1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright 2002 Andi Kleen, SuSE Labs.
4 * Thanks to Ben LaHaise for precious feedback.
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
19 #include <asm/e820/api.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <linux/uaccess.h>
25 #include <asm/pgalloc.h>
26 #include <asm/proto.h>
28 #include <asm/set_memory.h>
30 #include "mm_internal.h"
33 * The current flushing context - we pass it instead of 5 arguments:
40 unsigned long numpages
;
41 unsigned long curpage
;
44 unsigned int force_split
: 1,
45 force_static_prot
: 1;
55 static const int cpa_warn_level
= CPA_PROTECT
;
58 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
59 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
60 * entries change the page attribute in parallel to some other cpu
61 * splitting a large page entry along with changing the attribute.
63 static DEFINE_SPINLOCK(cpa_lock
);
65 #define CPA_FLUSHTLB 1
67 #define CPA_PAGES_ARRAY 4
68 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
71 static unsigned long direct_pages_count
[PG_LEVEL_NUM
];
73 void update_page_count(int level
, unsigned long pages
)
75 /* Protect against CPA */
77 direct_pages_count
[level
] += pages
;
78 spin_unlock(&pgd_lock
);
81 static void split_page_count(int level
)
83 if (direct_pages_count
[level
] == 0)
86 direct_pages_count
[level
]--;
87 direct_pages_count
[level
- 1] += PTRS_PER_PTE
;
90 void arch_report_meminfo(struct seq_file
*m
)
92 seq_printf(m
, "DirectMap4k: %8lu kB\n",
93 direct_pages_count
[PG_LEVEL_4K
] << 2);
94 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
95 seq_printf(m
, "DirectMap2M: %8lu kB\n",
96 direct_pages_count
[PG_LEVEL_2M
] << 11);
98 seq_printf(m
, "DirectMap4M: %8lu kB\n",
99 direct_pages_count
[PG_LEVEL_2M
] << 12);
102 seq_printf(m
, "DirectMap1G: %8lu kB\n",
103 direct_pages_count
[PG_LEVEL_1G
] << 20);
106 static inline void split_page_count(int level
) { }
109 #ifdef CONFIG_X86_CPA_STATISTICS
111 static unsigned long cpa_1g_checked
;
112 static unsigned long cpa_1g_sameprot
;
113 static unsigned long cpa_1g_preserved
;
114 static unsigned long cpa_2m_checked
;
115 static unsigned long cpa_2m_sameprot
;
116 static unsigned long cpa_2m_preserved
;
117 static unsigned long cpa_4k_install
;
119 static inline void cpa_inc_1g_checked(void)
124 static inline void cpa_inc_2m_checked(void)
129 static inline void cpa_inc_4k_install(void)
134 static inline void cpa_inc_lp_sameprot(int level
)
136 if (level
== PG_LEVEL_1G
)
142 static inline void cpa_inc_lp_preserved(int level
)
144 if (level
== PG_LEVEL_1G
)
150 static int cpastats_show(struct seq_file
*m
, void *p
)
152 seq_printf(m
, "1G pages checked: %16lu\n", cpa_1g_checked
);
153 seq_printf(m
, "1G pages sameprot: %16lu\n", cpa_1g_sameprot
);
154 seq_printf(m
, "1G pages preserved: %16lu\n", cpa_1g_preserved
);
155 seq_printf(m
, "2M pages checked: %16lu\n", cpa_2m_checked
);
156 seq_printf(m
, "2M pages sameprot: %16lu\n", cpa_2m_sameprot
);
157 seq_printf(m
, "2M pages preserved: %16lu\n", cpa_2m_preserved
);
158 seq_printf(m
, "4K pages set-checked: %16lu\n", cpa_4k_install
);
162 static int cpastats_open(struct inode
*inode
, struct file
*file
)
164 return single_open(file
, cpastats_show
, NULL
);
167 static const struct file_operations cpastats_fops
= {
168 .open
= cpastats_open
,
171 .release
= single_release
,
174 static int __init
cpa_stats_init(void)
176 debugfs_create_file("cpa_stats", S_IRUSR
, arch_debugfs_dir
, NULL
,
180 late_initcall(cpa_stats_init
);
182 static inline void cpa_inc_1g_checked(void) { }
183 static inline void cpa_inc_2m_checked(void) { }
184 static inline void cpa_inc_4k_install(void) { }
185 static inline void cpa_inc_lp_sameprot(int level
) { }
186 static inline void cpa_inc_lp_preserved(int level
) { }
191 within(unsigned long addr
, unsigned long start
, unsigned long end
)
193 return addr
>= start
&& addr
< end
;
197 within_inclusive(unsigned long addr
, unsigned long start
, unsigned long end
)
199 return addr
>= start
&& addr
<= end
;
204 static inline unsigned long highmap_start_pfn(void)
206 return __pa_symbol(_text
) >> PAGE_SHIFT
;
209 static inline unsigned long highmap_end_pfn(void)
211 /* Do not reference physical address outside the kernel. */
212 return __pa_symbol(roundup(_brk_end
, PMD_SIZE
) - 1) >> PAGE_SHIFT
;
215 static bool __cpa_pfn_in_highmap(unsigned long pfn
)
218 * Kernel text has an alias mapping at a high address, known
221 return within_inclusive(pfn
, highmap_start_pfn(), highmap_end_pfn());
226 static bool __cpa_pfn_in_highmap(unsigned long pfn
)
228 /* There is no highmap on 32-bit */
235 * See set_mce_nospec().
237 * Machine check recovery code needs to change cache mode of poisoned pages to
238 * UC to avoid speculative access logging another error. But passing the
239 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
240 * speculative access. So we cheat and flip the top bit of the address. This
241 * works fine for the code that updates the page tables. But at the end of the
242 * process we need to flush the TLB and cache and the non-canonical address
243 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
245 * But in the common case we already have a canonical address. This code
246 * will fix the top bit if needed and is a no-op otherwise.
248 static inline unsigned long fix_addr(unsigned long addr
)
251 return (long)(addr
<< 1) >> 1;
257 static unsigned long __cpa_addr(struct cpa_data
*cpa
, unsigned long idx
)
259 if (cpa
->flags
& CPA_PAGES_ARRAY
) {
260 struct page
*page
= cpa
->pages
[idx
];
262 if (unlikely(PageHighMem(page
)))
265 return (unsigned long)page_address(page
);
268 if (cpa
->flags
& CPA_ARRAY
)
269 return cpa
->vaddr
[idx
];
271 return *cpa
->vaddr
+ idx
* PAGE_SIZE
;
278 static void clflush_cache_range_opt(void *vaddr
, unsigned int size
)
280 const unsigned long clflush_size
= boot_cpu_data
.x86_clflush_size
;
281 void *p
= (void *)((unsigned long)vaddr
& ~(clflush_size
- 1));
282 void *vend
= vaddr
+ size
;
287 for (; p
< vend
; p
+= clflush_size
)
292 * clflush_cache_range - flush a cache range with clflush
293 * @vaddr: virtual start address
294 * @size: number of bytes to flush
296 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
297 * SFENCE to avoid ordering issues.
299 void clflush_cache_range(void *vaddr
, unsigned int size
)
302 clflush_cache_range_opt(vaddr
, size
);
305 EXPORT_SYMBOL_GPL(clflush_cache_range
);
307 void arch_invalidate_pmem(void *addr
, size_t size
)
309 clflush_cache_range(addr
, size
);
311 EXPORT_SYMBOL_GPL(arch_invalidate_pmem
);
313 static void __cpa_flush_all(void *arg
)
315 unsigned long cache
= (unsigned long)arg
;
318 * Flush all to work around Errata in early athlons regarding
319 * large page flushing.
323 if (cache
&& boot_cpu_data
.x86
>= 4)
327 static void cpa_flush_all(unsigned long cache
)
329 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
331 on_each_cpu(__cpa_flush_all
, (void *) cache
, 1);
334 void __cpa_flush_tlb(void *data
)
336 struct cpa_data
*cpa
= data
;
339 for (i
= 0; i
< cpa
->numpages
; i
++)
340 __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa
, i
)));
343 static void cpa_flush(struct cpa_data
*data
, int cache
)
345 struct cpa_data
*cpa
= data
;
348 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled
);
350 if (cache
&& !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
351 cpa_flush_all(cache
);
355 if (cpa
->numpages
<= tlb_single_page_flush_ceiling
)
356 on_each_cpu(__cpa_flush_tlb
, cpa
, 1);
364 for (i
= 0; i
< cpa
->numpages
; i
++) {
365 unsigned long addr
= __cpa_addr(cpa
, i
);
368 pte_t
*pte
= lookup_address(addr
, &level
);
371 * Only flush present addresses:
373 if (pte
&& (pte_val(*pte
) & _PAGE_PRESENT
))
374 clflush_cache_range_opt((void *)fix_addr(addr
), PAGE_SIZE
);
379 static bool overlaps(unsigned long r1_start
, unsigned long r1_end
,
380 unsigned long r2_start
, unsigned long r2_end
)
382 return (r1_start
<= r2_end
&& r1_end
>= r2_start
) ||
383 (r2_start
<= r1_end
&& r2_end
>= r1_start
);
386 #ifdef CONFIG_PCI_BIOS
388 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
389 * based config access (CONFIG_PCI_GOBIOS) support.
391 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
392 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
394 static pgprotval_t
protect_pci_bios(unsigned long spfn
, unsigned long epfn
)
396 if (pcibios_enabled
&& overlaps(spfn
, epfn
, BIOS_PFN
, BIOS_PFN_END
))
401 static pgprotval_t
protect_pci_bios(unsigned long spfn
, unsigned long epfn
)
408 * The .rodata section needs to be read-only. Using the pfn catches all
409 * aliases. This also includes __ro_after_init, so do not enforce until
410 * kernel_set_to_readonly is true.
412 static pgprotval_t
protect_rodata(unsigned long spfn
, unsigned long epfn
)
414 unsigned long epfn_ro
, spfn_ro
= PFN_DOWN(__pa_symbol(__start_rodata
));
417 * Note: __end_rodata is at page aligned and not inclusive, so
418 * subtract 1 to get the last enforced PFN in the rodata area.
420 epfn_ro
= PFN_DOWN(__pa_symbol(__end_rodata
)) - 1;
422 if (kernel_set_to_readonly
&& overlaps(spfn
, epfn
, spfn_ro
, epfn_ro
))
428 * Protect kernel text against becoming non executable by forbidding
429 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
430 * out of which the kernel actually executes. Do not protect the low
433 * This does not cover __inittext since that is gone after boot.
435 static pgprotval_t
protect_kernel_text(unsigned long start
, unsigned long end
)
437 unsigned long t_end
= (unsigned long)_etext
- 1;
438 unsigned long t_start
= (unsigned long)_text
;
440 if (overlaps(start
, end
, t_start
, t_end
))
445 #if defined(CONFIG_X86_64)
447 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
448 * kernel text mappings for the large page aligned text, rodata sections
449 * will be always read-only. For the kernel identity mappings covering the
450 * holes caused by this alignment can be anything that user asks.
452 * This will preserve the large page mappings for kernel text/data at no
455 static pgprotval_t
protect_kernel_text_ro(unsigned long start
,
458 unsigned long t_end
= (unsigned long)__end_rodata_hpage_align
- 1;
459 unsigned long t_start
= (unsigned long)_text
;
462 if (!kernel_set_to_readonly
|| !overlaps(start
, end
, t_start
, t_end
))
465 * Don't enforce the !RW mapping for the kernel text mapping, if
466 * the current mapping is already using small page mapping. No
467 * need to work hard to preserve large page mappings in this case.
469 * This also fixes the Linux Xen paravirt guest boot failure caused
470 * by unexpected read-only mappings for kernel identity
471 * mappings. In this paravirt guest case, the kernel text mapping
472 * and the kernel identity mapping share the same page-table pages,
473 * so the protections for kernel text and identity mappings have to
476 if (lookup_address(start
, &level
) && (level
!= PG_LEVEL_4K
))
481 static pgprotval_t
protect_kernel_text_ro(unsigned long start
,
488 static inline bool conflicts(pgprot_t prot
, pgprotval_t val
)
490 return (pgprot_val(prot
) & ~val
) != pgprot_val(prot
);
493 static inline void check_conflict(int warnlvl
, pgprot_t prot
, pgprotval_t val
,
494 unsigned long start
, unsigned long end
,
495 unsigned long pfn
, const char *txt
)
497 static const char *lvltxt
[] = {
498 [CPA_CONFLICT
] = "conflict",
499 [CPA_PROTECT
] = "protect",
500 [CPA_DETECT
] = "detect",
503 if (warnlvl
> cpa_warn_level
|| !conflicts(prot
, val
))
506 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
507 lvltxt
[warnlvl
], txt
, start
, end
, pfn
, (unsigned long long)pgprot_val(prot
),
508 (unsigned long long)val
);
512 * Certain areas of memory on x86 require very specific protection flags,
513 * for example the BIOS area or kernel text. Callers don't always get this
514 * right (again, ioremap() on BIOS memory is not uncommon) so this function
515 * checks and fixes these known static required protection bits.
517 static inline pgprot_t
static_protections(pgprot_t prot
, unsigned long start
,
518 unsigned long pfn
, unsigned long npg
,
521 pgprotval_t forbidden
, res
;
525 * There is no point in checking RW/NX conflicts when the requested
526 * mapping is setting the page !PRESENT.
528 if (!(pgprot_val(prot
) & _PAGE_PRESENT
))
531 /* Operate on the virtual address */
532 end
= start
+ npg
* PAGE_SIZE
- 1;
534 res
= protect_kernel_text(start
, end
);
535 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Text NX");
538 res
= protect_kernel_text_ro(start
, end
);
539 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Text RO");
542 /* Check the PFN directly */
543 res
= protect_pci_bios(pfn
, pfn
+ npg
- 1);
544 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "PCIBIOS NX");
547 res
= protect_rodata(pfn
, pfn
+ npg
- 1);
548 check_conflict(warnlvl
, prot
, res
, start
, end
, pfn
, "Rodata RO");
551 return __pgprot(pgprot_val(prot
) & ~forbidden
);
555 * Lookup the page table entry for a virtual address in a specific pgd.
556 * Return a pointer to the entry and the level of the mapping.
558 pte_t
*lookup_address_in_pgd(pgd_t
*pgd
, unsigned long address
,
565 *level
= PG_LEVEL_NONE
;
570 p4d
= p4d_offset(pgd
, address
);
574 *level
= PG_LEVEL_512G
;
575 if (p4d_large(*p4d
) || !p4d_present(*p4d
))
578 pud
= pud_offset(p4d
, address
);
582 *level
= PG_LEVEL_1G
;
583 if (pud_large(*pud
) || !pud_present(*pud
))
586 pmd
= pmd_offset(pud
, address
);
590 *level
= PG_LEVEL_2M
;
591 if (pmd_large(*pmd
) || !pmd_present(*pmd
))
594 *level
= PG_LEVEL_4K
;
596 return pte_offset_kernel(pmd
, address
);
600 * Lookup the page table entry for a virtual address. Return a pointer
601 * to the entry and the level of the mapping.
603 * Note: We return pud and pmd either when the entry is marked large
604 * or when the present bit is not set. Otherwise we would return a
605 * pointer to a nonexisting mapping.
607 pte_t
*lookup_address(unsigned long address
, unsigned int *level
)
609 return lookup_address_in_pgd(pgd_offset_k(address
), address
, level
);
611 EXPORT_SYMBOL_GPL(lookup_address
);
613 static pte_t
*_lookup_address_cpa(struct cpa_data
*cpa
, unsigned long address
,
617 return lookup_address_in_pgd(cpa
->pgd
+ pgd_index(address
),
620 return lookup_address(address
, level
);
624 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
625 * or NULL if not present.
627 pmd_t
*lookup_pmd_address(unsigned long address
)
633 pgd
= pgd_offset_k(address
);
637 p4d
= p4d_offset(pgd
, address
);
638 if (p4d_none(*p4d
) || p4d_large(*p4d
) || !p4d_present(*p4d
))
641 pud
= pud_offset(p4d
, address
);
642 if (pud_none(*pud
) || pud_large(*pud
) || !pud_present(*pud
))
645 return pmd_offset(pud
, address
);
649 * This is necessary because __pa() does not work on some
650 * kinds of memory, like vmalloc() or the alloc_remap()
651 * areas on 32-bit NUMA systems. The percpu areas can
652 * end up in this kind of memory, for instance.
654 * This could be optimized, but it is only intended to be
655 * used at inititalization time, and keeping it
656 * unoptimized should increase the testing coverage for
657 * the more obscure platforms.
659 phys_addr_t
slow_virt_to_phys(void *__virt_addr
)
661 unsigned long virt_addr
= (unsigned long)__virt_addr
;
662 phys_addr_t phys_addr
;
663 unsigned long offset
;
667 pte
= lookup_address(virt_addr
, &level
);
671 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
672 * before being left-shifted PAGE_SHIFT bits -- this trick is to
673 * make 32-PAE kernel work correctly.
677 phys_addr
= (phys_addr_t
)pud_pfn(*(pud_t
*)pte
) << PAGE_SHIFT
;
678 offset
= virt_addr
& ~PUD_PAGE_MASK
;
681 phys_addr
= (phys_addr_t
)pmd_pfn(*(pmd_t
*)pte
) << PAGE_SHIFT
;
682 offset
= virt_addr
& ~PMD_PAGE_MASK
;
685 phys_addr
= (phys_addr_t
)pte_pfn(*pte
) << PAGE_SHIFT
;
686 offset
= virt_addr
& ~PAGE_MASK
;
689 return (phys_addr_t
)(phys_addr
| offset
);
691 EXPORT_SYMBOL_GPL(slow_virt_to_phys
);
694 * Set the new pmd in all the pgds we know about:
696 static void __set_pmd_pte(pte_t
*kpte
, unsigned long address
, pte_t pte
)
699 set_pte_atomic(kpte
, pte
);
701 if (!SHARED_KERNEL_PMD
) {
704 list_for_each_entry(page
, &pgd_list
, lru
) {
710 pgd
= (pgd_t
*)page_address(page
) + pgd_index(address
);
711 p4d
= p4d_offset(pgd
, address
);
712 pud
= pud_offset(p4d
, address
);
713 pmd
= pmd_offset(pud
, address
);
714 set_pte_atomic((pte_t
*)pmd
, pte
);
720 static pgprot_t
pgprot_clear_protnone_bits(pgprot_t prot
)
723 * _PAGE_GLOBAL means "global page" for present PTEs.
724 * But, it is also used to indicate _PAGE_PROTNONE
725 * for non-present PTEs.
727 * This ensures that a _PAGE_GLOBAL PTE going from
728 * present to non-present is not confused as
731 if (!(pgprot_val(prot
) & _PAGE_PRESENT
))
732 pgprot_val(prot
) &= ~_PAGE_GLOBAL
;
737 static int __should_split_large_page(pte_t
*kpte
, unsigned long address
,
738 struct cpa_data
*cpa
)
740 unsigned long numpages
, pmask
, psize
, lpaddr
, pfn
, old_pfn
;
741 pgprot_t old_prot
, new_prot
, req_prot
, chk_prot
;
746 * Check for races, another CPU might have split this page
749 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
755 old_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
756 old_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
757 cpa_inc_2m_checked();
760 old_prot
= pud_pgprot(*(pud_t
*)kpte
);
761 old_pfn
= pud_pfn(*(pud_t
*)kpte
);
762 cpa_inc_1g_checked();
768 psize
= page_level_size(level
);
769 pmask
= page_level_mask(level
);
772 * Calculate the number of pages, which fit into this large
773 * page starting at address:
775 lpaddr
= (address
+ psize
) & pmask
;
776 numpages
= (lpaddr
- address
) >> PAGE_SHIFT
;
777 if (numpages
< cpa
->numpages
)
778 cpa
->numpages
= numpages
;
781 * We are safe now. Check whether the new pgprot is the same:
782 * Convert protection attributes to 4k-format, as cpa->mask* are set
786 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
787 req_prot
= pgprot_large_2_4k(old_prot
);
789 pgprot_val(req_prot
) &= ~pgprot_val(cpa
->mask_clr
);
790 pgprot_val(req_prot
) |= pgprot_val(cpa
->mask_set
);
793 * req_prot is in format of 4k pages. It must be converted to large
794 * page format: the caching mode includes the PAT bit located at
795 * different bit positions in the two formats.
797 req_prot
= pgprot_4k_2_large(req_prot
);
798 req_prot
= pgprot_clear_protnone_bits(req_prot
);
799 if (pgprot_val(req_prot
) & _PAGE_PRESENT
)
800 pgprot_val(req_prot
) |= _PAGE_PSE
;
803 * old_pfn points to the large page base pfn. So we need to add the
804 * offset of the virtual address:
806 pfn
= old_pfn
+ ((address
& (psize
- 1)) >> PAGE_SHIFT
);
810 * Calculate the large page base address and the number of 4K pages
813 lpaddr
= address
& pmask
;
814 numpages
= psize
>> PAGE_SHIFT
;
817 * Sanity check that the existing mapping is correct versus the static
818 * protections. static_protections() guards against !PRESENT, so no
819 * extra conditional required here.
821 chk_prot
= static_protections(old_prot
, lpaddr
, old_pfn
, numpages
,
824 if (WARN_ON_ONCE(pgprot_val(chk_prot
) != pgprot_val(old_prot
))) {
826 * Split the large page and tell the split code to
827 * enforce static protections.
829 cpa
->force_static_prot
= 1;
834 * Optimization: If the requested pgprot is the same as the current
835 * pgprot, then the large page can be preserved and no updates are
836 * required independent of alignment and length of the requested
837 * range. The above already established that the current pgprot is
838 * correct, which in consequence makes the requested pgprot correct
839 * as well if it is the same. The static protection scan below will
840 * not come to a different conclusion.
842 if (pgprot_val(req_prot
) == pgprot_val(old_prot
)) {
843 cpa_inc_lp_sameprot(level
);
848 * If the requested range does not cover the full page, split it up
850 if (address
!= lpaddr
|| cpa
->numpages
!= numpages
)
854 * Check whether the requested pgprot is conflicting with a static
855 * protection requirement in the large page.
857 new_prot
= static_protections(req_prot
, lpaddr
, old_pfn
, numpages
,
861 * If there is a conflict, split the large page.
863 * There used to be a 4k wise evaluation trying really hard to
864 * preserve the large pages, but experimentation has shown, that this
865 * does not help at all. There might be corner cases which would
866 * preserve one large page occasionally, but it's really not worth the
867 * extra code and cycles for the common case.
869 if (pgprot_val(req_prot
) != pgprot_val(new_prot
))
872 /* All checks passed. Update the large page mapping. */
873 new_pte
= pfn_pte(old_pfn
, new_prot
);
874 __set_pmd_pte(kpte
, address
, new_pte
);
875 cpa
->flags
|= CPA_FLUSHTLB
;
876 cpa_inc_lp_preserved(level
);
880 static int should_split_large_page(pte_t
*kpte
, unsigned long address
,
881 struct cpa_data
*cpa
)
885 if (cpa
->force_split
)
888 spin_lock(&pgd_lock
);
889 do_split
= __should_split_large_page(kpte
, address
, cpa
);
890 spin_unlock(&pgd_lock
);
895 static void split_set_pte(struct cpa_data
*cpa
, pte_t
*pte
, unsigned long pfn
,
896 pgprot_t ref_prot
, unsigned long address
,
899 unsigned int npg
= PFN_DOWN(size
);
903 * If should_split_large_page() discovered an inconsistent mapping,
904 * remove the invalid protection in the split mapping.
906 if (!cpa
->force_static_prot
)
909 prot
= static_protections(ref_prot
, address
, pfn
, npg
, CPA_PROTECT
);
911 if (pgprot_val(prot
) == pgprot_val(ref_prot
))
915 * If this is splitting a PMD, fix it up. PUD splits cannot be
916 * fixed trivially as that would require to rescan the newly
917 * installed PMD mappings after returning from split_large_page()
918 * so an eventual further split can allocate the necessary PTE
919 * pages. Warn for now and revisit it in case this actually
922 if (size
== PAGE_SIZE
)
925 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
927 set_pte(pte
, pfn_pte(pfn
, ref_prot
));
931 __split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
, unsigned long address
,
934 unsigned long lpaddr
, lpinc
, ref_pfn
, pfn
, pfninc
= 1;
935 pte_t
*pbase
= (pte_t
*)page_address(base
);
936 unsigned int i
, level
;
940 spin_lock(&pgd_lock
);
942 * Check for races, another CPU might have split this page
945 tmp
= _lookup_address_cpa(cpa
, address
, &level
);
947 spin_unlock(&pgd_lock
);
951 paravirt_alloc_pte(&init_mm
, page_to_pfn(base
));
955 ref_prot
= pmd_pgprot(*(pmd_t
*)kpte
);
957 * Clear PSE (aka _PAGE_PAT) and move
958 * PAT bit to correct position.
960 ref_prot
= pgprot_large_2_4k(ref_prot
);
961 ref_pfn
= pmd_pfn(*(pmd_t
*)kpte
);
962 lpaddr
= address
& PMD_MASK
;
967 ref_prot
= pud_pgprot(*(pud_t
*)kpte
);
968 ref_pfn
= pud_pfn(*(pud_t
*)kpte
);
969 pfninc
= PMD_PAGE_SIZE
>> PAGE_SHIFT
;
970 lpaddr
= address
& PUD_MASK
;
973 * Clear the PSE flags if the PRESENT flag is not set
974 * otherwise pmd_present/pmd_huge will return true
975 * even on a non present pmd.
977 if (!(pgprot_val(ref_prot
) & _PAGE_PRESENT
))
978 pgprot_val(ref_prot
) &= ~_PAGE_PSE
;
982 spin_unlock(&pgd_lock
);
986 ref_prot
= pgprot_clear_protnone_bits(ref_prot
);
989 * Get the target pfn from the original entry:
992 for (i
= 0; i
< PTRS_PER_PTE
; i
++, pfn
+= pfninc
, lpaddr
+= lpinc
)
993 split_set_pte(cpa
, pbase
+ i
, pfn
, ref_prot
, lpaddr
, lpinc
);
995 if (virt_addr_valid(address
)) {
996 unsigned long pfn
= PFN_DOWN(__pa(address
));
998 if (pfn_range_is_mapped(pfn
, pfn
+ 1))
999 split_page_count(level
);
1003 * Install the new, split up pagetable.
1005 * We use the standard kernel pagetable protections for the new
1006 * pagetable protections, the actual ptes set above control the
1007 * primary protection behavior:
1009 __set_pmd_pte(kpte
, address
, mk_pte(base
, __pgprot(_KERNPG_TABLE
)));
1012 * Do a global flush tlb after splitting the large page
1013 * and before we do the actual change page attribute in the PTE.
1015 * Without this, we violate the TLB application note, that says:
1016 * "The TLBs may contain both ordinary and large-page
1017 * translations for a 4-KByte range of linear addresses. This
1018 * may occur if software modifies the paging structures so that
1019 * the page size used for the address range changes. If the two
1020 * translations differ with respect to page frame or attributes
1021 * (e.g., permissions), processor behavior is undefined and may
1022 * be implementation-specific."
1024 * We do this global tlb flush inside the cpa_lock, so that we
1025 * don't allow any other cpu, with stale tlb entries change the
1026 * page attribute in parallel, that also falls into the
1027 * just split large page entry.
1030 spin_unlock(&pgd_lock
);
1035 static int split_large_page(struct cpa_data
*cpa
, pte_t
*kpte
,
1036 unsigned long address
)
1040 if (!debug_pagealloc_enabled())
1041 spin_unlock(&cpa_lock
);
1042 base
= alloc_pages(GFP_KERNEL
, 0);
1043 if (!debug_pagealloc_enabled())
1044 spin_lock(&cpa_lock
);
1048 if (__split_large_page(cpa
, kpte
, address
, base
))
1054 static bool try_to_free_pte_page(pte_t
*pte
)
1058 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1059 if (!pte_none(pte
[i
]))
1062 free_page((unsigned long)pte
);
1066 static bool try_to_free_pmd_page(pmd_t
*pmd
)
1070 for (i
= 0; i
< PTRS_PER_PMD
; i
++)
1071 if (!pmd_none(pmd
[i
]))
1074 free_page((unsigned long)pmd
);
1078 static bool unmap_pte_range(pmd_t
*pmd
, unsigned long start
, unsigned long end
)
1080 pte_t
*pte
= pte_offset_kernel(pmd
, start
);
1082 while (start
< end
) {
1083 set_pte(pte
, __pte(0));
1089 if (try_to_free_pte_page((pte_t
*)pmd_page_vaddr(*pmd
))) {
1096 static void __unmap_pmd_range(pud_t
*pud
, pmd_t
*pmd
,
1097 unsigned long start
, unsigned long end
)
1099 if (unmap_pte_range(pmd
, start
, end
))
1100 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
1104 static void unmap_pmd_range(pud_t
*pud
, unsigned long start
, unsigned long end
)
1106 pmd_t
*pmd
= pmd_offset(pud
, start
);
1109 * Not on a 2MB page boundary?
1111 if (start
& (PMD_SIZE
- 1)) {
1112 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
1113 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
1115 __unmap_pmd_range(pud
, pmd
, start
, pre_end
);
1122 * Try to unmap in 2M chunks.
1124 while (end
- start
>= PMD_SIZE
) {
1125 if (pmd_large(*pmd
))
1128 __unmap_pmd_range(pud
, pmd
, start
, start
+ PMD_SIZE
);
1138 return __unmap_pmd_range(pud
, pmd
, start
, end
);
1141 * Try again to free the PMD page if haven't succeeded above.
1143 if (!pud_none(*pud
))
1144 if (try_to_free_pmd_page((pmd_t
*)pud_page_vaddr(*pud
)))
1148 static void unmap_pud_range(p4d_t
*p4d
, unsigned long start
, unsigned long end
)
1150 pud_t
*pud
= pud_offset(p4d
, start
);
1153 * Not on a GB page boundary?
1155 if (start
& (PUD_SIZE
- 1)) {
1156 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1157 unsigned long pre_end
= min_t(unsigned long, end
, next_page
);
1159 unmap_pmd_range(pud
, start
, pre_end
);
1166 * Try to unmap in 1G chunks?
1168 while (end
- start
>= PUD_SIZE
) {
1170 if (pud_large(*pud
))
1173 unmap_pmd_range(pud
, start
, start
+ PUD_SIZE
);
1183 unmap_pmd_range(pud
, start
, end
);
1186 * No need to try to free the PUD page because we'll free it in
1187 * populate_pgd's error path
1191 static int alloc_pte_page(pmd_t
*pmd
)
1193 pte_t
*pte
= (pte_t
*)get_zeroed_page(GFP_KERNEL
);
1197 set_pmd(pmd
, __pmd(__pa(pte
) | _KERNPG_TABLE
));
1201 static int alloc_pmd_page(pud_t
*pud
)
1203 pmd_t
*pmd
= (pmd_t
*)get_zeroed_page(GFP_KERNEL
);
1207 set_pud(pud
, __pud(__pa(pmd
) | _KERNPG_TABLE
));
1211 static void populate_pte(struct cpa_data
*cpa
,
1212 unsigned long start
, unsigned long end
,
1213 unsigned num_pages
, pmd_t
*pmd
, pgprot_t pgprot
)
1217 pte
= pte_offset_kernel(pmd
, start
);
1219 pgprot
= pgprot_clear_protnone_bits(pgprot
);
1221 while (num_pages
-- && start
< end
) {
1222 set_pte(pte
, pfn_pte(cpa
->pfn
, pgprot
));
1230 static long populate_pmd(struct cpa_data
*cpa
,
1231 unsigned long start
, unsigned long end
,
1232 unsigned num_pages
, pud_t
*pud
, pgprot_t pgprot
)
1236 pgprot_t pmd_pgprot
;
1239 * Not on a 2M boundary?
1241 if (start
& (PMD_SIZE
- 1)) {
1242 unsigned long pre_end
= start
+ (num_pages
<< PAGE_SHIFT
);
1243 unsigned long next_page
= (start
+ PMD_SIZE
) & PMD_MASK
;
1245 pre_end
= min_t(unsigned long, pre_end
, next_page
);
1246 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1247 cur_pages
= min_t(unsigned int, num_pages
, cur_pages
);
1252 pmd
= pmd_offset(pud
, start
);
1254 if (alloc_pte_page(pmd
))
1257 populate_pte(cpa
, start
, pre_end
, cur_pages
, pmd
, pgprot
);
1263 * We mapped them all?
1265 if (num_pages
== cur_pages
)
1268 pmd_pgprot
= pgprot_4k_2_large(pgprot
);
1270 while (end
- start
>= PMD_SIZE
) {
1273 * We cannot use a 1G page so allocate a PMD page if needed.
1276 if (alloc_pmd_page(pud
))
1279 pmd
= pmd_offset(pud
, start
);
1281 set_pmd(pmd
, pmd_mkhuge(pfn_pmd(cpa
->pfn
,
1282 canon_pgprot(pmd_pgprot
))));
1285 cpa
->pfn
+= PMD_SIZE
>> PAGE_SHIFT
;
1286 cur_pages
+= PMD_SIZE
>> PAGE_SHIFT
;
1290 * Map trailing 4K pages.
1293 pmd
= pmd_offset(pud
, start
);
1295 if (alloc_pte_page(pmd
))
1298 populate_pte(cpa
, start
, end
, num_pages
- cur_pages
,
1304 static int populate_pud(struct cpa_data
*cpa
, unsigned long start
, p4d_t
*p4d
,
1310 pgprot_t pud_pgprot
;
1312 end
= start
+ (cpa
->numpages
<< PAGE_SHIFT
);
1315 * Not on a Gb page boundary? => map everything up to it with
1318 if (start
& (PUD_SIZE
- 1)) {
1319 unsigned long pre_end
;
1320 unsigned long next_page
= (start
+ PUD_SIZE
) & PUD_MASK
;
1322 pre_end
= min_t(unsigned long, end
, next_page
);
1323 cur_pages
= (pre_end
- start
) >> PAGE_SHIFT
;
1324 cur_pages
= min_t(int, (int)cpa
->numpages
, cur_pages
);
1326 pud
= pud_offset(p4d
, start
);
1332 if (alloc_pmd_page(pud
))
1335 cur_pages
= populate_pmd(cpa
, start
, pre_end
, cur_pages
,
1343 /* We mapped them all? */
1344 if (cpa
->numpages
== cur_pages
)
1347 pud
= pud_offset(p4d
, start
);
1348 pud_pgprot
= pgprot_4k_2_large(pgprot
);
1351 * Map everything starting from the Gb boundary, possibly with 1G pages
1353 while (boot_cpu_has(X86_FEATURE_GBPAGES
) && end
- start
>= PUD_SIZE
) {
1354 set_pud(pud
, pud_mkhuge(pfn_pud(cpa
->pfn
,
1355 canon_pgprot(pud_pgprot
))));
1358 cpa
->pfn
+= PUD_SIZE
>> PAGE_SHIFT
;
1359 cur_pages
+= PUD_SIZE
>> PAGE_SHIFT
;
1363 /* Map trailing leftover */
1367 pud
= pud_offset(p4d
, start
);
1369 if (alloc_pmd_page(pud
))
1372 tmp
= populate_pmd(cpa
, start
, end
, cpa
->numpages
- cur_pages
,
1383 * Restrictions for kernel page table do not necessarily apply when mapping in
1386 static int populate_pgd(struct cpa_data
*cpa
, unsigned long addr
)
1388 pgprot_t pgprot
= __pgprot(_KERNPG_TABLE
);
1389 pud_t
*pud
= NULL
; /* shut up gcc */
1394 pgd_entry
= cpa
->pgd
+ pgd_index(addr
);
1396 if (pgd_none(*pgd_entry
)) {
1397 p4d
= (p4d_t
*)get_zeroed_page(GFP_KERNEL
);
1401 set_pgd(pgd_entry
, __pgd(__pa(p4d
) | _KERNPG_TABLE
));
1405 * Allocate a PUD page and hand it down for mapping.
1407 p4d
= p4d_offset(pgd_entry
, addr
);
1408 if (p4d_none(*p4d
)) {
1409 pud
= (pud_t
*)get_zeroed_page(GFP_KERNEL
);
1413 set_p4d(p4d
, __p4d(__pa(pud
) | _KERNPG_TABLE
));
1416 pgprot_val(pgprot
) &= ~pgprot_val(cpa
->mask_clr
);
1417 pgprot_val(pgprot
) |= pgprot_val(cpa
->mask_set
);
1419 ret
= populate_pud(cpa
, addr
, p4d
, pgprot
);
1422 * Leave the PUD page in place in case some other CPU or thread
1423 * already found it, but remove any useless entries we just
1426 unmap_pud_range(p4d
, addr
,
1427 addr
+ (cpa
->numpages
<< PAGE_SHIFT
));
1431 cpa
->numpages
= ret
;
1435 static int __cpa_process_fault(struct cpa_data
*cpa
, unsigned long vaddr
,
1440 * Right now, we only execute this code path when mapping
1441 * the EFI virtual memory map regions, no other users
1442 * provide a ->pgd value. This may change in the future.
1444 return populate_pgd(cpa
, vaddr
);
1448 * Ignore all non primary paths.
1456 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1458 * Also set numpages to '1' indicating that we processed cpa req for
1459 * one virtual address page and its pfn. TBD: numpages can be set based
1460 * on the initial value and the level returned by lookup_address().
1462 if (within(vaddr
, PAGE_OFFSET
,
1463 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
))) {
1465 cpa
->pfn
= __pa(vaddr
) >> PAGE_SHIFT
;
1468 } else if (__cpa_pfn_in_highmap(cpa
->pfn
)) {
1469 /* Faults in the highmap are OK, so do not warn: */
1472 WARN(1, KERN_WARNING
"CPA: called for zero pte. "
1473 "vaddr = %lx cpa->vaddr = %lx\n", vaddr
,
1480 static int __change_page_attr(struct cpa_data
*cpa
, int primary
)
1482 unsigned long address
;
1485 pte_t
*kpte
, old_pte
;
1487 address
= __cpa_addr(cpa
, cpa
->curpage
);
1489 kpte
= _lookup_address_cpa(cpa
, address
, &level
);
1491 return __cpa_process_fault(cpa
, address
, primary
);
1494 if (pte_none(old_pte
))
1495 return __cpa_process_fault(cpa
, address
, primary
);
1497 if (level
== PG_LEVEL_4K
) {
1499 pgprot_t new_prot
= pte_pgprot(old_pte
);
1500 unsigned long pfn
= pte_pfn(old_pte
);
1502 pgprot_val(new_prot
) &= ~pgprot_val(cpa
->mask_clr
);
1503 pgprot_val(new_prot
) |= pgprot_val(cpa
->mask_set
);
1505 cpa_inc_4k_install();
1506 new_prot
= static_protections(new_prot
, address
, pfn
, 1,
1509 new_prot
= pgprot_clear_protnone_bits(new_prot
);
1512 * We need to keep the pfn from the existing PTE,
1513 * after all we're only going to change it's attributes
1514 * not the memory it points to
1516 new_pte
= pfn_pte(pfn
, new_prot
);
1519 * Do we really change anything ?
1521 if (pte_val(old_pte
) != pte_val(new_pte
)) {
1522 set_pte_atomic(kpte
, new_pte
);
1523 cpa
->flags
|= CPA_FLUSHTLB
;
1530 * Check, whether we can keep the large page intact
1531 * and just change the pte:
1533 do_split
= should_split_large_page(kpte
, address
, cpa
);
1535 * When the range fits into the existing large page,
1536 * return. cp->numpages and cpa->tlbflush have been updated in
1543 * We have to split the large page:
1545 err
= split_large_page(cpa
, kpte
, address
);
1552 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
);
1554 static int cpa_process_alias(struct cpa_data
*cpa
)
1556 struct cpa_data alias_cpa
;
1557 unsigned long laddr
= (unsigned long)__va(cpa
->pfn
<< PAGE_SHIFT
);
1558 unsigned long vaddr
;
1561 if (!pfn_range_is_mapped(cpa
->pfn
, cpa
->pfn
+ 1))
1565 * No need to redo, when the primary call touched the direct
1568 vaddr
= __cpa_addr(cpa
, cpa
->curpage
);
1569 if (!(within(vaddr
, PAGE_OFFSET
,
1570 PAGE_OFFSET
+ (max_pfn_mapped
<< PAGE_SHIFT
)))) {
1573 alias_cpa
.vaddr
= &laddr
;
1574 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1575 alias_cpa
.curpage
= 0;
1577 ret
= __change_page_attr_set_clr(&alias_cpa
, 0);
1582 #ifdef CONFIG_X86_64
1584 * If the primary call didn't touch the high mapping already
1585 * and the physical address is inside the kernel map, we need
1586 * to touch the high mapped kernel as well:
1588 if (!within(vaddr
, (unsigned long)_text
, _brk_end
) &&
1589 __cpa_pfn_in_highmap(cpa
->pfn
)) {
1590 unsigned long temp_cpa_vaddr
= (cpa
->pfn
<< PAGE_SHIFT
) +
1591 __START_KERNEL_map
- phys_base
;
1593 alias_cpa
.vaddr
= &temp_cpa_vaddr
;
1594 alias_cpa
.flags
&= ~(CPA_PAGES_ARRAY
| CPA_ARRAY
);
1595 alias_cpa
.curpage
= 0;
1598 * The high mapping range is imprecise, so ignore the
1601 __change_page_attr_set_clr(&alias_cpa
, 0);
1608 static int __change_page_attr_set_clr(struct cpa_data
*cpa
, int checkalias
)
1610 unsigned long numpages
= cpa
->numpages
;
1611 unsigned long rempages
= numpages
;
1616 * Store the remaining nr of pages for the large page
1617 * preservation check.
1619 cpa
->numpages
= rempages
;
1620 /* for array changes, we can't use large page */
1621 if (cpa
->flags
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1624 if (!debug_pagealloc_enabled())
1625 spin_lock(&cpa_lock
);
1626 ret
= __change_page_attr(cpa
, checkalias
);
1627 if (!debug_pagealloc_enabled())
1628 spin_unlock(&cpa_lock
);
1633 ret
= cpa_process_alias(cpa
);
1639 * Adjust the number of pages with the result of the
1640 * CPA operation. Either a large page has been
1641 * preserved or a single page update happened.
1643 BUG_ON(cpa
->numpages
> rempages
|| !cpa
->numpages
);
1644 rempages
-= cpa
->numpages
;
1645 cpa
->curpage
+= cpa
->numpages
;
1649 /* Restore the original numpages */
1650 cpa
->numpages
= numpages
;
1654 static int change_page_attr_set_clr(unsigned long *addr
, int numpages
,
1655 pgprot_t mask_set
, pgprot_t mask_clr
,
1656 int force_split
, int in_flag
,
1657 struct page
**pages
)
1659 struct cpa_data cpa
;
1660 int ret
, cache
, checkalias
;
1662 memset(&cpa
, 0, sizeof(cpa
));
1665 * Check, if we are requested to set a not supported
1666 * feature. Clearing non-supported features is OK.
1668 mask_set
= canon_pgprot(mask_set
);
1670 if (!pgprot_val(mask_set
) && !pgprot_val(mask_clr
) && !force_split
)
1673 /* Ensure we are PAGE_SIZE aligned */
1674 if (in_flag
& CPA_ARRAY
) {
1676 for (i
= 0; i
< numpages
; i
++) {
1677 if (addr
[i
] & ~PAGE_MASK
) {
1678 addr
[i
] &= PAGE_MASK
;
1682 } else if (!(in_flag
& CPA_PAGES_ARRAY
)) {
1684 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1685 * No need to check in that case
1687 if (*addr
& ~PAGE_MASK
) {
1690 * People should not be passing in unaligned addresses:
1696 /* Must avoid aliasing mappings in the highmem code */
1697 kmap_flush_unused();
1703 cpa
.numpages
= numpages
;
1704 cpa
.mask_set
= mask_set
;
1705 cpa
.mask_clr
= mask_clr
;
1708 cpa
.force_split
= force_split
;
1710 if (in_flag
& (CPA_ARRAY
| CPA_PAGES_ARRAY
))
1711 cpa
.flags
|= in_flag
;
1713 /* No alias checking for _NX bit modifications */
1714 checkalias
= (pgprot_val(mask_set
) | pgprot_val(mask_clr
)) != _PAGE_NX
;
1715 /* Has caller explicitly disabled alias checking? */
1716 if (in_flag
& CPA_NO_CHECK_ALIAS
)
1719 ret
= __change_page_attr_set_clr(&cpa
, checkalias
);
1722 * Check whether we really changed something:
1724 if (!(cpa
.flags
& CPA_FLUSHTLB
))
1728 * No need to flush, when we did not set any of the caching
1731 cache
= !!pgprot2cachemode(mask_set
);
1734 * On error; flush everything to be sure.
1737 cpa_flush_all(cache
);
1741 cpa_flush(&cpa
, cache
);
1746 static inline int change_page_attr_set(unsigned long *addr
, int numpages
,
1747 pgprot_t mask
, int array
)
1749 return change_page_attr_set_clr(addr
, numpages
, mask
, __pgprot(0), 0,
1750 (array
? CPA_ARRAY
: 0), NULL
);
1753 static inline int change_page_attr_clear(unsigned long *addr
, int numpages
,
1754 pgprot_t mask
, int array
)
1756 return change_page_attr_set_clr(addr
, numpages
, __pgprot(0), mask
, 0,
1757 (array
? CPA_ARRAY
: 0), NULL
);
1760 static inline int cpa_set_pages_array(struct page
**pages
, int numpages
,
1763 return change_page_attr_set_clr(NULL
, numpages
, mask
, __pgprot(0), 0,
1764 CPA_PAGES_ARRAY
, pages
);
1767 static inline int cpa_clear_pages_array(struct page
**pages
, int numpages
,
1770 return change_page_attr_set_clr(NULL
, numpages
, __pgprot(0), mask
, 0,
1771 CPA_PAGES_ARRAY
, pages
);
1774 int _set_memory_uc(unsigned long addr
, int numpages
)
1777 * for now UC MINUS. see comments in ioremap_nocache()
1778 * If you really need strong UC use ioremap_uc(), but note
1779 * that you cannot override IO areas with set_memory_*() as
1780 * these helpers cannot work with IO memory.
1782 return change_page_attr_set(&addr
, numpages
,
1783 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1787 int set_memory_uc(unsigned long addr
, int numpages
)
1792 * for now UC MINUS. see comments in ioremap_nocache()
1794 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1795 _PAGE_CACHE_MODE_UC_MINUS
, NULL
);
1799 ret
= _set_memory_uc(addr
, numpages
);
1806 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1810 EXPORT_SYMBOL(set_memory_uc
);
1812 static int _set_memory_array(unsigned long *addr
, int numpages
,
1813 enum page_cache_mode new_type
)
1815 enum page_cache_mode set_type
;
1819 for (i
= 0; i
< numpages
; i
++) {
1820 ret
= reserve_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
,
1826 /* If WC, set to UC- first and then WC */
1827 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
1828 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
1830 ret
= change_page_attr_set(addr
, numpages
,
1831 cachemode2pgprot(set_type
), 1);
1833 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
1834 ret
= change_page_attr_set_clr(addr
, numpages
,
1836 _PAGE_CACHE_MODE_WC
),
1837 __pgprot(_PAGE_CACHE_MASK
),
1838 0, CPA_ARRAY
, NULL
);
1845 for (j
= 0; j
< i
; j
++)
1846 free_memtype(__pa(addr
[j
]), __pa(addr
[j
]) + PAGE_SIZE
);
1851 int set_memory_array_uc(unsigned long *addr
, int numpages
)
1853 return _set_memory_array(addr
, numpages
, _PAGE_CACHE_MODE_UC_MINUS
);
1855 EXPORT_SYMBOL(set_memory_array_uc
);
1857 int set_memory_array_wc(unsigned long *addr
, int numpages
)
1859 return _set_memory_array(addr
, numpages
, _PAGE_CACHE_MODE_WC
);
1861 EXPORT_SYMBOL(set_memory_array_wc
);
1863 int set_memory_array_wt(unsigned long *addr
, int numpages
)
1865 return _set_memory_array(addr
, numpages
, _PAGE_CACHE_MODE_WT
);
1867 EXPORT_SYMBOL_GPL(set_memory_array_wt
);
1869 int _set_memory_wc(unsigned long addr
, int numpages
)
1873 ret
= change_page_attr_set(&addr
, numpages
,
1874 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS
),
1877 ret
= change_page_attr_set_clr(&addr
, numpages
,
1878 cachemode2pgprot(_PAGE_CACHE_MODE_WC
),
1879 __pgprot(_PAGE_CACHE_MASK
),
1885 int set_memory_wc(unsigned long addr
, int numpages
)
1889 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1890 _PAGE_CACHE_MODE_WC
, NULL
);
1894 ret
= _set_memory_wc(addr
, numpages
);
1896 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1900 EXPORT_SYMBOL(set_memory_wc
);
1902 int _set_memory_wt(unsigned long addr
, int numpages
)
1904 return change_page_attr_set(&addr
, numpages
,
1905 cachemode2pgprot(_PAGE_CACHE_MODE_WT
), 0);
1908 int set_memory_wt(unsigned long addr
, int numpages
)
1912 ret
= reserve_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
,
1913 _PAGE_CACHE_MODE_WT
, NULL
);
1917 ret
= _set_memory_wt(addr
, numpages
);
1919 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1923 EXPORT_SYMBOL_GPL(set_memory_wt
);
1925 int _set_memory_wb(unsigned long addr
, int numpages
)
1927 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1928 return change_page_attr_clear(&addr
, numpages
,
1929 __pgprot(_PAGE_CACHE_MASK
), 0);
1932 int set_memory_wb(unsigned long addr
, int numpages
)
1936 ret
= _set_memory_wb(addr
, numpages
);
1940 free_memtype(__pa(addr
), __pa(addr
) + numpages
* PAGE_SIZE
);
1943 EXPORT_SYMBOL(set_memory_wb
);
1945 int set_memory_array_wb(unsigned long *addr
, int numpages
)
1950 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1951 ret
= change_page_attr_clear(addr
, numpages
,
1952 __pgprot(_PAGE_CACHE_MASK
), 1);
1956 for (i
= 0; i
< numpages
; i
++)
1957 free_memtype(__pa(addr
[i
]), __pa(addr
[i
]) + PAGE_SIZE
);
1961 EXPORT_SYMBOL(set_memory_array_wb
);
1963 int set_memory_x(unsigned long addr
, int numpages
)
1965 if (!(__supported_pte_mask
& _PAGE_NX
))
1968 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1970 EXPORT_SYMBOL(set_memory_x
);
1972 int set_memory_nx(unsigned long addr
, int numpages
)
1974 if (!(__supported_pte_mask
& _PAGE_NX
))
1977 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_NX
), 0);
1979 EXPORT_SYMBOL(set_memory_nx
);
1981 int set_memory_ro(unsigned long addr
, int numpages
)
1983 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1986 int set_memory_rw(unsigned long addr
, int numpages
)
1988 return change_page_attr_set(&addr
, numpages
, __pgprot(_PAGE_RW
), 0);
1991 int set_memory_np(unsigned long addr
, int numpages
)
1993 return change_page_attr_clear(&addr
, numpages
, __pgprot(_PAGE_PRESENT
), 0);
1996 int set_memory_np_noalias(unsigned long addr
, int numpages
)
1998 int cpa_flags
= CPA_NO_CHECK_ALIAS
;
2000 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
2001 __pgprot(_PAGE_PRESENT
), 0,
2005 int set_memory_4k(unsigned long addr
, int numpages
)
2007 return change_page_attr_set_clr(&addr
, numpages
, __pgprot(0),
2008 __pgprot(0), 1, 0, NULL
);
2011 int set_memory_nonglobal(unsigned long addr
, int numpages
)
2013 return change_page_attr_clear(&addr
, numpages
,
2014 __pgprot(_PAGE_GLOBAL
), 0);
2017 int set_memory_global(unsigned long addr
, int numpages
)
2019 return change_page_attr_set(&addr
, numpages
,
2020 __pgprot(_PAGE_GLOBAL
), 0);
2023 static int __set_memory_enc_dec(unsigned long addr
, int numpages
, bool enc
)
2025 struct cpa_data cpa
;
2028 /* Nothing to do if memory encryption is not active */
2029 if (!mem_encrypt_active())
2032 /* Should not be working on unaligned addresses */
2033 if (WARN_ONCE(addr
& ~PAGE_MASK
, "misaligned address: %#lx\n", addr
))
2036 memset(&cpa
, 0, sizeof(cpa
));
2038 cpa
.numpages
= numpages
;
2039 cpa
.mask_set
= enc
? __pgprot(_PAGE_ENC
) : __pgprot(0);
2040 cpa
.mask_clr
= enc
? __pgprot(0) : __pgprot(_PAGE_ENC
);
2041 cpa
.pgd
= init_mm
.pgd
;
2043 /* Must avoid aliasing mappings in the highmem code */
2044 kmap_flush_unused();
2048 * Before changing the encryption attribute, we need to flush caches.
2052 ret
= __change_page_attr_set_clr(&cpa
, 1);
2055 * After changing the encryption attribute, we need to flush TLBs again
2056 * in case any speculative TLB caching occurred (but no need to flush
2057 * caches again). We could just use cpa_flush_all(), but in case TLB
2058 * flushing gets optimized in the cpa_flush() path use the same logic
2066 int set_memory_encrypted(unsigned long addr
, int numpages
)
2068 return __set_memory_enc_dec(addr
, numpages
, true);
2070 EXPORT_SYMBOL_GPL(set_memory_encrypted
);
2072 int set_memory_decrypted(unsigned long addr
, int numpages
)
2074 return __set_memory_enc_dec(addr
, numpages
, false);
2076 EXPORT_SYMBOL_GPL(set_memory_decrypted
);
2078 int set_pages_uc(struct page
*page
, int numpages
)
2080 unsigned long addr
= (unsigned long)page_address(page
);
2082 return set_memory_uc(addr
, numpages
);
2084 EXPORT_SYMBOL(set_pages_uc
);
2086 static int _set_pages_array(struct page
**pages
, int numpages
,
2087 enum page_cache_mode new_type
)
2089 unsigned long start
;
2091 enum page_cache_mode set_type
;
2096 for (i
= 0; i
< numpages
; i
++) {
2097 if (PageHighMem(pages
[i
]))
2099 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2100 end
= start
+ PAGE_SIZE
;
2101 if (reserve_memtype(start
, end
, new_type
, NULL
))
2105 /* If WC, set to UC- first and then WC */
2106 set_type
= (new_type
== _PAGE_CACHE_MODE_WC
) ?
2107 _PAGE_CACHE_MODE_UC_MINUS
: new_type
;
2109 ret
= cpa_set_pages_array(pages
, numpages
,
2110 cachemode2pgprot(set_type
));
2111 if (!ret
&& new_type
== _PAGE_CACHE_MODE_WC
)
2112 ret
= change_page_attr_set_clr(NULL
, numpages
,
2114 _PAGE_CACHE_MODE_WC
),
2115 __pgprot(_PAGE_CACHE_MASK
),
2116 0, CPA_PAGES_ARRAY
, pages
);
2119 return 0; /* Success */
2122 for (i
= 0; i
< free_idx
; i
++) {
2123 if (PageHighMem(pages
[i
]))
2125 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2126 end
= start
+ PAGE_SIZE
;
2127 free_memtype(start
, end
);
2132 int set_pages_array_uc(struct page
**pages
, int numpages
)
2134 return _set_pages_array(pages
, numpages
, _PAGE_CACHE_MODE_UC_MINUS
);
2136 EXPORT_SYMBOL(set_pages_array_uc
);
2138 int set_pages_array_wc(struct page
**pages
, int numpages
)
2140 return _set_pages_array(pages
, numpages
, _PAGE_CACHE_MODE_WC
);
2142 EXPORT_SYMBOL(set_pages_array_wc
);
2144 int set_pages_array_wt(struct page
**pages
, int numpages
)
2146 return _set_pages_array(pages
, numpages
, _PAGE_CACHE_MODE_WT
);
2148 EXPORT_SYMBOL_GPL(set_pages_array_wt
);
2150 int set_pages_wb(struct page
*page
, int numpages
)
2152 unsigned long addr
= (unsigned long)page_address(page
);
2154 return set_memory_wb(addr
, numpages
);
2156 EXPORT_SYMBOL(set_pages_wb
);
2158 int set_pages_array_wb(struct page
**pages
, int numpages
)
2161 unsigned long start
;
2165 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2166 retval
= cpa_clear_pages_array(pages
, numpages
,
2167 __pgprot(_PAGE_CACHE_MASK
));
2171 for (i
= 0; i
< numpages
; i
++) {
2172 if (PageHighMem(pages
[i
]))
2174 start
= page_to_pfn(pages
[i
]) << PAGE_SHIFT
;
2175 end
= start
+ PAGE_SIZE
;
2176 free_memtype(start
, end
);
2181 EXPORT_SYMBOL(set_pages_array_wb
);
2183 int set_pages_x(struct page
*page
, int numpages
)
2185 unsigned long addr
= (unsigned long)page_address(page
);
2187 return set_memory_x(addr
, numpages
);
2189 EXPORT_SYMBOL(set_pages_x
);
2191 int set_pages_nx(struct page
*page
, int numpages
)
2193 unsigned long addr
= (unsigned long)page_address(page
);
2195 return set_memory_nx(addr
, numpages
);
2197 EXPORT_SYMBOL(set_pages_nx
);
2199 int set_pages_ro(struct page
*page
, int numpages
)
2201 unsigned long addr
= (unsigned long)page_address(page
);
2203 return set_memory_ro(addr
, numpages
);
2206 int set_pages_rw(struct page
*page
, int numpages
)
2208 unsigned long addr
= (unsigned long)page_address(page
);
2210 return set_memory_rw(addr
, numpages
);
2213 static int __set_pages_p(struct page
*page
, int numpages
)
2215 unsigned long tempaddr
= (unsigned long) page_address(page
);
2216 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2218 .numpages
= numpages
,
2219 .mask_set
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2220 .mask_clr
= __pgprot(0),
2224 * No alias checking needed for setting present flag. otherwise,
2225 * we may need to break large pages for 64-bit kernel text
2226 * mappings (this adds to complexity if we want to do this from
2227 * atomic context especially). Let's keep it simple!
2229 return __change_page_attr_set_clr(&cpa
, 0);
2232 static int __set_pages_np(struct page
*page
, int numpages
)
2234 unsigned long tempaddr
= (unsigned long) page_address(page
);
2235 struct cpa_data cpa
= { .vaddr
= &tempaddr
,
2237 .numpages
= numpages
,
2238 .mask_set
= __pgprot(0),
2239 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2243 * No alias checking needed for setting not present flag. otherwise,
2244 * we may need to break large pages for 64-bit kernel text
2245 * mappings (this adds to complexity if we want to do this from
2246 * atomic context especially). Let's keep it simple!
2248 return __change_page_attr_set_clr(&cpa
, 0);
2251 int set_direct_map_invalid_noflush(struct page
*page
)
2253 return __set_pages_np(page
, 1);
2256 int set_direct_map_default_noflush(struct page
*page
)
2258 return __set_pages_p(page
, 1);
2261 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
2263 if (PageHighMem(page
))
2266 debug_check_no_locks_freed(page_address(page
),
2267 numpages
* PAGE_SIZE
);
2271 * The return value is ignored as the calls cannot fail.
2272 * Large pages for identity mappings are not used at boot time
2273 * and hence no memory allocations during large page split.
2276 __set_pages_p(page
, numpages
);
2278 __set_pages_np(page
, numpages
);
2281 * We should perform an IPI and flush all tlbs,
2282 * but that can deadlock->flush only current cpu.
2283 * Preemption needs to be disabled around __flush_tlb_all() due to
2284 * CR3 reload in __native_flush_tlb().
2290 arch_flush_lazy_mmu_mode();
2293 #ifdef CONFIG_HIBERNATION
2294 bool kernel_page_present(struct page
*page
)
2299 if (PageHighMem(page
))
2302 pte
= lookup_address((unsigned long)page_address(page
), &level
);
2303 return (pte_val(*pte
) & _PAGE_PRESENT
);
2305 #endif /* CONFIG_HIBERNATION */
2307 int __init
kernel_map_pages_in_pgd(pgd_t
*pgd
, u64 pfn
, unsigned long address
,
2308 unsigned numpages
, unsigned long page_flags
)
2310 int retval
= -EINVAL
;
2312 struct cpa_data cpa
= {
2316 .numpages
= numpages
,
2317 .mask_set
= __pgprot(0),
2318 .mask_clr
= __pgprot(0),
2322 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2324 if (!(__supported_pte_mask
& _PAGE_NX
))
2327 if (!(page_flags
& _PAGE_NX
))
2328 cpa
.mask_clr
= __pgprot(_PAGE_NX
);
2330 if (!(page_flags
& _PAGE_RW
))
2331 cpa
.mask_clr
= __pgprot(_PAGE_RW
);
2333 if (!(page_flags
& _PAGE_ENC
))
2334 cpa
.mask_clr
= pgprot_encrypted(cpa
.mask_clr
);
2336 cpa
.mask_set
= __pgprot(_PAGE_PRESENT
| page_flags
);
2338 retval
= __change_page_attr_set_clr(&cpa
, 0);
2346 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2347 * function shouldn't be used in an SMP environment. Presently, it's used only
2348 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2350 int __init
kernel_unmap_pages_in_pgd(pgd_t
*pgd
, unsigned long address
,
2351 unsigned long numpages
)
2356 * The typical sequence for unmapping is to find a pte through
2357 * lookup_address_in_pgd() (ideally, it should never return NULL because
2358 * the address is already mapped) and change it's protections. As pfn is
2359 * the *target* of a mapping, it's not useful while unmapping.
2361 struct cpa_data cpa
= {
2365 .numpages
= numpages
,
2366 .mask_set
= __pgprot(0),
2367 .mask_clr
= __pgprot(_PAGE_PRESENT
| _PAGE_RW
),
2371 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2373 retval
= __change_page_attr_set_clr(&cpa
, 0);
2380 * The testcases use internal knowledge of the implementation that shouldn't
2381 * be exposed to the rest of the kernel. Include these directly here.
2383 #ifdef CONFIG_CPA_DEBUG
2384 #include "pageattr-test.c"