staging: rtl8192u: remove redundant assignment to pointer crypt
[linux/fpc-iii.git] / drivers / s390 / cio / css.c
blob22c55816100be456528ac25027d13c916643b0da
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * driver for channel subsystem
5 * Copyright IBM Corp. 2002, 2010
7 * Author(s): Arnd Bergmann (arndb@de.ibm.com)
8 * Cornelia Huck (cornelia.huck@de.ibm.com)
9 */
11 #define KMSG_COMPONENT "cio"
12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19 #include <linux/list.h>
20 #include <linux/reboot.h>
21 #include <linux/suspend.h>
22 #include <linux/proc_fs.h>
23 #include <linux/genalloc.h>
24 #include <linux/dma-mapping.h>
25 #include <asm/isc.h>
26 #include <asm/crw.h>
28 #include "css.h"
29 #include "cio.h"
30 #include "blacklist.h"
31 #include "cio_debug.h"
32 #include "ioasm.h"
33 #include "chsc.h"
34 #include "device.h"
35 #include "idset.h"
36 #include "chp.h"
38 int css_init_done = 0;
39 int max_ssid;
41 #define MAX_CSS_IDX 0
42 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1];
43 static struct bus_type css_bus_type;
45 int
46 for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data)
48 struct subchannel_id schid;
49 int ret;
51 init_subchannel_id(&schid);
52 do {
53 do {
54 ret = fn(schid, data);
55 if (ret)
56 break;
57 } while (schid.sch_no++ < __MAX_SUBCHANNEL);
58 schid.sch_no = 0;
59 } while (schid.ssid++ < max_ssid);
60 return ret;
63 struct cb_data {
64 void *data;
65 struct idset *set;
66 int (*fn_known_sch)(struct subchannel *, void *);
67 int (*fn_unknown_sch)(struct subchannel_id, void *);
70 static int call_fn_known_sch(struct device *dev, void *data)
72 struct subchannel *sch = to_subchannel(dev);
73 struct cb_data *cb = data;
74 int rc = 0;
76 if (cb->set)
77 idset_sch_del(cb->set, sch->schid);
78 if (cb->fn_known_sch)
79 rc = cb->fn_known_sch(sch, cb->data);
80 return rc;
83 static int call_fn_unknown_sch(struct subchannel_id schid, void *data)
85 struct cb_data *cb = data;
86 int rc = 0;
88 if (idset_sch_contains(cb->set, schid))
89 rc = cb->fn_unknown_sch(schid, cb->data);
90 return rc;
93 static int call_fn_all_sch(struct subchannel_id schid, void *data)
95 struct cb_data *cb = data;
96 struct subchannel *sch;
97 int rc = 0;
99 sch = get_subchannel_by_schid(schid);
100 if (sch) {
101 if (cb->fn_known_sch)
102 rc = cb->fn_known_sch(sch, cb->data);
103 put_device(&sch->dev);
104 } else {
105 if (cb->fn_unknown_sch)
106 rc = cb->fn_unknown_sch(schid, cb->data);
109 return rc;
112 int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *),
113 int (*fn_unknown)(struct subchannel_id,
114 void *), void *data)
116 struct cb_data cb;
117 int rc;
119 cb.data = data;
120 cb.fn_known_sch = fn_known;
121 cb.fn_unknown_sch = fn_unknown;
123 if (fn_known && !fn_unknown) {
124 /* Skip idset allocation in case of known-only loop. */
125 cb.set = NULL;
126 return bus_for_each_dev(&css_bus_type, NULL, &cb,
127 call_fn_known_sch);
130 cb.set = idset_sch_new();
131 if (!cb.set)
132 /* fall back to brute force scanning in case of oom */
133 return for_each_subchannel(call_fn_all_sch, &cb);
135 idset_fill(cb.set);
137 /* Process registered subchannels. */
138 rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch);
139 if (rc)
140 goto out;
141 /* Process unregistered subchannels. */
142 if (fn_unknown)
143 rc = for_each_subchannel(call_fn_unknown_sch, &cb);
144 out:
145 idset_free(cb.set);
147 return rc;
150 static void css_sch_todo(struct work_struct *work);
152 static int css_sch_create_locks(struct subchannel *sch)
154 sch->lock = kmalloc(sizeof(*sch->lock), GFP_KERNEL);
155 if (!sch->lock)
156 return -ENOMEM;
158 spin_lock_init(sch->lock);
159 mutex_init(&sch->reg_mutex);
161 return 0;
164 static void css_subchannel_release(struct device *dev)
166 struct subchannel *sch = to_subchannel(dev);
168 sch->config.intparm = 0;
169 cio_commit_config(sch);
170 kfree(sch->driver_override);
171 kfree(sch->lock);
172 kfree(sch);
175 static int css_validate_subchannel(struct subchannel_id schid,
176 struct schib *schib)
178 int err;
180 switch (schib->pmcw.st) {
181 case SUBCHANNEL_TYPE_IO:
182 case SUBCHANNEL_TYPE_MSG:
183 if (!css_sch_is_valid(schib))
184 err = -ENODEV;
185 else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) {
186 CIO_MSG_EVENT(6, "Blacklisted device detected "
187 "at devno %04X, subchannel set %x\n",
188 schib->pmcw.dev, schid.ssid);
189 err = -ENODEV;
190 } else
191 err = 0;
192 break;
193 default:
194 err = 0;
196 if (err)
197 goto out;
199 CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n",
200 schid.ssid, schid.sch_no, schib->pmcw.st);
201 out:
202 return err;
205 struct subchannel *css_alloc_subchannel(struct subchannel_id schid,
206 struct schib *schib)
208 struct subchannel *sch;
209 int ret;
211 ret = css_validate_subchannel(schid, schib);
212 if (ret < 0)
213 return ERR_PTR(ret);
215 sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA);
216 if (!sch)
217 return ERR_PTR(-ENOMEM);
219 sch->schid = schid;
220 sch->schib = *schib;
221 sch->st = schib->pmcw.st;
223 ret = css_sch_create_locks(sch);
224 if (ret)
225 goto err;
227 INIT_WORK(&sch->todo_work, css_sch_todo);
228 sch->dev.release = &css_subchannel_release;
229 device_initialize(&sch->dev);
231 * The physical addresses of some the dma structures that can
232 * belong to a subchannel need to fit 31 bit width (e.g. ccw).
234 sch->dev.coherent_dma_mask = DMA_BIT_MASK(31);
235 sch->dev.dma_mask = &sch->dev.coherent_dma_mask;
236 return sch;
238 err:
239 kfree(sch);
240 return ERR_PTR(ret);
243 static int css_sch_device_register(struct subchannel *sch)
245 int ret;
247 mutex_lock(&sch->reg_mutex);
248 dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid,
249 sch->schid.sch_no);
250 ret = device_add(&sch->dev);
251 mutex_unlock(&sch->reg_mutex);
252 return ret;
256 * css_sch_device_unregister - unregister a subchannel
257 * @sch: subchannel to be unregistered
259 void css_sch_device_unregister(struct subchannel *sch)
261 mutex_lock(&sch->reg_mutex);
262 if (device_is_registered(&sch->dev))
263 device_unregister(&sch->dev);
264 mutex_unlock(&sch->reg_mutex);
266 EXPORT_SYMBOL_GPL(css_sch_device_unregister);
268 static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw)
270 int i;
271 int mask;
273 memset(ssd, 0, sizeof(struct chsc_ssd_info));
274 ssd->path_mask = pmcw->pim;
275 for (i = 0; i < 8; i++) {
276 mask = 0x80 >> i;
277 if (pmcw->pim & mask) {
278 chp_id_init(&ssd->chpid[i]);
279 ssd->chpid[i].id = pmcw->chpid[i];
284 static void ssd_register_chpids(struct chsc_ssd_info *ssd)
286 int i;
287 int mask;
289 for (i = 0; i < 8; i++) {
290 mask = 0x80 >> i;
291 if (ssd->path_mask & mask)
292 chp_new(ssd->chpid[i]);
296 void css_update_ssd_info(struct subchannel *sch)
298 int ret;
300 ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info);
301 if (ret)
302 ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw);
304 ssd_register_chpids(&sch->ssd_info);
307 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
308 char *buf)
310 struct subchannel *sch = to_subchannel(dev);
312 return sprintf(buf, "%01x\n", sch->st);
315 static DEVICE_ATTR_RO(type);
317 static ssize_t modalias_show(struct device *dev, struct device_attribute *attr,
318 char *buf)
320 struct subchannel *sch = to_subchannel(dev);
322 return sprintf(buf, "css:t%01X\n", sch->st);
325 static DEVICE_ATTR_RO(modalias);
327 static ssize_t driver_override_store(struct device *dev,
328 struct device_attribute *attr,
329 const char *buf, size_t count)
331 struct subchannel *sch = to_subchannel(dev);
332 char *driver_override, *old, *cp;
334 /* We need to keep extra room for a newline */
335 if (count >= (PAGE_SIZE - 1))
336 return -EINVAL;
338 driver_override = kstrndup(buf, count, GFP_KERNEL);
339 if (!driver_override)
340 return -ENOMEM;
342 cp = strchr(driver_override, '\n');
343 if (cp)
344 *cp = '\0';
346 device_lock(dev);
347 old = sch->driver_override;
348 if (strlen(driver_override)) {
349 sch->driver_override = driver_override;
350 } else {
351 kfree(driver_override);
352 sch->driver_override = NULL;
354 device_unlock(dev);
356 kfree(old);
358 return count;
361 static ssize_t driver_override_show(struct device *dev,
362 struct device_attribute *attr, char *buf)
364 struct subchannel *sch = to_subchannel(dev);
365 ssize_t len;
367 device_lock(dev);
368 len = snprintf(buf, PAGE_SIZE, "%s\n", sch->driver_override);
369 device_unlock(dev);
370 return len;
372 static DEVICE_ATTR_RW(driver_override);
374 static struct attribute *subch_attrs[] = {
375 &dev_attr_type.attr,
376 &dev_attr_modalias.attr,
377 &dev_attr_driver_override.attr,
378 NULL,
381 static struct attribute_group subch_attr_group = {
382 .attrs = subch_attrs,
385 static const struct attribute_group *default_subch_attr_groups[] = {
386 &subch_attr_group,
387 NULL,
390 static ssize_t chpids_show(struct device *dev,
391 struct device_attribute *attr,
392 char *buf)
394 struct subchannel *sch = to_subchannel(dev);
395 struct chsc_ssd_info *ssd = &sch->ssd_info;
396 ssize_t ret = 0;
397 int mask;
398 int chp;
400 for (chp = 0; chp < 8; chp++) {
401 mask = 0x80 >> chp;
402 if (ssd->path_mask & mask)
403 ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id);
404 else
405 ret += sprintf(buf + ret, "00 ");
407 ret += sprintf(buf + ret, "\n");
408 return ret;
410 static DEVICE_ATTR_RO(chpids);
412 static ssize_t pimpampom_show(struct device *dev,
413 struct device_attribute *attr,
414 char *buf)
416 struct subchannel *sch = to_subchannel(dev);
417 struct pmcw *pmcw = &sch->schib.pmcw;
419 return sprintf(buf, "%02x %02x %02x\n",
420 pmcw->pim, pmcw->pam, pmcw->pom);
422 static DEVICE_ATTR_RO(pimpampom);
424 static struct attribute *io_subchannel_type_attrs[] = {
425 &dev_attr_chpids.attr,
426 &dev_attr_pimpampom.attr,
427 NULL,
429 ATTRIBUTE_GROUPS(io_subchannel_type);
431 static const struct device_type io_subchannel_type = {
432 .groups = io_subchannel_type_groups,
435 int css_register_subchannel(struct subchannel *sch)
437 int ret;
439 /* Initialize the subchannel structure */
440 sch->dev.parent = &channel_subsystems[0]->device;
441 sch->dev.bus = &css_bus_type;
442 sch->dev.groups = default_subch_attr_groups;
444 if (sch->st == SUBCHANNEL_TYPE_IO)
445 sch->dev.type = &io_subchannel_type;
448 * We don't want to generate uevents for I/O subchannels that don't
449 * have a working ccw device behind them since they will be
450 * unregistered before they can be used anyway, so we delay the add
451 * uevent until after device recognition was successful.
452 * Note that we suppress the uevent for all subchannel types;
453 * the subchannel driver can decide itself when it wants to inform
454 * userspace of its existence.
456 dev_set_uevent_suppress(&sch->dev, 1);
457 css_update_ssd_info(sch);
458 /* make it known to the system */
459 ret = css_sch_device_register(sch);
460 if (ret) {
461 CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n",
462 sch->schid.ssid, sch->schid.sch_no, ret);
463 return ret;
465 if (!sch->driver) {
467 * No driver matched. Generate the uevent now so that
468 * a fitting driver module may be loaded based on the
469 * modalias.
471 dev_set_uevent_suppress(&sch->dev, 0);
472 kobject_uevent(&sch->dev.kobj, KOBJ_ADD);
474 return ret;
477 static int css_probe_device(struct subchannel_id schid, struct schib *schib)
479 struct subchannel *sch;
480 int ret;
482 sch = css_alloc_subchannel(schid, schib);
483 if (IS_ERR(sch))
484 return PTR_ERR(sch);
486 ret = css_register_subchannel(sch);
487 if (ret)
488 put_device(&sch->dev);
490 return ret;
493 static int
494 check_subchannel(struct device *dev, const void *data)
496 struct subchannel *sch;
497 struct subchannel_id *schid = (void *)data;
499 sch = to_subchannel(dev);
500 return schid_equal(&sch->schid, schid);
503 struct subchannel *
504 get_subchannel_by_schid(struct subchannel_id schid)
506 struct device *dev;
508 dev = bus_find_device(&css_bus_type, NULL,
509 &schid, check_subchannel);
511 return dev ? to_subchannel(dev) : NULL;
515 * css_sch_is_valid() - check if a subchannel is valid
516 * @schib: subchannel information block for the subchannel
518 int css_sch_is_valid(struct schib *schib)
520 if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv)
521 return 0;
522 if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w)
523 return 0;
524 return 1;
526 EXPORT_SYMBOL_GPL(css_sch_is_valid);
528 static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow)
530 struct schib schib;
531 int ccode;
533 if (!slow) {
534 /* Will be done on the slow path. */
535 return -EAGAIN;
538 * The first subchannel that is not-operational (ccode==3)
539 * indicates that there aren't any more devices available.
540 * If stsch gets an exception, it means the current subchannel set
541 * is not valid.
543 ccode = stsch(schid, &schib);
544 if (ccode)
545 return (ccode == 3) ? -ENXIO : ccode;
547 return css_probe_device(schid, &schib);
550 static int css_evaluate_known_subchannel(struct subchannel *sch, int slow)
552 int ret = 0;
554 if (sch->driver) {
555 if (sch->driver->sch_event)
556 ret = sch->driver->sch_event(sch, slow);
557 else
558 dev_dbg(&sch->dev,
559 "Got subchannel machine check but "
560 "no sch_event handler provided.\n");
562 if (ret != 0 && ret != -EAGAIN) {
563 CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n",
564 sch->schid.ssid, sch->schid.sch_no, ret);
566 return ret;
569 static void css_evaluate_subchannel(struct subchannel_id schid, int slow)
571 struct subchannel *sch;
572 int ret;
574 sch = get_subchannel_by_schid(schid);
575 if (sch) {
576 ret = css_evaluate_known_subchannel(sch, slow);
577 put_device(&sch->dev);
578 } else
579 ret = css_evaluate_new_subchannel(schid, slow);
580 if (ret == -EAGAIN)
581 css_schedule_eval(schid);
585 * css_sched_sch_todo - schedule a subchannel operation
586 * @sch: subchannel
587 * @todo: todo
589 * Schedule the operation identified by @todo to be performed on the slow path
590 * workqueue. Do nothing if another operation with higher priority is already
591 * scheduled. Needs to be called with subchannel lock held.
593 void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo)
595 CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n",
596 sch->schid.ssid, sch->schid.sch_no, todo);
597 if (sch->todo >= todo)
598 return;
599 /* Get workqueue ref. */
600 if (!get_device(&sch->dev))
601 return;
602 sch->todo = todo;
603 if (!queue_work(cio_work_q, &sch->todo_work)) {
604 /* Already queued, release workqueue ref. */
605 put_device(&sch->dev);
608 EXPORT_SYMBOL_GPL(css_sched_sch_todo);
610 static void css_sch_todo(struct work_struct *work)
612 struct subchannel *sch;
613 enum sch_todo todo;
614 int ret;
616 sch = container_of(work, struct subchannel, todo_work);
617 /* Find out todo. */
618 spin_lock_irq(sch->lock);
619 todo = sch->todo;
620 CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid,
621 sch->schid.sch_no, todo);
622 sch->todo = SCH_TODO_NOTHING;
623 spin_unlock_irq(sch->lock);
624 /* Perform todo. */
625 switch (todo) {
626 case SCH_TODO_NOTHING:
627 break;
628 case SCH_TODO_EVAL:
629 ret = css_evaluate_known_subchannel(sch, 1);
630 if (ret == -EAGAIN) {
631 spin_lock_irq(sch->lock);
632 css_sched_sch_todo(sch, todo);
633 spin_unlock_irq(sch->lock);
635 break;
636 case SCH_TODO_UNREG:
637 css_sch_device_unregister(sch);
638 break;
640 /* Release workqueue ref. */
641 put_device(&sch->dev);
644 static struct idset *slow_subchannel_set;
645 static spinlock_t slow_subchannel_lock;
646 static wait_queue_head_t css_eval_wq;
647 static atomic_t css_eval_scheduled;
649 static int __init slow_subchannel_init(void)
651 spin_lock_init(&slow_subchannel_lock);
652 atomic_set(&css_eval_scheduled, 0);
653 init_waitqueue_head(&css_eval_wq);
654 slow_subchannel_set = idset_sch_new();
655 if (!slow_subchannel_set) {
656 CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n");
657 return -ENOMEM;
659 return 0;
662 static int slow_eval_known_fn(struct subchannel *sch, void *data)
664 int eval;
665 int rc;
667 spin_lock_irq(&slow_subchannel_lock);
668 eval = idset_sch_contains(slow_subchannel_set, sch->schid);
669 idset_sch_del(slow_subchannel_set, sch->schid);
670 spin_unlock_irq(&slow_subchannel_lock);
671 if (eval) {
672 rc = css_evaluate_known_subchannel(sch, 1);
673 if (rc == -EAGAIN)
674 css_schedule_eval(sch->schid);
676 return 0;
679 static int slow_eval_unknown_fn(struct subchannel_id schid, void *data)
681 int eval;
682 int rc = 0;
684 spin_lock_irq(&slow_subchannel_lock);
685 eval = idset_sch_contains(slow_subchannel_set, schid);
686 idset_sch_del(slow_subchannel_set, schid);
687 spin_unlock_irq(&slow_subchannel_lock);
688 if (eval) {
689 rc = css_evaluate_new_subchannel(schid, 1);
690 switch (rc) {
691 case -EAGAIN:
692 css_schedule_eval(schid);
693 rc = 0;
694 break;
695 case -ENXIO:
696 case -ENOMEM:
697 case -EIO:
698 /* These should abort looping */
699 spin_lock_irq(&slow_subchannel_lock);
700 idset_sch_del_subseq(slow_subchannel_set, schid);
701 spin_unlock_irq(&slow_subchannel_lock);
702 break;
703 default:
704 rc = 0;
706 /* Allow scheduling here since the containing loop might
707 * take a while. */
708 cond_resched();
710 return rc;
713 static void css_slow_path_func(struct work_struct *unused)
715 unsigned long flags;
717 CIO_TRACE_EVENT(4, "slowpath");
718 for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn,
719 NULL);
720 spin_lock_irqsave(&slow_subchannel_lock, flags);
721 if (idset_is_empty(slow_subchannel_set)) {
722 atomic_set(&css_eval_scheduled, 0);
723 wake_up(&css_eval_wq);
725 spin_unlock_irqrestore(&slow_subchannel_lock, flags);
728 static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func);
729 struct workqueue_struct *cio_work_q;
731 void css_schedule_eval(struct subchannel_id schid)
733 unsigned long flags;
735 spin_lock_irqsave(&slow_subchannel_lock, flags);
736 idset_sch_add(slow_subchannel_set, schid);
737 atomic_set(&css_eval_scheduled, 1);
738 queue_delayed_work(cio_work_q, &slow_path_work, 0);
739 spin_unlock_irqrestore(&slow_subchannel_lock, flags);
742 void css_schedule_eval_all(void)
744 unsigned long flags;
746 spin_lock_irqsave(&slow_subchannel_lock, flags);
747 idset_fill(slow_subchannel_set);
748 atomic_set(&css_eval_scheduled, 1);
749 queue_delayed_work(cio_work_q, &slow_path_work, 0);
750 spin_unlock_irqrestore(&slow_subchannel_lock, flags);
753 static int __unset_registered(struct device *dev, void *data)
755 struct idset *set = data;
756 struct subchannel *sch = to_subchannel(dev);
758 idset_sch_del(set, sch->schid);
759 return 0;
762 void css_schedule_eval_all_unreg(unsigned long delay)
764 unsigned long flags;
765 struct idset *unreg_set;
767 /* Find unregistered subchannels. */
768 unreg_set = idset_sch_new();
769 if (!unreg_set) {
770 /* Fallback. */
771 css_schedule_eval_all();
772 return;
774 idset_fill(unreg_set);
775 bus_for_each_dev(&css_bus_type, NULL, unreg_set, __unset_registered);
776 /* Apply to slow_subchannel_set. */
777 spin_lock_irqsave(&slow_subchannel_lock, flags);
778 idset_add_set(slow_subchannel_set, unreg_set);
779 atomic_set(&css_eval_scheduled, 1);
780 queue_delayed_work(cio_work_q, &slow_path_work, delay);
781 spin_unlock_irqrestore(&slow_subchannel_lock, flags);
782 idset_free(unreg_set);
785 void css_wait_for_slow_path(void)
787 flush_workqueue(cio_work_q);
790 /* Schedule reprobing of all unregistered subchannels. */
791 void css_schedule_reprobe(void)
793 /* Schedule with a delay to allow merging of subsequent calls. */
794 css_schedule_eval_all_unreg(1 * HZ);
796 EXPORT_SYMBOL_GPL(css_schedule_reprobe);
799 * Called from the machine check handler for subchannel report words.
801 static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow)
803 struct subchannel_id mchk_schid;
804 struct subchannel *sch;
806 if (overflow) {
807 css_schedule_eval_all();
808 return;
810 CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, "
811 "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
812 crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc,
813 crw0->erc, crw0->rsid);
814 if (crw1)
815 CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, "
816 "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n",
817 crw1->slct, crw1->oflw, crw1->chn, crw1->rsc,
818 crw1->anc, crw1->erc, crw1->rsid);
819 init_subchannel_id(&mchk_schid);
820 mchk_schid.sch_no = crw0->rsid;
821 if (crw1)
822 mchk_schid.ssid = (crw1->rsid >> 4) & 3;
824 if (crw0->erc == CRW_ERC_PMOD) {
825 sch = get_subchannel_by_schid(mchk_schid);
826 if (sch) {
827 css_update_ssd_info(sch);
828 put_device(&sch->dev);
832 * Since we are always presented with IPI in the CRW, we have to
833 * use stsch() to find out if the subchannel in question has come
834 * or gone.
836 css_evaluate_subchannel(mchk_schid, 0);
839 static void __init
840 css_generate_pgid(struct channel_subsystem *css, u32 tod_high)
842 struct cpuid cpu_id;
844 if (css_general_characteristics.mcss) {
845 css->global_pgid.pgid_high.ext_cssid.version = 0x80;
846 css->global_pgid.pgid_high.ext_cssid.cssid =
847 (css->cssid < 0) ? 0 : css->cssid;
848 } else {
849 css->global_pgid.pgid_high.cpu_addr = stap();
851 get_cpu_id(&cpu_id);
852 css->global_pgid.cpu_id = cpu_id.ident;
853 css->global_pgid.cpu_model = cpu_id.machine;
854 css->global_pgid.tod_high = tod_high;
857 static void channel_subsystem_release(struct device *dev)
859 struct channel_subsystem *css = to_css(dev);
861 mutex_destroy(&css->mutex);
862 kfree(css);
865 static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a,
866 char *buf)
868 struct channel_subsystem *css = to_css(dev);
870 if (css->cssid < 0)
871 return -EINVAL;
873 return sprintf(buf, "%x\n", css->cssid);
875 static DEVICE_ATTR_RO(real_cssid);
877 static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a,
878 char *buf)
880 struct channel_subsystem *css = to_css(dev);
881 int ret;
883 mutex_lock(&css->mutex);
884 ret = sprintf(buf, "%x\n", css->cm_enabled);
885 mutex_unlock(&css->mutex);
886 return ret;
889 static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a,
890 const char *buf, size_t count)
892 struct channel_subsystem *css = to_css(dev);
893 unsigned long val;
894 int ret;
896 ret = kstrtoul(buf, 16, &val);
897 if (ret)
898 return ret;
899 mutex_lock(&css->mutex);
900 switch (val) {
901 case 0:
902 ret = css->cm_enabled ? chsc_secm(css, 0) : 0;
903 break;
904 case 1:
905 ret = css->cm_enabled ? 0 : chsc_secm(css, 1);
906 break;
907 default:
908 ret = -EINVAL;
910 mutex_unlock(&css->mutex);
911 return ret < 0 ? ret : count;
913 static DEVICE_ATTR_RW(cm_enable);
915 static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr,
916 int index)
918 return css_chsc_characteristics.secm ? attr->mode : 0;
921 static struct attribute *cssdev_attrs[] = {
922 &dev_attr_real_cssid.attr,
923 NULL,
926 static struct attribute_group cssdev_attr_group = {
927 .attrs = cssdev_attrs,
930 static struct attribute *cssdev_cm_attrs[] = {
931 &dev_attr_cm_enable.attr,
932 NULL,
935 static struct attribute_group cssdev_cm_attr_group = {
936 .attrs = cssdev_cm_attrs,
937 .is_visible = cm_enable_mode,
940 static const struct attribute_group *cssdev_attr_groups[] = {
941 &cssdev_attr_group,
942 &cssdev_cm_attr_group,
943 NULL,
946 static int __init setup_css(int nr)
948 struct channel_subsystem *css;
949 int ret;
951 css = kzalloc(sizeof(*css), GFP_KERNEL);
952 if (!css)
953 return -ENOMEM;
955 channel_subsystems[nr] = css;
956 dev_set_name(&css->device, "css%x", nr);
957 css->device.groups = cssdev_attr_groups;
958 css->device.release = channel_subsystem_release;
960 * We currently allocate notifier bits with this (using
961 * css->device as the device argument with the DMA API)
962 * and are fine with 64 bit addresses.
964 css->device.coherent_dma_mask = DMA_BIT_MASK(64);
965 css->device.dma_mask = &css->device.coherent_dma_mask;
967 mutex_init(&css->mutex);
968 css->cssid = chsc_get_cssid(nr);
969 css_generate_pgid(css, (u32) (get_tod_clock() >> 32));
971 ret = device_register(&css->device);
972 if (ret) {
973 put_device(&css->device);
974 goto out_err;
977 css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel),
978 GFP_KERNEL);
979 if (!css->pseudo_subchannel) {
980 device_unregister(&css->device);
981 ret = -ENOMEM;
982 goto out_err;
985 css->pseudo_subchannel->dev.parent = &css->device;
986 css->pseudo_subchannel->dev.release = css_subchannel_release;
987 mutex_init(&css->pseudo_subchannel->reg_mutex);
988 ret = css_sch_create_locks(css->pseudo_subchannel);
989 if (ret) {
990 kfree(css->pseudo_subchannel);
991 device_unregister(&css->device);
992 goto out_err;
995 dev_set_name(&css->pseudo_subchannel->dev, "defunct");
996 ret = device_register(&css->pseudo_subchannel->dev);
997 if (ret) {
998 put_device(&css->pseudo_subchannel->dev);
999 device_unregister(&css->device);
1000 goto out_err;
1003 return ret;
1004 out_err:
1005 channel_subsystems[nr] = NULL;
1006 return ret;
1009 static int css_reboot_event(struct notifier_block *this,
1010 unsigned long event,
1011 void *ptr)
1013 struct channel_subsystem *css;
1014 int ret;
1016 ret = NOTIFY_DONE;
1017 for_each_css(css) {
1018 mutex_lock(&css->mutex);
1019 if (css->cm_enabled)
1020 if (chsc_secm(css, 0))
1021 ret = NOTIFY_BAD;
1022 mutex_unlock(&css->mutex);
1025 return ret;
1028 static struct notifier_block css_reboot_notifier = {
1029 .notifier_call = css_reboot_event,
1033 * Since the css devices are neither on a bus nor have a class
1034 * nor have a special device type, we cannot stop/restart channel
1035 * path measurements via the normal suspend/resume callbacks, but have
1036 * to use notifiers.
1038 static int css_power_event(struct notifier_block *this, unsigned long event,
1039 void *ptr)
1041 struct channel_subsystem *css;
1042 int ret;
1044 switch (event) {
1045 case PM_HIBERNATION_PREPARE:
1046 case PM_SUSPEND_PREPARE:
1047 ret = NOTIFY_DONE;
1048 for_each_css(css) {
1049 mutex_lock(&css->mutex);
1050 if (!css->cm_enabled) {
1051 mutex_unlock(&css->mutex);
1052 continue;
1054 ret = __chsc_do_secm(css, 0);
1055 ret = notifier_from_errno(ret);
1056 mutex_unlock(&css->mutex);
1058 break;
1059 case PM_POST_HIBERNATION:
1060 case PM_POST_SUSPEND:
1061 ret = NOTIFY_DONE;
1062 for_each_css(css) {
1063 mutex_lock(&css->mutex);
1064 if (!css->cm_enabled) {
1065 mutex_unlock(&css->mutex);
1066 continue;
1068 ret = __chsc_do_secm(css, 1);
1069 ret = notifier_from_errno(ret);
1070 mutex_unlock(&css->mutex);
1072 /* search for subchannels, which appeared during hibernation */
1073 css_schedule_reprobe();
1074 break;
1075 default:
1076 ret = NOTIFY_DONE;
1078 return ret;
1081 static struct notifier_block css_power_notifier = {
1082 .notifier_call = css_power_event,
1085 #define CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO)
1086 static struct gen_pool *cio_dma_pool;
1088 /* Currently cio supports only a single css */
1089 struct device *cio_get_dma_css_dev(void)
1091 return &channel_subsystems[0]->device;
1094 struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages)
1096 struct gen_pool *gp_dma;
1097 void *cpu_addr;
1098 dma_addr_t dma_addr;
1099 int i;
1101 gp_dma = gen_pool_create(3, -1);
1102 if (!gp_dma)
1103 return NULL;
1104 for (i = 0; i < nr_pages; ++i) {
1105 cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr,
1106 CIO_DMA_GFP);
1107 if (!cpu_addr)
1108 return gp_dma;
1109 gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr,
1110 dma_addr, PAGE_SIZE, -1);
1112 return gp_dma;
1115 static void __gp_dma_free_dma(struct gen_pool *pool,
1116 struct gen_pool_chunk *chunk, void *data)
1118 size_t chunk_size = chunk->end_addr - chunk->start_addr + 1;
1120 dma_free_coherent((struct device *) data, chunk_size,
1121 (void *) chunk->start_addr,
1122 (dma_addr_t) chunk->phys_addr);
1125 void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev)
1127 if (!gp_dma)
1128 return;
1129 /* this is quite ugly but no better idea */
1130 gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev);
1131 gen_pool_destroy(gp_dma);
1134 static int cio_dma_pool_init(void)
1136 /* No need to free up the resources: compiled in */
1137 cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1);
1138 if (!cio_dma_pool)
1139 return -ENOMEM;
1140 return 0;
1143 void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev,
1144 size_t size)
1146 dma_addr_t dma_addr;
1147 unsigned long addr;
1148 size_t chunk_size;
1150 if (!gp_dma)
1151 return NULL;
1152 addr = gen_pool_alloc(gp_dma, size);
1153 while (!addr) {
1154 chunk_size = round_up(size, PAGE_SIZE);
1155 addr = (unsigned long) dma_alloc_coherent(dma_dev,
1156 chunk_size, &dma_addr, CIO_DMA_GFP);
1157 if (!addr)
1158 return NULL;
1159 gen_pool_add_virt(gp_dma, addr, dma_addr, chunk_size, -1);
1160 addr = gen_pool_alloc(gp_dma, size);
1162 return (void *) addr;
1165 void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size)
1167 if (!cpu_addr)
1168 return;
1169 memset(cpu_addr, 0, size);
1170 gen_pool_free(gp_dma, (unsigned long) cpu_addr, size);
1174 * Allocate dma memory from the css global pool. Intended for memory not
1175 * specific to any single device within the css. The allocated memory
1176 * is not guaranteed to be 31-bit addressable.
1178 * Caution: Not suitable for early stuff like console.
1180 void *cio_dma_zalloc(size_t size)
1182 return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size);
1185 void cio_dma_free(void *cpu_addr, size_t size)
1187 cio_gp_dma_free(cio_dma_pool, cpu_addr, size);
1191 * Now that the driver core is running, we can setup our channel subsystem.
1192 * The struct subchannel's are created during probing.
1194 static int __init css_bus_init(void)
1196 int ret, i;
1198 ret = chsc_init();
1199 if (ret)
1200 return ret;
1202 chsc_determine_css_characteristics();
1203 /* Try to enable MSS. */
1204 ret = chsc_enable_facility(CHSC_SDA_OC_MSS);
1205 if (ret)
1206 max_ssid = 0;
1207 else /* Success. */
1208 max_ssid = __MAX_SSID;
1210 ret = slow_subchannel_init();
1211 if (ret)
1212 goto out;
1214 ret = crw_register_handler(CRW_RSC_SCH, css_process_crw);
1215 if (ret)
1216 goto out;
1218 if ((ret = bus_register(&css_bus_type)))
1219 goto out;
1221 /* Setup css structure. */
1222 for (i = 0; i <= MAX_CSS_IDX; i++) {
1223 ret = setup_css(i);
1224 if (ret)
1225 goto out_unregister;
1227 ret = register_reboot_notifier(&css_reboot_notifier);
1228 if (ret)
1229 goto out_unregister;
1230 ret = register_pm_notifier(&css_power_notifier);
1231 if (ret)
1232 goto out_unregister_rn;
1233 ret = cio_dma_pool_init();
1234 if (ret)
1235 goto out_unregister_pmn;
1236 airq_init();
1237 css_init_done = 1;
1239 /* Enable default isc for I/O subchannels. */
1240 isc_register(IO_SCH_ISC);
1242 return 0;
1243 out_unregister_pmn:
1244 unregister_pm_notifier(&css_power_notifier);
1245 out_unregister_rn:
1246 unregister_reboot_notifier(&css_reboot_notifier);
1247 out_unregister:
1248 while (i-- > 0) {
1249 struct channel_subsystem *css = channel_subsystems[i];
1250 device_unregister(&css->pseudo_subchannel->dev);
1251 device_unregister(&css->device);
1253 bus_unregister(&css_bus_type);
1254 out:
1255 crw_unregister_handler(CRW_RSC_SCH);
1256 idset_free(slow_subchannel_set);
1257 chsc_init_cleanup();
1258 pr_alert("The CSS device driver initialization failed with "
1259 "errno=%d\n", ret);
1260 return ret;
1263 static void __init css_bus_cleanup(void)
1265 struct channel_subsystem *css;
1267 for_each_css(css) {
1268 device_unregister(&css->pseudo_subchannel->dev);
1269 device_unregister(&css->device);
1271 bus_unregister(&css_bus_type);
1272 crw_unregister_handler(CRW_RSC_SCH);
1273 idset_free(slow_subchannel_set);
1274 chsc_init_cleanup();
1275 isc_unregister(IO_SCH_ISC);
1278 static int __init channel_subsystem_init(void)
1280 int ret;
1282 ret = css_bus_init();
1283 if (ret)
1284 return ret;
1285 cio_work_q = create_singlethread_workqueue("cio");
1286 if (!cio_work_q) {
1287 ret = -ENOMEM;
1288 goto out_bus;
1290 ret = io_subchannel_init();
1291 if (ret)
1292 goto out_wq;
1294 /* Register subchannels which are already in use. */
1295 cio_register_early_subchannels();
1296 /* Start initial subchannel evaluation. */
1297 css_schedule_eval_all();
1299 return ret;
1300 out_wq:
1301 destroy_workqueue(cio_work_q);
1302 out_bus:
1303 css_bus_cleanup();
1304 return ret;
1306 subsys_initcall(channel_subsystem_init);
1308 static int css_settle(struct device_driver *drv, void *unused)
1310 struct css_driver *cssdrv = to_cssdriver(drv);
1312 if (cssdrv->settle)
1313 return cssdrv->settle();
1314 return 0;
1317 int css_complete_work(void)
1319 int ret;
1321 /* Wait for the evaluation of subchannels to finish. */
1322 ret = wait_event_interruptible(css_eval_wq,
1323 atomic_read(&css_eval_scheduled) == 0);
1324 if (ret)
1325 return -EINTR;
1326 flush_workqueue(cio_work_q);
1327 /* Wait for the subchannel type specific initialization to finish */
1328 return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle);
1333 * Wait for the initialization of devices to finish, to make sure we are
1334 * done with our setup if the search for the root device starts.
1336 static int __init channel_subsystem_init_sync(void)
1338 css_complete_work();
1339 return 0;
1341 subsys_initcall_sync(channel_subsystem_init_sync);
1343 void channel_subsystem_reinit(void)
1345 struct channel_path *chp;
1346 struct chp_id chpid;
1348 chsc_enable_facility(CHSC_SDA_OC_MSS);
1349 chp_id_for_each(&chpid) {
1350 chp = chpid_to_chp(chpid);
1351 if (chp)
1352 chp_update_desc(chp);
1354 cmf_reactivate();
1357 #ifdef CONFIG_PROC_FS
1358 static ssize_t cio_settle_write(struct file *file, const char __user *buf,
1359 size_t count, loff_t *ppos)
1361 int ret;
1363 /* Handle pending CRW's. */
1364 crw_wait_for_channel_report();
1365 ret = css_complete_work();
1367 return ret ? ret : count;
1370 static const struct file_operations cio_settle_proc_fops = {
1371 .open = nonseekable_open,
1372 .write = cio_settle_write,
1373 .llseek = no_llseek,
1376 static int __init cio_settle_init(void)
1378 struct proc_dir_entry *entry;
1380 entry = proc_create("cio_settle", S_IWUSR, NULL,
1381 &cio_settle_proc_fops);
1382 if (!entry)
1383 return -ENOMEM;
1384 return 0;
1386 device_initcall(cio_settle_init);
1387 #endif /*CONFIG_PROC_FS*/
1389 int sch_is_pseudo_sch(struct subchannel *sch)
1391 return sch == to_css(sch->dev.parent)->pseudo_subchannel;
1394 static int css_bus_match(struct device *dev, struct device_driver *drv)
1396 struct subchannel *sch = to_subchannel(dev);
1397 struct css_driver *driver = to_cssdriver(drv);
1398 struct css_device_id *id;
1400 /* When driver_override is set, only bind to the matching driver */
1401 if (sch->driver_override && strcmp(sch->driver_override, drv->name))
1402 return 0;
1404 for (id = driver->subchannel_type; id->match_flags; id++) {
1405 if (sch->st == id->type)
1406 return 1;
1409 return 0;
1412 static int css_probe(struct device *dev)
1414 struct subchannel *sch;
1415 int ret;
1417 sch = to_subchannel(dev);
1418 sch->driver = to_cssdriver(dev->driver);
1419 ret = sch->driver->probe ? sch->driver->probe(sch) : 0;
1420 if (ret)
1421 sch->driver = NULL;
1422 return ret;
1425 static int css_remove(struct device *dev)
1427 struct subchannel *sch;
1428 int ret;
1430 sch = to_subchannel(dev);
1431 ret = sch->driver->remove ? sch->driver->remove(sch) : 0;
1432 sch->driver = NULL;
1433 return ret;
1436 static void css_shutdown(struct device *dev)
1438 struct subchannel *sch;
1440 sch = to_subchannel(dev);
1441 if (sch->driver && sch->driver->shutdown)
1442 sch->driver->shutdown(sch);
1445 static int css_uevent(struct device *dev, struct kobj_uevent_env *env)
1447 struct subchannel *sch = to_subchannel(dev);
1448 int ret;
1450 ret = add_uevent_var(env, "ST=%01X", sch->st);
1451 if (ret)
1452 return ret;
1453 ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st);
1454 return ret;
1457 static int css_pm_prepare(struct device *dev)
1459 struct subchannel *sch = to_subchannel(dev);
1460 struct css_driver *drv;
1462 if (mutex_is_locked(&sch->reg_mutex))
1463 return -EAGAIN;
1464 if (!sch->dev.driver)
1465 return 0;
1466 drv = to_cssdriver(sch->dev.driver);
1467 /* Notify drivers that they may not register children. */
1468 return drv->prepare ? drv->prepare(sch) : 0;
1471 static void css_pm_complete(struct device *dev)
1473 struct subchannel *sch = to_subchannel(dev);
1474 struct css_driver *drv;
1476 if (!sch->dev.driver)
1477 return;
1478 drv = to_cssdriver(sch->dev.driver);
1479 if (drv->complete)
1480 drv->complete(sch);
1483 static int css_pm_freeze(struct device *dev)
1485 struct subchannel *sch = to_subchannel(dev);
1486 struct css_driver *drv;
1488 if (!sch->dev.driver)
1489 return 0;
1490 drv = to_cssdriver(sch->dev.driver);
1491 return drv->freeze ? drv->freeze(sch) : 0;
1494 static int css_pm_thaw(struct device *dev)
1496 struct subchannel *sch = to_subchannel(dev);
1497 struct css_driver *drv;
1499 if (!sch->dev.driver)
1500 return 0;
1501 drv = to_cssdriver(sch->dev.driver);
1502 return drv->thaw ? drv->thaw(sch) : 0;
1505 static int css_pm_restore(struct device *dev)
1507 struct subchannel *sch = to_subchannel(dev);
1508 struct css_driver *drv;
1510 css_update_ssd_info(sch);
1511 if (!sch->dev.driver)
1512 return 0;
1513 drv = to_cssdriver(sch->dev.driver);
1514 return drv->restore ? drv->restore(sch) : 0;
1517 static const struct dev_pm_ops css_pm_ops = {
1518 .prepare = css_pm_prepare,
1519 .complete = css_pm_complete,
1520 .freeze = css_pm_freeze,
1521 .thaw = css_pm_thaw,
1522 .restore = css_pm_restore,
1525 static struct bus_type css_bus_type = {
1526 .name = "css",
1527 .match = css_bus_match,
1528 .probe = css_probe,
1529 .remove = css_remove,
1530 .shutdown = css_shutdown,
1531 .uevent = css_uevent,
1532 .pm = &css_pm_ops,
1536 * css_driver_register - register a css driver
1537 * @cdrv: css driver to register
1539 * This is mainly a wrapper around driver_register that sets name
1540 * and bus_type in the embedded struct device_driver correctly.
1542 int css_driver_register(struct css_driver *cdrv)
1544 cdrv->drv.bus = &css_bus_type;
1545 return driver_register(&cdrv->drv);
1547 EXPORT_SYMBOL_GPL(css_driver_register);
1550 * css_driver_unregister - unregister a css driver
1551 * @cdrv: css driver to unregister
1553 * This is a wrapper around driver_unregister.
1555 void css_driver_unregister(struct css_driver *cdrv)
1557 driver_unregister(&cdrv->drv);
1559 EXPORT_SYMBOL_GPL(css_driver_unregister);