 * mode only uses well known segments or kernel.
90 return (!user_mode(regs) || user_64bit_mode(regs));
91 #endif
92 case 0x60:
93 /* 0x64 thru 0x67 are valid prefixes in all modes. */
94 return (instr_lo & 0xC) == 0x4;
95 case 0xF0:
96 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
97 return !instr_lo || (instr_lo>>1) == 1;
98 case 0x00:
99 /* Prefetch instruction is 0x0F0D or 0x0F18 */
100 if (probe_kernel_address(instr, opcode))
101 return 0;
103 *prefetch = (instr_lo == 0xF) &&
104 (opcode == 0x0D || opcode == 0x18);
105 return 0;
106 default:
107 return 0;
111 static int
112 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
114 unsigned char *max_instr;
115 unsigned char *instr;
116 int prefetch = 0;
119 * If it was a exec (instruction fetch) fault on NX page, then
120 * do not ignore the fault:
122 if (error_code & X86_PF_INSTR)
123 return 0;
125 instr = (void *)convert_ip_to_linear(current, regs);
126 max_instr = instr + 15;
128 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
129 return 0;
131 while (instr < max_instr) {
132 unsigned char opcode;
134 if (probe_kernel_address(instr, opcode))
135 break;
137 instr++;
139 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
140 break;
142 return prefetch;
145 DEFINE_SPINLOCK(pgd_lock);
146 LIST_HEAD(pgd_list);
148 #ifdef CONFIG_X86_32
149 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
151 unsigned index = pgd_index(address);
152 pgd_t *pgd_k;
153 p4d_t *p4d, *p4d_k;
154 pud_t *pud, *pud_k;
155 pmd_t *pmd, *pmd_k;
157 pgd += index;
158 pgd_k = init_mm.pgd + index;
160 if (!pgd_present(*pgd_k))
161 return NULL;
164 * set_pgd(pgd, *pgd_k); here would be useless on PAE
165 * and redundant with the set_pmd() on non-PAE. As would
166 * set_p4d/set_pud.
168 p4d = p4d_offset(pgd, address);
169 p4d_k = p4d_offset(pgd_k, address);
170 if (!p4d_present(*p4d_k))
171 return NULL;
173 pud = pud_offset(p4d, address);
174 pud_k = pud_offset(p4d_k, address);
175 if (!pud_present(*pud_k))
176 return NULL;
178 pmd = pmd_offset(pud, address);
179 pmd_k = pmd_offset(pud_k, address);
181 if (pmd_present(*pmd) != pmd_present(*pmd_k))
182 set_pmd(pmd, *pmd_k);
184 if (!pmd_present(*pmd_k))
185 return NULL;
186 else
187 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
189 return pmd_k;
192 void vmalloc_sync_all(void)
194 unsigned long address;
196 if (SHARED_KERNEL_PMD)
197 return;
199 for (address = VMALLOC_START & PMD_MASK;
200 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
201 address += PMD_SIZE) {
202 struct page *page;
204 spin_lock(&pgd_lock);
205 list_for_each_entry(page, &pgd_list, lru) {
206 spinlock_t *pgt_lock;
208 /* the pgt_lock only for Xen */
209 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
211 spin_lock(pgt_lock);
212 vmalloc_sync_one(page_address(page), address);
213 spin_unlock(pgt_lock);
215 spin_unlock(&pgd_lock);
220 * 32-bit:
222 * Handle a fault on the vmalloc or module mapping area
224 static noinline int vmalloc_fault(unsigned long address)
226 unsigned long pgd_paddr;
227 pmd_t *pmd_k;
228 pte_t *pte_k;
230 /* Make sure we are in vmalloc area: */
231 if (!(address >= VMALLOC_START && address < VMALLOC_END))
232 return -1;
235 * Synchronize this task's top level page-table
236 * with the 'reference' page table.
238 * Do _not_ use "current" here. We might be inside
239 * an interrupt in the middle of a task switch..
241 pgd_paddr = read_cr3_pa();
242 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
243 if (!pmd_k)
244 return -1;
246 if (pmd_large(*pmd_k))
247 return 0;
249 pte_k = pte_offset_kernel(pmd_k, address);
250 if (!pte_present(*pte_k))
251 return -1;
253 return 0;
255 NOKPROBE_SYMBOL(vmalloc_fault);
258 * Did it hit the DOS screen memory VA from vm86 mode?
260 static inline void
261 check_v8086_mode(struct pt_regs *regs, unsigned long address,
262 struct task_struct *tsk)
264 #ifdef CONFIG_VM86
265 unsigned long bit;
267 if (!v8086_mode(regs) || !tsk->thread.vm86)
268 return;
270 bit = (address - 0xA0000) >> PAGE_SHIFT;
271 if (bit < 32)
272 tsk->thread.vm86->screen_bitmap |= 1 << bit;
273 #endif
276 static bool low_pfn(unsigned long pfn)
278 return pfn < max_low_pfn;
281 static void dump_pagetable(unsigned long address)
283 pgd_t *base = __va(read_cr3_pa());
284 pgd_t *pgd = &base[pgd_index(address)];
285 p4d_t *p4d;
286 pud_t *pud;
287 pmd_t *pmd;
288 pte_t *pte;
290 #ifdef CONFIG_X86_PAE
291 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
292 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
293 goto out;
294 #define pr_pde pr_cont
295 #else
296 #define pr_pde pr_info
297 #endif
298 p4d = p4d_offset(pgd, address);
299 pud = pud_offset(p4d, address);
300 pmd = pmd_offset(pud, address);
301 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
302 #undef pr_pde
305 * We must not directly access the pte in the highpte
306 * case if the page table is located in highmem.
307 * And let's rather not kmap-atomic the pte, just in case
308 * it's allocated already:
310 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
311 goto out;
313 pte = pte_offset_kernel(pmd, address);
314 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
315 out:
316 pr_cont("\n");
319 #else /* CONFIG_X86_64: */
321 void vmalloc_sync_all(void)
323 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
327 * 64-bit:
329 * Handle a fault on the vmalloc area
331 static noinline int vmalloc_fault(unsigned long address)
333 pgd_t *pgd, *pgd_k;
334 p4d_t *p4d, *p4d_k;
335 pud_t *pud;
336 pmd_t *pmd;
337 pte_t *pte;
339 /* Make sure we are in vmalloc area: */
340 if (!(address >= VMALLOC_START && address < VMALLOC_END))
341 return -1;
344 * Copy kernel mappings over when needed. This can also
345 * happen within a race in page table update. In the later
346 * case just flush:
348 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
349 pgd_k = pgd_offset_k(address);
350 if (pgd_none(*pgd_k))
351 return -1;
353 if (pgtable_l5_enabled()) {
354 if (pgd_none(*pgd)) {
355 set_pgd(pgd, *pgd_k);
356 arch_flush_lazy_mmu_mode();
357 } else {
358 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
362 /* With 4-level paging, copying happens on the p4d level. */
363 p4d = p4d_offset(pgd, address);
364 p4d_k = p4d_offset(pgd_k, address);
365 if (p4d_none(*p4d_k))
366 return -1;
368 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
369 set_p4d(p4d, *p4d_k);
370 arch_flush_lazy_mmu_mode();
371 } else {
372 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
375 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
377 pud = pud_offset(p4d, address);
378 if (pud_none(*pud))
379 return -1;
381 if (pud_large(*pud))
382 return 0;
384 pmd = pmd_offset(pud, address);
385 if (pmd_none(*pmd))
386 return -1;
388 if (pmd_large(*pmd))
389 return 0;
391 pte = pte_offset_kernel(pmd, address);
392 if (!pte_present(*pte))
393 return -1;
395 return 0;
397 NOKPROBE_SYMBOL(vmalloc_fault);
399 #ifdef CONFIG_CPU_SUP_AMD
400 static const char errata93_warning[] =
401 KERN_ERR
402 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
403 "******* Working around it, but it may cause SEGVs or burn power.\n"
404 "******* Please consider a BIOS update.\n"
405 "******* Disabling USB legacy in the BIOS may also help.\n";
406 #endif
409 * No vm86 mode in 64-bit mode:
411 static inline void
412 check_v8086_mode(struct pt_regs *regs, unsigned long address,
413 struct task_struct *tsk)
417 static int bad_address(void *p)
419 unsigned long dummy;
421 return probe_kernel_address((unsigned long *)p, dummy);
424 static void dump_pagetable(unsigned long address)
426 pgd_t *base = __va(read_cr3_pa());
427 pgd_t *pgd = base + pgd_index(address);
428 p4d_t *p4d;
429 pud_t *pud;
430 pmd_t *pmd;
431 pte_t *pte;
433 if (bad_address(pgd))
434 goto bad;
436 pr_info("PGD %lx ", pgd_val(*pgd));
438 if (!pgd_present(*pgd))
439 goto out;
441 p4d = p4d_offset(pgd, address);
442 if (bad_address(p4d))
443 goto bad;
445 pr_cont("P4D %lx ", p4d_val(*p4d));
446 if (!p4d_present(*p4d) || p4d_large(*p4d))
447 goto out;
449 pud = pud_offset(p4d, address);
450 if (bad_address(pud))
451 goto bad;
453 pr_cont("PUD %lx ", pud_val(*pud));
454 if (!pud_present(*pud) || pud_large(*pud))
455 goto out;
457 pmd = pmd_offset(pud, address);
458 if (bad_address(pmd))
459 goto bad;
461 pr_cont("PMD %lx ", pmd_val(*pmd));
462 if (!pmd_present(*pmd) || pmd_large(*pmd))
463 goto out;
465 pte = pte_offset_kernel(pmd, address);
466 if (bad_address(pte))
467 goto bad;
469 pr_cont("PTE %lx", pte_val(*pte));
470 out:
471 pr_cont("\n");
472 return;
473 bad:
474 pr_info("BAD\n");
477 #endif /* CONFIG_X86_64 */
480 * Workaround for K8 erratum #93 & buggy BIOS.
482 * BIOS SMM functions are required to use a specific workaround
483 * to avoid corruption of the 64bit RIP register on C stepping K8.
485 * A lot of BIOS that didn't get tested properly miss this.
487 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
488 * Try to work around it here.
490 * Note we only handle faults in kernel here.
491 * Does nothing on 32-bit.
493 static int is_errata93(struct pt_regs *regs, unsigned long address)
495 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
496 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
497 || boot_cpu_data.x86 != 0xf)
498 return 0;
500 if (address != regs->ip)
501 return 0;
503 if ((address >> 32) != 0)
504 return 0;
506 address |= 0xffffffffUL << 32;
507 if ((address >= (u64)_stext && address <= (u64)_etext) ||
508 (address >= MODULES_VADDR && address <= MODULES_END)) {
509 printk_once(errata93_warning);
510 regs->ip = address;
511 return 1;
513 #endif
514 return 0;
518 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
519 * to illegal addresses >4GB.
521 * We catch this in the page fault handler because these addresses
522 * are not reachable. Just detect this case and return. Any code
523 * segment in LDT is compatibility mode.
525 static int is_errata100(struct pt_regs *regs, unsigned long address)
527 #ifdef CONFIG_X86_64
528 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
529 return 1;
530 #endif
531 return 0;
534 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
536 #ifdef CONFIG_X86_F00F_BUG
537 unsigned long nr;
540 * Pentium F0 0F C7 C8 bug workaround:
542 if (boot_cpu_has_bug(X86_BUG_F00F)) {
543 nr = (address - idt_descr.address) >> 3;
545 if (nr == 6) {
546 do_invalid_op(regs, 0);
547 return 1;
550 #endif
551 return 0;
554 static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
556 u32 offset = (index >> 3) * sizeof(struct desc_struct);
557 unsigned long addr;
558 struct ldttss_desc desc;
560 if (index == 0) {
561 pr_alert("%s: NULL\n", name);
562 return;
565 if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
566 pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
567 return;
570 if (probe_kernel_read(&desc, (void *)(gdt->address + offset),
571 sizeof(struct ldttss_desc))) {
572 pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
573 name, index);
574 return;
577 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
578 #ifdef CONFIG_X86_64
579 addr |= ((u64)desc.base3 << 32);
580 #endif
581 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
582 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
585 static void
586 show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
588 if (!oops_may_print())
589 return;
591 if (error_code & X86_PF_INSTR) {
592 unsigned int level;
593 pgd_t *pgd;
594 pte_t *pte;
596 pgd = __va(read_cr3_pa());
597 pgd += pgd_index(address);
599 pte = lookup_address_in_pgd(pgd, address, &level);
601 if (pte && pte_present(*pte) && !pte_exec(*pte))
602 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
603 from_kuid(&init_user_ns, current_uid()));
604 if (pte && pte_present(*pte) && pte_exec(*pte) &&
605 (pgd_flags(*pgd) & _PAGE_USER) &&
606 (__read_cr4() & X86_CR4_SMEP))
607 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
608 from_kuid(&init_user_ns, current_uid()));
611 if (address < PAGE_SIZE && !user_mode(regs))
612 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
613 (void *)address);
614 else
615 pr_alert("BUG: unable to handle page fault for address: %px\n",
616 (void *)address);
618 pr_alert("#PF: %s %s in %s mode\n",
619 (error_code & X86_PF_USER) ? "user" : "supervisor",
620 (error_code & X86_PF_INSTR) ? "instruction fetch" :
621 (error_code & X86_PF_WRITE) ? "write access" :
622 "read access",
623 user_mode(regs) ? "user" : "kernel");
624 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
625 !(error_code & X86_PF_PROT) ? "not-present page" :
626 (error_code & X86_PF_RSVD) ? "reserved bit violation" :
627 (error_code & X86_PF_PK) ? "protection keys violation" :
628 "permissions violation");
630 if (!(error_code & X86_PF_USER) && user_mode(regs)) {
631 struct desc_ptr idt, gdt;
632 u16 ldtr, tr;
635 * This can happen for quite a few reasons. The more obvious
636 * ones are faults accessing the GDT, or LDT. Perhaps
637 * surprisingly, if the CPU tries to deliver a benign or
638 * contributory exception from user code and gets a page fault
639 * during delivery, the page fault can be delivered as though
640 * it originated directly from user code. This could happen
641 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
642 * kernel or IST stack.
644 store_idt(&idt);
646 /* Usable even on Xen PV -- it's just slow. */
647 native_store_gdt(&gdt);
649 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
650 idt.address, idt.size, gdt.address, gdt.size);
652 store_ldt(ldtr);
653 show_ldttss(&gdt, "LDTR", ldtr);
655 store_tr(tr);
656 show_ldttss(&gdt, "TR", tr);
659 dump_pagetable(address);
662 static noinline void
663 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
664 unsigned long address)
666 struct task_struct *tsk;
667 unsigned long flags;
668 int sig;
670 flags = oops_begin();
671 tsk = current;
672 sig = SIGKILL;
674 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
675 tsk->comm, address);
676 dump_pagetable(address);
678 if (__die("Bad pagetable", regs, error_code))
679 sig = 0;
681 oops_end(flags, regs, sig);
684 static void set_signal_archinfo(unsigned long address,
685 unsigned long error_code)
687 struct task_struct *tsk = current;
690 * To avoid leaking information about the kernel page
691 * table layout, pretend that user-mode accesses to
692 * kernel addresses are always protection faults.
694 * NB: This means that failed vsyscalls with vsyscall=none
695 * will have the PROT bit. This doesn't leak any
696 * information and does not appear to cause any problems.
698 if (address >= TASK_SIZE_MAX)
699 error_code |= X86_PF_PROT;
701 tsk->thread.trap_nr = X86_TRAP_PF;
702 tsk->thread.error_code = error_code | X86_PF_USER;
703 tsk->thread.cr2 = address;
706 static noinline void
707 no_context(struct pt_regs *regs, unsigned long error_code,
708 unsigned long address, int signal, int si_code)
710 struct task_struct *tsk = current;
711 unsigned long flags;
712 int sig;
714 if (user_mode(regs)) {
716 * This is an implicit supervisor-mode access from user
717 * mode. Bypass all the kernel-mode recovery code and just
718 * OOPS.
720 goto oops;
723 /* Are we prepared to handle this kernel fault? */
724 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
726 * Any interrupt that takes a fault gets the fixup. This makes
727 * the below recursive fault logic only apply to a faults from
728 * task context.
730 if (in_interrupt())
731 return;
734 * Per the above we're !in_interrupt(), aka. task context.
736 * In this case we need to make sure we're not recursively
737 * faulting through the emulate_vsyscall() logic.
739 if (current->thread.sig_on_uaccess_err && signal) {
740 set_signal_archinfo(address, error_code);
742 /* XXX: hwpoison faults will set the wrong code. */
743 force_sig_fault(signal, si_code, (void __user *)address);
747 * Barring that, we can do the fixup and be happy.
749 return;
752 #ifdef CONFIG_VMAP_STACK
754 * Stack overflow? During boot, we can fault near the initial
755 * stack in the direct map, but that's not an overflow -- check
756 * that we're in vmalloc space to avoid this.
758 if (is_vmalloc_addr((void *)address) &&
759 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
760 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
761 unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
763 * We're likely to be running with very little stack space
764 * left. It's plausible that we'd hit this condition but
765 * double-fault even before we get this far, in which case
766 * we're fine: the double-fault handler will deal with it.
768 * We don't want to make it all the way into the oops code
769 * and then double-fault, though, because we're likely to
770 * break the console driver and lose most of the stack dump.
772 asm volatile ("movq %[stack], %%rsp\n\t"
773 "call handle_stack_overflow\n\t"
774 "1: jmp 1b"
775 : ASM_CALL_CONSTRAINT
776 : "D" ("kernel stack overflow (page fault)"),
777 "S" (regs), "d" (address),
778 [stack] "rm" (stack));
779 unreachable();
781 #endif
784 * 32-bit:
786 * Valid to do another page fault here, because if this fault
787 * had been triggered by is_prefetch fixup_exception would have
788 * handled it.
790 * 64-bit:
792 * Hall of shame of CPU/BIOS bugs.
794 if (is_prefetch(regs, error_code, address))
795 return;
797 if (is_errata93(regs, address))
798 return;
801 * Buggy firmware could access regions which might page fault, try to
802 * recover from such faults.
804 if (IS_ENABLED(CONFIG_EFI))
805 efi_recover_from_page_fault(address);
807 oops:
809 * Oops. The kernel tried to access some bad page. We'll have to
810 * terminate things with extreme prejudice:
812 flags = oops_begin();
814 show_fault_oops(regs, error_code, address);
816 if (task_stack_end_corrupted(tsk))
817 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
819 sig = SIGKILL;
820 if (__die("Oops", regs, error_code))
821 sig = 0;
823 /* Executive summary in case the body of the oops scrolled away */
824 printk(KERN_DEFAULT "CR2: %016lx\n", address);
826 oops_end(flags, regs, sig);
830 * Print out info about fatal segfaults, if the show_unhandled_signals
831 * sysctl is set:
833 static inline void
834 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
835 unsigned long address, struct task_struct *tsk)
837 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
839 if (!unhandled_signal(tsk, SIGSEGV))
840 return;
842 if (!printk_ratelimit())
843 return;
845 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
846 loglvl, tsk->comm, task_pid_nr(tsk), address,
847 (void *)regs->ip, (void *)regs->sp, error_code);
849 print_vma_addr(KERN_CONT " in ", regs->ip);
851 printk(KERN_CONT "\n");
853 show_opcodes(regs, loglvl);
857 * The (legacy) vsyscall page is the long page in the kernel portion
858 * of the address space that has user-accessible permissions.
860 static bool is_vsyscall_vaddr(unsigned long vaddr)
862 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
865 static void
866 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
867 unsigned long address, u32 pkey, int si_code)
869 struct task_struct *tsk = current;
871 /* User mode accesses just cause a SIGSEGV */
872 if (user_mode(regs) && (error_code & X86_PF_USER)) {
874 * It's possible to have interrupts off here:
876 local_irq_enable();
879 * Valid to do another page fault here because this one came
880 * from user space:
882 if (is_prefetch(regs, error_code, address))
883 return;
885 if (is_errata100(regs, address))
886 return;
889 * To avoid leaking information about the kernel page table
890 * layout, pretend that user-mode accesses to kernel addresses
891 * are always protection faults.
893 if (address >= TASK_SIZE_MAX)
894 error_code |= X86_PF_PROT;
896 if (likely(show_unhandled_signals))
897 show_signal_msg(regs, error_code, address, tsk);
899 set_signal_archinfo(address, error_code);
901 if (si_code == SEGV_PKUERR)
902 force_sig_pkuerr((void __user *)address, pkey);
904 force_sig_fault(SIGSEGV, si_code, (void __user *)address);
906 return;
909 if (is_f00f_bug(regs, address))
910 return;
912 no_context(regs, error_code, address, SIGSEGV, si_code);
915 static noinline void
916 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
917 unsigned long address)
919 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
922 static void
923 __bad_area(struct pt_regs *regs, unsigned long error_code,
924 unsigned long address, u32 pkey, int si_code)
926 struct mm_struct *mm = current->mm;
928 * Something tried to access memory that isn't in our memory map..
929 * Fix it, but check if it's kernel or user first..
931 up_read(&mm->mmap_sem);
933 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
936 static noinline void
937 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
939 __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
942 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
943 struct vm_area_struct *vma)
945 /* This code is always called on the current mm */
946 bool foreign = false;
948 if (!boot_cpu_has(X86_FEATURE_OSPKE))
949 return false;
950 if (error_code & X86_PF_PK)
951 return true;
952 /* this checks permission keys on the VMA: */
953 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
954 (error_code & X86_PF_INSTR), foreign))
955 return true;
956 return false;
959 static noinline void
960 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
961 unsigned long address, struct vm_area_struct *vma)
964 * This OSPKE check is not strictly necessary at runtime.
965 * But, doing it this way allows compiler optimizations
966 * if pkeys are compiled out.
968 if (bad_area_access_from_pkeys(error_code, vma)) {
970 * A protection key fault means that the PKRU value did not allow
971 * access to some PTE. Userspace can figure out what PKRU was
972 * from the XSAVE state. This function captures the pkey from
973 * the vma and passes it to userspace so userspace can discover
974 * which protection key was set on the PTE.
976 * If we get here, we know that the hardware signaled a X86_PF_PK
977 * fault and that there was a VMA once we got in the fault
978 * handler. It does *not* guarantee that the VMA we find here
979 * was the one that we faulted on.
981 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
982 * 2. T1 : set PKRU to deny access to pkey=4, touches page
983 * 3. T1 : faults...
984 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
985 * 5. T1 : enters fault handler, takes mmap_sem, etc...
986 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
987 * faulted on a pte with its pkey=4.
989 u32 pkey = vma_pkey(vma);
991 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
992 } else {
993 __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
997 static void
998 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
999 vm_fault_t fault)
1001 /* Kernel mode? Handle exceptions or die: */
1002 if (!(error_code & X86_PF_USER)) {
1003 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1004 return;
1007 /* User-space => ok to do another page fault: */
1008 if (is_prefetch(regs, error_code, address))
1009 return;
1011 set_signal_archinfo(address, error_code);
1013 #ifdef CONFIG_MEMORY_FAILURE
1014 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1015 struct task_struct *tsk = current;
1016 unsigned lsb = 0;
1018 pr_err(
1019 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1020 tsk->comm, tsk->pid, address);
1021 if (fault & VM_FAULT_HWPOISON_LARGE)
1022 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
1023 if (fault & VM_FAULT_HWPOISON)
1024 lsb = PAGE_SHIFT;
1025 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
1026 return;
1028 #endif
1029 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
1032 static noinline void
1033 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1034 unsigned long address, vm_fault_t fault)
1036 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1037 no_context(regs, error_code, address, 0, 0);
1038 return;
1041 if (fault & VM_FAULT_OOM) {
1042 /* Kernel mode? Handle exceptions or die: */
1043 if (!(error_code & X86_PF_USER)) {
1044 no_context(regs, error_code, address,
1045 SIGSEGV, SEGV_MAPERR);
1046 return;
1050 * We ran out of memory, call the OOM killer, and return the
1051 * userspace (which will retry the fault, or kill us if we got
1052 * oom-killed):
1054 pagefault_out_of_memory();
1055 } else {
1056 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1057 VM_FAULT_HWPOISON_LARGE))
1058 do_sigbus(regs, error_code, address, fault);
1059 else if (fault & VM_FAULT_SIGSEGV)
1060 bad_area_nosemaphore(regs, error_code, address);
1061 else
1062 BUG();
1066 static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
1068 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1069 return 0;
1071 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1072 return 0;
1074 return 1;
1078 * Handle a spurious fault caused by a stale TLB entry.
1080 * This allows us to lazily refresh the TLB when increasing the
1081 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1082 * eagerly is very expensive since that implies doing a full
1083 * cross-processor TLB flush, even if no stale TLB entries exist
1084 * on other processors.
1086 * Spurious faults may only occur if the TLB contains an entry with
1087 * fewer permission than the page table entry. Non-present (P = 0)
1088 * and reserved bit (R = 1) faults are never spurious.
1090 * There are no security implications to leaving a stale TLB when
1091 * increasing the permissions on a page.
1093 * Returns non-zero if a spurious fault was handled, zero otherwise.
1095 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1096 * (Optional Invalidation).
1098 static noinline int
1099 spurious_kernel_fault(unsigned long error_code, unsigned long address)
1101 pgd_t *pgd;
1102 p4d_t *p4d;
1103 pud_t *pud;
1104 pmd_t *pmd;
1105 pte_t *pte;
1106 int ret;
1109 * Only writes to RO or instruction fetches from NX may cause
1110 * spurious faults.
1112 * These could be from user or supervisor accesses but the TLB
1113 * is only lazily flushed after a kernel mapping protection
1114 * change, so user accesses are not expected to cause spurious
1115 * faults.
1117 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1118 error_code != (X86_PF_INSTR | X86_PF_PROT))
1119 return 0;
1121 pgd = init_mm.pgd + pgd_index(address);
1122 if (!pgd_present(*pgd))
1123 return 0;
1125 p4d = p4d_offset(pgd, address);
1126 if (!p4d_present(*p4d))
1127 return 0;
1129 if (p4d_large(*p4d))
1130 return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1132 pud = pud_offset(p4d, address);
1133 if (!pud_present(*pud))
1134 return 0;
1136 if (pud_large(*pud))
1137 return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1139 pmd = pmd_offset(pud, address);
1140 if (!pmd_present(*pmd))
1141 return 0;
1143 if (pmd_large(*pmd))
1144 return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1146 pte = pte_offset_kernel(pmd, address);
1147 if (!pte_present(*pte))
1148 return 0;
1150 ret = spurious_kernel_fault_check(error_code, pte);
1151 if (!ret)
1152 return 0;
1155 * Make sure we have permissions in PMD.
1156 * If not, then there's a bug in the page tables:
1158 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1159 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1161 return ret;
1163 NOKPROBE_SYMBOL(spurious_kernel_fault);
1165 int show_unhandled_signals = 1;
1167 static inline int
1168 access_error(unsigned long error_code, struct vm_area_struct *vma)
1170 /* This is only called for the current mm, so: */
1171 bool foreign = false;
1174 * Read or write was blocked by protection keys. This is
1175 * always an unconditional error and can never result in
1176 * a follow-up action to resolve the fault, like a COW.
1178 if (error_code & X86_PF_PK)
1179 return 1;
1182 * Make sure to check the VMA so that we do not perform
1183 * faults just to hit a X86_PF_PK as soon as we fill in a
1184 * page.
1186 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1187 (error_code & X86_PF_INSTR), foreign))
1188 return 1;
1190 if (error_code & X86_PF_WRITE) {
1191 /* write, present and write, not present: */
1192 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1193 return 1;
1194 return 0;
1197 /* read, present: */
1198 if (unlikely(error_code & X86_PF_PROT))
1199 return 1;
1201 /* read, not present: */
1202 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1203 return 1;
1205 return 0;
1208 static int fault_in_kernel_space(unsigned long address)
1211 * On 64-bit systems, the vsyscall page is at an address above
1212 * TASK_SIZE_MAX, but is not considered part of the kernel
1213 * address space.
1215 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1216 return false;
1218 return address >= TASK_SIZE_MAX;
1222 * Called for all faults where 'address' is part of the kernel address
1223 * space. Might get called for faults that originate from *code* that
1224 * ran in userspace or the kernel.
1226 static void
1227 do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1228 unsigned long address)
1231 * Protection keys exceptions only happen on user pages. We
1232 * have no user pages in the kernel portion of the address
1233 * space, so do not expect them here.
1235 WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1238 * We can fault-in kernel-space virtual memory on-demand. The
1239 * 'reference' page table is init_mm.pgd.
1241 * NOTE! We MUST NOT take any locks for this case. We may
1242 * be in an interrupt or a critical region, and should
1243 * only copy the information from the master page table,
1244 * nothing more.
1246 * Before doing this on-demand faulting, ensure that the
1247 * fault is not any of the following:
1248 * 1. A fault on a PTE with a reserved bit set.
1249 * 2. A fault caused by a user-mode access. (Do not demand-
1250 * fault kernel memory due to user-mode accesses).
1251 * 3. A fault caused by a page-level protection violation.
1252 * (A demand fault would be on a non-present page which
1253 * would have X86_PF_PROT==0).
1255 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1256 if (vmalloc_fault(address) >= 0)
1257 return;
1260 /* Was the fault spurious, caused by lazy TLB invalidation? */
1261 if (spurious_kernel_fault(hw_error_code, address))
1262 return;
1264 /* kprobes don't want to hook the spurious faults: */
1265 if (kprobe_page_fault(regs, X86_TRAP_PF))
1266 return;
1269 * Note, despite being a "bad area", there are quite a few
1270 * acceptable reasons to get here, such as erratum fixups
1271 * and handling kernel code that can fault, like get_user().
1273 * Don't take the mm semaphore here. If we fixup a prefetch
1274 * fault we could otherwise deadlock:
1276 bad_area_nosemaphore(regs, hw_error_code, address);
1278 NOKPROBE_SYMBOL(do_kern_addr_fault);
1280 /* Handle faults in the user portion of the address space */
1281 static inline
1282 void do_user_addr_fault(struct pt_regs *regs,
1283 unsigned long hw_error_code,
1284 unsigned long address)
1286 struct vm_area_struct *vma;
1287 struct task_struct *tsk;
1288 struct mm_struct *mm;
1289 vm_fault_t fault, major = 0;
1290 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1292 tsk = current;
1293 mm = tsk->mm;
1295 /* kprobes don't want to hook the spurious faults: */
1296 if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1297 return;
1300 * Reserved bits are never expected to be set on
1301 * entries in the user portion of the page tables.
1303 if (unlikely(hw_error_code & X86_PF_RSVD))
1304 pgtable_bad(regs, hw_error_code, address);
1307 * If SMAP is on, check for invalid kernel (supervisor) access to user
1308 * pages in the user address space. The odd case here is WRUSS,
1309 * which, according to the preliminary documentation, does not respect
1310 * SMAP and will have the USER bit set so, in all cases, SMAP
1311 * enforcement appears to be consistent with the USER bit.
1313 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1314 !(hw_error_code & X86_PF_USER) &&
1315 !(regs->flags & X86_EFLAGS_AC)))
1317 bad_area_nosemaphore(regs, hw_error_code, address);
1318 return;
1322 * If we're in an interrupt, have no user context or are running
1323 * in a region with pagefaults disabled then we must not take the fault
1325 if (unlikely(faulthandler_disabled() || !mm)) {
1326 bad_area_nosemaphore(regs, hw_error_code, address);
1327 return;
1331 * It's safe to allow irq's after cr2 has been saved and the
1332 * vmalloc fault has been handled.
1334 * User-mode registers count as a user access even for any
1335 * potential system fault or CPU buglet:
1337 if (user_mode(regs)) {
1338 local_irq_enable();
1339 flags |= FAULT_FLAG_USER;
1340 } else {
1341 if (regs->flags & X86_EFLAGS_IF)
1342 local_irq_enable();
1345 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1347 if (hw_error_code & X86_PF_WRITE)
1348 flags |= FAULT_FLAG_WRITE;
1349 if (hw_error_code & X86_PF_INSTR)
1350 flags |= FAULT_FLAG_INSTRUCTION;
1352 #ifdef CONFIG_X86_64
1354 * Faults in the vsyscall page might need emulation. The
1355 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1356 * considered to be part of the user address space.
1358 * The vsyscall page does not have a "real" VMA, so do this
1359 * emulation before we go searching for VMAs.
1361 * PKRU never rejects instruction fetches, so we don't need
1362 * to consider the PF_PK bit.
1364 if (is_vsyscall_vaddr(address)) {
1365 if (emulate_vsyscall(hw_error_code, regs, address))
1366 return;
1368 #endif
1371 * Kernel-mode access to the user address space should only occur
1372 * on well-defined single instructions listed in the exception
1373 * tables. But, an erroneous kernel fault occurring outside one of
1374 * those areas which also holds mmap_sem might deadlock attempting
1375 * to validate the fault against the address space.
1377 * Only do the expensive exception table search when we might be at
1378 * risk of a deadlock. This happens if we
1379 * 1. Failed to acquire mmap_sem, and
1380 * 2. The access did not originate in userspace.
1382 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1383 if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1385 * Fault from code in kernel from
1386 * which we do not expect faults.
1388 bad_area_nosemaphore(regs, hw_error_code, address);
1389 return;
1391 retry:
1392 down_read(&mm->mmap_sem);
1393 } else {
1395 * The above down_read_trylock() might have succeeded in
1396 * which case we'll have missed the might_sleep() from
1397 * down_read():
1399 might_sleep();
1402 vma = find_vma(mm, address);
1403 if (unlikely(!vma)) {
1404 bad_area(regs, hw_error_code, address);
1405 return;
1407 if (likely(vma->vm_start <= address))
1408 goto good_area;
1409 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1410 bad_area(regs, hw_error_code, address);
1411 return;
1413 if (unlikely(expand_stack(vma, address))) {
1414 bad_area(regs, hw_error_code, address);
1415 return;
1419 * Ok, we have a good vm_area for this memory access, so
1420 * we can handle it..
1422 good_area:
1423 if (unlikely(access_error(hw_error_code, vma))) {
1424 bad_area_access_error(regs, hw_error_code, address, vma);
1425 return;
1429 * If for any reason at all we couldn't handle the fault,
1430 * make sure we exit gracefully rather than endlessly redo
1431 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1432 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1434 * Note that handle_userfault() may also release and reacquire mmap_sem
1435 * (and not return with VM_FAULT_RETRY), when returning to userland to
1436 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1437 * (potentially after handling any pending signal during the return to
1438 * userland). The return to userland is identified whenever
1439 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1441 fault = handle_mm_fault(vma, address, flags);
1442 major |= fault & VM_FAULT_MAJOR;
1445 * If we need to retry the mmap_sem has already been released,
1446 * and if there is a fatal signal pending there is no guarantee
1447 * that we made any progress. Handle this case first.
1449 if (unlikely(fault & VM_FAULT_RETRY)) {
1450 /* Retry at most once */
1451 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1452 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1453 flags |= FAULT_FLAG_TRIED;
1454 if (!fatal_signal_pending(tsk))
1455 goto retry;
1458 /* User mode? Just return to handle the fatal exception */
1459 if (flags & FAULT_FLAG_USER)
1460 return;
1462 /* Not returning to user mode? Handle exceptions or die: */
1463 no_context(regs, hw_error_code, address, SIGBUS, BUS_ADRERR);
1464 return;
1467 up_read(&mm->mmap_sem);
1468 if (unlikely(fault & VM_FAULT_ERROR)) {
1469 mm_fault_error(regs, hw_error_code, address, fault);
1470 return;
1474 * Major/minor page fault accounting. If any of the events
1475 * returned VM_FAULT_MAJOR, we account it as a major fault.
1477 if (major) {
1478 tsk->maj_flt++;
1479 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1480 } else {
1481 tsk->min_flt++;
1482 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1485 check_v8086_mode(regs, address, tsk);
1487 NOKPROBE_SYMBOL(do_user_addr_fault);
1490 * Explicitly marked noinline such that the function tracer sees this as the
1491 * page_fault entry point.
1493 static noinline void
1494 __do_page_fault(struct pt_regs *regs, unsigned long hw_error_code,
1495 unsigned long address)
1497 prefetchw(&current->mm->mmap_sem);
1499 if (unlikely(kmmio_fault(regs, address)))
1500 return;
1502 /* Was the fault on kernel-controlled part of the address space? */
1503 if (unlikely(fault_in_kernel_space(address)))
1504 do_kern_addr_fault(regs, hw_error_code, address);
1505 else
1506 do_user_addr_fault(regs, hw_error_code, address);
1508 NOKPROBE_SYMBOL(__do_page_fault);
1510 static __always_inline void
1511 trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1512 unsigned long address)
1514 if (!trace_pagefault_enabled())
1515 return;
1517 if (user_mode(regs))
1518 trace_page_fault_user(address, regs, error_code);
1519 else
1520 trace_page_fault_kernel(address, regs, error_code);
1523 dotraplinkage void
1524 do_page_fault(struct pt_regs *regs, unsigned long error_code, unsigned long address)
1526 enum ctx_state prev_state;
1528 prev_state = exception_enter();
1529 trace_page_fault_entries(regs, error_code, address);
1530 __do_page_fault(regs, error_code, address);
1531 exception_exit(prev_state);
1533 NOKPROBE_SYMBOL(do_page_fault);