staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / arch / x86 / platform / efi / efi_64.c
blob08ce8177c3af154ae76ff7ed424d585ecde51984
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * x86_64 specific EFI support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
6 * Copyright (C) 2005-2008 Intel Co.
7 * Fenghua Yu <fenghua.yu@intel.com>
8 * Bibo Mao <bibo.mao@intel.com>
9 * Chandramouli Narayanan <mouli@linux.intel.com>
10 * Huang Ying <ying.huang@intel.com>
12 * Code to convert EFI to E820 map has been implemented in elilo bootloader
13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14 * is setup appropriately for EFI runtime code.
15 * - mouli 06/14/2007.
19 #define pr_fmt(fmt) "efi: " fmt
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <asm/proto.h>
45 #include <asm/efi.h>
46 #include <asm/cacheflush.h>
47 #include <asm/fixmap.h>
48 #include <asm/realmode.h>
49 #include <asm/time.h>
50 #include <asm/pgalloc.h>
53 * We allocate runtime services regions top-down, starting from -4G, i.e.
54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
56 static u64 efi_va = EFI_VA_START;
58 struct efi_scratch efi_scratch;
60 static void __init early_code_mapping_set_exec(int executable)
62 efi_memory_desc_t *md;
64 if (!(__supported_pte_mask & _PAGE_NX))
65 return;
67 /* Make EFI service code area executable */
68 for_each_efi_memory_desc(md) {
69 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
70 md->type == EFI_BOOT_SERVICES_CODE)
71 efi_set_executable(md, executable);
75 pgd_t * __init efi_call_phys_prolog(void)
77 unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
78 pgd_t *save_pgd, *pgd_k, *pgd_efi;
79 p4d_t *p4d, *p4d_k, *p4d_efi;
80 pud_t *pud;
82 int pgd;
83 int n_pgds, i, j;
85 if (!efi_enabled(EFI_OLD_MEMMAP)) {
86 efi_switch_mm(&efi_mm);
87 return efi_mm.pgd;
90 early_code_mapping_set_exec(1);
92 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
93 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
94 if (!save_pgd)
95 return NULL;
98 * Build 1:1 identity mapping for efi=old_map usage. Note that
99 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
100 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
101 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
102 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
103 * This means here we can only reuse the PMD tables of the direct mapping.
105 for (pgd = 0; pgd < n_pgds; pgd++) {
106 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
107 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
108 pgd_efi = pgd_offset_k(addr_pgd);
109 save_pgd[pgd] = *pgd_efi;
111 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
112 if (!p4d) {
113 pr_err("Failed to allocate p4d table!\n");
114 goto out;
117 for (i = 0; i < PTRS_PER_P4D; i++) {
118 addr_p4d = addr_pgd + i * P4D_SIZE;
119 p4d_efi = p4d + p4d_index(addr_p4d);
121 pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
122 if (!pud) {
123 pr_err("Failed to allocate pud table!\n");
124 goto out;
127 for (j = 0; j < PTRS_PER_PUD; j++) {
128 addr_pud = addr_p4d + j * PUD_SIZE;
130 if (addr_pud > (max_pfn << PAGE_SHIFT))
131 break;
133 vaddr = (unsigned long)__va(addr_pud);
135 pgd_k = pgd_offset_k(vaddr);
136 p4d_k = p4d_offset(pgd_k, vaddr);
137 pud[j] = *pud_offset(p4d_k, vaddr);
140 pgd_offset_k(pgd * PGDIR_SIZE)->pgd &= ~_PAGE_NX;
143 __flush_tlb_all();
144 return save_pgd;
145 out:
146 efi_call_phys_epilog(save_pgd);
147 return NULL;
150 void __init efi_call_phys_epilog(pgd_t *save_pgd)
153 * After the lock is released, the original page table is restored.
155 int pgd_idx, i;
156 int nr_pgds;
157 pgd_t *pgd;
158 p4d_t *p4d;
159 pud_t *pud;
161 if (!efi_enabled(EFI_OLD_MEMMAP)) {
162 efi_switch_mm(efi_scratch.prev_mm);
163 return;
166 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
168 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
169 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
170 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
172 if (!pgd_present(*pgd))
173 continue;
175 for (i = 0; i < PTRS_PER_P4D; i++) {
176 p4d = p4d_offset(pgd,
177 pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
179 if (!p4d_present(*p4d))
180 continue;
182 pud = (pud_t *)p4d_page_vaddr(*p4d);
183 pud_free(&init_mm, pud);
186 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
187 p4d_free(&init_mm, p4d);
190 kfree(save_pgd);
192 __flush_tlb_all();
193 early_code_mapping_set_exec(0);
196 EXPORT_SYMBOL_GPL(efi_mm);
199 * We need our own copy of the higher levels of the page tables
200 * because we want to avoid inserting EFI region mappings (EFI_VA_END
201 * to EFI_VA_START) into the standard kernel page tables. Everything
202 * else can be shared, see efi_sync_low_kernel_mappings().
204 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
205 * allocation.
207 int __init efi_alloc_page_tables(void)
209 pgd_t *pgd, *efi_pgd;
210 p4d_t *p4d;
211 pud_t *pud;
212 gfp_t gfp_mask;
214 if (efi_enabled(EFI_OLD_MEMMAP))
215 return 0;
217 gfp_mask = GFP_KERNEL | __GFP_ZERO;
218 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
219 if (!efi_pgd)
220 return -ENOMEM;
222 pgd = efi_pgd + pgd_index(EFI_VA_END);
223 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
224 if (!p4d) {
225 free_page((unsigned long)efi_pgd);
226 return -ENOMEM;
229 pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
230 if (!pud) {
231 if (pgtable_l5_enabled())
232 free_page((unsigned long) pgd_page_vaddr(*pgd));
233 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
234 return -ENOMEM;
237 efi_mm.pgd = efi_pgd;
238 mm_init_cpumask(&efi_mm);
239 init_new_context(NULL, &efi_mm);
241 return 0;
245 * Add low kernel mappings for passing arguments to EFI functions.
247 void efi_sync_low_kernel_mappings(void)
249 unsigned num_entries;
250 pgd_t *pgd_k, *pgd_efi;
251 p4d_t *p4d_k, *p4d_efi;
252 pud_t *pud_k, *pud_efi;
253 pgd_t *efi_pgd = efi_mm.pgd;
255 if (efi_enabled(EFI_OLD_MEMMAP))
256 return;
259 * We can share all PGD entries apart from the one entry that
260 * covers the EFI runtime mapping space.
262 * Make sure the EFI runtime region mappings are guaranteed to
263 * only span a single PGD entry and that the entry also maps
264 * other important kernel regions.
266 MAYBE_BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
267 MAYBE_BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
268 (EFI_VA_END & PGDIR_MASK));
270 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
271 pgd_k = pgd_offset_k(PAGE_OFFSET);
273 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
274 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
277 * As with PGDs, we share all P4D entries apart from the one entry
278 * that covers the EFI runtime mapping space.
280 BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
281 BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
283 pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
284 pgd_k = pgd_offset_k(EFI_VA_END);
285 p4d_efi = p4d_offset(pgd_efi, 0);
286 p4d_k = p4d_offset(pgd_k, 0);
288 num_entries = p4d_index(EFI_VA_END);
289 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
292 * We share all the PUD entries apart from those that map the
293 * EFI regions. Copy around them.
295 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
296 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
298 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
299 p4d_k = p4d_offset(pgd_k, EFI_VA_END);
300 pud_efi = pud_offset(p4d_efi, 0);
301 pud_k = pud_offset(p4d_k, 0);
303 num_entries = pud_index(EFI_VA_END);
304 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
306 pud_efi = pud_offset(p4d_efi, EFI_VA_START);
307 pud_k = pud_offset(p4d_k, EFI_VA_START);
309 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
310 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
314 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
316 static inline phys_addr_t
317 virt_to_phys_or_null_size(void *va, unsigned long size)
319 bool bad_size;
321 if (!va)
322 return 0;
324 if (virt_addr_valid(va))
325 return virt_to_phys(va);
328 * A fully aligned variable on the stack is guaranteed not to
329 * cross a page bounary. Try to catch strings on the stack by
330 * checking that 'size' is a power of two.
332 bad_size = size > PAGE_SIZE || !is_power_of_2(size);
334 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
336 return slow_virt_to_phys(va);
339 #define virt_to_phys_or_null(addr) \
340 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
342 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
344 unsigned long pfn, text, pf;
345 struct page *page;
346 unsigned npages;
347 pgd_t *pgd = efi_mm.pgd;
349 if (efi_enabled(EFI_OLD_MEMMAP))
350 return 0;
353 * It can happen that the physical address of new_memmap lands in memory
354 * which is not mapped in the EFI page table. Therefore we need to go
355 * and ident-map those pages containing the map before calling
356 * phys_efi_set_virtual_address_map().
358 pfn = pa_memmap >> PAGE_SHIFT;
359 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
360 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
361 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
362 return 1;
366 * Certain firmware versions are way too sentimential and still believe
367 * they are exclusive and unquestionable owners of the first physical page,
368 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
369 * (but then write-access it later during SetVirtualAddressMap()).
371 * Create a 1:1 mapping for this page, to avoid triple faults during early
372 * boot with such firmware. We are free to hand this page to the BIOS,
373 * as trim_bios_range() will reserve the first page and isolate it away
374 * from memory allocators anyway.
376 pf = _PAGE_RW;
377 if (sev_active())
378 pf |= _PAGE_ENC;
380 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
381 pr_err("Failed to create 1:1 mapping for the first page!\n");
382 return 1;
386 * When making calls to the firmware everything needs to be 1:1
387 * mapped and addressable with 32-bit pointers. Map the kernel
388 * text and allocate a new stack because we can't rely on the
389 * stack pointer being < 4GB.
391 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
392 return 0;
394 page = alloc_page(GFP_KERNEL|__GFP_DMA32);
395 if (!page)
396 panic("Unable to allocate EFI runtime stack < 4GB\n");
398 efi_scratch.phys_stack = virt_to_phys(page_address(page));
399 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
401 npages = (_etext - _text) >> PAGE_SHIFT;
402 text = __pa(_text);
403 pfn = text >> PAGE_SHIFT;
405 pf = _PAGE_RW | _PAGE_ENC;
406 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
407 pr_err("Failed to map kernel text 1:1\n");
408 return 1;
411 return 0;
414 static void __init __map_region(efi_memory_desc_t *md, u64 va)
416 unsigned long flags = _PAGE_RW;
417 unsigned long pfn;
418 pgd_t *pgd = efi_mm.pgd;
420 if (!(md->attribute & EFI_MEMORY_WB))
421 flags |= _PAGE_PCD;
423 if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
424 flags |= _PAGE_ENC;
426 pfn = md->phys_addr >> PAGE_SHIFT;
427 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
428 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
429 md->phys_addr, va);
432 void __init efi_map_region(efi_memory_desc_t *md)
434 unsigned long size = md->num_pages << PAGE_SHIFT;
435 u64 pa = md->phys_addr;
437 if (efi_enabled(EFI_OLD_MEMMAP))
438 return old_map_region(md);
441 * Make sure the 1:1 mappings are present as a catch-all for b0rked
442 * firmware which doesn't update all internal pointers after switching
443 * to virtual mode and would otherwise crap on us.
445 __map_region(md, md->phys_addr);
448 * Enforce the 1:1 mapping as the default virtual address when
449 * booting in EFI mixed mode, because even though we may be
450 * running a 64-bit kernel, the firmware may only be 32-bit.
452 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
453 md->virt_addr = md->phys_addr;
454 return;
457 efi_va -= size;
459 /* Is PA 2M-aligned? */
460 if (!(pa & (PMD_SIZE - 1))) {
461 efi_va &= PMD_MASK;
462 } else {
463 u64 pa_offset = pa & (PMD_SIZE - 1);
464 u64 prev_va = efi_va;
466 /* get us the same offset within this 2M page */
467 efi_va = (efi_va & PMD_MASK) + pa_offset;
469 if (efi_va > prev_va)
470 efi_va -= PMD_SIZE;
473 if (efi_va < EFI_VA_END) {
474 pr_warn(FW_WARN "VA address range overflow!\n");
475 return;
478 /* Do the VA map */
479 __map_region(md, efi_va);
480 md->virt_addr = efi_va;
484 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
485 * md->virt_addr is the original virtual address which had been mapped in kexec
486 * 1st kernel.
488 void __init efi_map_region_fixed(efi_memory_desc_t *md)
490 __map_region(md, md->phys_addr);
491 __map_region(md, md->virt_addr);
494 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
495 u32 type, u64 attribute)
497 unsigned long last_map_pfn;
499 if (type == EFI_MEMORY_MAPPED_IO)
500 return ioremap(phys_addr, size);
502 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
503 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
504 unsigned long top = last_map_pfn << PAGE_SHIFT;
505 efi_ioremap(top, size - (top - phys_addr), type, attribute);
508 if (!(attribute & EFI_MEMORY_WB))
509 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
511 return (void __iomem *)__va(phys_addr);
514 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
516 efi_setup = phys_addr + sizeof(struct setup_data);
519 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
521 unsigned long pfn;
522 pgd_t *pgd = efi_mm.pgd;
523 int err1, err2;
525 /* Update the 1:1 mapping */
526 pfn = md->phys_addr >> PAGE_SHIFT;
527 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
528 if (err1) {
529 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
530 md->phys_addr, md->virt_addr);
533 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
534 if (err2) {
535 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
536 md->phys_addr, md->virt_addr);
539 return err1 || err2;
542 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
544 unsigned long pf = 0;
546 if (md->attribute & EFI_MEMORY_XP)
547 pf |= _PAGE_NX;
549 if (!(md->attribute & EFI_MEMORY_RO))
550 pf |= _PAGE_RW;
552 if (sev_active())
553 pf |= _PAGE_ENC;
555 return efi_update_mappings(md, pf);
558 void __init efi_runtime_update_mappings(void)
560 efi_memory_desc_t *md;
562 if (efi_enabled(EFI_OLD_MEMMAP)) {
563 if (__supported_pte_mask & _PAGE_NX)
564 runtime_code_page_mkexec();
565 return;
569 * Use the EFI Memory Attribute Table for mapping permissions if it
570 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
572 if (efi_enabled(EFI_MEM_ATTR)) {
573 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
574 return;
578 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
579 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
580 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
581 * published by the firmware. Even if we find a buggy implementation of
582 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
583 * EFI_PROPERTIES_TABLE, because of the same reason.
586 if (!efi_enabled(EFI_NX_PE_DATA))
587 return;
589 for_each_efi_memory_desc(md) {
590 unsigned long pf = 0;
592 if (!(md->attribute & EFI_MEMORY_RUNTIME))
593 continue;
595 if (!(md->attribute & EFI_MEMORY_WB))
596 pf |= _PAGE_PCD;
598 if ((md->attribute & EFI_MEMORY_XP) ||
599 (md->type == EFI_RUNTIME_SERVICES_DATA))
600 pf |= _PAGE_NX;
602 if (!(md->attribute & EFI_MEMORY_RO) &&
603 (md->type != EFI_RUNTIME_SERVICES_CODE))
604 pf |= _PAGE_RW;
606 if (sev_active())
607 pf |= _PAGE_ENC;
609 efi_update_mappings(md, pf);
613 void __init efi_dump_pagetable(void)
615 #ifdef CONFIG_EFI_PGT_DUMP
616 if (efi_enabled(EFI_OLD_MEMMAP))
617 ptdump_walk_pgd_level(NULL, swapper_pg_dir);
618 else
619 ptdump_walk_pgd_level(NULL, efi_mm.pgd);
620 #endif
624 * Makes the calling thread switch to/from efi_mm context. Can be used
625 * in a kernel thread and user context. Preemption needs to remain disabled
626 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
627 * can not change under us.
628 * It should be ensured that there are no concurent calls to this function.
630 void efi_switch_mm(struct mm_struct *mm)
632 efi_scratch.prev_mm = current->active_mm;
633 current->active_mm = mm;
634 switch_mm(efi_scratch.prev_mm, mm, NULL);
637 #ifdef CONFIG_EFI_MIXED
638 extern efi_status_t efi64_thunk(u32, ...);
640 static DEFINE_SPINLOCK(efi_runtime_lock);
642 #define runtime_service32(func) \
643 ({ \
644 u32 table = (u32)(unsigned long)efi.systab; \
645 u32 *rt, *___f; \
647 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
648 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
649 *___f; \
653 * Switch to the EFI page tables early so that we can access the 1:1
654 * runtime services mappings which are not mapped in any other page
655 * tables. This function must be called before runtime_service32().
657 * Also, disable interrupts because the IDT points to 64-bit handlers,
658 * which aren't going to function correctly when we switch to 32-bit.
660 #define efi_thunk(f, ...) \
661 ({ \
662 efi_status_t __s; \
663 u32 __func; \
665 arch_efi_call_virt_setup(); \
667 __func = runtime_service32(f); \
668 __s = efi64_thunk(__func, __VA_ARGS__); \
670 arch_efi_call_virt_teardown(); \
672 __s; \
675 efi_status_t efi_thunk_set_virtual_address_map(
676 void *phys_set_virtual_address_map,
677 unsigned long memory_map_size,
678 unsigned long descriptor_size,
679 u32 descriptor_version,
680 efi_memory_desc_t *virtual_map)
682 efi_status_t status;
683 unsigned long flags;
684 u32 func;
686 efi_sync_low_kernel_mappings();
687 local_irq_save(flags);
689 efi_switch_mm(&efi_mm);
691 func = (u32)(unsigned long)phys_set_virtual_address_map;
692 status = efi64_thunk(func, memory_map_size, descriptor_size,
693 descriptor_version, virtual_map);
695 efi_switch_mm(efi_scratch.prev_mm);
696 local_irq_restore(flags);
698 return status;
701 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
703 efi_status_t status;
704 u32 phys_tm, phys_tc;
705 unsigned long flags;
707 spin_lock(&rtc_lock);
708 spin_lock_irqsave(&efi_runtime_lock, flags);
710 phys_tm = virt_to_phys_or_null(tm);
711 phys_tc = virt_to_phys_or_null(tc);
713 status = efi_thunk(get_time, phys_tm, phys_tc);
715 spin_unlock_irqrestore(&efi_runtime_lock, flags);
716 spin_unlock(&rtc_lock);
718 return status;
721 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
723 efi_status_t status;
724 u32 phys_tm;
725 unsigned long flags;
727 spin_lock(&rtc_lock);
728 spin_lock_irqsave(&efi_runtime_lock, flags);
730 phys_tm = virt_to_phys_or_null(tm);
732 status = efi_thunk(set_time, phys_tm);
734 spin_unlock_irqrestore(&efi_runtime_lock, flags);
735 spin_unlock(&rtc_lock);
737 return status;
740 static efi_status_t
741 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
742 efi_time_t *tm)
744 efi_status_t status;
745 u32 phys_enabled, phys_pending, phys_tm;
746 unsigned long flags;
748 spin_lock(&rtc_lock);
749 spin_lock_irqsave(&efi_runtime_lock, flags);
751 phys_enabled = virt_to_phys_or_null(enabled);
752 phys_pending = virt_to_phys_or_null(pending);
753 phys_tm = virt_to_phys_or_null(tm);
755 status = efi_thunk(get_wakeup_time, phys_enabled,
756 phys_pending, phys_tm);
758 spin_unlock_irqrestore(&efi_runtime_lock, flags);
759 spin_unlock(&rtc_lock);
761 return status;
764 static efi_status_t
765 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
767 efi_status_t status;
768 u32 phys_tm;
769 unsigned long flags;
771 spin_lock(&rtc_lock);
772 spin_lock_irqsave(&efi_runtime_lock, flags);
774 phys_tm = virt_to_phys_or_null(tm);
776 status = efi_thunk(set_wakeup_time, enabled, phys_tm);
778 spin_unlock_irqrestore(&efi_runtime_lock, flags);
779 spin_unlock(&rtc_lock);
781 return status;
784 static unsigned long efi_name_size(efi_char16_t *name)
786 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
789 static efi_status_t
790 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
791 u32 *attr, unsigned long *data_size, void *data)
793 efi_status_t status;
794 u32 phys_name, phys_vendor, phys_attr;
795 u32 phys_data_size, phys_data;
796 unsigned long flags;
798 spin_lock_irqsave(&efi_runtime_lock, flags);
800 phys_data_size = virt_to_phys_or_null(data_size);
801 phys_vendor = virt_to_phys_or_null(vendor);
802 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
803 phys_attr = virt_to_phys_or_null(attr);
804 phys_data = virt_to_phys_or_null_size(data, *data_size);
806 status = efi_thunk(get_variable, phys_name, phys_vendor,
807 phys_attr, phys_data_size, phys_data);
809 spin_unlock_irqrestore(&efi_runtime_lock, flags);
811 return status;
814 static efi_status_t
815 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
816 u32 attr, unsigned long data_size, void *data)
818 u32 phys_name, phys_vendor, phys_data;
819 efi_status_t status;
820 unsigned long flags;
822 spin_lock_irqsave(&efi_runtime_lock, flags);
824 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
825 phys_vendor = virt_to_phys_or_null(vendor);
826 phys_data = virt_to_phys_or_null_size(data, data_size);
828 /* If data_size is > sizeof(u32) we've got problems */
829 status = efi_thunk(set_variable, phys_name, phys_vendor,
830 attr, data_size, phys_data);
832 spin_unlock_irqrestore(&efi_runtime_lock, flags);
834 return status;
837 static efi_status_t
838 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
839 u32 attr, unsigned long data_size,
840 void *data)
842 u32 phys_name, phys_vendor, phys_data;
843 efi_status_t status;
844 unsigned long flags;
846 if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
847 return EFI_NOT_READY;
849 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
850 phys_vendor = virt_to_phys_or_null(vendor);
851 phys_data = virt_to_phys_or_null_size(data, data_size);
853 /* If data_size is > sizeof(u32) we've got problems */
854 status = efi_thunk(set_variable, phys_name, phys_vendor,
855 attr, data_size, phys_data);
857 spin_unlock_irqrestore(&efi_runtime_lock, flags);
859 return status;
862 static efi_status_t
863 efi_thunk_get_next_variable(unsigned long *name_size,
864 efi_char16_t *name,
865 efi_guid_t *vendor)
867 efi_status_t status;
868 u32 phys_name_size, phys_name, phys_vendor;
869 unsigned long flags;
871 spin_lock_irqsave(&efi_runtime_lock, flags);
873 phys_name_size = virt_to_phys_or_null(name_size);
874 phys_vendor = virt_to_phys_or_null(vendor);
875 phys_name = virt_to_phys_or_null_size(name, *name_size);
877 status = efi_thunk(get_next_variable, phys_name_size,
878 phys_name, phys_vendor);
880 spin_unlock_irqrestore(&efi_runtime_lock, flags);
882 return status;
885 static efi_status_t
886 efi_thunk_get_next_high_mono_count(u32 *count)
888 efi_status_t status;
889 u32 phys_count;
890 unsigned long flags;
892 spin_lock_irqsave(&efi_runtime_lock, flags);
894 phys_count = virt_to_phys_or_null(count);
895 status = efi_thunk(get_next_high_mono_count, phys_count);
897 spin_unlock_irqrestore(&efi_runtime_lock, flags);
899 return status;
902 static void
903 efi_thunk_reset_system(int reset_type, efi_status_t status,
904 unsigned long data_size, efi_char16_t *data)
906 u32 phys_data;
907 unsigned long flags;
909 spin_lock_irqsave(&efi_runtime_lock, flags);
911 phys_data = virt_to_phys_or_null_size(data, data_size);
913 efi_thunk(reset_system, reset_type, status, data_size, phys_data);
915 spin_unlock_irqrestore(&efi_runtime_lock, flags);
918 static efi_status_t
919 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
920 unsigned long count, unsigned long sg_list)
923 * To properly support this function we would need to repackage
924 * 'capsules' because the firmware doesn't understand 64-bit
925 * pointers.
927 return EFI_UNSUPPORTED;
930 static efi_status_t
931 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
932 u64 *remaining_space,
933 u64 *max_variable_size)
935 efi_status_t status;
936 u32 phys_storage, phys_remaining, phys_max;
937 unsigned long flags;
939 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
940 return EFI_UNSUPPORTED;
942 spin_lock_irqsave(&efi_runtime_lock, flags);
944 phys_storage = virt_to_phys_or_null(storage_space);
945 phys_remaining = virt_to_phys_or_null(remaining_space);
946 phys_max = virt_to_phys_or_null(max_variable_size);
948 status = efi_thunk(query_variable_info, attr, phys_storage,
949 phys_remaining, phys_max);
951 spin_unlock_irqrestore(&efi_runtime_lock, flags);
953 return status;
956 static efi_status_t
957 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
958 u64 *remaining_space,
959 u64 *max_variable_size)
961 efi_status_t status;
962 u32 phys_storage, phys_remaining, phys_max;
963 unsigned long flags;
965 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
966 return EFI_UNSUPPORTED;
968 if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
969 return EFI_NOT_READY;
971 phys_storage = virt_to_phys_or_null(storage_space);
972 phys_remaining = virt_to_phys_or_null(remaining_space);
973 phys_max = virt_to_phys_or_null(max_variable_size);
975 status = efi_thunk(query_variable_info, attr, phys_storage,
976 phys_remaining, phys_max);
978 spin_unlock_irqrestore(&efi_runtime_lock, flags);
980 return status;
983 static efi_status_t
984 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
985 unsigned long count, u64 *max_size,
986 int *reset_type)
989 * To properly support this function we would need to repackage
990 * 'capsules' because the firmware doesn't understand 64-bit
991 * pointers.
993 return EFI_UNSUPPORTED;
996 void efi_thunk_runtime_setup(void)
998 efi.get_time = efi_thunk_get_time;
999 efi.set_time = efi_thunk_set_time;
1000 efi.get_wakeup_time = efi_thunk_get_wakeup_time;
1001 efi.set_wakeup_time = efi_thunk_set_wakeup_time;
1002 efi.get_variable = efi_thunk_get_variable;
1003 efi.get_next_variable = efi_thunk_get_next_variable;
1004 efi.set_variable = efi_thunk_set_variable;
1005 efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
1006 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
1007 efi.reset_system = efi_thunk_reset_system;
1008 efi.query_variable_info = efi_thunk_query_variable_info;
1009 efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
1010 efi.update_capsule = efi_thunk_update_capsule;
1011 efi.query_capsule_caps = efi_thunk_query_capsule_caps;
1013 #endif /* CONFIG_EFI_MIXED */