Merge tag 'for-5.8/dm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[linux/fpc-iii.git] / arch / parisc / include / asm / pgtable.h
blob75cf84070fc9190343b6379de6a9e72efa16e138
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _PARISC_PGTABLE_H
3 #define _PARISC_PGTABLE_H
5 #include <asm/page.h>
7 #if CONFIG_PGTABLE_LEVELS == 3
8 #include <asm-generic/pgtable-nopud.h>
9 #elif CONFIG_PGTABLE_LEVELS == 2
10 #include <asm-generic/pgtable-nopmd.h>
11 #endif
13 #include <asm/fixmap.h>
15 #ifndef __ASSEMBLY__
17 * we simulate an x86-style page table for the linux mm code
20 #include <linux/bitops.h>
21 #include <linux/spinlock.h>
22 #include <linux/mm_types.h>
23 #include <asm/processor.h>
24 #include <asm/cache.h>
26 static inline spinlock_t *pgd_spinlock(pgd_t *);
29 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
30 * memory. For the return value to be meaningful, ADDR must be >=
31 * PAGE_OFFSET. This operation can be relatively expensive (e.g.,
32 * require a hash-, or multi-level tree-lookup or something of that
33 * sort) but it guarantees to return TRUE only if accessing the page
34 * at that address does not cause an error. Note that there may be
35 * addresses for which kern_addr_valid() returns FALSE even though an
36 * access would not cause an error (e.g., this is typically true for
37 * memory mapped I/O regions.
39 * XXX Need to implement this for parisc.
41 #define kern_addr_valid(addr) (1)
43 /* This is for the serialization of PxTLB broadcasts. At least on the N class
44 * systems, only one PxTLB inter processor broadcast can be active at any one
45 * time on the Merced bus.
47 * PTE updates are protected by locks in the PMD.
49 extern spinlock_t pa_tlb_flush_lock;
50 extern spinlock_t pa_swapper_pg_lock;
51 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
52 extern int pa_serialize_tlb_flushes;
53 #else
54 #define pa_serialize_tlb_flushes (0)
55 #endif
57 #define purge_tlb_start(flags) do { \
58 if (pa_serialize_tlb_flushes) \
59 spin_lock_irqsave(&pa_tlb_flush_lock, flags); \
60 else \
61 local_irq_save(flags); \
62 } while (0)
63 #define purge_tlb_end(flags) do { \
64 if (pa_serialize_tlb_flushes) \
65 spin_unlock_irqrestore(&pa_tlb_flush_lock, flags); \
66 else \
67 local_irq_restore(flags); \
68 } while (0)
70 /* Purge data and instruction TLB entries. The TLB purge instructions
71 * are slow on SMP machines since the purge must be broadcast to all CPUs.
74 static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr)
76 unsigned long flags;
78 purge_tlb_start(flags);
79 mtsp(mm->context, 1);
80 pdtlb(addr);
81 pitlb(addr);
82 purge_tlb_end(flags);
85 /* Certain architectures need to do special things when PTEs
86 * within a page table are directly modified. Thus, the following
87 * hook is made available.
89 #define set_pte(pteptr, pteval) \
90 do{ \
91 *(pteptr) = (pteval); \
92 } while(0)
94 #define set_pte_at(mm, addr, ptep, pteval) \
95 do { \
96 unsigned long flags; \
97 spin_lock_irqsave(pgd_spinlock((mm)->pgd), flags);\
98 set_pte(ptep, pteval); \
99 purge_tlb_entries(mm, addr); \
100 spin_unlock_irqrestore(pgd_spinlock((mm)->pgd), flags);\
101 } while (0)
103 #endif /* !__ASSEMBLY__ */
105 #define pte_ERROR(e) \
106 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
107 #if CONFIG_PGTABLE_LEVELS == 3
108 #define pmd_ERROR(e) \
109 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
110 #endif
111 #define pgd_ERROR(e) \
112 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
114 /* This is the size of the initially mapped kernel memory */
115 #if defined(CONFIG_64BIT)
116 #define KERNEL_INITIAL_ORDER 26 /* 1<<26 = 64MB */
117 #else
118 #define KERNEL_INITIAL_ORDER 25 /* 1<<25 = 32MB */
119 #endif
120 #define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER)
122 #if CONFIG_PGTABLE_LEVELS == 3
123 #define PGD_ORDER 1 /* Number of pages per pgd */
124 #define PMD_ORDER 1 /* Number of pages per pmd */
125 #define PGD_ALLOC_ORDER (2 + 1) /* first pgd contains pmd */
126 #else
127 #define PGD_ORDER 1 /* Number of pages per pgd */
128 #define PGD_ALLOC_ORDER (PGD_ORDER + 1)
129 #endif
131 /* Definitions for 3rd level (we use PLD here for Page Lower directory
132 * because PTE_SHIFT is used lower down to mean shift that has to be
133 * done to get usable bits out of the PTE) */
134 #define PLD_SHIFT PAGE_SHIFT
135 #define PLD_SIZE PAGE_SIZE
136 #define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY)
137 #define PTRS_PER_PTE (1UL << BITS_PER_PTE)
139 /* Definitions for 2nd level */
140 #if CONFIG_PGTABLE_LEVELS == 3
141 #define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE)
142 #define PMD_SIZE (1UL << PMD_SHIFT)
143 #define PMD_MASK (~(PMD_SIZE-1))
144 #define BITS_PER_PMD (PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
145 #define PTRS_PER_PMD (1UL << BITS_PER_PMD)
146 #else
147 #define BITS_PER_PMD 0
148 #endif
150 /* Definitions for 1st level */
151 #define PGDIR_SHIFT (PLD_SHIFT + BITS_PER_PTE + BITS_PER_PMD)
152 #if (PGDIR_SHIFT + PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG
153 #define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT)
154 #else
155 #define BITS_PER_PGD (PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
156 #endif
157 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
158 #define PGDIR_MASK (~(PGDIR_SIZE-1))
159 #define PTRS_PER_PGD (1UL << BITS_PER_PGD)
160 #define USER_PTRS_PER_PGD PTRS_PER_PGD
162 #ifdef CONFIG_64BIT
163 #define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD)
164 #define MAX_ADDRESS (1UL << MAX_ADDRBITS)
165 #define SPACEID_SHIFT (MAX_ADDRBITS - 32)
166 #else
167 #define MAX_ADDRBITS (BITS_PER_LONG)
168 #define MAX_ADDRESS (1UL << MAX_ADDRBITS)
169 #define SPACEID_SHIFT 0
170 #endif
172 /* This calculates the number of initial pages we need for the initial
173 * page tables */
174 #if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
175 # define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
176 #else
177 # define PT_INITIAL (1) /* all initial PTEs fit into one page */
178 #endif
181 * pgd entries used up by user/kernel:
184 #define FIRST_USER_ADDRESS 0UL
186 /* NB: The tlb miss handlers make certain assumptions about the order */
187 /* of the following bits, so be careful (One example, bits 25-31 */
188 /* are moved together in one instruction). */
190 #define _PAGE_READ_BIT 31 /* (0x001) read access allowed */
191 #define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */
192 #define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */
193 #define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */
194 #define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */
195 #define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */
196 #define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */
197 #define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */
198 #define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */
199 #define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */
200 #define _PAGE_HPAGE_BIT 21 /* (0x400) Software: Huge Page */
201 #define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */
203 /* N.B. The bits are defined in terms of a 32 bit word above, so the */
204 /* following macro is ok for both 32 and 64 bit. */
206 #define xlate_pabit(x) (31 - x)
208 /* this defines the shift to the usable bits in the PTE it is set so
209 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
210 * to zero */
211 #define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT)
213 /* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
214 #define PFN_PTE_SHIFT 12
216 #define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT))
217 #define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT))
218 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
219 #define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT))
220 #define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
221 #define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT))
222 #define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT))
223 #define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
224 #define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
225 #define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
226 #define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT))
227 #define _PAGE_HUGE (1 << xlate_pabit(_PAGE_HPAGE_BIT))
228 #define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT))
230 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
231 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
232 #define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED)
233 #define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC)
234 #define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE)
235 #define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE)
237 /* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
238 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
239 * for a few meta-information bits, so we shift the address to be
240 * able to effectively address 40/42/44-bits of physical address space
241 * depending on 4k/16k/64k PAGE_SIZE */
242 #define _PxD_PRESENT_BIT 31
243 #define _PxD_ATTACHED_BIT 30
244 #define _PxD_VALID_BIT 29
246 #define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT))
247 #define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
248 #define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT))
249 #define PxD_FLAG_MASK (0xf)
250 #define PxD_FLAG_SHIFT (4)
251 #define PxD_VALUE_SHIFT (PFN_PTE_SHIFT-PxD_FLAG_SHIFT)
253 #ifndef __ASSEMBLY__
255 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER)
256 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE)
257 /* Others seem to make this executable, I don't know if that's correct
258 or not. The stack is mapped this way though so this is necessary
259 in the short term - dhd@linuxcare.com, 2000-08-08 */
260 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ)
261 #define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE)
262 #define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC)
263 #define PAGE_COPY PAGE_EXECREAD
264 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
265 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
266 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC)
267 #define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX)
268 #define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO)
269 #define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
270 #define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_GATEWAY| _PAGE_READ)
274 * We could have an execute only page using "gateway - promote to priv
275 * level 3", but that is kind of silly. So, the way things are defined
276 * now, we must always have read permission for pages with execute
277 * permission. For the fun of it we'll go ahead and support write only
278 * pages.
281 /*xwr*/
282 #define __P000 PAGE_NONE
283 #define __P001 PAGE_READONLY
284 #define __P010 __P000 /* copy on write */
285 #define __P011 __P001 /* copy on write */
286 #define __P100 PAGE_EXECREAD
287 #define __P101 PAGE_EXECREAD
288 #define __P110 __P100 /* copy on write */
289 #define __P111 __P101 /* copy on write */
291 #define __S000 PAGE_NONE
292 #define __S001 PAGE_READONLY
293 #define __S010 PAGE_WRITEONLY
294 #define __S011 PAGE_SHARED
295 #define __S100 PAGE_EXECREAD
296 #define __S101 PAGE_EXECREAD
297 #define __S110 PAGE_RWX
298 #define __S111 PAGE_RWX
301 extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
303 /* initial page tables for 0-8MB for kernel */
305 extern pte_t pg0[];
307 /* zero page used for uninitialized stuff */
309 extern unsigned long *empty_zero_page;
312 * ZERO_PAGE is a global shared page that is always zero: used
313 * for zero-mapped memory areas etc..
316 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
318 #define pte_none(x) (pte_val(x) == 0)
319 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
320 #define pte_clear(mm, addr, xp) set_pte_at(mm, addr, xp, __pte(0))
322 #define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK)
323 #define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
324 #define pud_flag(x) (pud_val(x) & PxD_FLAG_MASK)
325 #define pud_address(x) ((unsigned long)(pud_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
326 #define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK)
327 #define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
329 #if CONFIG_PGTABLE_LEVELS == 3
330 /* The first entry of the permanent pmd is not there if it contains
331 * the gateway marker */
332 #define pmd_none(x) (!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
333 #else
334 #define pmd_none(x) (!pmd_val(x))
335 #endif
336 #define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID))
337 #define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT)
338 static inline void pmd_clear(pmd_t *pmd) {
339 #if CONFIG_PGTABLE_LEVELS == 3
340 if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
341 /* This is the entry pointing to the permanent pmd
342 * attached to the pgd; cannot clear it */
343 set_pmd(pmd, __pmd(PxD_FLAG_ATTACHED));
344 else
345 #endif
346 set_pmd(pmd, __pmd(0));
351 #if CONFIG_PGTABLE_LEVELS == 3
352 #define pud_page_vaddr(pud) ((unsigned long) __va(pud_address(pud)))
353 #define pud_page(pud) virt_to_page((void *)pud_page_vaddr(pud))
355 /* For 64 bit we have three level tables */
357 #define pud_none(x) (!pud_val(x))
358 #define pud_bad(x) (!(pud_flag(x) & PxD_FLAG_VALID))
359 #define pud_present(x) (pud_flag(x) & PxD_FLAG_PRESENT)
360 static inline void pud_clear(pud_t *pud) {
361 #if CONFIG_PGTABLE_LEVELS == 3
362 if(pud_flag(*pud) & PxD_FLAG_ATTACHED)
363 /* This is the permanent pmd attached to the pud; cannot
364 * free it */
365 return;
366 #endif
367 set_pud(pud, __pud(0));
369 #endif
372 * The following only work if pte_present() is true.
373 * Undefined behaviour if not..
375 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
376 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
377 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
379 static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
380 static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
381 static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; }
382 static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
383 static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
384 static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; }
387 * Huge pte definitions.
389 #ifdef CONFIG_HUGETLB_PAGE
390 #define pte_huge(pte) (pte_val(pte) & _PAGE_HUGE)
391 #define pte_mkhuge(pte) (__pte(pte_val(pte) | \
392 (parisc_requires_coherency() ? 0 : _PAGE_HUGE)))
393 #else
394 #define pte_huge(pte) (0)
395 #define pte_mkhuge(pte) (pte)
396 #endif
400 * Conversion functions: convert a page and protection to a page entry,
401 * and a page entry and page directory to the page they refer to.
403 #define __mk_pte(addr,pgprot) \
404 ({ \
405 pte_t __pte; \
407 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \
409 __pte; \
412 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
414 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
416 pte_t pte;
417 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
418 return pte;
421 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
422 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
424 /* Permanent address of a page. On parisc we don't have highmem. */
426 #define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT)
428 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
430 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
432 return ((unsigned long) __va(pmd_address(pmd)));
435 #define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
436 #define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
438 /* Find an entry in the second-level page table.. */
440 extern void paging_init (void);
442 /* Used for deferring calls to flush_dcache_page() */
444 #define PG_dcache_dirty PG_arch_1
446 extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
448 /* Encode and de-code a swap entry */
450 #define __swp_type(x) ((x).val & 0x1f)
451 #define __swp_offset(x) ( (((x).val >> 6) & 0x7) | \
452 (((x).val >> 8) & ~0x7) )
453 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | \
454 ((offset & 0x7) << 6) | \
455 ((offset & ~0x7) << 8) })
456 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
457 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
460 static inline spinlock_t *pgd_spinlock(pgd_t *pgd)
462 if (unlikely(pgd == swapper_pg_dir))
463 return &pa_swapper_pg_lock;
464 return (spinlock_t *)((char *)pgd + (PAGE_SIZE << (PGD_ALLOC_ORDER - 1)));
468 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
470 pte_t pte;
471 unsigned long flags;
473 if (!pte_young(*ptep))
474 return 0;
476 spin_lock_irqsave(pgd_spinlock(vma->vm_mm->pgd), flags);
477 pte = *ptep;
478 if (!pte_young(pte)) {
479 spin_unlock_irqrestore(pgd_spinlock(vma->vm_mm->pgd), flags);
480 return 0;
482 set_pte(ptep, pte_mkold(pte));
483 purge_tlb_entries(vma->vm_mm, addr);
484 spin_unlock_irqrestore(pgd_spinlock(vma->vm_mm->pgd), flags);
485 return 1;
488 struct mm_struct;
489 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
491 pte_t old_pte;
492 unsigned long flags;
494 spin_lock_irqsave(pgd_spinlock(mm->pgd), flags);
495 old_pte = *ptep;
496 set_pte(ptep, __pte(0));
497 purge_tlb_entries(mm, addr);
498 spin_unlock_irqrestore(pgd_spinlock(mm->pgd), flags);
500 return old_pte;
503 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
505 unsigned long flags;
506 spin_lock_irqsave(pgd_spinlock(mm->pgd), flags);
507 set_pte(ptep, pte_wrprotect(*ptep));
508 purge_tlb_entries(mm, addr);
509 spin_unlock_irqrestore(pgd_spinlock(mm->pgd), flags);
512 #define pte_same(A,B) (pte_val(A) == pte_val(B))
514 struct seq_file;
515 extern void arch_report_meminfo(struct seq_file *m);
517 #endif /* !__ASSEMBLY__ */
520 /* TLB page size encoding - see table 3-1 in parisc20.pdf */
521 #define _PAGE_SIZE_ENCODING_4K 0
522 #define _PAGE_SIZE_ENCODING_16K 1
523 #define _PAGE_SIZE_ENCODING_64K 2
524 #define _PAGE_SIZE_ENCODING_256K 3
525 #define _PAGE_SIZE_ENCODING_1M 4
526 #define _PAGE_SIZE_ENCODING_4M 5
527 #define _PAGE_SIZE_ENCODING_16M 6
528 #define _PAGE_SIZE_ENCODING_64M 7
530 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
531 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
532 #elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
533 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
534 #elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
535 # define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
536 #endif
539 #define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
541 /* We provide our own get_unmapped_area to provide cache coherency */
543 #define HAVE_ARCH_UNMAPPED_AREA
544 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
546 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
547 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
548 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
549 #define __HAVE_ARCH_PTE_SAME
551 #endif /* _PARISC_PGTABLE_H */