staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / x86 / mm / pageattr.c
blob6a9a77a403c928e642a754f68c168ebfa6f7b3c1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2002 Andi Kleen, SuSE Labs.
4 * Thanks to Ben LaHaise for precious feedback.
5 */
6 #include <linux/highmem.h>
7 #include <linux/memblock.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 #include <linux/vmalloc.h>
19 #include <asm/e820/api.h>
20 #include <asm/processor.h>
21 #include <asm/tlbflush.h>
22 #include <asm/sections.h>
23 #include <asm/setup.h>
24 #include <linux/uaccess.h>
25 #include <asm/pgalloc.h>
26 #include <asm/proto.h>
27 #include <asm/pat.h>
28 #include <asm/set_memory.h>
30 #include "mm_internal.h"
33 * The current flushing context - we pass it instead of 5 arguments:
35 struct cpa_data {
36 unsigned long *vaddr;
37 pgd_t *pgd;
38 pgprot_t mask_set;
39 pgprot_t mask_clr;
40 unsigned long numpages;
41 unsigned long curpage;
42 unsigned long pfn;
43 unsigned int flags;
44 unsigned int force_split : 1,
45 force_static_prot : 1;
46 struct page **pages;
49 enum cpa_warn {
50 CPA_CONFLICT,
51 CPA_PROTECT,
52 CPA_DETECT,
55 static const int cpa_warn_level = CPA_PROTECT;
58 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
59 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
60 * entries change the page attribute in parallel to some other cpu
61 * splitting a large page entry along with changing the attribute.
63 static DEFINE_SPINLOCK(cpa_lock);
65 #define CPA_FLUSHTLB 1
66 #define CPA_ARRAY 2
67 #define CPA_PAGES_ARRAY 4
68 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
70 #ifdef CONFIG_PROC_FS
71 static unsigned long direct_pages_count[PG_LEVEL_NUM];
73 void update_page_count(int level, unsigned long pages)
75 /* Protect against CPA */
76 spin_lock(&pgd_lock);
77 direct_pages_count[level] += pages;
78 spin_unlock(&pgd_lock);
81 static void split_page_count(int level)
83 if (direct_pages_count[level] == 0)
84 return;
86 direct_pages_count[level]--;
87 direct_pages_count[level - 1] += PTRS_PER_PTE;
90 void arch_report_meminfo(struct seq_file *m)
92 seq_printf(m, "DirectMap4k: %8lu kB\n",
93 direct_pages_count[PG_LEVEL_4K] << 2);
94 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
95 seq_printf(m, "DirectMap2M: %8lu kB\n",
96 direct_pages_count[PG_LEVEL_2M] << 11);
97 #else
98 seq_printf(m, "DirectMap4M: %8lu kB\n",
99 direct_pages_count[PG_LEVEL_2M] << 12);
100 #endif
101 if (direct_gbpages)
102 seq_printf(m, "DirectMap1G: %8lu kB\n",
103 direct_pages_count[PG_LEVEL_1G] << 20);
105 #else
106 static inline void split_page_count(int level) { }
107 #endif
109 #ifdef CONFIG_X86_CPA_STATISTICS
111 static unsigned long cpa_1g_checked;
112 static unsigned long cpa_1g_sameprot;
113 static unsigned long cpa_1g_preserved;
114 static unsigned long cpa_2m_checked;
115 static unsigned long cpa_2m_sameprot;
116 static unsigned long cpa_2m_preserved;
117 static unsigned long cpa_4k_install;
119 static inline void cpa_inc_1g_checked(void)
121 cpa_1g_checked++;
124 static inline void cpa_inc_2m_checked(void)
126 cpa_2m_checked++;
129 static inline void cpa_inc_4k_install(void)
131 cpa_4k_install++;
134 static inline void cpa_inc_lp_sameprot(int level)
136 if (level == PG_LEVEL_1G)
137 cpa_1g_sameprot++;
138 else
139 cpa_2m_sameprot++;
142 static inline void cpa_inc_lp_preserved(int level)
144 if (level == PG_LEVEL_1G)
145 cpa_1g_preserved++;
146 else
147 cpa_2m_preserved++;
150 static int cpastats_show(struct seq_file *m, void *p)
152 seq_printf(m, "1G pages checked: %16lu\n", cpa_1g_checked);
153 seq_printf(m, "1G pages sameprot: %16lu\n", cpa_1g_sameprot);
154 seq_printf(m, "1G pages preserved: %16lu\n", cpa_1g_preserved);
155 seq_printf(m, "2M pages checked: %16lu\n", cpa_2m_checked);
156 seq_printf(m, "2M pages sameprot: %16lu\n", cpa_2m_sameprot);
157 seq_printf(m, "2M pages preserved: %16lu\n", cpa_2m_preserved);
158 seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
159 return 0;
162 static int cpastats_open(struct inode *inode, struct file *file)
164 return single_open(file, cpastats_show, NULL);
167 static const struct file_operations cpastats_fops = {
168 .open = cpastats_open,
169 .read = seq_read,
170 .llseek = seq_lseek,
171 .release = single_release,
174 static int __init cpa_stats_init(void)
176 debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
177 &cpastats_fops);
178 return 0;
180 late_initcall(cpa_stats_init);
181 #else
182 static inline void cpa_inc_1g_checked(void) { }
183 static inline void cpa_inc_2m_checked(void) { }
184 static inline void cpa_inc_4k_install(void) { }
185 static inline void cpa_inc_lp_sameprot(int level) { }
186 static inline void cpa_inc_lp_preserved(int level) { }
187 #endif
190 static inline int
191 within(unsigned long addr, unsigned long start, unsigned long end)
193 return addr >= start && addr < end;
196 static inline int
197 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
199 return addr >= start && addr <= end;
202 #ifdef CONFIG_X86_64
204 static inline unsigned long highmap_start_pfn(void)
206 return __pa_symbol(_text) >> PAGE_SHIFT;
209 static inline unsigned long highmap_end_pfn(void)
211 /* Do not reference physical address outside the kernel. */
212 return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
215 static bool __cpa_pfn_in_highmap(unsigned long pfn)
218 * Kernel text has an alias mapping at a high address, known
219 * here as "highmap".
221 return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
224 #else
226 static bool __cpa_pfn_in_highmap(unsigned long pfn)
228 /* There is no highmap on 32-bit */
229 return false;
232 #endif
235 * See set_mce_nospec().
237 * Machine check recovery code needs to change cache mode of poisoned pages to
238 * UC to avoid speculative access logging another error. But passing the
239 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
240 * speculative access. So we cheat and flip the top bit of the address. This
241 * works fine for the code that updates the page tables. But at the end of the
242 * process we need to flush the TLB and cache and the non-canonical address
243 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
245 * But in the common case we already have a canonical address. This code
246 * will fix the top bit if needed and is a no-op otherwise.
248 static inline unsigned long fix_addr(unsigned long addr)
250 #ifdef CONFIG_X86_64
251 return (long)(addr << 1) >> 1;
252 #else
253 return addr;
254 #endif
257 static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
259 if (cpa->flags & CPA_PAGES_ARRAY) {
260 struct page *page = cpa->pages[idx];
262 if (unlikely(PageHighMem(page)))
263 return 0;
265 return (unsigned long)page_address(page);
268 if (cpa->flags & CPA_ARRAY)
269 return cpa->vaddr[idx];
271 return *cpa->vaddr + idx * PAGE_SIZE;
275 * Flushing functions
278 static void clflush_cache_range_opt(void *vaddr, unsigned int size)
280 const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
281 void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
282 void *vend = vaddr + size;
284 if (p >= vend)
285 return;
287 for (; p < vend; p += clflush_size)
288 clflushopt(p);
292 * clflush_cache_range - flush a cache range with clflush
293 * @vaddr: virtual start address
294 * @size: number of bytes to flush
296 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
297 * SFENCE to avoid ordering issues.
299 void clflush_cache_range(void *vaddr, unsigned int size)
301 mb();
302 clflush_cache_range_opt(vaddr, size);
303 mb();
305 EXPORT_SYMBOL_GPL(clflush_cache_range);
307 void arch_invalidate_pmem(void *addr, size_t size)
309 clflush_cache_range(addr, size);
311 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
313 static void __cpa_flush_all(void *arg)
315 unsigned long cache = (unsigned long)arg;
318 * Flush all to work around Errata in early athlons regarding
319 * large page flushing.
321 __flush_tlb_all();
323 if (cache && boot_cpu_data.x86 >= 4)
324 wbinvd();
327 static void cpa_flush_all(unsigned long cache)
329 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
331 on_each_cpu(__cpa_flush_all, (void *) cache, 1);
334 void __cpa_flush_tlb(void *data)
336 struct cpa_data *cpa = data;
337 unsigned int i;
339 for (i = 0; i < cpa->numpages; i++)
340 __flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
343 static void cpa_flush(struct cpa_data *data, int cache)
345 struct cpa_data *cpa = data;
346 unsigned int i;
348 BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
350 if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
351 cpa_flush_all(cache);
352 return;
355 if (cpa->numpages <= tlb_single_page_flush_ceiling)
356 on_each_cpu(__cpa_flush_tlb, cpa, 1);
357 else
358 flush_tlb_all();
360 if (!cache)
361 return;
363 mb();
364 for (i = 0; i < cpa->numpages; i++) {
365 unsigned long addr = __cpa_addr(cpa, i);
366 unsigned int level;
368 pte_t *pte = lookup_address(addr, &level);
371 * Only flush present addresses:
373 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
374 clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
376 mb();
379 static bool overlaps(unsigned long r1_start, unsigned long r1_end,
380 unsigned long r2_start, unsigned long r2_end)
382 return (r1_start <= r2_end && r1_end >= r2_start) ||
383 (r2_start <= r1_end && r2_end >= r1_start);
386 #ifdef CONFIG_PCI_BIOS
388 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
389 * based config access (CONFIG_PCI_GOBIOS) support.
391 #define BIOS_PFN PFN_DOWN(BIOS_BEGIN)
392 #define BIOS_PFN_END PFN_DOWN(BIOS_END - 1)
394 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
396 if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
397 return _PAGE_NX;
398 return 0;
400 #else
401 static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
403 return 0;
405 #endif
408 * The .rodata section needs to be read-only. Using the pfn catches all
409 * aliases. This also includes __ro_after_init, so do not enforce until
410 * kernel_set_to_readonly is true.
412 static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
414 unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
417 * Note: __end_rodata is at page aligned and not inclusive, so
418 * subtract 1 to get the last enforced PFN in the rodata area.
420 epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
422 if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
423 return _PAGE_RW;
424 return 0;
428 * Protect kernel text against becoming non executable by forbidding
429 * _PAGE_NX. This protects only the high kernel mapping (_text -> _etext)
430 * out of which the kernel actually executes. Do not protect the low
431 * mapping.
433 * This does not cover __inittext since that is gone after boot.
435 static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
437 unsigned long t_end = (unsigned long)_etext - 1;
438 unsigned long t_start = (unsigned long)_text;
440 if (overlaps(start, end, t_start, t_end))
441 return _PAGE_NX;
442 return 0;
445 #if defined(CONFIG_X86_64)
447 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
448 * kernel text mappings for the large page aligned text, rodata sections
449 * will be always read-only. For the kernel identity mappings covering the
450 * holes caused by this alignment can be anything that user asks.
452 * This will preserve the large page mappings for kernel text/data at no
453 * extra cost.
455 static pgprotval_t protect_kernel_text_ro(unsigned long start,
456 unsigned long end)
458 unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
459 unsigned long t_start = (unsigned long)_text;
460 unsigned int level;
462 if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
463 return 0;
465 * Don't enforce the !RW mapping for the kernel text mapping, if
466 * the current mapping is already using small page mapping. No
467 * need to work hard to preserve large page mappings in this case.
469 * This also fixes the Linux Xen paravirt guest boot failure caused
470 * by unexpected read-only mappings for kernel identity
471 * mappings. In this paravirt guest case, the kernel text mapping
472 * and the kernel identity mapping share the same page-table pages,
473 * so the protections for kernel text and identity mappings have to
474 * be the same.
476 if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
477 return _PAGE_RW;
478 return 0;
480 #else
481 static pgprotval_t protect_kernel_text_ro(unsigned long start,
482 unsigned long end)
484 return 0;
486 #endif
488 static inline bool conflicts(pgprot_t prot, pgprotval_t val)
490 return (pgprot_val(prot) & ~val) != pgprot_val(prot);
493 static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
494 unsigned long start, unsigned long end,
495 unsigned long pfn, const char *txt)
497 static const char *lvltxt[] = {
498 [CPA_CONFLICT] = "conflict",
499 [CPA_PROTECT] = "protect",
500 [CPA_DETECT] = "detect",
503 if (warnlvl > cpa_warn_level || !conflicts(prot, val))
504 return;
506 pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
507 lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
508 (unsigned long long)val);
512 * Certain areas of memory on x86 require very specific protection flags,
513 * for example the BIOS area or kernel text. Callers don't always get this
514 * right (again, ioremap() on BIOS memory is not uncommon) so this function
515 * checks and fixes these known static required protection bits.
517 static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
518 unsigned long pfn, unsigned long npg,
519 int warnlvl)
521 pgprotval_t forbidden, res;
522 unsigned long end;
525 * There is no point in checking RW/NX conflicts when the requested
526 * mapping is setting the page !PRESENT.
528 if (!(pgprot_val(prot) & _PAGE_PRESENT))
529 return prot;
531 /* Operate on the virtual address */
532 end = start + npg * PAGE_SIZE - 1;
534 res = protect_kernel_text(start, end);
535 check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
536 forbidden = res;
538 res = protect_kernel_text_ro(start, end);
539 check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
540 forbidden |= res;
542 /* Check the PFN directly */
543 res = protect_pci_bios(pfn, pfn + npg - 1);
544 check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
545 forbidden |= res;
547 res = protect_rodata(pfn, pfn + npg - 1);
548 check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
549 forbidden |= res;
551 return __pgprot(pgprot_val(prot) & ~forbidden);
555 * Lookup the page table entry for a virtual address in a specific pgd.
556 * Return a pointer to the entry and the level of the mapping.
558 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
559 unsigned int *level)
561 p4d_t *p4d;
562 pud_t *pud;
563 pmd_t *pmd;
565 *level = PG_LEVEL_NONE;
567 if (pgd_none(*pgd))
568 return NULL;
570 p4d = p4d_offset(pgd, address);
571 if (p4d_none(*p4d))
572 return NULL;
574 *level = PG_LEVEL_512G;
575 if (p4d_large(*p4d) || !p4d_present(*p4d))
576 return (pte_t *)p4d;
578 pud = pud_offset(p4d, address);
579 if (pud_none(*pud))
580 return NULL;
582 *level = PG_LEVEL_1G;
583 if (pud_large(*pud) || !pud_present(*pud))
584 return (pte_t *)pud;
586 pmd = pmd_offset(pud, address);
587 if (pmd_none(*pmd))
588 return NULL;
590 *level = PG_LEVEL_2M;
591 if (pmd_large(*pmd) || !pmd_present(*pmd))
592 return (pte_t *)pmd;
594 *level = PG_LEVEL_4K;
596 return pte_offset_kernel(pmd, address);
600 * Lookup the page table entry for a virtual address. Return a pointer
601 * to the entry and the level of the mapping.
603 * Note: We return pud and pmd either when the entry is marked large
604 * or when the present bit is not set. Otherwise we would return a
605 * pointer to a nonexisting mapping.
607 pte_t *lookup_address(unsigned long address, unsigned int *level)
609 return lookup_address_in_pgd(pgd_offset_k(address), address, level);
611 EXPORT_SYMBOL_GPL(lookup_address);
613 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
614 unsigned int *level)
616 if (cpa->pgd)
617 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
618 address, level);
620 return lookup_address(address, level);
624 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
625 * or NULL if not present.
627 pmd_t *lookup_pmd_address(unsigned long address)
629 pgd_t *pgd;
630 p4d_t *p4d;
631 pud_t *pud;
633 pgd = pgd_offset_k(address);
634 if (pgd_none(*pgd))
635 return NULL;
637 p4d = p4d_offset(pgd, address);
638 if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
639 return NULL;
641 pud = pud_offset(p4d, address);
642 if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
643 return NULL;
645 return pmd_offset(pud, address);
649 * This is necessary because __pa() does not work on some
650 * kinds of memory, like vmalloc() or the alloc_remap()
651 * areas on 32-bit NUMA systems. The percpu areas can
652 * end up in this kind of memory, for instance.
654 * This could be optimized, but it is only intended to be
655 * used at inititalization time, and keeping it
656 * unoptimized should increase the testing coverage for
657 * the more obscure platforms.
659 phys_addr_t slow_virt_to_phys(void *__virt_addr)
661 unsigned long virt_addr = (unsigned long)__virt_addr;
662 phys_addr_t phys_addr;
663 unsigned long offset;
664 enum pg_level level;
665 pte_t *pte;
667 pte = lookup_address(virt_addr, &level);
668 BUG_ON(!pte);
671 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
672 * before being left-shifted PAGE_SHIFT bits -- this trick is to
673 * make 32-PAE kernel work correctly.
675 switch (level) {
676 case PG_LEVEL_1G:
677 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
678 offset = virt_addr & ~PUD_PAGE_MASK;
679 break;
680 case PG_LEVEL_2M:
681 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
682 offset = virt_addr & ~PMD_PAGE_MASK;
683 break;
684 default:
685 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
686 offset = virt_addr & ~PAGE_MASK;
689 return (phys_addr_t)(phys_addr | offset);
691 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
694 * Set the new pmd in all the pgds we know about:
696 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
698 /* change init_mm */
699 set_pte_atomic(kpte, pte);
700 #ifdef CONFIG_X86_32
701 if (!SHARED_KERNEL_PMD) {
702 struct page *page;
704 list_for_each_entry(page, &pgd_list, lru) {
705 pgd_t *pgd;
706 p4d_t *p4d;
707 pud_t *pud;
708 pmd_t *pmd;
710 pgd = (pgd_t *)page_address(page) + pgd_index(address);
711 p4d = p4d_offset(pgd, address);
712 pud = pud_offset(p4d, address);
713 pmd = pmd_offset(pud, address);
714 set_pte_atomic((pte_t *)pmd, pte);
717 #endif
720 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
723 * _PAGE_GLOBAL means "global page" for present PTEs.
724 * But, it is also used to indicate _PAGE_PROTNONE
725 * for non-present PTEs.
727 * This ensures that a _PAGE_GLOBAL PTE going from
728 * present to non-present is not confused as
729 * _PAGE_PROTNONE.
731 if (!(pgprot_val(prot) & _PAGE_PRESENT))
732 pgprot_val(prot) &= ~_PAGE_GLOBAL;
734 return prot;
737 static int __should_split_large_page(pte_t *kpte, unsigned long address,
738 struct cpa_data *cpa)
740 unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
741 pgprot_t old_prot, new_prot, req_prot, chk_prot;
742 pte_t new_pte, *tmp;
743 enum pg_level level;
746 * Check for races, another CPU might have split this page
747 * up already:
749 tmp = _lookup_address_cpa(cpa, address, &level);
750 if (tmp != kpte)
751 return 1;
753 switch (level) {
754 case PG_LEVEL_2M:
755 old_prot = pmd_pgprot(*(pmd_t *)kpte);
756 old_pfn = pmd_pfn(*(pmd_t *)kpte);
757 cpa_inc_2m_checked();
758 break;
759 case PG_LEVEL_1G:
760 old_prot = pud_pgprot(*(pud_t *)kpte);
761 old_pfn = pud_pfn(*(pud_t *)kpte);
762 cpa_inc_1g_checked();
763 break;
764 default:
765 return -EINVAL;
768 psize = page_level_size(level);
769 pmask = page_level_mask(level);
772 * Calculate the number of pages, which fit into this large
773 * page starting at address:
775 lpaddr = (address + psize) & pmask;
776 numpages = (lpaddr - address) >> PAGE_SHIFT;
777 if (numpages < cpa->numpages)
778 cpa->numpages = numpages;
781 * We are safe now. Check whether the new pgprot is the same:
782 * Convert protection attributes to 4k-format, as cpa->mask* are set
783 * up accordingly.
786 /* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
787 req_prot = pgprot_large_2_4k(old_prot);
789 pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
790 pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
793 * req_prot is in format of 4k pages. It must be converted to large
794 * page format: the caching mode includes the PAT bit located at
795 * different bit positions in the two formats.
797 req_prot = pgprot_4k_2_large(req_prot);
798 req_prot = pgprot_clear_protnone_bits(req_prot);
799 if (pgprot_val(req_prot) & _PAGE_PRESENT)
800 pgprot_val(req_prot) |= _PAGE_PSE;
803 * old_pfn points to the large page base pfn. So we need to add the
804 * offset of the virtual address:
806 pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
807 cpa->pfn = pfn;
810 * Calculate the large page base address and the number of 4K pages
811 * in the large page
813 lpaddr = address & pmask;
814 numpages = psize >> PAGE_SHIFT;
817 * Sanity check that the existing mapping is correct versus the static
818 * protections. static_protections() guards against !PRESENT, so no
819 * extra conditional required here.
821 chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
822 CPA_CONFLICT);
824 if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
826 * Split the large page and tell the split code to
827 * enforce static protections.
829 cpa->force_static_prot = 1;
830 return 1;
834 * Optimization: If the requested pgprot is the same as the current
835 * pgprot, then the large page can be preserved and no updates are
836 * required independent of alignment and length of the requested
837 * range. The above already established that the current pgprot is
838 * correct, which in consequence makes the requested pgprot correct
839 * as well if it is the same. The static protection scan below will
840 * not come to a different conclusion.
842 if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
843 cpa_inc_lp_sameprot(level);
844 return 0;
848 * If the requested range does not cover the full page, split it up
850 if (address != lpaddr || cpa->numpages != numpages)
851 return 1;
854 * Check whether the requested pgprot is conflicting with a static
855 * protection requirement in the large page.
857 new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
858 CPA_DETECT);
861 * If there is a conflict, split the large page.
863 * There used to be a 4k wise evaluation trying really hard to
864 * preserve the large pages, but experimentation has shown, that this
865 * does not help at all. There might be corner cases which would
866 * preserve one large page occasionally, but it's really not worth the
867 * extra code and cycles for the common case.
869 if (pgprot_val(req_prot) != pgprot_val(new_prot))
870 return 1;
872 /* All checks passed. Update the large page mapping. */
873 new_pte = pfn_pte(old_pfn, new_prot);
874 __set_pmd_pte(kpte, address, new_pte);
875 cpa->flags |= CPA_FLUSHTLB;
876 cpa_inc_lp_preserved(level);
877 return 0;
880 static int should_split_large_page(pte_t *kpte, unsigned long address,
881 struct cpa_data *cpa)
883 int do_split;
885 if (cpa->force_split)
886 return 1;
888 spin_lock(&pgd_lock);
889 do_split = __should_split_large_page(kpte, address, cpa);
890 spin_unlock(&pgd_lock);
892 return do_split;
895 static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
896 pgprot_t ref_prot, unsigned long address,
897 unsigned long size)
899 unsigned int npg = PFN_DOWN(size);
900 pgprot_t prot;
903 * If should_split_large_page() discovered an inconsistent mapping,
904 * remove the invalid protection in the split mapping.
906 if (!cpa->force_static_prot)
907 goto set;
909 prot = static_protections(ref_prot, address, pfn, npg, CPA_PROTECT);
911 if (pgprot_val(prot) == pgprot_val(ref_prot))
912 goto set;
915 * If this is splitting a PMD, fix it up. PUD splits cannot be
916 * fixed trivially as that would require to rescan the newly
917 * installed PMD mappings after returning from split_large_page()
918 * so an eventual further split can allocate the necessary PTE
919 * pages. Warn for now and revisit it in case this actually
920 * happens.
922 if (size == PAGE_SIZE)
923 ref_prot = prot;
924 else
925 pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
926 set:
927 set_pte(pte, pfn_pte(pfn, ref_prot));
930 static int
931 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
932 struct page *base)
934 unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
935 pte_t *pbase = (pte_t *)page_address(base);
936 unsigned int i, level;
937 pgprot_t ref_prot;
938 pte_t *tmp;
940 spin_lock(&pgd_lock);
942 * Check for races, another CPU might have split this page
943 * up for us already:
945 tmp = _lookup_address_cpa(cpa, address, &level);
946 if (tmp != kpte) {
947 spin_unlock(&pgd_lock);
948 return 1;
951 paravirt_alloc_pte(&init_mm, page_to_pfn(base));
953 switch (level) {
954 case PG_LEVEL_2M:
955 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
957 * Clear PSE (aka _PAGE_PAT) and move
958 * PAT bit to correct position.
960 ref_prot = pgprot_large_2_4k(ref_prot);
961 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
962 lpaddr = address & PMD_MASK;
963 lpinc = PAGE_SIZE;
964 break;
966 case PG_LEVEL_1G:
967 ref_prot = pud_pgprot(*(pud_t *)kpte);
968 ref_pfn = pud_pfn(*(pud_t *)kpte);
969 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
970 lpaddr = address & PUD_MASK;
971 lpinc = PMD_SIZE;
973 * Clear the PSE flags if the PRESENT flag is not set
974 * otherwise pmd_present/pmd_huge will return true
975 * even on a non present pmd.
977 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
978 pgprot_val(ref_prot) &= ~_PAGE_PSE;
979 break;
981 default:
982 spin_unlock(&pgd_lock);
983 return 1;
986 ref_prot = pgprot_clear_protnone_bits(ref_prot);
989 * Get the target pfn from the original entry:
991 pfn = ref_pfn;
992 for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
993 split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
995 if (virt_addr_valid(address)) {
996 unsigned long pfn = PFN_DOWN(__pa(address));
998 if (pfn_range_is_mapped(pfn, pfn + 1))
999 split_page_count(level);
1003 * Install the new, split up pagetable.
1005 * We use the standard kernel pagetable protections for the new
1006 * pagetable protections, the actual ptes set above control the
1007 * primary protection behavior:
1009 __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1012 * Do a global flush tlb after splitting the large page
1013 * and before we do the actual change page attribute in the PTE.
1015 * Without this, we violate the TLB application note, that says:
1016 * "The TLBs may contain both ordinary and large-page
1017 * translations for a 4-KByte range of linear addresses. This
1018 * may occur if software modifies the paging structures so that
1019 * the page size used for the address range changes. If the two
1020 * translations differ with respect to page frame or attributes
1021 * (e.g., permissions), processor behavior is undefined and may
1022 * be implementation-specific."
1024 * We do this global tlb flush inside the cpa_lock, so that we
1025 * don't allow any other cpu, with stale tlb entries change the
1026 * page attribute in parallel, that also falls into the
1027 * just split large page entry.
1029 flush_tlb_all();
1030 spin_unlock(&pgd_lock);
1032 return 0;
1035 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1036 unsigned long address)
1038 struct page *base;
1040 if (!debug_pagealloc_enabled())
1041 spin_unlock(&cpa_lock);
1042 base = alloc_pages(GFP_KERNEL, 0);
1043 if (!debug_pagealloc_enabled())
1044 spin_lock(&cpa_lock);
1045 if (!base)
1046 return -ENOMEM;
1048 if (__split_large_page(cpa, kpte, address, base))
1049 __free_page(base);
1051 return 0;
1054 static bool try_to_free_pte_page(pte_t *pte)
1056 int i;
1058 for (i = 0; i < PTRS_PER_PTE; i++)
1059 if (!pte_none(pte[i]))
1060 return false;
1062 free_page((unsigned long)pte);
1063 return true;
1066 static bool try_to_free_pmd_page(pmd_t *pmd)
1068 int i;
1070 for (i = 0; i < PTRS_PER_PMD; i++)
1071 if (!pmd_none(pmd[i]))
1072 return false;
1074 free_page((unsigned long)pmd);
1075 return true;
1078 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1080 pte_t *pte = pte_offset_kernel(pmd, start);
1082 while (start < end) {
1083 set_pte(pte, __pte(0));
1085 start += PAGE_SIZE;
1086 pte++;
1089 if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1090 pmd_clear(pmd);
1091 return true;
1093 return false;
1096 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1097 unsigned long start, unsigned long end)
1099 if (unmap_pte_range(pmd, start, end))
1100 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1101 pud_clear(pud);
1104 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1106 pmd_t *pmd = pmd_offset(pud, start);
1109 * Not on a 2MB page boundary?
1111 if (start & (PMD_SIZE - 1)) {
1112 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1113 unsigned long pre_end = min_t(unsigned long, end, next_page);
1115 __unmap_pmd_range(pud, pmd, start, pre_end);
1117 start = pre_end;
1118 pmd++;
1122 * Try to unmap in 2M chunks.
1124 while (end - start >= PMD_SIZE) {
1125 if (pmd_large(*pmd))
1126 pmd_clear(pmd);
1127 else
1128 __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1130 start += PMD_SIZE;
1131 pmd++;
1135 * 4K leftovers?
1137 if (start < end)
1138 return __unmap_pmd_range(pud, pmd, start, end);
1141 * Try again to free the PMD page if haven't succeeded above.
1143 if (!pud_none(*pud))
1144 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
1145 pud_clear(pud);
1148 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1150 pud_t *pud = pud_offset(p4d, start);
1153 * Not on a GB page boundary?
1155 if (start & (PUD_SIZE - 1)) {
1156 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1157 unsigned long pre_end = min_t(unsigned long, end, next_page);
1159 unmap_pmd_range(pud, start, pre_end);
1161 start = pre_end;
1162 pud++;
1166 * Try to unmap in 1G chunks?
1168 while (end - start >= PUD_SIZE) {
1170 if (pud_large(*pud))
1171 pud_clear(pud);
1172 else
1173 unmap_pmd_range(pud, start, start + PUD_SIZE);
1175 start += PUD_SIZE;
1176 pud++;
1180 * 2M leftovers?
1182 if (start < end)
1183 unmap_pmd_range(pud, start, end);
1186 * No need to try to free the PUD page because we'll free it in
1187 * populate_pgd's error path
1191 static int alloc_pte_page(pmd_t *pmd)
1193 pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1194 if (!pte)
1195 return -1;
1197 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1198 return 0;
1201 static int alloc_pmd_page(pud_t *pud)
1203 pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1204 if (!pmd)
1205 return -1;
1207 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1208 return 0;
1211 static void populate_pte(struct cpa_data *cpa,
1212 unsigned long start, unsigned long end,
1213 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1215 pte_t *pte;
1217 pte = pte_offset_kernel(pmd, start);
1219 pgprot = pgprot_clear_protnone_bits(pgprot);
1221 while (num_pages-- && start < end) {
1222 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1224 start += PAGE_SIZE;
1225 cpa->pfn++;
1226 pte++;
1230 static long populate_pmd(struct cpa_data *cpa,
1231 unsigned long start, unsigned long end,
1232 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1234 long cur_pages = 0;
1235 pmd_t *pmd;
1236 pgprot_t pmd_pgprot;
1239 * Not on a 2M boundary?
1241 if (start & (PMD_SIZE - 1)) {
1242 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1243 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1245 pre_end = min_t(unsigned long, pre_end, next_page);
1246 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1247 cur_pages = min_t(unsigned int, num_pages, cur_pages);
1250 * Need a PTE page?
1252 pmd = pmd_offset(pud, start);
1253 if (pmd_none(*pmd))
1254 if (alloc_pte_page(pmd))
1255 return -1;
1257 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1259 start = pre_end;
1263 * We mapped them all?
1265 if (num_pages == cur_pages)
1266 return cur_pages;
1268 pmd_pgprot = pgprot_4k_2_large(pgprot);
1270 while (end - start >= PMD_SIZE) {
1273 * We cannot use a 1G page so allocate a PMD page if needed.
1275 if (pud_none(*pud))
1276 if (alloc_pmd_page(pud))
1277 return -1;
1279 pmd = pmd_offset(pud, start);
1281 set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1282 canon_pgprot(pmd_pgprot))));
1284 start += PMD_SIZE;
1285 cpa->pfn += PMD_SIZE >> PAGE_SHIFT;
1286 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1290 * Map trailing 4K pages.
1292 if (start < end) {
1293 pmd = pmd_offset(pud, start);
1294 if (pmd_none(*pmd))
1295 if (alloc_pte_page(pmd))
1296 return -1;
1298 populate_pte(cpa, start, end, num_pages - cur_pages,
1299 pmd, pgprot);
1301 return num_pages;
1304 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1305 pgprot_t pgprot)
1307 pud_t *pud;
1308 unsigned long end;
1309 long cur_pages = 0;
1310 pgprot_t pud_pgprot;
1312 end = start + (cpa->numpages << PAGE_SHIFT);
1315 * Not on a Gb page boundary? => map everything up to it with
1316 * smaller pages.
1318 if (start & (PUD_SIZE - 1)) {
1319 unsigned long pre_end;
1320 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1322 pre_end = min_t(unsigned long, end, next_page);
1323 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1324 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1326 pud = pud_offset(p4d, start);
1329 * Need a PMD page?
1331 if (pud_none(*pud))
1332 if (alloc_pmd_page(pud))
1333 return -1;
1335 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1336 pud, pgprot);
1337 if (cur_pages < 0)
1338 return cur_pages;
1340 start = pre_end;
1343 /* We mapped them all? */
1344 if (cpa->numpages == cur_pages)
1345 return cur_pages;
1347 pud = pud_offset(p4d, start);
1348 pud_pgprot = pgprot_4k_2_large(pgprot);
1351 * Map everything starting from the Gb boundary, possibly with 1G pages
1353 while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1354 set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1355 canon_pgprot(pud_pgprot))));
1357 start += PUD_SIZE;
1358 cpa->pfn += PUD_SIZE >> PAGE_SHIFT;
1359 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1360 pud++;
1363 /* Map trailing leftover */
1364 if (start < end) {
1365 long tmp;
1367 pud = pud_offset(p4d, start);
1368 if (pud_none(*pud))
1369 if (alloc_pmd_page(pud))
1370 return -1;
1372 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1373 pud, pgprot);
1374 if (tmp < 0)
1375 return cur_pages;
1377 cur_pages += tmp;
1379 return cur_pages;
1383 * Restrictions for kernel page table do not necessarily apply when mapping in
1384 * an alternate PGD.
1386 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1388 pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1389 pud_t *pud = NULL; /* shut up gcc */
1390 p4d_t *p4d;
1391 pgd_t *pgd_entry;
1392 long ret;
1394 pgd_entry = cpa->pgd + pgd_index(addr);
1396 if (pgd_none(*pgd_entry)) {
1397 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1398 if (!p4d)
1399 return -1;
1401 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1405 * Allocate a PUD page and hand it down for mapping.
1407 p4d = p4d_offset(pgd_entry, addr);
1408 if (p4d_none(*p4d)) {
1409 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1410 if (!pud)
1411 return -1;
1413 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1416 pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1417 pgprot_val(pgprot) |= pgprot_val(cpa->mask_set);
1419 ret = populate_pud(cpa, addr, p4d, pgprot);
1420 if (ret < 0) {
1422 * Leave the PUD page in place in case some other CPU or thread
1423 * already found it, but remove any useless entries we just
1424 * added to it.
1426 unmap_pud_range(p4d, addr,
1427 addr + (cpa->numpages << PAGE_SHIFT));
1428 return ret;
1431 cpa->numpages = ret;
1432 return 0;
1435 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1436 int primary)
1438 if (cpa->pgd) {
1440 * Right now, we only execute this code path when mapping
1441 * the EFI virtual memory map regions, no other users
1442 * provide a ->pgd value. This may change in the future.
1444 return populate_pgd(cpa, vaddr);
1448 * Ignore all non primary paths.
1450 if (!primary) {
1451 cpa->numpages = 1;
1452 return 0;
1456 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1457 * to have holes.
1458 * Also set numpages to '1' indicating that we processed cpa req for
1459 * one virtual address page and its pfn. TBD: numpages can be set based
1460 * on the initial value and the level returned by lookup_address().
1462 if (within(vaddr, PAGE_OFFSET,
1463 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1464 cpa->numpages = 1;
1465 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1466 return 0;
1468 } else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1469 /* Faults in the highmap are OK, so do not warn: */
1470 return -EFAULT;
1471 } else {
1472 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1473 "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1474 *cpa->vaddr);
1476 return -EFAULT;
1480 static int __change_page_attr(struct cpa_data *cpa, int primary)
1482 unsigned long address;
1483 int do_split, err;
1484 unsigned int level;
1485 pte_t *kpte, old_pte;
1487 address = __cpa_addr(cpa, cpa->curpage);
1488 repeat:
1489 kpte = _lookup_address_cpa(cpa, address, &level);
1490 if (!kpte)
1491 return __cpa_process_fault(cpa, address, primary);
1493 old_pte = *kpte;
1494 if (pte_none(old_pte))
1495 return __cpa_process_fault(cpa, address, primary);
1497 if (level == PG_LEVEL_4K) {
1498 pte_t new_pte;
1499 pgprot_t new_prot = pte_pgprot(old_pte);
1500 unsigned long pfn = pte_pfn(old_pte);
1502 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1503 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1505 cpa_inc_4k_install();
1506 new_prot = static_protections(new_prot, address, pfn, 1,
1507 CPA_PROTECT);
1509 new_prot = pgprot_clear_protnone_bits(new_prot);
1512 * We need to keep the pfn from the existing PTE,
1513 * after all we're only going to change it's attributes
1514 * not the memory it points to
1516 new_pte = pfn_pte(pfn, new_prot);
1517 cpa->pfn = pfn;
1519 * Do we really change anything ?
1521 if (pte_val(old_pte) != pte_val(new_pte)) {
1522 set_pte_atomic(kpte, new_pte);
1523 cpa->flags |= CPA_FLUSHTLB;
1525 cpa->numpages = 1;
1526 return 0;
1530 * Check, whether we can keep the large page intact
1531 * and just change the pte:
1533 do_split = should_split_large_page(kpte, address, cpa);
1535 * When the range fits into the existing large page,
1536 * return. cp->numpages and cpa->tlbflush have been updated in
1537 * try_large_page:
1539 if (do_split <= 0)
1540 return do_split;
1543 * We have to split the large page:
1545 err = split_large_page(cpa, kpte, address);
1546 if (!err)
1547 goto repeat;
1549 return err;
1552 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1554 static int cpa_process_alias(struct cpa_data *cpa)
1556 struct cpa_data alias_cpa;
1557 unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1558 unsigned long vaddr;
1559 int ret;
1561 if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1562 return 0;
1565 * No need to redo, when the primary call touched the direct
1566 * mapping already:
1568 vaddr = __cpa_addr(cpa, cpa->curpage);
1569 if (!(within(vaddr, PAGE_OFFSET,
1570 PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1572 alias_cpa = *cpa;
1573 alias_cpa.vaddr = &laddr;
1574 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1575 alias_cpa.curpage = 0;
1577 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1578 if (ret)
1579 return ret;
1582 #ifdef CONFIG_X86_64
1584 * If the primary call didn't touch the high mapping already
1585 * and the physical address is inside the kernel map, we need
1586 * to touch the high mapped kernel as well:
1588 if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1589 __cpa_pfn_in_highmap(cpa->pfn)) {
1590 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1591 __START_KERNEL_map - phys_base;
1592 alias_cpa = *cpa;
1593 alias_cpa.vaddr = &temp_cpa_vaddr;
1594 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1595 alias_cpa.curpage = 0;
1598 * The high mapping range is imprecise, so ignore the
1599 * return value.
1601 __change_page_attr_set_clr(&alias_cpa, 0);
1603 #endif
1605 return 0;
1608 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1610 unsigned long numpages = cpa->numpages;
1611 unsigned long rempages = numpages;
1612 int ret = 0;
1614 while (rempages) {
1616 * Store the remaining nr of pages for the large page
1617 * preservation check.
1619 cpa->numpages = rempages;
1620 /* for array changes, we can't use large page */
1621 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1622 cpa->numpages = 1;
1624 if (!debug_pagealloc_enabled())
1625 spin_lock(&cpa_lock);
1626 ret = __change_page_attr(cpa, checkalias);
1627 if (!debug_pagealloc_enabled())
1628 spin_unlock(&cpa_lock);
1629 if (ret)
1630 goto out;
1632 if (checkalias) {
1633 ret = cpa_process_alias(cpa);
1634 if (ret)
1635 goto out;
1639 * Adjust the number of pages with the result of the
1640 * CPA operation. Either a large page has been
1641 * preserved or a single page update happened.
1643 BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1644 rempages -= cpa->numpages;
1645 cpa->curpage += cpa->numpages;
1648 out:
1649 /* Restore the original numpages */
1650 cpa->numpages = numpages;
1651 return ret;
1654 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1655 pgprot_t mask_set, pgprot_t mask_clr,
1656 int force_split, int in_flag,
1657 struct page **pages)
1659 struct cpa_data cpa;
1660 int ret, cache, checkalias;
1662 memset(&cpa, 0, sizeof(cpa));
1665 * Check, if we are requested to set a not supported
1666 * feature. Clearing non-supported features is OK.
1668 mask_set = canon_pgprot(mask_set);
1670 if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1671 return 0;
1673 /* Ensure we are PAGE_SIZE aligned */
1674 if (in_flag & CPA_ARRAY) {
1675 int i;
1676 for (i = 0; i < numpages; i++) {
1677 if (addr[i] & ~PAGE_MASK) {
1678 addr[i] &= PAGE_MASK;
1679 WARN_ON_ONCE(1);
1682 } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1684 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1685 * No need to check in that case
1687 if (*addr & ~PAGE_MASK) {
1688 *addr &= PAGE_MASK;
1690 * People should not be passing in unaligned addresses:
1692 WARN_ON_ONCE(1);
1696 /* Must avoid aliasing mappings in the highmem code */
1697 kmap_flush_unused();
1699 vm_unmap_aliases();
1701 cpa.vaddr = addr;
1702 cpa.pages = pages;
1703 cpa.numpages = numpages;
1704 cpa.mask_set = mask_set;
1705 cpa.mask_clr = mask_clr;
1706 cpa.flags = 0;
1707 cpa.curpage = 0;
1708 cpa.force_split = force_split;
1710 if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1711 cpa.flags |= in_flag;
1713 /* No alias checking for _NX bit modifications */
1714 checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1715 /* Has caller explicitly disabled alias checking? */
1716 if (in_flag & CPA_NO_CHECK_ALIAS)
1717 checkalias = 0;
1719 ret = __change_page_attr_set_clr(&cpa, checkalias);
1722 * Check whether we really changed something:
1724 if (!(cpa.flags & CPA_FLUSHTLB))
1725 goto out;
1728 * No need to flush, when we did not set any of the caching
1729 * attributes:
1731 cache = !!pgprot2cachemode(mask_set);
1734 * On error; flush everything to be sure.
1736 if (ret) {
1737 cpa_flush_all(cache);
1738 goto out;
1741 cpa_flush(&cpa, cache);
1742 out:
1743 return ret;
1746 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1747 pgprot_t mask, int array)
1749 return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1750 (array ? CPA_ARRAY : 0), NULL);
1753 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1754 pgprot_t mask, int array)
1756 return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1757 (array ? CPA_ARRAY : 0), NULL);
1760 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1761 pgprot_t mask)
1763 return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1764 CPA_PAGES_ARRAY, pages);
1767 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1768 pgprot_t mask)
1770 return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1771 CPA_PAGES_ARRAY, pages);
1774 int _set_memory_uc(unsigned long addr, int numpages)
1777 * for now UC MINUS. see comments in ioremap_nocache()
1778 * If you really need strong UC use ioremap_uc(), but note
1779 * that you cannot override IO areas with set_memory_*() as
1780 * these helpers cannot work with IO memory.
1782 return change_page_attr_set(&addr, numpages,
1783 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1787 int set_memory_uc(unsigned long addr, int numpages)
1789 int ret;
1792 * for now UC MINUS. see comments in ioremap_nocache()
1794 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1795 _PAGE_CACHE_MODE_UC_MINUS, NULL);
1796 if (ret)
1797 goto out_err;
1799 ret = _set_memory_uc(addr, numpages);
1800 if (ret)
1801 goto out_free;
1803 return 0;
1805 out_free:
1806 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1807 out_err:
1808 return ret;
1810 EXPORT_SYMBOL(set_memory_uc);
1812 static int _set_memory_array(unsigned long *addr, int numpages,
1813 enum page_cache_mode new_type)
1815 enum page_cache_mode set_type;
1816 int i, j;
1817 int ret;
1819 for (i = 0; i < numpages; i++) {
1820 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1821 new_type, NULL);
1822 if (ret)
1823 goto out_free;
1826 /* If WC, set to UC- first and then WC */
1827 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1828 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1830 ret = change_page_attr_set(addr, numpages,
1831 cachemode2pgprot(set_type), 1);
1833 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1834 ret = change_page_attr_set_clr(addr, numpages,
1835 cachemode2pgprot(
1836 _PAGE_CACHE_MODE_WC),
1837 __pgprot(_PAGE_CACHE_MASK),
1838 0, CPA_ARRAY, NULL);
1839 if (ret)
1840 goto out_free;
1842 return 0;
1844 out_free:
1845 for (j = 0; j < i; j++)
1846 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1848 return ret;
1851 int set_memory_array_uc(unsigned long *addr, int numpages)
1853 return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_UC_MINUS);
1855 EXPORT_SYMBOL(set_memory_array_uc);
1857 int set_memory_array_wc(unsigned long *addr, int numpages)
1859 return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WC);
1861 EXPORT_SYMBOL(set_memory_array_wc);
1863 int set_memory_array_wt(unsigned long *addr, int numpages)
1865 return _set_memory_array(addr, numpages, _PAGE_CACHE_MODE_WT);
1867 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1869 int _set_memory_wc(unsigned long addr, int numpages)
1871 int ret;
1873 ret = change_page_attr_set(&addr, numpages,
1874 cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1876 if (!ret) {
1877 ret = change_page_attr_set_clr(&addr, numpages,
1878 cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1879 __pgprot(_PAGE_CACHE_MASK),
1880 0, 0, NULL);
1882 return ret;
1885 int set_memory_wc(unsigned long addr, int numpages)
1887 int ret;
1889 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1890 _PAGE_CACHE_MODE_WC, NULL);
1891 if (ret)
1892 return ret;
1894 ret = _set_memory_wc(addr, numpages);
1895 if (ret)
1896 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1898 return ret;
1900 EXPORT_SYMBOL(set_memory_wc);
1902 int _set_memory_wt(unsigned long addr, int numpages)
1904 return change_page_attr_set(&addr, numpages,
1905 cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1908 int set_memory_wt(unsigned long addr, int numpages)
1910 int ret;
1912 ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1913 _PAGE_CACHE_MODE_WT, NULL);
1914 if (ret)
1915 return ret;
1917 ret = _set_memory_wt(addr, numpages);
1918 if (ret)
1919 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1921 return ret;
1923 EXPORT_SYMBOL_GPL(set_memory_wt);
1925 int _set_memory_wb(unsigned long addr, int numpages)
1927 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1928 return change_page_attr_clear(&addr, numpages,
1929 __pgprot(_PAGE_CACHE_MASK), 0);
1932 int set_memory_wb(unsigned long addr, int numpages)
1934 int ret;
1936 ret = _set_memory_wb(addr, numpages);
1937 if (ret)
1938 return ret;
1940 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1941 return 0;
1943 EXPORT_SYMBOL(set_memory_wb);
1945 int set_memory_array_wb(unsigned long *addr, int numpages)
1947 int i;
1948 int ret;
1950 /* WB cache mode is hard wired to all cache attribute bits being 0 */
1951 ret = change_page_attr_clear(addr, numpages,
1952 __pgprot(_PAGE_CACHE_MASK), 1);
1953 if (ret)
1954 return ret;
1956 for (i = 0; i < numpages; i++)
1957 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1959 return 0;
1961 EXPORT_SYMBOL(set_memory_array_wb);
1963 int set_memory_x(unsigned long addr, int numpages)
1965 if (!(__supported_pte_mask & _PAGE_NX))
1966 return 0;
1968 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1970 EXPORT_SYMBOL(set_memory_x);
1972 int set_memory_nx(unsigned long addr, int numpages)
1974 if (!(__supported_pte_mask & _PAGE_NX))
1975 return 0;
1977 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1979 EXPORT_SYMBOL(set_memory_nx);
1981 int set_memory_ro(unsigned long addr, int numpages)
1983 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1986 int set_memory_rw(unsigned long addr, int numpages)
1988 return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1991 int set_memory_np(unsigned long addr, int numpages)
1993 return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1996 int set_memory_np_noalias(unsigned long addr, int numpages)
1998 int cpa_flags = CPA_NO_CHECK_ALIAS;
2000 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2001 __pgprot(_PAGE_PRESENT), 0,
2002 cpa_flags, NULL);
2005 int set_memory_4k(unsigned long addr, int numpages)
2007 return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2008 __pgprot(0), 1, 0, NULL);
2011 int set_memory_nonglobal(unsigned long addr, int numpages)
2013 return change_page_attr_clear(&addr, numpages,
2014 __pgprot(_PAGE_GLOBAL), 0);
2017 int set_memory_global(unsigned long addr, int numpages)
2019 return change_page_attr_set(&addr, numpages,
2020 __pgprot(_PAGE_GLOBAL), 0);
2023 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2025 struct cpa_data cpa;
2026 int ret;
2028 /* Nothing to do if memory encryption is not active */
2029 if (!mem_encrypt_active())
2030 return 0;
2032 /* Should not be working on unaligned addresses */
2033 if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2034 addr &= PAGE_MASK;
2036 memset(&cpa, 0, sizeof(cpa));
2037 cpa.vaddr = &addr;
2038 cpa.numpages = numpages;
2039 cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
2040 cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
2041 cpa.pgd = init_mm.pgd;
2043 /* Must avoid aliasing mappings in the highmem code */
2044 kmap_flush_unused();
2045 vm_unmap_aliases();
2048 * Before changing the encryption attribute, we need to flush caches.
2050 cpa_flush(&cpa, 1);
2052 ret = __change_page_attr_set_clr(&cpa, 1);
2055 * After changing the encryption attribute, we need to flush TLBs again
2056 * in case any speculative TLB caching occurred (but no need to flush
2057 * caches again). We could just use cpa_flush_all(), but in case TLB
2058 * flushing gets optimized in the cpa_flush() path use the same logic
2059 * as above.
2061 cpa_flush(&cpa, 0);
2063 return ret;
2066 int set_memory_encrypted(unsigned long addr, int numpages)
2068 return __set_memory_enc_dec(addr, numpages, true);
2070 EXPORT_SYMBOL_GPL(set_memory_encrypted);
2072 int set_memory_decrypted(unsigned long addr, int numpages)
2074 return __set_memory_enc_dec(addr, numpages, false);
2076 EXPORT_SYMBOL_GPL(set_memory_decrypted);
2078 int set_pages_uc(struct page *page, int numpages)
2080 unsigned long addr = (unsigned long)page_address(page);
2082 return set_memory_uc(addr, numpages);
2084 EXPORT_SYMBOL(set_pages_uc);
2086 static int _set_pages_array(struct page **pages, int numpages,
2087 enum page_cache_mode new_type)
2089 unsigned long start;
2090 unsigned long end;
2091 enum page_cache_mode set_type;
2092 int i;
2093 int free_idx;
2094 int ret;
2096 for (i = 0; i < numpages; i++) {
2097 if (PageHighMem(pages[i]))
2098 continue;
2099 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2100 end = start + PAGE_SIZE;
2101 if (reserve_memtype(start, end, new_type, NULL))
2102 goto err_out;
2105 /* If WC, set to UC- first and then WC */
2106 set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2107 _PAGE_CACHE_MODE_UC_MINUS : new_type;
2109 ret = cpa_set_pages_array(pages, numpages,
2110 cachemode2pgprot(set_type));
2111 if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2112 ret = change_page_attr_set_clr(NULL, numpages,
2113 cachemode2pgprot(
2114 _PAGE_CACHE_MODE_WC),
2115 __pgprot(_PAGE_CACHE_MASK),
2116 0, CPA_PAGES_ARRAY, pages);
2117 if (ret)
2118 goto err_out;
2119 return 0; /* Success */
2120 err_out:
2121 free_idx = i;
2122 for (i = 0; i < free_idx; i++) {
2123 if (PageHighMem(pages[i]))
2124 continue;
2125 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2126 end = start + PAGE_SIZE;
2127 free_memtype(start, end);
2129 return -EINVAL;
2132 int set_pages_array_uc(struct page **pages, int numpages)
2134 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2136 EXPORT_SYMBOL(set_pages_array_uc);
2138 int set_pages_array_wc(struct page **pages, int numpages)
2140 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2142 EXPORT_SYMBOL(set_pages_array_wc);
2144 int set_pages_array_wt(struct page **pages, int numpages)
2146 return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
2148 EXPORT_SYMBOL_GPL(set_pages_array_wt);
2150 int set_pages_wb(struct page *page, int numpages)
2152 unsigned long addr = (unsigned long)page_address(page);
2154 return set_memory_wb(addr, numpages);
2156 EXPORT_SYMBOL(set_pages_wb);
2158 int set_pages_array_wb(struct page **pages, int numpages)
2160 int retval;
2161 unsigned long start;
2162 unsigned long end;
2163 int i;
2165 /* WB cache mode is hard wired to all cache attribute bits being 0 */
2166 retval = cpa_clear_pages_array(pages, numpages,
2167 __pgprot(_PAGE_CACHE_MASK));
2168 if (retval)
2169 return retval;
2171 for (i = 0; i < numpages; i++) {
2172 if (PageHighMem(pages[i]))
2173 continue;
2174 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2175 end = start + PAGE_SIZE;
2176 free_memtype(start, end);
2179 return 0;
2181 EXPORT_SYMBOL(set_pages_array_wb);
2183 int set_pages_x(struct page *page, int numpages)
2185 unsigned long addr = (unsigned long)page_address(page);
2187 return set_memory_x(addr, numpages);
2189 EXPORT_SYMBOL(set_pages_x);
2191 int set_pages_nx(struct page *page, int numpages)
2193 unsigned long addr = (unsigned long)page_address(page);
2195 return set_memory_nx(addr, numpages);
2197 EXPORT_SYMBOL(set_pages_nx);
2199 int set_pages_ro(struct page *page, int numpages)
2201 unsigned long addr = (unsigned long)page_address(page);
2203 return set_memory_ro(addr, numpages);
2206 int set_pages_rw(struct page *page, int numpages)
2208 unsigned long addr = (unsigned long)page_address(page);
2210 return set_memory_rw(addr, numpages);
2213 static int __set_pages_p(struct page *page, int numpages)
2215 unsigned long tempaddr = (unsigned long) page_address(page);
2216 struct cpa_data cpa = { .vaddr = &tempaddr,
2217 .pgd = NULL,
2218 .numpages = numpages,
2219 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2220 .mask_clr = __pgprot(0),
2221 .flags = 0};
2224 * No alias checking needed for setting present flag. otherwise,
2225 * we may need to break large pages for 64-bit kernel text
2226 * mappings (this adds to complexity if we want to do this from
2227 * atomic context especially). Let's keep it simple!
2229 return __change_page_attr_set_clr(&cpa, 0);
2232 static int __set_pages_np(struct page *page, int numpages)
2234 unsigned long tempaddr = (unsigned long) page_address(page);
2235 struct cpa_data cpa = { .vaddr = &tempaddr,
2236 .pgd = NULL,
2237 .numpages = numpages,
2238 .mask_set = __pgprot(0),
2239 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2240 .flags = 0};
2243 * No alias checking needed for setting not present flag. otherwise,
2244 * we may need to break large pages for 64-bit kernel text
2245 * mappings (this adds to complexity if we want to do this from
2246 * atomic context especially). Let's keep it simple!
2248 return __change_page_attr_set_clr(&cpa, 0);
2251 int set_direct_map_invalid_noflush(struct page *page)
2253 return __set_pages_np(page, 1);
2256 int set_direct_map_default_noflush(struct page *page)
2258 return __set_pages_p(page, 1);
2261 void __kernel_map_pages(struct page *page, int numpages, int enable)
2263 if (PageHighMem(page))
2264 return;
2265 if (!enable) {
2266 debug_check_no_locks_freed(page_address(page),
2267 numpages * PAGE_SIZE);
2271 * The return value is ignored as the calls cannot fail.
2272 * Large pages for identity mappings are not used at boot time
2273 * and hence no memory allocations during large page split.
2275 if (enable)
2276 __set_pages_p(page, numpages);
2277 else
2278 __set_pages_np(page, numpages);
2281 * We should perform an IPI and flush all tlbs,
2282 * but that can deadlock->flush only current cpu.
2283 * Preemption needs to be disabled around __flush_tlb_all() due to
2284 * CR3 reload in __native_flush_tlb().
2286 preempt_disable();
2287 __flush_tlb_all();
2288 preempt_enable();
2290 arch_flush_lazy_mmu_mode();
2293 #ifdef CONFIG_HIBERNATION
2294 bool kernel_page_present(struct page *page)
2296 unsigned int level;
2297 pte_t *pte;
2299 if (PageHighMem(page))
2300 return false;
2302 pte = lookup_address((unsigned long)page_address(page), &level);
2303 return (pte_val(*pte) & _PAGE_PRESENT);
2305 #endif /* CONFIG_HIBERNATION */
2307 int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2308 unsigned numpages, unsigned long page_flags)
2310 int retval = -EINVAL;
2312 struct cpa_data cpa = {
2313 .vaddr = &address,
2314 .pfn = pfn,
2315 .pgd = pgd,
2316 .numpages = numpages,
2317 .mask_set = __pgprot(0),
2318 .mask_clr = __pgprot(0),
2319 .flags = 0,
2322 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2324 if (!(__supported_pte_mask & _PAGE_NX))
2325 goto out;
2327 if (!(page_flags & _PAGE_NX))
2328 cpa.mask_clr = __pgprot(_PAGE_NX);
2330 if (!(page_flags & _PAGE_RW))
2331 cpa.mask_clr = __pgprot(_PAGE_RW);
2333 if (!(page_flags & _PAGE_ENC))
2334 cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2336 cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2338 retval = __change_page_attr_set_clr(&cpa, 0);
2339 __flush_tlb_all();
2341 out:
2342 return retval;
2346 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2347 * function shouldn't be used in an SMP environment. Presently, it's used only
2348 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2350 int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2351 unsigned long numpages)
2353 int retval;
2356 * The typical sequence for unmapping is to find a pte through
2357 * lookup_address_in_pgd() (ideally, it should never return NULL because
2358 * the address is already mapped) and change it's protections. As pfn is
2359 * the *target* of a mapping, it's not useful while unmapping.
2361 struct cpa_data cpa = {
2362 .vaddr = &address,
2363 .pfn = 0,
2364 .pgd = pgd,
2365 .numpages = numpages,
2366 .mask_set = __pgprot(0),
2367 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2368 .flags = 0,
2371 WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2373 retval = __change_page_attr_set_clr(&cpa, 0);
2374 __flush_tlb_all();
2376 return retval;
2380 * The testcases use internal knowledge of the implementation that shouldn't
2381 * be exposed to the rest of the kernel. Include these directly here.
2383 #ifdef CONFIG_CPA_DEBUG
2384 #include "pageattr-test.c"
2385 #endif