1 // SPDX-License-Identifier: GPL-2.0
3 * fs/ext4/extents_status.c
5 * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
7 * Allison Henderson <achender@linux.vnet.ibm.com>
8 * Hugh Dickins <hughd@google.com>
9 * Zheng Liu <wenqing.lz@taobao.com>
11 * Ext4 extents status tree core functions.
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
18 #include <trace/events/ext4.h>
21 * According to previous discussion in Ext4 Developer Workshop, we
22 * will introduce a new structure called io tree to track all extent
23 * status in order to solve some problems that we have met
24 * (e.g. Reservation space warning), and provide extent-level locking.
25 * Delay extent tree is the first step to achieve this goal. It is
26 * original built by Yongqiang Yang. At that time it is called delay
27 * extent tree, whose goal is only track delayed extents in memory to
28 * simplify the implementation of fiemap and bigalloc, and introduce
29 * lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
30 * delay extent tree at the first commit. But for better understand
31 * what it does, it has been rename to extent status tree.
34 * Currently the first step has been done. All delayed extents are
35 * tracked in the tree. It maintains the delayed extent when a delayed
36 * allocation is issued, and the delayed extent is written out or
37 * invalidated. Therefore the implementation of fiemap and bigalloc
38 * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
40 * The following comment describes the implemenmtation of extent
41 * status tree and future works.
44 * In this step all extent status are tracked by extent status tree.
45 * Thus, we can first try to lookup a block mapping in this tree before
46 * finding it in extent tree. Hence, single extent cache can be removed
47 * because extent status tree can do a better job. Extents in status
48 * tree are loaded on-demand. Therefore, the extent status tree may not
49 * contain all of the extents in a file. Meanwhile we define a shrinker
50 * to reclaim memory from extent status tree because fragmented extent
51 * tree will make status tree cost too much memory. written/unwritten/-
52 * hole extents in the tree will be reclaimed by this shrinker when we
53 * are under high memory pressure. Delayed extents will not be
54 * reclimed because fiemap, bigalloc, and seek_data/hole need it.
58 * Extent status tree implementation for ext4.
61 * ==========================================================================
62 * Extent status tree tracks all extent status.
64 * 1. Why we need to implement extent status tree?
66 * Without extent status tree, ext4 identifies a delayed extent by looking
67 * up page cache, this has several deficiencies - complicated, buggy,
68 * and inefficient code.
70 * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71 * block or a range of blocks are belonged to a delayed extent.
73 * Let us have a look at how they do without extent status tree.
75 * FIEMAP looks up page cache to identify delayed allocations from holes.
78 * SEEK_HOLE/DATA has the same problem as FIEMAP.
81 * bigalloc looks up page cache to figure out if a block is
82 * already under delayed allocation or not to determine whether
83 * quota reserving is needed for the cluster.
86 * Writeout looks up whole page cache to see if a buffer is
87 * mapped, If there are not very many delayed buffers, then it is
90 * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91 * bigalloc and writeout can figure out if a block or a range of
92 * blocks is under delayed allocation(belonged to a delayed extent) or
93 * not by searching the extent tree.
96 * ==========================================================================
97 * 2. Ext4 extent status tree impelmentation
100 * A extent is a range of blocks which are contiguous logically and
101 * physically. Unlike extent in extent tree, this extent in ext4 is
102 * a in-memory struct, there is no corresponding on-disk data. There
103 * is no limit on length of extent, so an extent can contain as many
104 * blocks as they are contiguous logically and physically.
106 * -- extent status tree
107 * Every inode has an extent status tree and all allocation blocks
108 * are added to the tree with different status. The extent in the
109 * tree are ordered by logical block no.
111 * -- operations on a extent status tree
112 * There are three important operations on a delayed extent tree: find
113 * next extent, adding a extent(a range of blocks) and removing a extent.
115 * -- race on a extent status tree
116 * Extent status tree is protected by inode->i_es_lock.
118 * -- memory consumption
119 * Fragmented extent tree will make extent status tree cost too much
120 * memory. Hence, we will reclaim written/unwritten/hole extents from
121 * the tree under a heavy memory pressure.
124 * ==========================================================================
125 * 3. Performance analysis
128 * 1. There is a cache extent for write access, so if writes are
129 * not very random, adding space operaions are in O(1) time.
132 * 2. Code is much simpler, more readable, more maintainable and
136 * ==========================================================================
139 * -- Refactor delayed space reservation
141 * -- Extent-level locking
144 static struct kmem_cache
*ext4_es_cachep
;
145 static struct kmem_cache
*ext4_pending_cachep
;
147 static int __es_insert_extent(struct inode
*inode
, struct extent_status
*newes
);
148 static int __es_remove_extent(struct inode
*inode
, ext4_lblk_t lblk
,
149 ext4_lblk_t end
, int *reserved
);
150 static int es_reclaim_extents(struct ext4_inode_info
*ei
, int *nr_to_scan
);
151 static int __es_shrink(struct ext4_sb_info
*sbi
, int nr_to_scan
,
152 struct ext4_inode_info
*locked_ei
);
153 static void __revise_pending(struct inode
*inode
, ext4_lblk_t lblk
,
156 int __init
ext4_init_es(void)
158 ext4_es_cachep
= kmem_cache_create("ext4_extent_status",
159 sizeof(struct extent_status
),
160 0, (SLAB_RECLAIM_ACCOUNT
), NULL
);
161 if (ext4_es_cachep
== NULL
)
166 void ext4_exit_es(void)
168 kmem_cache_destroy(ext4_es_cachep
);
171 void ext4_es_init_tree(struct ext4_es_tree
*tree
)
173 tree
->root
= RB_ROOT
;
174 tree
->cache_es
= NULL
;
178 static void ext4_es_print_tree(struct inode
*inode
)
180 struct ext4_es_tree
*tree
;
181 struct rb_node
*node
;
183 printk(KERN_DEBUG
"status extents for inode %lu:", inode
->i_ino
);
184 tree
= &EXT4_I(inode
)->i_es_tree
;
185 node
= rb_first(&tree
->root
);
187 struct extent_status
*es
;
188 es
= rb_entry(node
, struct extent_status
, rb_node
);
189 printk(KERN_DEBUG
" [%u/%u) %llu %x",
190 es
->es_lblk
, es
->es_len
,
191 ext4_es_pblock(es
), ext4_es_status(es
));
192 node
= rb_next(node
);
194 printk(KERN_DEBUG
"\n");
197 #define ext4_es_print_tree(inode)
200 static inline ext4_lblk_t
ext4_es_end(struct extent_status
*es
)
202 BUG_ON(es
->es_lblk
+ es
->es_len
< es
->es_lblk
);
203 return es
->es_lblk
+ es
->es_len
- 1;
207 * search through the tree for an delayed extent with a given offset. If
208 * it can't be found, try to find next extent.
210 static struct extent_status
*__es_tree_search(struct rb_root
*root
,
213 struct rb_node
*node
= root
->rb_node
;
214 struct extent_status
*es
= NULL
;
217 es
= rb_entry(node
, struct extent_status
, rb_node
);
218 if (lblk
< es
->es_lblk
)
219 node
= node
->rb_left
;
220 else if (lblk
> ext4_es_end(es
))
221 node
= node
->rb_right
;
226 if (es
&& lblk
< es
->es_lblk
)
229 if (es
&& lblk
> ext4_es_end(es
)) {
230 node
= rb_next(&es
->rb_node
);
231 return node
? rb_entry(node
, struct extent_status
, rb_node
) :
239 * ext4_es_find_extent_range - find extent with specified status within block
240 * range or next extent following block range in
241 * extents status tree
243 * @inode - file containing the range
244 * @matching_fn - pointer to function that matches extents with desired status
245 * @lblk - logical block defining start of range
246 * @end - logical block defining end of range
247 * @es - extent found, if any
249 * Find the first extent within the block range specified by @lblk and @end
250 * in the extents status tree that satisfies @matching_fn. If a match
251 * is found, it's returned in @es. If not, and a matching extent is found
252 * beyond the block range, it's returned in @es. If no match is found, an
253 * extent is returned in @es whose es_lblk, es_len, and es_pblk components
256 static void __es_find_extent_range(struct inode
*inode
,
257 int (*matching_fn
)(struct extent_status
*es
),
258 ext4_lblk_t lblk
, ext4_lblk_t end
,
259 struct extent_status
*es
)
261 struct ext4_es_tree
*tree
= NULL
;
262 struct extent_status
*es1
= NULL
;
263 struct rb_node
*node
;
268 tree
= &EXT4_I(inode
)->i_es_tree
;
270 /* see if the extent has been cached */
271 es
->es_lblk
= es
->es_len
= es
->es_pblk
= 0;
272 if (tree
->cache_es
) {
273 es1
= tree
->cache_es
;
274 if (in_range(lblk
, es1
->es_lblk
, es1
->es_len
)) {
275 es_debug("%u cached by [%u/%u) %llu %x\n",
276 lblk
, es1
->es_lblk
, es1
->es_len
,
277 ext4_es_pblock(es1
), ext4_es_status(es1
));
282 es1
= __es_tree_search(&tree
->root
, lblk
);
285 if (es1
&& !matching_fn(es1
)) {
286 while ((node
= rb_next(&es1
->rb_node
)) != NULL
) {
287 es1
= rb_entry(node
, struct extent_status
, rb_node
);
288 if (es1
->es_lblk
> end
) {
292 if (matching_fn(es1
))
297 if (es1
&& matching_fn(es1
)) {
298 tree
->cache_es
= es1
;
299 es
->es_lblk
= es1
->es_lblk
;
300 es
->es_len
= es1
->es_len
;
301 es
->es_pblk
= es1
->es_pblk
;
307 * Locking for __es_find_extent_range() for external use
309 void ext4_es_find_extent_range(struct inode
*inode
,
310 int (*matching_fn
)(struct extent_status
*es
),
311 ext4_lblk_t lblk
, ext4_lblk_t end
,
312 struct extent_status
*es
)
314 trace_ext4_es_find_extent_range_enter(inode
, lblk
);
316 read_lock(&EXT4_I(inode
)->i_es_lock
);
317 __es_find_extent_range(inode
, matching_fn
, lblk
, end
, es
);
318 read_unlock(&EXT4_I(inode
)->i_es_lock
);
320 trace_ext4_es_find_extent_range_exit(inode
, es
);
324 * __es_scan_range - search block range for block with specified status
325 * in extents status tree
327 * @inode - file containing the range
328 * @matching_fn - pointer to function that matches extents with desired status
329 * @lblk - logical block defining start of range
330 * @end - logical block defining end of range
332 * Returns true if at least one block in the specified block range satisfies
333 * the criterion specified by @matching_fn, and false if not. If at least
334 * one extent has the specified status, then there is at least one block
335 * in the cluster with that status. Should only be called by code that has
338 static bool __es_scan_range(struct inode
*inode
,
339 int (*matching_fn
)(struct extent_status
*es
),
340 ext4_lblk_t start
, ext4_lblk_t end
)
342 struct extent_status es
;
344 __es_find_extent_range(inode
, matching_fn
, start
, end
, &es
);
346 return false; /* no matching extent in the tree */
347 else if (es
.es_lblk
<= start
&&
348 start
< es
.es_lblk
+ es
.es_len
)
350 else if (start
<= es
.es_lblk
&& es
.es_lblk
<= end
)
356 * Locking for __es_scan_range() for external use
358 bool ext4_es_scan_range(struct inode
*inode
,
359 int (*matching_fn
)(struct extent_status
*es
),
360 ext4_lblk_t lblk
, ext4_lblk_t end
)
364 read_lock(&EXT4_I(inode
)->i_es_lock
);
365 ret
= __es_scan_range(inode
, matching_fn
, lblk
, end
);
366 read_unlock(&EXT4_I(inode
)->i_es_lock
);
372 * __es_scan_clu - search cluster for block with specified status in
373 * extents status tree
375 * @inode - file containing the cluster
376 * @matching_fn - pointer to function that matches extents with desired status
377 * @lblk - logical block in cluster to be searched
379 * Returns true if at least one extent in the cluster containing @lblk
380 * satisfies the criterion specified by @matching_fn, and false if not. If at
381 * least one extent has the specified status, then there is at least one block
382 * in the cluster with that status. Should only be called by code that has
385 static bool __es_scan_clu(struct inode
*inode
,
386 int (*matching_fn
)(struct extent_status
*es
),
389 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
390 ext4_lblk_t lblk_start
, lblk_end
;
392 lblk_start
= EXT4_LBLK_CMASK(sbi
, lblk
);
393 lblk_end
= lblk_start
+ sbi
->s_cluster_ratio
- 1;
395 return __es_scan_range(inode
, matching_fn
, lblk_start
, lblk_end
);
399 * Locking for __es_scan_clu() for external use
401 bool ext4_es_scan_clu(struct inode
*inode
,
402 int (*matching_fn
)(struct extent_status
*es
),
407 read_lock(&EXT4_I(inode
)->i_es_lock
);
408 ret
= __es_scan_clu(inode
, matching_fn
, lblk
);
409 read_unlock(&EXT4_I(inode
)->i_es_lock
);
414 static void ext4_es_list_add(struct inode
*inode
)
416 struct ext4_inode_info
*ei
= EXT4_I(inode
);
417 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
419 if (!list_empty(&ei
->i_es_list
))
422 spin_lock(&sbi
->s_es_lock
);
423 if (list_empty(&ei
->i_es_list
)) {
424 list_add_tail(&ei
->i_es_list
, &sbi
->s_es_list
);
425 sbi
->s_es_nr_inode
++;
427 spin_unlock(&sbi
->s_es_lock
);
430 static void ext4_es_list_del(struct inode
*inode
)
432 struct ext4_inode_info
*ei
= EXT4_I(inode
);
433 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
435 spin_lock(&sbi
->s_es_lock
);
436 if (!list_empty(&ei
->i_es_list
)) {
437 list_del_init(&ei
->i_es_list
);
438 sbi
->s_es_nr_inode
--;
439 WARN_ON_ONCE(sbi
->s_es_nr_inode
< 0);
441 spin_unlock(&sbi
->s_es_lock
);
444 static struct extent_status
*
445 ext4_es_alloc_extent(struct inode
*inode
, ext4_lblk_t lblk
, ext4_lblk_t len
,
448 struct extent_status
*es
;
449 es
= kmem_cache_alloc(ext4_es_cachep
, GFP_ATOMIC
);
457 * We don't count delayed extent because we never try to reclaim them
459 if (!ext4_es_is_delayed(es
)) {
460 if (!EXT4_I(inode
)->i_es_shk_nr
++)
461 ext4_es_list_add(inode
);
462 percpu_counter_inc(&EXT4_SB(inode
->i_sb
)->
463 s_es_stats
.es_stats_shk_cnt
);
466 EXT4_I(inode
)->i_es_all_nr
++;
467 percpu_counter_inc(&EXT4_SB(inode
->i_sb
)->s_es_stats
.es_stats_all_cnt
);
472 static void ext4_es_free_extent(struct inode
*inode
, struct extent_status
*es
)
474 EXT4_I(inode
)->i_es_all_nr
--;
475 percpu_counter_dec(&EXT4_SB(inode
->i_sb
)->s_es_stats
.es_stats_all_cnt
);
477 /* Decrease the shrink counter when this es is not delayed */
478 if (!ext4_es_is_delayed(es
)) {
479 BUG_ON(EXT4_I(inode
)->i_es_shk_nr
== 0);
480 if (!--EXT4_I(inode
)->i_es_shk_nr
)
481 ext4_es_list_del(inode
);
482 percpu_counter_dec(&EXT4_SB(inode
->i_sb
)->
483 s_es_stats
.es_stats_shk_cnt
);
486 kmem_cache_free(ext4_es_cachep
, es
);
490 * Check whether or not two extents can be merged
492 * - logical block number is contiguous
493 * - physical block number is contiguous
496 static int ext4_es_can_be_merged(struct extent_status
*es1
,
497 struct extent_status
*es2
)
499 if (ext4_es_type(es1
) != ext4_es_type(es2
))
502 if (((__u64
) es1
->es_len
) + es2
->es_len
> EXT_MAX_BLOCKS
) {
503 pr_warn("ES assertion failed when merging extents. "
504 "The sum of lengths of es1 (%d) and es2 (%d) "
505 "is bigger than allowed file size (%d)\n",
506 es1
->es_len
, es2
->es_len
, EXT_MAX_BLOCKS
);
511 if (((__u64
) es1
->es_lblk
) + es1
->es_len
!= es2
->es_lblk
)
514 if ((ext4_es_is_written(es1
) || ext4_es_is_unwritten(es1
)) &&
515 (ext4_es_pblock(es1
) + es1
->es_len
== ext4_es_pblock(es2
)))
518 if (ext4_es_is_hole(es1
))
521 /* we need to check delayed extent is without unwritten status */
522 if (ext4_es_is_delayed(es1
) && !ext4_es_is_unwritten(es1
))
528 static struct extent_status
*
529 ext4_es_try_to_merge_left(struct inode
*inode
, struct extent_status
*es
)
531 struct ext4_es_tree
*tree
= &EXT4_I(inode
)->i_es_tree
;
532 struct extent_status
*es1
;
533 struct rb_node
*node
;
535 node
= rb_prev(&es
->rb_node
);
539 es1
= rb_entry(node
, struct extent_status
, rb_node
);
540 if (ext4_es_can_be_merged(es1
, es
)) {
541 es1
->es_len
+= es
->es_len
;
542 if (ext4_es_is_referenced(es
))
543 ext4_es_set_referenced(es1
);
544 rb_erase(&es
->rb_node
, &tree
->root
);
545 ext4_es_free_extent(inode
, es
);
552 static struct extent_status
*
553 ext4_es_try_to_merge_right(struct inode
*inode
, struct extent_status
*es
)
555 struct ext4_es_tree
*tree
= &EXT4_I(inode
)->i_es_tree
;
556 struct extent_status
*es1
;
557 struct rb_node
*node
;
559 node
= rb_next(&es
->rb_node
);
563 es1
= rb_entry(node
, struct extent_status
, rb_node
);
564 if (ext4_es_can_be_merged(es
, es1
)) {
565 es
->es_len
+= es1
->es_len
;
566 if (ext4_es_is_referenced(es1
))
567 ext4_es_set_referenced(es
);
568 rb_erase(node
, &tree
->root
);
569 ext4_es_free_extent(inode
, es1
);
575 #ifdef ES_AGGRESSIVE_TEST
576 #include "ext4_extents.h" /* Needed when ES_AGGRESSIVE_TEST is defined */
578 static void ext4_es_insert_extent_ext_check(struct inode
*inode
,
579 struct extent_status
*es
)
581 struct ext4_ext_path
*path
= NULL
;
582 struct ext4_extent
*ex
;
583 ext4_lblk_t ee_block
;
584 ext4_fsblk_t ee_start
;
585 unsigned short ee_len
;
586 int depth
, ee_status
, es_status
;
588 path
= ext4_find_extent(inode
, es
->es_lblk
, NULL
, EXT4_EX_NOCACHE
);
592 depth
= ext_depth(inode
);
593 ex
= path
[depth
].p_ext
;
597 ee_block
= le32_to_cpu(ex
->ee_block
);
598 ee_start
= ext4_ext_pblock(ex
);
599 ee_len
= ext4_ext_get_actual_len(ex
);
601 ee_status
= ext4_ext_is_unwritten(ex
) ? 1 : 0;
602 es_status
= ext4_es_is_unwritten(es
) ? 1 : 0;
605 * Make sure ex and es are not overlap when we try to insert
606 * a delayed/hole extent.
608 if (!ext4_es_is_written(es
) && !ext4_es_is_unwritten(es
)) {
609 if (in_range(es
->es_lblk
, ee_block
, ee_len
)) {
610 pr_warn("ES insert assertion failed for "
611 "inode: %lu we can find an extent "
612 "at block [%d/%d/%llu/%c], but we "
613 "want to add a delayed/hole extent "
615 inode
->i_ino
, ee_block
, ee_len
,
616 ee_start
, ee_status
? 'u' : 'w',
617 es
->es_lblk
, es
->es_len
,
618 ext4_es_pblock(es
), ext4_es_status(es
));
624 * We don't check ee_block == es->es_lblk, etc. because es
625 * might be a part of whole extent, vice versa.
627 if (es
->es_lblk
< ee_block
||
628 ext4_es_pblock(es
) != ee_start
+ es
->es_lblk
- ee_block
) {
629 pr_warn("ES insert assertion failed for inode: %lu "
630 "ex_status [%d/%d/%llu/%c] != "
631 "es_status [%d/%d/%llu/%c]\n", inode
->i_ino
,
632 ee_block
, ee_len
, ee_start
,
633 ee_status
? 'u' : 'w', es
->es_lblk
, es
->es_len
,
634 ext4_es_pblock(es
), es_status
? 'u' : 'w');
638 if (ee_status
^ es_status
) {
639 pr_warn("ES insert assertion failed for inode: %lu "
640 "ex_status [%d/%d/%llu/%c] != "
641 "es_status [%d/%d/%llu/%c]\n", inode
->i_ino
,
642 ee_block
, ee_len
, ee_start
,
643 ee_status
? 'u' : 'w', es
->es_lblk
, es
->es_len
,
644 ext4_es_pblock(es
), es_status
? 'u' : 'w');
648 * We can't find an extent on disk. So we need to make sure
649 * that we don't want to add an written/unwritten extent.
651 if (!ext4_es_is_delayed(es
) && !ext4_es_is_hole(es
)) {
652 pr_warn("ES insert assertion failed for inode: %lu "
653 "can't find an extent at block %d but we want "
654 "to add a written/unwritten extent "
655 "[%d/%d/%llu/%x]\n", inode
->i_ino
,
656 es
->es_lblk
, es
->es_lblk
, es
->es_len
,
657 ext4_es_pblock(es
), ext4_es_status(es
));
661 ext4_ext_drop_refs(path
);
665 static void ext4_es_insert_extent_ind_check(struct inode
*inode
,
666 struct extent_status
*es
)
668 struct ext4_map_blocks map
;
672 * Here we call ext4_ind_map_blocks to lookup a block mapping because
673 * 'Indirect' structure is defined in indirect.c. So we couldn't
674 * access direct/indirect tree from outside. It is too dirty to define
675 * this function in indirect.c file.
678 map
.m_lblk
= es
->es_lblk
;
679 map
.m_len
= es
->es_len
;
681 retval
= ext4_ind_map_blocks(NULL
, inode
, &map
, 0);
683 if (ext4_es_is_delayed(es
) || ext4_es_is_hole(es
)) {
685 * We want to add a delayed/hole extent but this
686 * block has been allocated.
688 pr_warn("ES insert assertion failed for inode: %lu "
689 "We can find blocks but we want to add a "
690 "delayed/hole extent [%d/%d/%llu/%x]\n",
691 inode
->i_ino
, es
->es_lblk
, es
->es_len
,
692 ext4_es_pblock(es
), ext4_es_status(es
));
694 } else if (ext4_es_is_written(es
)) {
695 if (retval
!= es
->es_len
) {
696 pr_warn("ES insert assertion failed for "
697 "inode: %lu retval %d != es_len %d\n",
698 inode
->i_ino
, retval
, es
->es_len
);
701 if (map
.m_pblk
!= ext4_es_pblock(es
)) {
702 pr_warn("ES insert assertion failed for "
703 "inode: %lu m_pblk %llu != "
705 inode
->i_ino
, map
.m_pblk
,
711 * We don't need to check unwritten extent because
712 * indirect-based file doesn't have it.
716 } else if (retval
== 0) {
717 if (ext4_es_is_written(es
)) {
718 pr_warn("ES insert assertion failed for inode: %lu "
719 "We can't find the block but we want to add "
720 "a written extent [%d/%d/%llu/%x]\n",
721 inode
->i_ino
, es
->es_lblk
, es
->es_len
,
722 ext4_es_pblock(es
), ext4_es_status(es
));
728 static inline void ext4_es_insert_extent_check(struct inode
*inode
,
729 struct extent_status
*es
)
732 * We don't need to worry about the race condition because
733 * caller takes i_data_sem locking.
735 BUG_ON(!rwsem_is_locked(&EXT4_I(inode
)->i_data_sem
));
736 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
737 ext4_es_insert_extent_ext_check(inode
, es
);
739 ext4_es_insert_extent_ind_check(inode
, es
);
742 static inline void ext4_es_insert_extent_check(struct inode
*inode
,
743 struct extent_status
*es
)
748 static int __es_insert_extent(struct inode
*inode
, struct extent_status
*newes
)
750 struct ext4_es_tree
*tree
= &EXT4_I(inode
)->i_es_tree
;
751 struct rb_node
**p
= &tree
->root
.rb_node
;
752 struct rb_node
*parent
= NULL
;
753 struct extent_status
*es
;
757 es
= rb_entry(parent
, struct extent_status
, rb_node
);
759 if (newes
->es_lblk
< es
->es_lblk
) {
760 if (ext4_es_can_be_merged(newes
, es
)) {
762 * Here we can modify es_lblk directly
763 * because it isn't overlapped.
765 es
->es_lblk
= newes
->es_lblk
;
766 es
->es_len
+= newes
->es_len
;
767 if (ext4_es_is_written(es
) ||
768 ext4_es_is_unwritten(es
))
769 ext4_es_store_pblock(es
,
771 es
= ext4_es_try_to_merge_left(inode
, es
);
775 } else if (newes
->es_lblk
> ext4_es_end(es
)) {
776 if (ext4_es_can_be_merged(es
, newes
)) {
777 es
->es_len
+= newes
->es_len
;
778 es
= ext4_es_try_to_merge_right(inode
, es
);
788 es
= ext4_es_alloc_extent(inode
, newes
->es_lblk
, newes
->es_len
,
792 rb_link_node(&es
->rb_node
, parent
, p
);
793 rb_insert_color(&es
->rb_node
, &tree
->root
);
801 * ext4_es_insert_extent() adds information to an inode's extent
804 * Return 0 on success, error code on failure.
806 int ext4_es_insert_extent(struct inode
*inode
, ext4_lblk_t lblk
,
807 ext4_lblk_t len
, ext4_fsblk_t pblk
,
810 struct extent_status newes
;
811 ext4_lblk_t end
= lblk
+ len
- 1;
813 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
815 es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
816 lblk
, len
, pblk
, status
, inode
->i_ino
);
823 if ((status
& EXTENT_STATUS_DELAYED
) &&
824 (status
& EXTENT_STATUS_WRITTEN
)) {
825 ext4_warning(inode
->i_sb
, "Inserting extent [%u/%u] as "
826 " delayed and written which can potentially "
827 " cause data loss.", lblk
, len
);
831 newes
.es_lblk
= lblk
;
833 ext4_es_store_pblock_status(&newes
, pblk
, status
);
834 trace_ext4_es_insert_extent(inode
, &newes
);
836 ext4_es_insert_extent_check(inode
, &newes
);
838 write_lock(&EXT4_I(inode
)->i_es_lock
);
839 err
= __es_remove_extent(inode
, lblk
, end
, NULL
);
843 err
= __es_insert_extent(inode
, &newes
);
844 if (err
== -ENOMEM
&& __es_shrink(EXT4_SB(inode
->i_sb
),
847 if (err
== -ENOMEM
&& !ext4_es_is_delayed(&newes
))
850 if (sbi
->s_cluster_ratio
> 1 && test_opt(inode
->i_sb
, DELALLOC
) &&
851 (status
& EXTENT_STATUS_WRITTEN
||
852 status
& EXTENT_STATUS_UNWRITTEN
))
853 __revise_pending(inode
, lblk
, len
);
856 write_unlock(&EXT4_I(inode
)->i_es_lock
);
858 ext4_es_print_tree(inode
);
864 * ext4_es_cache_extent() inserts information into the extent status
865 * tree if and only if there isn't information about the range in
868 void ext4_es_cache_extent(struct inode
*inode
, ext4_lblk_t lblk
,
869 ext4_lblk_t len
, ext4_fsblk_t pblk
,
872 struct extent_status
*es
;
873 struct extent_status newes
;
874 ext4_lblk_t end
= lblk
+ len
- 1;
876 newes
.es_lblk
= lblk
;
878 ext4_es_store_pblock_status(&newes
, pblk
, status
);
879 trace_ext4_es_cache_extent(inode
, &newes
);
886 write_lock(&EXT4_I(inode
)->i_es_lock
);
888 es
= __es_tree_search(&EXT4_I(inode
)->i_es_tree
.root
, lblk
);
889 if (!es
|| es
->es_lblk
> end
)
890 __es_insert_extent(inode
, &newes
);
891 write_unlock(&EXT4_I(inode
)->i_es_lock
);
895 * ext4_es_lookup_extent() looks up an extent in extent status tree.
897 * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
899 * Return: 1 on found, 0 on not
901 int ext4_es_lookup_extent(struct inode
*inode
, ext4_lblk_t lblk
,
902 ext4_lblk_t
*next_lblk
,
903 struct extent_status
*es
)
905 struct ext4_es_tree
*tree
;
906 struct ext4_es_stats
*stats
;
907 struct extent_status
*es1
= NULL
;
908 struct rb_node
*node
;
911 trace_ext4_es_lookup_extent_enter(inode
, lblk
);
912 es_debug("lookup extent in block %u\n", lblk
);
914 tree
= &EXT4_I(inode
)->i_es_tree
;
915 read_lock(&EXT4_I(inode
)->i_es_lock
);
917 /* find extent in cache firstly */
918 es
->es_lblk
= es
->es_len
= es
->es_pblk
= 0;
919 if (tree
->cache_es
) {
920 es1
= tree
->cache_es
;
921 if (in_range(lblk
, es1
->es_lblk
, es1
->es_len
)) {
922 es_debug("%u cached by [%u/%u)\n",
923 lblk
, es1
->es_lblk
, es1
->es_len
);
929 node
= tree
->root
.rb_node
;
931 es1
= rb_entry(node
, struct extent_status
, rb_node
);
932 if (lblk
< es1
->es_lblk
)
933 node
= node
->rb_left
;
934 else if (lblk
> ext4_es_end(es1
))
935 node
= node
->rb_right
;
943 stats
= &EXT4_SB(inode
->i_sb
)->s_es_stats
;
946 es
->es_lblk
= es1
->es_lblk
;
947 es
->es_len
= es1
->es_len
;
948 es
->es_pblk
= es1
->es_pblk
;
949 if (!ext4_es_is_referenced(es1
))
950 ext4_es_set_referenced(es1
);
951 percpu_counter_inc(&stats
->es_stats_cache_hits
);
953 node
= rb_next(&es1
->rb_node
);
955 es1
= rb_entry(node
, struct extent_status
,
957 *next_lblk
= es1
->es_lblk
;
962 percpu_counter_inc(&stats
->es_stats_cache_misses
);
965 read_unlock(&EXT4_I(inode
)->i_es_lock
);
967 trace_ext4_es_lookup_extent_exit(inode
, es
, found
);
973 bool first_do_lblk_found
;
974 ext4_lblk_t first_do_lblk
;
975 ext4_lblk_t last_do_lblk
;
976 struct extent_status
*left_es
;
982 * init_rsvd - initialize reserved count data before removing block range
983 * in file from extent status tree
985 * @inode - file containing range
986 * @lblk - first block in range
987 * @es - pointer to first extent in range
988 * @rc - pointer to reserved count data
990 * Assumes es is not NULL
992 static void init_rsvd(struct inode
*inode
, ext4_lblk_t lblk
,
993 struct extent_status
*es
, struct rsvd_count
*rc
)
995 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
996 struct rb_node
*node
;
1001 * for bigalloc, note the first delonly block in the range has not
1002 * been found, record the extent containing the block to the left of
1003 * the region to be removed, if any, and note that there's no partial
1006 if (sbi
->s_cluster_ratio
> 1) {
1007 rc
->first_do_lblk_found
= false;
1008 if (lblk
> es
->es_lblk
) {
1011 node
= rb_prev(&es
->rb_node
);
1012 rc
->left_es
= node
? rb_entry(node
,
1013 struct extent_status
,
1016 rc
->partial
= false;
1021 * count_rsvd - count the clusters containing delayed and not unwritten
1022 * (delonly) blocks in a range within an extent and add to
1023 * the running tally in rsvd_count
1025 * @inode - file containing extent
1026 * @lblk - first block in range
1027 * @len - length of range in blocks
1028 * @es - pointer to extent containing clusters to be counted
1029 * @rc - pointer to reserved count data
1031 * Tracks partial clusters found at the beginning and end of extents so
1032 * they aren't overcounted when they span adjacent extents
1034 static void count_rsvd(struct inode
*inode
, ext4_lblk_t lblk
, long len
,
1035 struct extent_status
*es
, struct rsvd_count
*rc
)
1037 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1038 ext4_lblk_t i
, end
, nclu
;
1040 if (!ext4_es_is_delonly(es
))
1045 if (sbi
->s_cluster_ratio
== 1) {
1046 rc
->ndelonly
+= (int) len
;
1052 i
= (lblk
< es
->es_lblk
) ? es
->es_lblk
: lblk
;
1053 end
= lblk
+ (ext4_lblk_t
) len
- 1;
1054 end
= (end
> ext4_es_end(es
)) ? ext4_es_end(es
) : end
;
1056 /* record the first block of the first delonly extent seen */
1057 if (!rc
->first_do_lblk_found
) {
1058 rc
->first_do_lblk
= i
;
1059 rc
->first_do_lblk_found
= true;
1062 /* update the last lblk in the region seen so far */
1063 rc
->last_do_lblk
= end
;
1066 * if we're tracking a partial cluster and the current extent
1067 * doesn't start with it, count it and stop tracking
1069 if (rc
->partial
&& (rc
->lclu
!= EXT4_B2C(sbi
, i
))) {
1071 rc
->partial
= false;
1075 * if the first cluster doesn't start on a cluster boundary but
1076 * ends on one, count it
1078 if (EXT4_LBLK_COFF(sbi
, i
) != 0) {
1079 if (end
>= EXT4_LBLK_CFILL(sbi
, i
)) {
1081 rc
->partial
= false;
1082 i
= EXT4_LBLK_CFILL(sbi
, i
) + 1;
1087 * if the current cluster starts on a cluster boundary, count the
1088 * number of whole delonly clusters in the extent
1090 if ((i
+ sbi
->s_cluster_ratio
- 1) <= end
) {
1091 nclu
= (end
- i
+ 1) >> sbi
->s_cluster_bits
;
1092 rc
->ndelonly
+= nclu
;
1093 i
+= nclu
<< sbi
->s_cluster_bits
;
1097 * start tracking a partial cluster if there's a partial at the end
1098 * of the current extent and we're not already tracking one
1100 if (!rc
->partial
&& i
<= end
) {
1102 rc
->lclu
= EXT4_B2C(sbi
, i
);
1107 * __pr_tree_search - search for a pending cluster reservation
1109 * @root - root of pending reservation tree
1110 * @lclu - logical cluster to search for
1112 * Returns the pending reservation for the cluster identified by @lclu
1113 * if found. If not, returns a reservation for the next cluster if any,
1114 * and if not, returns NULL.
1116 static struct pending_reservation
*__pr_tree_search(struct rb_root
*root
,
1119 struct rb_node
*node
= root
->rb_node
;
1120 struct pending_reservation
*pr
= NULL
;
1123 pr
= rb_entry(node
, struct pending_reservation
, rb_node
);
1124 if (lclu
< pr
->lclu
)
1125 node
= node
->rb_left
;
1126 else if (lclu
> pr
->lclu
)
1127 node
= node
->rb_right
;
1131 if (pr
&& lclu
< pr
->lclu
)
1133 if (pr
&& lclu
> pr
->lclu
) {
1134 node
= rb_next(&pr
->rb_node
);
1135 return node
? rb_entry(node
, struct pending_reservation
,
1142 * get_rsvd - calculates and returns the number of cluster reservations to be
1143 * released when removing a block range from the extent status tree
1144 * and releases any pending reservations within the range
1146 * @inode - file containing block range
1147 * @end - last block in range
1148 * @right_es - pointer to extent containing next block beyond end or NULL
1149 * @rc - pointer to reserved count data
1151 * The number of reservations to be released is equal to the number of
1152 * clusters containing delayed and not unwritten (delonly) blocks within
1153 * the range, minus the number of clusters still containing delonly blocks
1154 * at the ends of the range, and minus the number of pending reservations
1157 static unsigned int get_rsvd(struct inode
*inode
, ext4_lblk_t end
,
1158 struct extent_status
*right_es
,
1159 struct rsvd_count
*rc
)
1161 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1162 struct pending_reservation
*pr
;
1163 struct ext4_pending_tree
*tree
= &EXT4_I(inode
)->i_pending_tree
;
1164 struct rb_node
*node
;
1165 ext4_lblk_t first_lclu
, last_lclu
;
1166 bool left_delonly
, right_delonly
, count_pending
;
1167 struct extent_status
*es
;
1169 if (sbi
->s_cluster_ratio
> 1) {
1170 /* count any remaining partial cluster */
1174 if (rc
->ndelonly
== 0)
1177 first_lclu
= EXT4_B2C(sbi
, rc
->first_do_lblk
);
1178 last_lclu
= EXT4_B2C(sbi
, rc
->last_do_lblk
);
1181 * decrease the delonly count by the number of clusters at the
1182 * ends of the range that still contain delonly blocks -
1183 * these clusters still need to be reserved
1185 left_delonly
= right_delonly
= false;
1188 while (es
&& ext4_es_end(es
) >=
1189 EXT4_LBLK_CMASK(sbi
, rc
->first_do_lblk
)) {
1190 if (ext4_es_is_delonly(es
)) {
1192 left_delonly
= true;
1195 node
= rb_prev(&es
->rb_node
);
1198 es
= rb_entry(node
, struct extent_status
, rb_node
);
1200 if (right_es
&& (!left_delonly
|| first_lclu
!= last_lclu
)) {
1201 if (end
< ext4_es_end(right_es
)) {
1204 node
= rb_next(&right_es
->rb_node
);
1205 es
= node
? rb_entry(node
, struct extent_status
,
1208 while (es
&& es
->es_lblk
<=
1209 EXT4_LBLK_CFILL(sbi
, rc
->last_do_lblk
)) {
1210 if (ext4_es_is_delonly(es
)) {
1212 right_delonly
= true;
1215 node
= rb_next(&es
->rb_node
);
1218 es
= rb_entry(node
, struct extent_status
,
1224 * Determine the block range that should be searched for
1225 * pending reservations, if any. Clusters on the ends of the
1226 * original removed range containing delonly blocks are
1227 * excluded. They've already been accounted for and it's not
1228 * possible to determine if an associated pending reservation
1229 * should be released with the information available in the
1230 * extents status tree.
1232 if (first_lclu
== last_lclu
) {
1233 if (left_delonly
| right_delonly
)
1234 count_pending
= false;
1236 count_pending
= true;
1242 if (first_lclu
<= last_lclu
)
1243 count_pending
= true;
1245 count_pending
= false;
1249 * a pending reservation found between first_lclu and last_lclu
1250 * represents an allocated cluster that contained at least one
1251 * delonly block, so the delonly total must be reduced by one
1252 * for each pending reservation found and released
1254 if (count_pending
) {
1255 pr
= __pr_tree_search(&tree
->root
, first_lclu
);
1256 while (pr
&& pr
->lclu
<= last_lclu
) {
1258 node
= rb_next(&pr
->rb_node
);
1259 rb_erase(&pr
->rb_node
, &tree
->root
);
1260 kmem_cache_free(ext4_pending_cachep
, pr
);
1263 pr
= rb_entry(node
, struct pending_reservation
,
1268 return rc
->ndelonly
;
1273 * __es_remove_extent - removes block range from extent status tree
1275 * @inode - file containing range
1276 * @lblk - first block in range
1277 * @end - last block in range
1278 * @reserved - number of cluster reservations released
1280 * If @reserved is not NULL and delayed allocation is enabled, counts
1281 * block/cluster reservations freed by removing range and if bigalloc
1282 * enabled cancels pending reservations as needed. Returns 0 on success,
1283 * error code on failure.
1285 static int __es_remove_extent(struct inode
*inode
, ext4_lblk_t lblk
,
1286 ext4_lblk_t end
, int *reserved
)
1288 struct ext4_es_tree
*tree
= &EXT4_I(inode
)->i_es_tree
;
1289 struct rb_node
*node
;
1290 struct extent_status
*es
;
1291 struct extent_status orig_es
;
1292 ext4_lblk_t len1
, len2
;
1295 bool count_reserved
= true;
1296 struct rsvd_count rc
;
1298 if (reserved
== NULL
|| !test_opt(inode
->i_sb
, DELALLOC
))
1299 count_reserved
= false;
1303 es
= __es_tree_search(&tree
->root
, lblk
);
1306 if (es
->es_lblk
> end
)
1309 /* Simply invalidate cache_es. */
1310 tree
->cache_es
= NULL
;
1312 init_rsvd(inode
, lblk
, es
, &rc
);
1314 orig_es
.es_lblk
= es
->es_lblk
;
1315 orig_es
.es_len
= es
->es_len
;
1316 orig_es
.es_pblk
= es
->es_pblk
;
1318 len1
= lblk
> es
->es_lblk
? lblk
- es
->es_lblk
: 0;
1319 len2
= ext4_es_end(es
) > end
? ext4_es_end(es
) - end
: 0;
1324 struct extent_status newes
;
1326 newes
.es_lblk
= end
+ 1;
1327 newes
.es_len
= len2
;
1328 block
= 0x7FDEADBEEFULL
;
1329 if (ext4_es_is_written(&orig_es
) ||
1330 ext4_es_is_unwritten(&orig_es
))
1331 block
= ext4_es_pblock(&orig_es
) +
1332 orig_es
.es_len
- len2
;
1333 ext4_es_store_pblock_status(&newes
, block
,
1334 ext4_es_status(&orig_es
));
1335 err
= __es_insert_extent(inode
, &newes
);
1337 es
->es_lblk
= orig_es
.es_lblk
;
1338 es
->es_len
= orig_es
.es_len
;
1339 if ((err
== -ENOMEM
) &&
1340 __es_shrink(EXT4_SB(inode
->i_sb
),
1341 128, EXT4_I(inode
)))
1346 es
->es_lblk
= end
+ 1;
1348 if (ext4_es_is_written(es
) ||
1349 ext4_es_is_unwritten(es
)) {
1350 block
= orig_es
.es_pblk
+ orig_es
.es_len
- len2
;
1351 ext4_es_store_pblock(es
, block
);
1355 count_rsvd(inode
, lblk
, orig_es
.es_len
- len1
- len2
,
1362 count_rsvd(inode
, lblk
, orig_es
.es_len
- len1
,
1364 node
= rb_next(&es
->rb_node
);
1366 es
= rb_entry(node
, struct extent_status
, rb_node
);
1371 while (es
&& ext4_es_end(es
) <= end
) {
1373 count_rsvd(inode
, es
->es_lblk
, es
->es_len
, es
, &rc
);
1374 node
= rb_next(&es
->rb_node
);
1375 rb_erase(&es
->rb_node
, &tree
->root
);
1376 ext4_es_free_extent(inode
, es
);
1381 es
= rb_entry(node
, struct extent_status
, rb_node
);
1384 if (es
&& es
->es_lblk
< end
+ 1) {
1385 ext4_lblk_t orig_len
= es
->es_len
;
1387 len1
= ext4_es_end(es
) - end
;
1389 count_rsvd(inode
, es
->es_lblk
, orig_len
- len1
,
1391 es
->es_lblk
= end
+ 1;
1393 if (ext4_es_is_written(es
) || ext4_es_is_unwritten(es
)) {
1394 block
= es
->es_pblk
+ orig_len
- len1
;
1395 ext4_es_store_pblock(es
, block
);
1400 *reserved
= get_rsvd(inode
, end
, es
, &rc
);
1406 * ext4_es_remove_extent - removes block range from extent status tree
1408 * @inode - file containing range
1409 * @lblk - first block in range
1410 * @len - number of blocks to remove
1412 * Reduces block/cluster reservation count and for bigalloc cancels pending
1413 * reservations as needed. Returns 0 on success, error code on failure.
1415 int ext4_es_remove_extent(struct inode
*inode
, ext4_lblk_t lblk
,
1422 trace_ext4_es_remove_extent(inode
, lblk
, len
);
1423 es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1424 lblk
, len
, inode
->i_ino
);
1429 end
= lblk
+ len
- 1;
1433 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1434 * so that we are sure __es_shrink() is done with the inode before it
1437 write_lock(&EXT4_I(inode
)->i_es_lock
);
1438 err
= __es_remove_extent(inode
, lblk
, end
, &reserved
);
1439 write_unlock(&EXT4_I(inode
)->i_es_lock
);
1440 ext4_es_print_tree(inode
);
1441 ext4_da_release_space(inode
, reserved
);
1445 static int __es_shrink(struct ext4_sb_info
*sbi
, int nr_to_scan
,
1446 struct ext4_inode_info
*locked_ei
)
1448 struct ext4_inode_info
*ei
;
1449 struct ext4_es_stats
*es_stats
;
1454 int retried
= 0, nr_skipped
= 0;
1456 es_stats
= &sbi
->s_es_stats
;
1457 start_time
= ktime_get();
1460 spin_lock(&sbi
->s_es_lock
);
1461 nr_to_walk
= sbi
->s_es_nr_inode
;
1462 while (nr_to_walk
-- > 0) {
1463 if (list_empty(&sbi
->s_es_list
)) {
1464 spin_unlock(&sbi
->s_es_lock
);
1467 ei
= list_first_entry(&sbi
->s_es_list
, struct ext4_inode_info
,
1469 /* Move the inode to the tail */
1470 list_move_tail(&ei
->i_es_list
, &sbi
->s_es_list
);
1473 * Normally we try hard to avoid shrinking precached inodes,
1474 * but we will as a last resort.
1476 if (!retried
&& ext4_test_inode_state(&ei
->vfs_inode
,
1477 EXT4_STATE_EXT_PRECACHED
)) {
1482 if (ei
== locked_ei
|| !write_trylock(&ei
->i_es_lock
)) {
1487 * Now we hold i_es_lock which protects us from inode reclaim
1488 * freeing inode under us
1490 spin_unlock(&sbi
->s_es_lock
);
1492 nr_shrunk
+= es_reclaim_extents(ei
, &nr_to_scan
);
1493 write_unlock(&ei
->i_es_lock
);
1495 if (nr_to_scan
<= 0)
1497 spin_lock(&sbi
->s_es_lock
);
1499 spin_unlock(&sbi
->s_es_lock
);
1502 * If we skipped any inodes, and we weren't able to make any
1503 * forward progress, try again to scan precached inodes.
1505 if ((nr_shrunk
== 0) && nr_skipped
&& !retried
) {
1510 if (locked_ei
&& nr_shrunk
== 0)
1511 nr_shrunk
= es_reclaim_extents(locked_ei
, &nr_to_scan
);
1514 scan_time
= ktime_to_ns(ktime_sub(ktime_get(), start_time
));
1515 if (likely(es_stats
->es_stats_scan_time
))
1516 es_stats
->es_stats_scan_time
= (scan_time
+
1517 es_stats
->es_stats_scan_time
*3) / 4;
1519 es_stats
->es_stats_scan_time
= scan_time
;
1520 if (scan_time
> es_stats
->es_stats_max_scan_time
)
1521 es_stats
->es_stats_max_scan_time
= scan_time
;
1522 if (likely(es_stats
->es_stats_shrunk
))
1523 es_stats
->es_stats_shrunk
= (nr_shrunk
+
1524 es_stats
->es_stats_shrunk
*3) / 4;
1526 es_stats
->es_stats_shrunk
= nr_shrunk
;
1528 trace_ext4_es_shrink(sbi
->s_sb
, nr_shrunk
, scan_time
,
1529 nr_skipped
, retried
);
1533 static unsigned long ext4_es_count(struct shrinker
*shrink
,
1534 struct shrink_control
*sc
)
1537 struct ext4_sb_info
*sbi
;
1539 sbi
= container_of(shrink
, struct ext4_sb_info
, s_es_shrinker
);
1540 nr
= percpu_counter_read_positive(&sbi
->s_es_stats
.es_stats_shk_cnt
);
1541 trace_ext4_es_shrink_count(sbi
->s_sb
, sc
->nr_to_scan
, nr
);
1545 static unsigned long ext4_es_scan(struct shrinker
*shrink
,
1546 struct shrink_control
*sc
)
1548 struct ext4_sb_info
*sbi
= container_of(shrink
,
1549 struct ext4_sb_info
, s_es_shrinker
);
1550 int nr_to_scan
= sc
->nr_to_scan
;
1553 ret
= percpu_counter_read_positive(&sbi
->s_es_stats
.es_stats_shk_cnt
);
1554 trace_ext4_es_shrink_scan_enter(sbi
->s_sb
, nr_to_scan
, ret
);
1559 nr_shrunk
= __es_shrink(sbi
, nr_to_scan
, NULL
);
1561 trace_ext4_es_shrink_scan_exit(sbi
->s_sb
, nr_shrunk
, ret
);
1565 int ext4_seq_es_shrinker_info_show(struct seq_file
*seq
, void *v
)
1567 struct ext4_sb_info
*sbi
= EXT4_SB((struct super_block
*) seq
->private);
1568 struct ext4_es_stats
*es_stats
= &sbi
->s_es_stats
;
1569 struct ext4_inode_info
*ei
, *max
= NULL
;
1570 unsigned int inode_cnt
= 0;
1572 if (v
!= SEQ_START_TOKEN
)
1575 /* here we just find an inode that has the max nr. of objects */
1576 spin_lock(&sbi
->s_es_lock
);
1577 list_for_each_entry(ei
, &sbi
->s_es_list
, i_es_list
) {
1579 if (max
&& max
->i_es_all_nr
< ei
->i_es_all_nr
)
1584 spin_unlock(&sbi
->s_es_lock
);
1586 seq_printf(seq
, "stats:\n %lld objects\n %lld reclaimable objects\n",
1587 percpu_counter_sum_positive(&es_stats
->es_stats_all_cnt
),
1588 percpu_counter_sum_positive(&es_stats
->es_stats_shk_cnt
));
1589 seq_printf(seq
, " %lld/%lld cache hits/misses\n",
1590 percpu_counter_sum_positive(&es_stats
->es_stats_cache_hits
),
1591 percpu_counter_sum_positive(&es_stats
->es_stats_cache_misses
));
1593 seq_printf(seq
, " %d inodes on list\n", inode_cnt
);
1595 seq_printf(seq
, "average:\n %llu us scan time\n",
1596 div_u64(es_stats
->es_stats_scan_time
, 1000));
1597 seq_printf(seq
, " %lu shrunk objects\n", es_stats
->es_stats_shrunk
);
1600 "maximum:\n %lu inode (%u objects, %u reclaimable)\n"
1601 " %llu us max scan time\n",
1602 max
->vfs_inode
.i_ino
, max
->i_es_all_nr
, max
->i_es_shk_nr
,
1603 div_u64(es_stats
->es_stats_max_scan_time
, 1000));
1608 int ext4_es_register_shrinker(struct ext4_sb_info
*sbi
)
1612 /* Make sure we have enough bits for physical block number */
1613 BUILD_BUG_ON(ES_SHIFT
< 48);
1614 INIT_LIST_HEAD(&sbi
->s_es_list
);
1615 sbi
->s_es_nr_inode
= 0;
1616 spin_lock_init(&sbi
->s_es_lock
);
1617 sbi
->s_es_stats
.es_stats_shrunk
= 0;
1618 err
= percpu_counter_init(&sbi
->s_es_stats
.es_stats_cache_hits
, 0,
1622 err
= percpu_counter_init(&sbi
->s_es_stats
.es_stats_cache_misses
, 0,
1626 sbi
->s_es_stats
.es_stats_scan_time
= 0;
1627 sbi
->s_es_stats
.es_stats_max_scan_time
= 0;
1628 err
= percpu_counter_init(&sbi
->s_es_stats
.es_stats_all_cnt
, 0, GFP_KERNEL
);
1631 err
= percpu_counter_init(&sbi
->s_es_stats
.es_stats_shk_cnt
, 0, GFP_KERNEL
);
1635 sbi
->s_es_shrinker
.scan_objects
= ext4_es_scan
;
1636 sbi
->s_es_shrinker
.count_objects
= ext4_es_count
;
1637 sbi
->s_es_shrinker
.seeks
= DEFAULT_SEEKS
;
1638 err
= register_shrinker(&sbi
->s_es_shrinker
);
1644 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_shk_cnt
);
1646 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_all_cnt
);
1648 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_cache_misses
);
1650 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_cache_hits
);
1654 void ext4_es_unregister_shrinker(struct ext4_sb_info
*sbi
)
1656 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_cache_hits
);
1657 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_cache_misses
);
1658 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_all_cnt
);
1659 percpu_counter_destroy(&sbi
->s_es_stats
.es_stats_shk_cnt
);
1660 unregister_shrinker(&sbi
->s_es_shrinker
);
1664 * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1665 * most *nr_to_scan extents, update *nr_to_scan accordingly.
1667 * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1668 * Increment *nr_shrunk by the number of reclaimed extents. Also update
1669 * ei->i_es_shrink_lblk to where we should continue scanning.
1671 static int es_do_reclaim_extents(struct ext4_inode_info
*ei
, ext4_lblk_t end
,
1672 int *nr_to_scan
, int *nr_shrunk
)
1674 struct inode
*inode
= &ei
->vfs_inode
;
1675 struct ext4_es_tree
*tree
= &ei
->i_es_tree
;
1676 struct extent_status
*es
;
1677 struct rb_node
*node
;
1679 es
= __es_tree_search(&tree
->root
, ei
->i_es_shrink_lblk
);
1683 while (*nr_to_scan
> 0) {
1684 if (es
->es_lblk
> end
) {
1685 ei
->i_es_shrink_lblk
= end
+ 1;
1690 node
= rb_next(&es
->rb_node
);
1692 * We can't reclaim delayed extent from status tree because
1693 * fiemap, bigallic, and seek_data/hole need to use it.
1695 if (ext4_es_is_delayed(es
))
1697 if (ext4_es_is_referenced(es
)) {
1698 ext4_es_clear_referenced(es
);
1702 rb_erase(&es
->rb_node
, &tree
->root
);
1703 ext4_es_free_extent(inode
, es
);
1708 es
= rb_entry(node
, struct extent_status
, rb_node
);
1710 ei
->i_es_shrink_lblk
= es
->es_lblk
;
1713 ei
->i_es_shrink_lblk
= 0;
1717 static int es_reclaim_extents(struct ext4_inode_info
*ei
, int *nr_to_scan
)
1719 struct inode
*inode
= &ei
->vfs_inode
;
1721 ext4_lblk_t start
= ei
->i_es_shrink_lblk
;
1722 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
1723 DEFAULT_RATELIMIT_BURST
);
1725 if (ei
->i_es_shk_nr
== 0)
1728 if (ext4_test_inode_state(inode
, EXT4_STATE_EXT_PRECACHED
) &&
1730 ext4_warning(inode
->i_sb
, "forced shrink of precached extents");
1732 if (!es_do_reclaim_extents(ei
, EXT_MAX_BLOCKS
, nr_to_scan
, &nr_shrunk
) &&
1734 es_do_reclaim_extents(ei
, start
- 1, nr_to_scan
, &nr_shrunk
);
1736 ei
->i_es_tree
.cache_es
= NULL
;
1741 * Called to support EXT4_IOC_CLEAR_ES_CACHE. We can only remove
1742 * discretionary entries from the extent status cache. (Some entries
1743 * must be present for proper operations.)
1745 void ext4_clear_inode_es(struct inode
*inode
)
1747 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1748 struct extent_status
*es
;
1749 struct ext4_es_tree
*tree
;
1750 struct rb_node
*node
;
1752 write_lock(&ei
->i_es_lock
);
1753 tree
= &EXT4_I(inode
)->i_es_tree
;
1754 tree
->cache_es
= NULL
;
1755 node
= rb_first(&tree
->root
);
1757 es
= rb_entry(node
, struct extent_status
, rb_node
);
1758 node
= rb_next(node
);
1759 if (!ext4_es_is_delayed(es
)) {
1760 rb_erase(&es
->rb_node
, &tree
->root
);
1761 ext4_es_free_extent(inode
, es
);
1764 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_PRECACHED
);
1765 write_unlock(&ei
->i_es_lock
);
1769 static void ext4_print_pending_tree(struct inode
*inode
)
1771 struct ext4_pending_tree
*tree
;
1772 struct rb_node
*node
;
1773 struct pending_reservation
*pr
;
1775 printk(KERN_DEBUG
"pending reservations for inode %lu:", inode
->i_ino
);
1776 tree
= &EXT4_I(inode
)->i_pending_tree
;
1777 node
= rb_first(&tree
->root
);
1779 pr
= rb_entry(node
, struct pending_reservation
, rb_node
);
1780 printk(KERN_DEBUG
" %u", pr
->lclu
);
1781 node
= rb_next(node
);
1783 printk(KERN_DEBUG
"\n");
1786 #define ext4_print_pending_tree(inode)
1789 int __init
ext4_init_pending(void)
1791 ext4_pending_cachep
= kmem_cache_create("ext4_pending_reservation",
1792 sizeof(struct pending_reservation
),
1793 0, (SLAB_RECLAIM_ACCOUNT
), NULL
);
1794 if (ext4_pending_cachep
== NULL
)
1799 void ext4_exit_pending(void)
1801 kmem_cache_destroy(ext4_pending_cachep
);
1804 void ext4_init_pending_tree(struct ext4_pending_tree
*tree
)
1806 tree
->root
= RB_ROOT
;
1810 * __get_pending - retrieve a pointer to a pending reservation
1812 * @inode - file containing the pending cluster reservation
1813 * @lclu - logical cluster of interest
1815 * Returns a pointer to a pending reservation if it's a member of
1816 * the set, and NULL if not. Must be called holding i_es_lock.
1818 static struct pending_reservation
*__get_pending(struct inode
*inode
,
1821 struct ext4_pending_tree
*tree
;
1822 struct rb_node
*node
;
1823 struct pending_reservation
*pr
= NULL
;
1825 tree
= &EXT4_I(inode
)->i_pending_tree
;
1826 node
= (&tree
->root
)->rb_node
;
1829 pr
= rb_entry(node
, struct pending_reservation
, rb_node
);
1830 if (lclu
< pr
->lclu
)
1831 node
= node
->rb_left
;
1832 else if (lclu
> pr
->lclu
)
1833 node
= node
->rb_right
;
1834 else if (lclu
== pr
->lclu
)
1841 * __insert_pending - adds a pending cluster reservation to the set of
1842 * pending reservations
1844 * @inode - file containing the cluster
1845 * @lblk - logical block in the cluster to be added
1847 * Returns 0 on successful insertion and -ENOMEM on failure. If the
1848 * pending reservation is already in the set, returns successfully.
1850 static int __insert_pending(struct inode
*inode
, ext4_lblk_t lblk
)
1852 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1853 struct ext4_pending_tree
*tree
= &EXT4_I(inode
)->i_pending_tree
;
1854 struct rb_node
**p
= &tree
->root
.rb_node
;
1855 struct rb_node
*parent
= NULL
;
1856 struct pending_reservation
*pr
;
1860 lclu
= EXT4_B2C(sbi
, lblk
);
1861 /* search to find parent for insertion */
1864 pr
= rb_entry(parent
, struct pending_reservation
, rb_node
);
1866 if (lclu
< pr
->lclu
) {
1868 } else if (lclu
> pr
->lclu
) {
1869 p
= &(*p
)->rb_right
;
1871 /* pending reservation already inserted */
1876 pr
= kmem_cache_alloc(ext4_pending_cachep
, GFP_ATOMIC
);
1883 rb_link_node(&pr
->rb_node
, parent
, p
);
1884 rb_insert_color(&pr
->rb_node
, &tree
->root
);
1891 * __remove_pending - removes a pending cluster reservation from the set
1892 * of pending reservations
1894 * @inode - file containing the cluster
1895 * @lblk - logical block in the pending cluster reservation to be removed
1897 * Returns successfully if pending reservation is not a member of the set.
1899 static void __remove_pending(struct inode
*inode
, ext4_lblk_t lblk
)
1901 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1902 struct pending_reservation
*pr
;
1903 struct ext4_pending_tree
*tree
;
1905 pr
= __get_pending(inode
, EXT4_B2C(sbi
, lblk
));
1907 tree
= &EXT4_I(inode
)->i_pending_tree
;
1908 rb_erase(&pr
->rb_node
, &tree
->root
);
1909 kmem_cache_free(ext4_pending_cachep
, pr
);
1914 * ext4_remove_pending - removes a pending cluster reservation from the set
1915 * of pending reservations
1917 * @inode - file containing the cluster
1918 * @lblk - logical block in the pending cluster reservation to be removed
1920 * Locking for external use of __remove_pending.
1922 void ext4_remove_pending(struct inode
*inode
, ext4_lblk_t lblk
)
1924 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1926 write_lock(&ei
->i_es_lock
);
1927 __remove_pending(inode
, lblk
);
1928 write_unlock(&ei
->i_es_lock
);
1932 * ext4_is_pending - determine whether a cluster has a pending reservation
1935 * @inode - file containing the cluster
1936 * @lblk - logical block in the cluster
1938 * Returns true if there's a pending reservation for the cluster in the
1939 * set of pending reservations, and false if not.
1941 bool ext4_is_pending(struct inode
*inode
, ext4_lblk_t lblk
)
1943 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1944 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1947 read_lock(&ei
->i_es_lock
);
1948 ret
= (bool)(__get_pending(inode
, EXT4_B2C(sbi
, lblk
)) != NULL
);
1949 read_unlock(&ei
->i_es_lock
);
1955 * ext4_es_insert_delayed_block - adds a delayed block to the extents status
1956 * tree, adding a pending reservation where
1959 * @inode - file containing the newly added block
1960 * @lblk - logical block to be added
1961 * @allocated - indicates whether a physical cluster has been allocated for
1962 * the logical cluster that contains the block
1964 * Returns 0 on success, negative error code on failure.
1966 int ext4_es_insert_delayed_block(struct inode
*inode
, ext4_lblk_t lblk
,
1969 struct extent_status newes
;
1972 es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
1973 lblk
, inode
->i_ino
);
1975 newes
.es_lblk
= lblk
;
1977 ext4_es_store_pblock_status(&newes
, ~0, EXTENT_STATUS_DELAYED
);
1978 trace_ext4_es_insert_delayed_block(inode
, &newes
, allocated
);
1980 ext4_es_insert_extent_check(inode
, &newes
);
1982 write_lock(&EXT4_I(inode
)->i_es_lock
);
1984 err
= __es_remove_extent(inode
, lblk
, lblk
, NULL
);
1988 err
= __es_insert_extent(inode
, &newes
);
1989 if (err
== -ENOMEM
&& __es_shrink(EXT4_SB(inode
->i_sb
),
1990 128, EXT4_I(inode
)))
1996 __insert_pending(inode
, lblk
);
1999 write_unlock(&EXT4_I(inode
)->i_es_lock
);
2001 ext4_es_print_tree(inode
);
2002 ext4_print_pending_tree(inode
);
2008 * __es_delayed_clu - count number of clusters containing blocks that
2011 * @inode - file containing block range
2012 * @start - logical block defining start of range
2013 * @end - logical block defining end of range
2015 * Returns the number of clusters containing only delayed (not delayed
2016 * and unwritten) blocks in the range specified by @start and @end. Any
2017 * cluster or part of a cluster within the range and containing a delayed
2018 * and not unwritten block within the range is counted as a whole cluster.
2020 static unsigned int __es_delayed_clu(struct inode
*inode
, ext4_lblk_t start
,
2023 struct ext4_es_tree
*tree
= &EXT4_I(inode
)->i_es_tree
;
2024 struct extent_status
*es
;
2025 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2026 struct rb_node
*node
;
2027 ext4_lblk_t first_lclu
, last_lclu
;
2028 unsigned long long last_counted_lclu
;
2031 /* guaranteed to be unequal to any ext4_lblk_t value */
2032 last_counted_lclu
= ~0ULL;
2034 es
= __es_tree_search(&tree
->root
, start
);
2036 while (es
&& (es
->es_lblk
<= end
)) {
2037 if (ext4_es_is_delonly(es
)) {
2038 if (es
->es_lblk
<= start
)
2039 first_lclu
= EXT4_B2C(sbi
, start
);
2041 first_lclu
= EXT4_B2C(sbi
, es
->es_lblk
);
2043 if (ext4_es_end(es
) >= end
)
2044 last_lclu
= EXT4_B2C(sbi
, end
);
2046 last_lclu
= EXT4_B2C(sbi
, ext4_es_end(es
));
2048 if (first_lclu
== last_counted_lclu
)
2049 n
+= last_lclu
- first_lclu
;
2051 n
+= last_lclu
- first_lclu
+ 1;
2052 last_counted_lclu
= last_lclu
;
2054 node
= rb_next(&es
->rb_node
);
2057 es
= rb_entry(node
, struct extent_status
, rb_node
);
2064 * ext4_es_delayed_clu - count number of clusters containing blocks that
2065 * are both delayed and unwritten
2067 * @inode - file containing block range
2068 * @lblk - logical block defining start of range
2069 * @len - number of blocks in range
2071 * Locking for external use of __es_delayed_clu().
2073 unsigned int ext4_es_delayed_clu(struct inode
*inode
, ext4_lblk_t lblk
,
2076 struct ext4_inode_info
*ei
= EXT4_I(inode
);
2083 end
= lblk
+ len
- 1;
2084 WARN_ON(end
< lblk
);
2086 read_lock(&ei
->i_es_lock
);
2088 n
= __es_delayed_clu(inode
, lblk
, end
);
2090 read_unlock(&ei
->i_es_lock
);
2096 * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2097 * reservations for a specified block range depending
2098 * upon the presence or absence of delayed blocks
2099 * outside the range within clusters at the ends of the
2102 * @inode - file containing the range
2103 * @lblk - logical block defining the start of range
2104 * @len - length of range in blocks
2106 * Used after a newly allocated extent is added to the extents status tree.
2107 * Requires that the extents in the range have either written or unwritten
2108 * status. Must be called while holding i_es_lock.
2110 static void __revise_pending(struct inode
*inode
, ext4_lblk_t lblk
,
2113 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2114 ext4_lblk_t end
= lblk
+ len
- 1;
2115 ext4_lblk_t first
, last
;
2116 bool f_del
= false, l_del
= false;
2122 * Two cases - block range within single cluster and block range
2123 * spanning two or more clusters. Note that a cluster belonging
2124 * to a range starting and/or ending on a cluster boundary is treated
2125 * as if it does not contain a delayed extent. The new range may
2126 * have allocated space for previously delayed blocks out to the
2127 * cluster boundary, requiring that any pre-existing pending
2128 * reservation be canceled. Because this code only looks at blocks
2129 * outside the range, it should revise pending reservations
2130 * correctly even if the extent represented by the range can't be
2131 * inserted in the extents status tree due to ENOSPC.
2134 if (EXT4_B2C(sbi
, lblk
) == EXT4_B2C(sbi
, end
)) {
2135 first
= EXT4_LBLK_CMASK(sbi
, lblk
);
2137 f_del
= __es_scan_range(inode
, &ext4_es_is_delonly
,
2140 __insert_pending(inode
, first
);
2142 last
= EXT4_LBLK_CMASK(sbi
, end
) +
2143 sbi
->s_cluster_ratio
- 1;
2145 l_del
= __es_scan_range(inode
,
2146 &ext4_es_is_delonly
,
2149 __insert_pending(inode
, last
);
2151 __remove_pending(inode
, last
);
2154 first
= EXT4_LBLK_CMASK(sbi
, lblk
);
2156 f_del
= __es_scan_range(inode
, &ext4_es_is_delonly
,
2159 __insert_pending(inode
, first
);
2161 __remove_pending(inode
, first
);
2163 last
= EXT4_LBLK_CMASK(sbi
, end
) + sbi
->s_cluster_ratio
- 1;
2165 l_del
= __es_scan_range(inode
, &ext4_es_is_delonly
,
2168 __insert_pending(inode
, last
);
2170 __remove_pending(inode
, last
);