1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
94 * [10-Sep-98 Alan Modra] Another symlink change.
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
128 getname_flags(const char __user
*filename
, int flags
, int *empty
)
130 struct filename
*result
;
134 result
= audit_reusename(filename
);
138 result
= __getname();
139 if (unlikely(!result
))
140 return ERR_PTR(-ENOMEM
);
143 * First, try to embed the struct filename inside the names_cache
146 kname
= (char *)result
->iname
;
147 result
->name
= kname
;
149 len
= strncpy_from_user(kname
, filename
, EMBEDDED_NAME_MAX
);
150 if (unlikely(len
< 0)) {
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
161 if (unlikely(len
== EMBEDDED_NAME_MAX
)) {
162 const size_t size
= offsetof(struct filename
, iname
[1]);
163 kname
= (char *)result
;
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
170 result
= kzalloc(size
, GFP_KERNEL
);
171 if (unlikely(!result
)) {
173 return ERR_PTR(-ENOMEM
);
175 result
->name
= kname
;
176 len
= strncpy_from_user(kname
, filename
, PATH_MAX
);
177 if (unlikely(len
< 0)) {
182 if (unlikely(len
== PATH_MAX
)) {
185 return ERR_PTR(-ENAMETOOLONG
);
190 /* The empty path is special. */
191 if (unlikely(!len
)) {
194 if (!(flags
& LOOKUP_EMPTY
)) {
196 return ERR_PTR(-ENOENT
);
200 result
->uptr
= filename
;
201 result
->aname
= NULL
;
202 audit_getname(result
);
207 getname(const char __user
* filename
)
209 return getname_flags(filename
, 0, NULL
);
213 getname_kernel(const char * filename
)
215 struct filename
*result
;
216 int len
= strlen(filename
) + 1;
218 result
= __getname();
219 if (unlikely(!result
))
220 return ERR_PTR(-ENOMEM
);
222 if (len
<= EMBEDDED_NAME_MAX
) {
223 result
->name
= (char *)result
->iname
;
224 } else if (len
<= PATH_MAX
) {
225 const size_t size
= offsetof(struct filename
, iname
[1]);
226 struct filename
*tmp
;
228 tmp
= kmalloc(size
, GFP_KERNEL
);
229 if (unlikely(!tmp
)) {
231 return ERR_PTR(-ENOMEM
);
233 tmp
->name
= (char *)result
;
237 return ERR_PTR(-ENAMETOOLONG
);
239 memcpy((char *)result
->name
, filename
, len
);
241 result
->aname
= NULL
;
243 audit_getname(result
);
248 void putname(struct filename
*name
)
250 BUG_ON(name
->refcnt
<= 0);
252 if (--name
->refcnt
> 0)
255 if (name
->name
!= name
->iname
) {
256 __putname(name
->name
);
262 static int check_acl(struct inode
*inode
, int mask
)
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl
*acl
;
267 if (mask
& MAY_NOT_BLOCK
) {
268 acl
= get_cached_acl_rcu(inode
, ACL_TYPE_ACCESS
);
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl
))
274 return posix_acl_permission(inode
, acl
, mask
);
277 acl
= get_acl(inode
, ACL_TYPE_ACCESS
);
281 int error
= posix_acl_permission(inode
, acl
, mask
);
282 posix_acl_release(acl
);
291 * This does the basic UNIX permission checking.
293 * Note that the POSIX ACL check cares about the MAY_NOT_BLOCK bit,
296 static int acl_permission_check(struct inode
*inode
, int mask
)
298 unsigned int mode
= inode
->i_mode
;
300 /* Are we the owner? If so, ACL's don't matter */
301 if (likely(uid_eq(current_fsuid(), inode
->i_uid
))) {
304 return (mask
& ~mode
) ? -EACCES
: 0;
307 /* Do we have ACL's? */
308 if (IS_POSIXACL(inode
) && (mode
& S_IRWXG
)) {
309 int error
= check_acl(inode
, mask
);
310 if (error
!= -EAGAIN
)
314 /* Only RWX matters for group/other mode bits */
318 * Are the group permissions different from
319 * the other permissions in the bits we care
320 * about? Need to check group ownership if so.
322 if (mask
& (mode
^ (mode
>> 3))) {
323 if (in_group_p(inode
->i_gid
))
327 /* Bits in 'mode' clear that we require? */
328 return (mask
& ~mode
) ? -EACCES
: 0;
332 * generic_permission - check for access rights on a Posix-like filesystem
333 * @inode: inode to check access rights for
334 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
335 * %MAY_NOT_BLOCK ...)
337 * Used to check for read/write/execute permissions on a file.
338 * We use "fsuid" for this, letting us set arbitrary permissions
339 * for filesystem access without changing the "normal" uids which
340 * are used for other things.
342 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
343 * request cannot be satisfied (eg. requires blocking or too much complexity).
344 * It would then be called again in ref-walk mode.
346 int generic_permission(struct inode
*inode
, int mask
)
351 * Do the basic permission checks.
353 ret
= acl_permission_check(inode
, mask
);
357 if (S_ISDIR(inode
->i_mode
)) {
358 /* DACs are overridable for directories */
359 if (!(mask
& MAY_WRITE
))
360 if (capable_wrt_inode_uidgid(inode
,
361 CAP_DAC_READ_SEARCH
))
363 if (capable_wrt_inode_uidgid(inode
, CAP_DAC_OVERRIDE
))
369 * Searching includes executable on directories, else just read.
371 mask
&= MAY_READ
| MAY_WRITE
| MAY_EXEC
;
372 if (mask
== MAY_READ
)
373 if (capable_wrt_inode_uidgid(inode
, CAP_DAC_READ_SEARCH
))
376 * Read/write DACs are always overridable.
377 * Executable DACs are overridable when there is
378 * at least one exec bit set.
380 if (!(mask
& MAY_EXEC
) || (inode
->i_mode
& S_IXUGO
))
381 if (capable_wrt_inode_uidgid(inode
, CAP_DAC_OVERRIDE
))
386 EXPORT_SYMBOL(generic_permission
);
389 * We _really_ want to just do "generic_permission()" without
390 * even looking at the inode->i_op values. So we keep a cache
391 * flag in inode->i_opflags, that says "this has not special
392 * permission function, use the fast case".
394 static inline int do_inode_permission(struct inode
*inode
, int mask
)
396 if (unlikely(!(inode
->i_opflags
& IOP_FASTPERM
))) {
397 if (likely(inode
->i_op
->permission
))
398 return inode
->i_op
->permission(inode
, mask
);
400 /* This gets set once for the inode lifetime */
401 spin_lock(&inode
->i_lock
);
402 inode
->i_opflags
|= IOP_FASTPERM
;
403 spin_unlock(&inode
->i_lock
);
405 return generic_permission(inode
, mask
);
409 * sb_permission - Check superblock-level permissions
410 * @sb: Superblock of inode to check permission on
411 * @inode: Inode to check permission on
412 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
414 * Separate out file-system wide checks from inode-specific permission checks.
416 static int sb_permission(struct super_block
*sb
, struct inode
*inode
, int mask
)
418 if (unlikely(mask
& MAY_WRITE
)) {
419 umode_t mode
= inode
->i_mode
;
421 /* Nobody gets write access to a read-only fs. */
422 if (sb_rdonly(sb
) && (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
)))
429 * inode_permission - Check for access rights to a given inode
430 * @inode: Inode to check permission on
431 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
433 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
434 * this, letting us set arbitrary permissions for filesystem access without
435 * changing the "normal" UIDs which are used for other things.
437 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
439 int inode_permission(struct inode
*inode
, int mask
)
443 retval
= sb_permission(inode
->i_sb
, inode
, mask
);
447 if (unlikely(mask
& MAY_WRITE
)) {
449 * Nobody gets write access to an immutable file.
451 if (IS_IMMUTABLE(inode
))
455 * Updating mtime will likely cause i_uid and i_gid to be
456 * written back improperly if their true value is unknown
459 if (HAS_UNMAPPED_ID(inode
))
463 retval
= do_inode_permission(inode
, mask
);
467 retval
= devcgroup_inode_permission(inode
, mask
);
471 return security_inode_permission(inode
, mask
);
473 EXPORT_SYMBOL(inode_permission
);
476 * path_get - get a reference to a path
477 * @path: path to get the reference to
479 * Given a path increment the reference count to the dentry and the vfsmount.
481 void path_get(const struct path
*path
)
486 EXPORT_SYMBOL(path_get
);
489 * path_put - put a reference to a path
490 * @path: path to put the reference to
492 * Given a path decrement the reference count to the dentry and the vfsmount.
494 void path_put(const struct path
*path
)
499 EXPORT_SYMBOL(path_put
);
501 #define EMBEDDED_LEVELS 2
506 struct inode
*inode
; /* path.dentry.d_inode */
508 unsigned seq
, m_seq
, r_seq
;
511 int total_link_count
;
514 struct delayed_call done
;
517 } *stack
, internal
[EMBEDDED_LEVELS
];
518 struct filename
*name
;
519 struct nameidata
*saved
;
524 } __randomize_layout
;
526 static void set_nameidata(struct nameidata
*p
, int dfd
, struct filename
*name
)
528 struct nameidata
*old
= current
->nameidata
;
529 p
->stack
= p
->internal
;
532 p
->total_link_count
= old
? old
->total_link_count
: 0;
534 current
->nameidata
= p
;
537 static void restore_nameidata(void)
539 struct nameidata
*now
= current
->nameidata
, *old
= now
->saved
;
541 current
->nameidata
= old
;
543 old
->total_link_count
= now
->total_link_count
;
544 if (now
->stack
!= now
->internal
)
548 static bool nd_alloc_stack(struct nameidata
*nd
)
552 p
= kmalloc_array(MAXSYMLINKS
, sizeof(struct saved
),
553 nd
->flags
& LOOKUP_RCU
? GFP_ATOMIC
: GFP_KERNEL
);
556 memcpy(p
, nd
->internal
, sizeof(nd
->internal
));
562 * path_connected - Verify that a dentry is below mnt.mnt_root
564 * Rename can sometimes move a file or directory outside of a bind
565 * mount, path_connected allows those cases to be detected.
567 static bool path_connected(struct vfsmount
*mnt
, struct dentry
*dentry
)
569 struct super_block
*sb
= mnt
->mnt_sb
;
571 /* Bind mounts and multi-root filesystems can have disconnected paths */
572 if (!(sb
->s_iflags
& SB_I_MULTIROOT
) && (mnt
->mnt_root
== sb
->s_root
))
575 return is_subdir(dentry
, mnt
->mnt_root
);
578 static void drop_links(struct nameidata
*nd
)
582 struct saved
*last
= nd
->stack
+ i
;
583 do_delayed_call(&last
->done
);
584 clear_delayed_call(&last
->done
);
588 static void terminate_walk(struct nameidata
*nd
)
591 if (!(nd
->flags
& LOOKUP_RCU
)) {
594 for (i
= 0; i
< nd
->depth
; i
++)
595 path_put(&nd
->stack
[i
].link
);
596 if (nd
->flags
& LOOKUP_ROOT_GRABBED
) {
598 nd
->flags
&= ~LOOKUP_ROOT_GRABBED
;
601 nd
->flags
&= ~LOOKUP_RCU
;
607 /* path_put is needed afterwards regardless of success or failure */
608 static bool __legitimize_path(struct path
*path
, unsigned seq
, unsigned mseq
)
610 int res
= __legitimize_mnt(path
->mnt
, mseq
);
617 if (unlikely(!lockref_get_not_dead(&path
->dentry
->d_lockref
))) {
621 return !read_seqcount_retry(&path
->dentry
->d_seq
, seq
);
624 static inline bool legitimize_path(struct nameidata
*nd
,
625 struct path
*path
, unsigned seq
)
627 return __legitimize_path(path
, seq
, nd
->m_seq
);
630 static bool legitimize_links(struct nameidata
*nd
)
633 for (i
= 0; i
< nd
->depth
; i
++) {
634 struct saved
*last
= nd
->stack
+ i
;
635 if (unlikely(!legitimize_path(nd
, &last
->link
, last
->seq
))) {
644 static bool legitimize_root(struct nameidata
*nd
)
647 * For scoped-lookups (where nd->root has been zeroed), we need to
648 * restart the whole lookup from scratch -- because set_root() is wrong
649 * for these lookups (nd->dfd is the root, not the filesystem root).
651 if (!nd
->root
.mnt
&& (nd
->flags
& LOOKUP_IS_SCOPED
))
653 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
654 if (!nd
->root
.mnt
|| (nd
->flags
& LOOKUP_ROOT
))
656 nd
->flags
|= LOOKUP_ROOT_GRABBED
;
657 return legitimize_path(nd
, &nd
->root
, nd
->root_seq
);
661 * Path walking has 2 modes, rcu-walk and ref-walk (see
662 * Documentation/filesystems/path-lookup.txt). In situations when we can't
663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664 * normal reference counts on dentries and vfsmounts to transition to ref-walk
665 * mode. Refcounts are grabbed at the last known good point before rcu-walk
666 * got stuck, so ref-walk may continue from there. If this is not successful
667 * (eg. a seqcount has changed), then failure is returned and it's up to caller
668 * to restart the path walk from the beginning in ref-walk mode.
672 * unlazy_walk - try to switch to ref-walk mode.
673 * @nd: nameidata pathwalk data
674 * Returns: 0 on success, -ECHILD on failure
676 * unlazy_walk attempts to legitimize the current nd->path and nd->root
678 * Must be called from rcu-walk context.
679 * Nothing should touch nameidata between unlazy_walk() failure and
682 static int unlazy_walk(struct nameidata
*nd
)
684 struct dentry
*parent
= nd
->path
.dentry
;
686 BUG_ON(!(nd
->flags
& LOOKUP_RCU
));
688 nd
->flags
&= ~LOOKUP_RCU
;
689 if (unlikely(!legitimize_links(nd
)))
691 if (unlikely(!legitimize_path(nd
, &nd
->path
, nd
->seq
)))
693 if (unlikely(!legitimize_root(nd
)))
696 BUG_ON(nd
->inode
!= parent
->d_inode
);
701 nd
->path
.dentry
= NULL
;
708 * unlazy_child - try to switch to ref-walk mode.
709 * @nd: nameidata pathwalk data
710 * @dentry: child of nd->path.dentry
711 * @seq: seq number to check dentry against
712 * Returns: 0 on success, -ECHILD on failure
714 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
715 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
716 * @nd. Must be called from rcu-walk context.
717 * Nothing should touch nameidata between unlazy_child() failure and
720 static int unlazy_child(struct nameidata
*nd
, struct dentry
*dentry
, unsigned seq
)
722 BUG_ON(!(nd
->flags
& LOOKUP_RCU
));
724 nd
->flags
&= ~LOOKUP_RCU
;
725 if (unlikely(!legitimize_links(nd
)))
727 if (unlikely(!legitimize_mnt(nd
->path
.mnt
, nd
->m_seq
)))
729 if (unlikely(!lockref_get_not_dead(&nd
->path
.dentry
->d_lockref
)))
733 * We need to move both the parent and the dentry from the RCU domain
734 * to be properly refcounted. And the sequence number in the dentry
735 * validates *both* dentry counters, since we checked the sequence
736 * number of the parent after we got the child sequence number. So we
737 * know the parent must still be valid if the child sequence number is
739 if (unlikely(!lockref_get_not_dead(&dentry
->d_lockref
)))
741 if (unlikely(read_seqcount_retry(&dentry
->d_seq
, seq
)))
744 * Sequence counts matched. Now make sure that the root is
745 * still valid and get it if required.
747 if (unlikely(!legitimize_root(nd
)))
755 nd
->path
.dentry
= NULL
;
765 static inline int d_revalidate(struct dentry
*dentry
, unsigned int flags
)
767 if (unlikely(dentry
->d_flags
& DCACHE_OP_REVALIDATE
))
768 return dentry
->d_op
->d_revalidate(dentry
, flags
);
774 * complete_walk - successful completion of path walk
775 * @nd: pointer nameidata
777 * If we had been in RCU mode, drop out of it and legitimize nd->path.
778 * Revalidate the final result, unless we'd already done that during
779 * the path walk or the filesystem doesn't ask for it. Return 0 on
780 * success, -error on failure. In case of failure caller does not
781 * need to drop nd->path.
783 static int complete_walk(struct nameidata
*nd
)
785 struct dentry
*dentry
= nd
->path
.dentry
;
788 if (nd
->flags
& LOOKUP_RCU
) {
790 * We don't want to zero nd->root for scoped-lookups or
791 * externally-managed nd->root.
793 if (!(nd
->flags
& (LOOKUP_ROOT
| LOOKUP_IS_SCOPED
)))
795 if (unlikely(unlazy_walk(nd
)))
799 if (unlikely(nd
->flags
& LOOKUP_IS_SCOPED
)) {
801 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
802 * ever step outside the root during lookup" and should already
803 * be guaranteed by the rest of namei, we want to avoid a namei
804 * BUG resulting in userspace being given a path that was not
805 * scoped within the root at some point during the lookup.
807 * So, do a final sanity-check to make sure that in the
808 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
809 * we won't silently return an fd completely outside of the
810 * requested root to userspace.
812 * Userspace could move the path outside the root after this
813 * check, but as discussed elsewhere this is not a concern (the
814 * resolved file was inside the root at some point).
816 if (!path_is_under(&nd
->path
, &nd
->root
))
820 if (likely(!(nd
->flags
& LOOKUP_JUMPED
)))
823 if (likely(!(dentry
->d_flags
& DCACHE_OP_WEAK_REVALIDATE
)))
826 status
= dentry
->d_op
->d_weak_revalidate(dentry
, nd
->flags
);
836 static int set_root(struct nameidata
*nd
)
838 struct fs_struct
*fs
= current
->fs
;
841 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
842 * still have to ensure it doesn't happen because it will cause a breakout
845 if (WARN_ON(nd
->flags
& LOOKUP_IS_SCOPED
))
846 return -ENOTRECOVERABLE
;
848 if (nd
->flags
& LOOKUP_RCU
) {
852 seq
= read_seqcount_begin(&fs
->seq
);
854 nd
->root_seq
= __read_seqcount_begin(&nd
->root
.dentry
->d_seq
);
855 } while (read_seqcount_retry(&fs
->seq
, seq
));
857 get_fs_root(fs
, &nd
->root
);
858 nd
->flags
|= LOOKUP_ROOT_GRABBED
;
863 static int nd_jump_root(struct nameidata
*nd
)
865 if (unlikely(nd
->flags
& LOOKUP_BENEATH
))
867 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
)) {
868 /* Absolute path arguments to path_init() are allowed. */
869 if (nd
->path
.mnt
!= NULL
&& nd
->path
.mnt
!= nd
->root
.mnt
)
873 int error
= set_root(nd
);
877 if (nd
->flags
& LOOKUP_RCU
) {
881 nd
->inode
= d
->d_inode
;
882 nd
->seq
= nd
->root_seq
;
883 if (unlikely(read_seqcount_retry(&d
->d_seq
, nd
->seq
)))
889 nd
->inode
= nd
->path
.dentry
->d_inode
;
891 nd
->flags
|= LOOKUP_JUMPED
;
896 * Helper to directly jump to a known parsed path from ->get_link,
897 * caller must have taken a reference to path beforehand.
899 int nd_jump_link(struct path
*path
)
902 struct nameidata
*nd
= current
->nameidata
;
904 if (unlikely(nd
->flags
& LOOKUP_NO_MAGICLINKS
))
908 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
)) {
909 if (nd
->path
.mnt
!= path
->mnt
)
912 /* Not currently safe for scoped-lookups. */
913 if (unlikely(nd
->flags
& LOOKUP_IS_SCOPED
))
918 nd
->inode
= nd
->path
.dentry
->d_inode
;
919 nd
->flags
|= LOOKUP_JUMPED
;
927 static inline void put_link(struct nameidata
*nd
)
929 struct saved
*last
= nd
->stack
+ --nd
->depth
;
930 do_delayed_call(&last
->done
);
931 if (!(nd
->flags
& LOOKUP_RCU
))
932 path_put(&last
->link
);
935 int sysctl_protected_symlinks __read_mostly
= 0;
936 int sysctl_protected_hardlinks __read_mostly
= 0;
937 int sysctl_protected_fifos __read_mostly
;
938 int sysctl_protected_regular __read_mostly
;
941 * may_follow_link - Check symlink following for unsafe situations
942 * @nd: nameidata pathwalk data
944 * In the case of the sysctl_protected_symlinks sysctl being enabled,
945 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
946 * in a sticky world-writable directory. This is to protect privileged
947 * processes from failing races against path names that may change out
948 * from under them by way of other users creating malicious symlinks.
949 * It will permit symlinks to be followed only when outside a sticky
950 * world-writable directory, or when the uid of the symlink and follower
951 * match, or when the directory owner matches the symlink's owner.
953 * Returns 0 if following the symlink is allowed, -ve on error.
955 static inline int may_follow_link(struct nameidata
*nd
, const struct inode
*inode
)
957 if (!sysctl_protected_symlinks
)
960 /* Allowed if owner and follower match. */
961 if (uid_eq(current_cred()->fsuid
, inode
->i_uid
))
964 /* Allowed if parent directory not sticky and world-writable. */
965 if ((nd
->dir_mode
& (S_ISVTX
|S_IWOTH
)) != (S_ISVTX
|S_IWOTH
))
968 /* Allowed if parent directory and link owner match. */
969 if (uid_valid(nd
->dir_uid
) && uid_eq(nd
->dir_uid
, inode
->i_uid
))
972 if (nd
->flags
& LOOKUP_RCU
)
975 audit_inode(nd
->name
, nd
->stack
[0].link
.dentry
, 0);
976 audit_log_path_denied(AUDIT_ANOM_LINK
, "follow_link");
981 * safe_hardlink_source - Check for safe hardlink conditions
982 * @inode: the source inode to hardlink from
984 * Return false if at least one of the following conditions:
985 * - inode is not a regular file
987 * - inode is setgid and group-exec
988 * - access failure for read and write
990 * Otherwise returns true.
992 static bool safe_hardlink_source(struct inode
*inode
)
994 umode_t mode
= inode
->i_mode
;
996 /* Special files should not get pinned to the filesystem. */
1000 /* Setuid files should not get pinned to the filesystem. */
1004 /* Executable setgid files should not get pinned to the filesystem. */
1005 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
))
1008 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1009 if (inode_permission(inode
, MAY_READ
| MAY_WRITE
))
1016 * may_linkat - Check permissions for creating a hardlink
1017 * @link: the source to hardlink from
1019 * Block hardlink when all of:
1020 * - sysctl_protected_hardlinks enabled
1021 * - fsuid does not match inode
1022 * - hardlink source is unsafe (see safe_hardlink_source() above)
1023 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1025 * Returns 0 if successful, -ve on error.
1027 static int may_linkat(struct path
*link
)
1029 struct inode
*inode
= link
->dentry
->d_inode
;
1031 /* Inode writeback is not safe when the uid or gid are invalid. */
1032 if (!uid_valid(inode
->i_uid
) || !gid_valid(inode
->i_gid
))
1035 if (!sysctl_protected_hardlinks
)
1038 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1039 * otherwise, it must be a safe source.
1041 if (safe_hardlink_source(inode
) || inode_owner_or_capable(inode
))
1044 audit_log_path_denied(AUDIT_ANOM_LINK
, "linkat");
1049 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1050 * should be allowed, or not, on files that already
1052 * @dir_mode: mode bits of directory
1053 * @dir_uid: owner of directory
1054 * @inode: the inode of the file to open
1056 * Block an O_CREAT open of a FIFO (or a regular file) when:
1057 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1058 * - the file already exists
1059 * - we are in a sticky directory
1060 * - we don't own the file
1061 * - the owner of the directory doesn't own the file
1062 * - the directory is world writable
1063 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1064 * the directory doesn't have to be world writable: being group writable will
1067 * Returns 0 if the open is allowed, -ve on error.
1069 static int may_create_in_sticky(umode_t dir_mode
, kuid_t dir_uid
,
1070 struct inode
* const inode
)
1072 if ((!sysctl_protected_fifos
&& S_ISFIFO(inode
->i_mode
)) ||
1073 (!sysctl_protected_regular
&& S_ISREG(inode
->i_mode
)) ||
1074 likely(!(dir_mode
& S_ISVTX
)) ||
1075 uid_eq(inode
->i_uid
, dir_uid
) ||
1076 uid_eq(current_fsuid(), inode
->i_uid
))
1079 if (likely(dir_mode
& 0002) ||
1081 ((sysctl_protected_fifos
>= 2 && S_ISFIFO(inode
->i_mode
)) ||
1082 (sysctl_protected_regular
>= 2 && S_ISREG(inode
->i_mode
))))) {
1083 const char *operation
= S_ISFIFO(inode
->i_mode
) ?
1084 "sticky_create_fifo" :
1085 "sticky_create_regular";
1086 audit_log_path_denied(AUDIT_ANOM_CREAT
, operation
);
1093 * follow_up - Find the mountpoint of path's vfsmount
1095 * Given a path, find the mountpoint of its source file system.
1096 * Replace @path with the path of the mountpoint in the parent mount.
1099 * Return 1 if we went up a level and 0 if we were already at the
1102 int follow_up(struct path
*path
)
1104 struct mount
*mnt
= real_mount(path
->mnt
);
1105 struct mount
*parent
;
1106 struct dentry
*mountpoint
;
1108 read_seqlock_excl(&mount_lock
);
1109 parent
= mnt
->mnt_parent
;
1110 if (parent
== mnt
) {
1111 read_sequnlock_excl(&mount_lock
);
1114 mntget(&parent
->mnt
);
1115 mountpoint
= dget(mnt
->mnt_mountpoint
);
1116 read_sequnlock_excl(&mount_lock
);
1118 path
->dentry
= mountpoint
;
1120 path
->mnt
= &parent
->mnt
;
1123 EXPORT_SYMBOL(follow_up
);
1125 static bool choose_mountpoint_rcu(struct mount
*m
, const struct path
*root
,
1126 struct path
*path
, unsigned *seqp
)
1128 while (mnt_has_parent(m
)) {
1129 struct dentry
*mountpoint
= m
->mnt_mountpoint
;
1132 if (unlikely(root
->dentry
== mountpoint
&&
1133 root
->mnt
== &m
->mnt
))
1135 if (mountpoint
!= m
->mnt
.mnt_root
) {
1136 path
->mnt
= &m
->mnt
;
1137 path
->dentry
= mountpoint
;
1138 *seqp
= read_seqcount_begin(&mountpoint
->d_seq
);
1145 static bool choose_mountpoint(struct mount
*m
, const struct path
*root
,
1152 unsigned seq
, mseq
= read_seqbegin(&mount_lock
);
1154 found
= choose_mountpoint_rcu(m
, root
, path
, &seq
);
1155 if (unlikely(!found
)) {
1156 if (!read_seqretry(&mount_lock
, mseq
))
1159 if (likely(__legitimize_path(path
, seq
, mseq
)))
1171 * Perform an automount
1172 * - return -EISDIR to tell follow_managed() to stop and return the path we
1175 static int follow_automount(struct path
*path
, int *count
, unsigned lookup_flags
)
1177 struct dentry
*dentry
= path
->dentry
;
1179 /* We don't want to mount if someone's just doing a stat -
1180 * unless they're stat'ing a directory and appended a '/' to
1183 * We do, however, want to mount if someone wants to open or
1184 * create a file of any type under the mountpoint, wants to
1185 * traverse through the mountpoint or wants to open the
1186 * mounted directory. Also, autofs may mark negative dentries
1187 * as being automount points. These will need the attentions
1188 * of the daemon to instantiate them before they can be used.
1190 if (!(lookup_flags
& (LOOKUP_PARENT
| LOOKUP_DIRECTORY
|
1191 LOOKUP_OPEN
| LOOKUP_CREATE
| LOOKUP_AUTOMOUNT
)) &&
1195 if (count
&& (*count
)++ >= MAXSYMLINKS
)
1198 return finish_automount(dentry
->d_op
->d_automount(path
), path
);
1202 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1203 * dentries are pinned but not locked here, so negative dentry can go
1204 * positive right under us. Use of smp_load_acquire() provides a barrier
1205 * sufficient for ->d_inode and ->d_flags consistency.
1207 static int __traverse_mounts(struct path
*path
, unsigned flags
, bool *jumped
,
1208 int *count
, unsigned lookup_flags
)
1210 struct vfsmount
*mnt
= path
->mnt
;
1211 bool need_mntput
= false;
1214 while (flags
& DCACHE_MANAGED_DENTRY
) {
1215 /* Allow the filesystem to manage the transit without i_mutex
1217 if (flags
& DCACHE_MANAGE_TRANSIT
) {
1218 ret
= path
->dentry
->d_op
->d_manage(path
, false);
1219 flags
= smp_load_acquire(&path
->dentry
->d_flags
);
1224 if (flags
& DCACHE_MOUNTED
) { // something's mounted on it..
1225 struct vfsmount
*mounted
= lookup_mnt(path
);
1226 if (mounted
) { // ... in our namespace
1230 path
->mnt
= mounted
;
1231 path
->dentry
= dget(mounted
->mnt_root
);
1232 // here we know it's positive
1233 flags
= path
->dentry
->d_flags
;
1239 if (!(flags
& DCACHE_NEED_AUTOMOUNT
))
1242 // uncovered automount point
1243 ret
= follow_automount(path
, count
, lookup_flags
);
1244 flags
= smp_load_acquire(&path
->dentry
->d_flags
);
1251 // possible if you race with several mount --move
1252 if (need_mntput
&& path
->mnt
== mnt
)
1254 if (!ret
&& unlikely(d_flags_negative(flags
)))
1256 *jumped
= need_mntput
;
1260 static inline int traverse_mounts(struct path
*path
, bool *jumped
,
1261 int *count
, unsigned lookup_flags
)
1263 unsigned flags
= smp_load_acquire(&path
->dentry
->d_flags
);
1266 if (likely(!(flags
& DCACHE_MANAGED_DENTRY
))) {
1268 if (unlikely(d_flags_negative(flags
)))
1272 return __traverse_mounts(path
, flags
, jumped
, count
, lookup_flags
);
1275 int follow_down_one(struct path
*path
)
1277 struct vfsmount
*mounted
;
1279 mounted
= lookup_mnt(path
);
1283 path
->mnt
= mounted
;
1284 path
->dentry
= dget(mounted
->mnt_root
);
1289 EXPORT_SYMBOL(follow_down_one
);
1292 * Follow down to the covering mount currently visible to userspace. At each
1293 * point, the filesystem owning that dentry may be queried as to whether the
1294 * caller is permitted to proceed or not.
1296 int follow_down(struct path
*path
)
1298 struct vfsmount
*mnt
= path
->mnt
;
1300 int ret
= traverse_mounts(path
, &jumped
, NULL
, 0);
1302 if (path
->mnt
!= mnt
)
1306 EXPORT_SYMBOL(follow_down
);
1309 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1310 * we meet a managed dentry that would need blocking.
1312 static bool __follow_mount_rcu(struct nameidata
*nd
, struct path
*path
,
1313 struct inode
**inode
, unsigned *seqp
)
1315 struct dentry
*dentry
= path
->dentry
;
1316 unsigned int flags
= dentry
->d_flags
;
1318 if (likely(!(flags
& DCACHE_MANAGED_DENTRY
)))
1321 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
1326 * Don't forget we might have a non-mountpoint managed dentry
1327 * that wants to block transit.
1329 if (unlikely(flags
& DCACHE_MANAGE_TRANSIT
)) {
1330 int res
= dentry
->d_op
->d_manage(path
, true);
1332 return res
== -EISDIR
;
1333 flags
= dentry
->d_flags
;
1336 if (flags
& DCACHE_MOUNTED
) {
1337 struct mount
*mounted
= __lookup_mnt(path
->mnt
, dentry
);
1339 path
->mnt
= &mounted
->mnt
;
1340 dentry
= path
->dentry
= mounted
->mnt
.mnt_root
;
1341 nd
->flags
|= LOOKUP_JUMPED
;
1342 *seqp
= read_seqcount_begin(&dentry
->d_seq
);
1343 *inode
= dentry
->d_inode
;
1345 * We don't need to re-check ->d_seq after this
1346 * ->d_inode read - there will be an RCU delay
1347 * between mount hash removal and ->mnt_root
1348 * becoming unpinned.
1350 flags
= dentry
->d_flags
;
1353 if (read_seqretry(&mount_lock
, nd
->m_seq
))
1356 return !(flags
& DCACHE_NEED_AUTOMOUNT
);
1360 static inline int handle_mounts(struct nameidata
*nd
, struct dentry
*dentry
,
1361 struct path
*path
, struct inode
**inode
,
1367 path
->mnt
= nd
->path
.mnt
;
1368 path
->dentry
= dentry
;
1369 if (nd
->flags
& LOOKUP_RCU
) {
1370 unsigned int seq
= *seqp
;
1371 if (unlikely(!*inode
))
1373 if (likely(__follow_mount_rcu(nd
, path
, inode
, seqp
)))
1375 if (unlazy_child(nd
, dentry
, seq
))
1377 // *path might've been clobbered by __follow_mount_rcu()
1378 path
->mnt
= nd
->path
.mnt
;
1379 path
->dentry
= dentry
;
1381 ret
= traverse_mounts(path
, &jumped
, &nd
->total_link_count
, nd
->flags
);
1383 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
1386 nd
->flags
|= LOOKUP_JUMPED
;
1388 if (unlikely(ret
)) {
1390 if (path
->mnt
!= nd
->path
.mnt
)
1393 *inode
= d_backing_inode(path
->dentry
);
1394 *seqp
= 0; /* out of RCU mode, so the value doesn't matter */
1400 * This looks up the name in dcache and possibly revalidates the found dentry.
1401 * NULL is returned if the dentry does not exist in the cache.
1403 static struct dentry
*lookup_dcache(const struct qstr
*name
,
1407 struct dentry
*dentry
= d_lookup(dir
, name
);
1409 int error
= d_revalidate(dentry
, flags
);
1410 if (unlikely(error
<= 0)) {
1412 d_invalidate(dentry
);
1414 return ERR_PTR(error
);
1421 * Parent directory has inode locked exclusive. This is one
1422 * and only case when ->lookup() gets called on non in-lookup
1423 * dentries - as the matter of fact, this only gets called
1424 * when directory is guaranteed to have no in-lookup children
1427 static struct dentry
*__lookup_hash(const struct qstr
*name
,
1428 struct dentry
*base
, unsigned int flags
)
1430 struct dentry
*dentry
= lookup_dcache(name
, base
, flags
);
1432 struct inode
*dir
= base
->d_inode
;
1437 /* Don't create child dentry for a dead directory. */
1438 if (unlikely(IS_DEADDIR(dir
)))
1439 return ERR_PTR(-ENOENT
);
1441 dentry
= d_alloc(base
, name
);
1442 if (unlikely(!dentry
))
1443 return ERR_PTR(-ENOMEM
);
1445 old
= dir
->i_op
->lookup(dir
, dentry
, flags
);
1446 if (unlikely(old
)) {
1453 static struct dentry
*lookup_fast(struct nameidata
*nd
,
1454 struct inode
**inode
,
1457 struct dentry
*dentry
, *parent
= nd
->path
.dentry
;
1461 * Rename seqlock is not required here because in the off chance
1462 * of a false negative due to a concurrent rename, the caller is
1463 * going to fall back to non-racy lookup.
1465 if (nd
->flags
& LOOKUP_RCU
) {
1467 dentry
= __d_lookup_rcu(parent
, &nd
->last
, &seq
);
1468 if (unlikely(!dentry
)) {
1469 if (unlazy_walk(nd
))
1470 return ERR_PTR(-ECHILD
);
1475 * This sequence count validates that the inode matches
1476 * the dentry name information from lookup.
1478 *inode
= d_backing_inode(dentry
);
1479 if (unlikely(read_seqcount_retry(&dentry
->d_seq
, seq
)))
1480 return ERR_PTR(-ECHILD
);
1483 * This sequence count validates that the parent had no
1484 * changes while we did the lookup of the dentry above.
1486 * The memory barrier in read_seqcount_begin of child is
1487 * enough, we can use __read_seqcount_retry here.
1489 if (unlikely(__read_seqcount_retry(&parent
->d_seq
, nd
->seq
)))
1490 return ERR_PTR(-ECHILD
);
1493 status
= d_revalidate(dentry
, nd
->flags
);
1494 if (likely(status
> 0))
1496 if (unlazy_child(nd
, dentry
, seq
))
1497 return ERR_PTR(-ECHILD
);
1498 if (unlikely(status
== -ECHILD
))
1499 /* we'd been told to redo it in non-rcu mode */
1500 status
= d_revalidate(dentry
, nd
->flags
);
1502 dentry
= __d_lookup(parent
, &nd
->last
);
1503 if (unlikely(!dentry
))
1505 status
= d_revalidate(dentry
, nd
->flags
);
1507 if (unlikely(status
<= 0)) {
1509 d_invalidate(dentry
);
1511 return ERR_PTR(status
);
1516 /* Fast lookup failed, do it the slow way */
1517 static struct dentry
*__lookup_slow(const struct qstr
*name
,
1521 struct dentry
*dentry
, *old
;
1522 struct inode
*inode
= dir
->d_inode
;
1523 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
1525 /* Don't go there if it's already dead */
1526 if (unlikely(IS_DEADDIR(inode
)))
1527 return ERR_PTR(-ENOENT
);
1529 dentry
= d_alloc_parallel(dir
, name
, &wq
);
1532 if (unlikely(!d_in_lookup(dentry
))) {
1533 int error
= d_revalidate(dentry
, flags
);
1534 if (unlikely(error
<= 0)) {
1536 d_invalidate(dentry
);
1541 dentry
= ERR_PTR(error
);
1544 old
= inode
->i_op
->lookup(inode
, dentry
, flags
);
1545 d_lookup_done(dentry
);
1546 if (unlikely(old
)) {
1554 static struct dentry
*lookup_slow(const struct qstr
*name
,
1558 struct inode
*inode
= dir
->d_inode
;
1560 inode_lock_shared(inode
);
1561 res
= __lookup_slow(name
, dir
, flags
);
1562 inode_unlock_shared(inode
);
1566 static inline int may_lookup(struct nameidata
*nd
)
1568 if (nd
->flags
& LOOKUP_RCU
) {
1569 int err
= inode_permission(nd
->inode
, MAY_EXEC
|MAY_NOT_BLOCK
);
1572 if (unlazy_walk(nd
))
1575 return inode_permission(nd
->inode
, MAY_EXEC
);
1578 static int reserve_stack(struct nameidata
*nd
, struct path
*link
, unsigned seq
)
1580 if (unlikely(nd
->total_link_count
++ >= MAXSYMLINKS
))
1583 if (likely(nd
->depth
!= EMBEDDED_LEVELS
))
1585 if (likely(nd
->stack
!= nd
->internal
))
1587 if (likely(nd_alloc_stack(nd
)))
1590 if (nd
->flags
& LOOKUP_RCU
) {
1591 // we need to grab link before we do unlazy. And we can't skip
1592 // unlazy even if we fail to grab the link - cleanup needs it
1593 bool grabbed_link
= legitimize_path(nd
, link
, seq
);
1595 if (unlazy_walk(nd
) != 0 || !grabbed_link
)
1598 if (nd_alloc_stack(nd
))
1604 enum {WALK_TRAILING
= 1, WALK_MORE
= 2, WALK_NOFOLLOW
= 4};
1606 static const char *pick_link(struct nameidata
*nd
, struct path
*link
,
1607 struct inode
*inode
, unsigned seq
, int flags
)
1611 int error
= reserve_stack(nd
, link
, seq
);
1613 if (unlikely(error
)) {
1614 if (!(nd
->flags
& LOOKUP_RCU
))
1616 return ERR_PTR(error
);
1618 last
= nd
->stack
+ nd
->depth
++;
1620 clear_delayed_call(&last
->done
);
1623 if (flags
& WALK_TRAILING
) {
1624 error
= may_follow_link(nd
, inode
);
1625 if (unlikely(error
))
1626 return ERR_PTR(error
);
1629 if (unlikely(nd
->flags
& LOOKUP_NO_SYMLINKS
))
1630 return ERR_PTR(-ELOOP
);
1632 if (!(nd
->flags
& LOOKUP_RCU
)) {
1633 touch_atime(&last
->link
);
1635 } else if (atime_needs_update(&last
->link
, inode
)) {
1636 if (unlikely(unlazy_walk(nd
)))
1637 return ERR_PTR(-ECHILD
);
1638 touch_atime(&last
->link
);
1641 error
= security_inode_follow_link(link
->dentry
, inode
,
1642 nd
->flags
& LOOKUP_RCU
);
1643 if (unlikely(error
))
1644 return ERR_PTR(error
);
1646 res
= READ_ONCE(inode
->i_link
);
1648 const char * (*get
)(struct dentry
*, struct inode
*,
1649 struct delayed_call
*);
1650 get
= inode
->i_op
->get_link
;
1651 if (nd
->flags
& LOOKUP_RCU
) {
1652 res
= get(NULL
, inode
, &last
->done
);
1653 if (res
== ERR_PTR(-ECHILD
)) {
1654 if (unlikely(unlazy_walk(nd
)))
1655 return ERR_PTR(-ECHILD
);
1656 res
= get(link
->dentry
, inode
, &last
->done
);
1659 res
= get(link
->dentry
, inode
, &last
->done
);
1667 error
= nd_jump_root(nd
);
1668 if (unlikely(error
))
1669 return ERR_PTR(error
);
1670 while (unlikely(*++res
== '/'))
1675 all_done
: // pure jump
1681 * Do we need to follow links? We _really_ want to be able
1682 * to do this check without having to look at inode->i_op,
1683 * so we keep a cache of "no, this doesn't need follow_link"
1684 * for the common case.
1686 static const char *step_into(struct nameidata
*nd
, int flags
,
1687 struct dentry
*dentry
, struct inode
*inode
, unsigned seq
)
1690 int err
= handle_mounts(nd
, dentry
, &path
, &inode
, &seq
);
1693 return ERR_PTR(err
);
1694 if (likely(!d_is_symlink(path
.dentry
)) ||
1695 ((flags
& WALK_TRAILING
) && !(nd
->flags
& LOOKUP_FOLLOW
)) ||
1696 (flags
& WALK_NOFOLLOW
)) {
1697 /* not a symlink or should not follow */
1698 if (!(nd
->flags
& LOOKUP_RCU
)) {
1699 dput(nd
->path
.dentry
);
1700 if (nd
->path
.mnt
!= path
.mnt
)
1701 mntput(nd
->path
.mnt
);
1708 if (nd
->flags
& LOOKUP_RCU
) {
1709 /* make sure that d_is_symlink above matches inode */
1710 if (read_seqcount_retry(&path
.dentry
->d_seq
, seq
))
1711 return ERR_PTR(-ECHILD
);
1713 if (path
.mnt
== nd
->path
.mnt
)
1716 return pick_link(nd
, &path
, inode
, seq
, flags
);
1719 static struct dentry
*follow_dotdot_rcu(struct nameidata
*nd
,
1720 struct inode
**inodep
,
1723 struct dentry
*parent
, *old
;
1725 if (path_equal(&nd
->path
, &nd
->root
))
1727 if (unlikely(nd
->path
.dentry
== nd
->path
.mnt
->mnt_root
)) {
1730 if (!choose_mountpoint_rcu(real_mount(nd
->path
.mnt
),
1731 &nd
->root
, &path
, &seq
))
1733 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
1734 return ERR_PTR(-ECHILD
);
1736 nd
->inode
= path
.dentry
->d_inode
;
1738 if (unlikely(read_seqretry(&mount_lock
, nd
->m_seq
)))
1739 return ERR_PTR(-ECHILD
);
1740 /* we know that mountpoint was pinned */
1742 old
= nd
->path
.dentry
;
1743 parent
= old
->d_parent
;
1744 *inodep
= parent
->d_inode
;
1745 *seqp
= read_seqcount_begin(&parent
->d_seq
);
1746 if (unlikely(read_seqcount_retry(&old
->d_seq
, nd
->seq
)))
1747 return ERR_PTR(-ECHILD
);
1748 if (unlikely(!path_connected(nd
->path
.mnt
, parent
)))
1749 return ERR_PTR(-ECHILD
);
1752 if (unlikely(read_seqretry(&mount_lock
, nd
->m_seq
)))
1753 return ERR_PTR(-ECHILD
);
1754 if (unlikely(nd
->flags
& LOOKUP_BENEATH
))
1755 return ERR_PTR(-ECHILD
);
1759 static struct dentry
*follow_dotdot(struct nameidata
*nd
,
1760 struct inode
**inodep
,
1763 struct dentry
*parent
;
1765 if (path_equal(&nd
->path
, &nd
->root
))
1767 if (unlikely(nd
->path
.dentry
== nd
->path
.mnt
->mnt_root
)) {
1770 if (!choose_mountpoint(real_mount(nd
->path
.mnt
),
1773 path_put(&nd
->path
);
1775 nd
->inode
= path
.dentry
->d_inode
;
1776 if (unlikely(nd
->flags
& LOOKUP_NO_XDEV
))
1777 return ERR_PTR(-EXDEV
);
1779 /* rare case of legitimate dget_parent()... */
1780 parent
= dget_parent(nd
->path
.dentry
);
1781 if (unlikely(!path_connected(nd
->path
.mnt
, parent
))) {
1783 return ERR_PTR(-ENOENT
);
1786 *inodep
= parent
->d_inode
;
1790 if (unlikely(nd
->flags
& LOOKUP_BENEATH
))
1791 return ERR_PTR(-EXDEV
);
1792 dget(nd
->path
.dentry
);
1796 static const char *handle_dots(struct nameidata
*nd
, int type
)
1798 if (type
== LAST_DOTDOT
) {
1799 const char *error
= NULL
;
1800 struct dentry
*parent
;
1801 struct inode
*inode
;
1804 if (!nd
->root
.mnt
) {
1805 error
= ERR_PTR(set_root(nd
));
1809 if (nd
->flags
& LOOKUP_RCU
)
1810 parent
= follow_dotdot_rcu(nd
, &inode
, &seq
);
1812 parent
= follow_dotdot(nd
, &inode
, &seq
);
1814 return ERR_CAST(parent
);
1815 if (unlikely(!parent
))
1816 error
= step_into(nd
, WALK_NOFOLLOW
,
1817 nd
->path
.dentry
, nd
->inode
, nd
->seq
);
1819 error
= step_into(nd
, WALK_NOFOLLOW
,
1820 parent
, inode
, seq
);
1821 if (unlikely(error
))
1824 if (unlikely(nd
->flags
& LOOKUP_IS_SCOPED
)) {
1826 * If there was a racing rename or mount along our
1827 * path, then we can't be sure that ".." hasn't jumped
1828 * above nd->root (and so userspace should retry or use
1832 if (unlikely(__read_seqcount_retry(&mount_lock
.seqcount
, nd
->m_seq
)))
1833 return ERR_PTR(-EAGAIN
);
1834 if (unlikely(__read_seqcount_retry(&rename_lock
.seqcount
, nd
->r_seq
)))
1835 return ERR_PTR(-EAGAIN
);
1841 static const char *walk_component(struct nameidata
*nd
, int flags
)
1843 struct dentry
*dentry
;
1844 struct inode
*inode
;
1847 * "." and ".." are special - ".." especially so because it has
1848 * to be able to know about the current root directory and
1849 * parent relationships.
1851 if (unlikely(nd
->last_type
!= LAST_NORM
)) {
1852 if (!(flags
& WALK_MORE
) && nd
->depth
)
1854 return handle_dots(nd
, nd
->last_type
);
1856 dentry
= lookup_fast(nd
, &inode
, &seq
);
1858 return ERR_CAST(dentry
);
1859 if (unlikely(!dentry
)) {
1860 dentry
= lookup_slow(&nd
->last
, nd
->path
.dentry
, nd
->flags
);
1862 return ERR_CAST(dentry
);
1864 if (!(flags
& WALK_MORE
) && nd
->depth
)
1866 return step_into(nd
, flags
, dentry
, inode
, seq
);
1870 * We can do the critical dentry name comparison and hashing
1871 * operations one word at a time, but we are limited to:
1873 * - Architectures with fast unaligned word accesses. We could
1874 * do a "get_unaligned()" if this helps and is sufficiently
1877 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1878 * do not trap on the (extremely unlikely) case of a page
1879 * crossing operation.
1881 * - Furthermore, we need an efficient 64-bit compile for the
1882 * 64-bit case in order to generate the "number of bytes in
1883 * the final mask". Again, that could be replaced with a
1884 * efficient population count instruction or similar.
1886 #ifdef CONFIG_DCACHE_WORD_ACCESS
1888 #include <asm/word-at-a-time.h>
1892 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1894 #elif defined(CONFIG_64BIT)
1896 * Register pressure in the mixing function is an issue, particularly
1897 * on 32-bit x86, but almost any function requires one state value and
1898 * one temporary. Instead, use a function designed for two state values
1899 * and no temporaries.
1901 * This function cannot create a collision in only two iterations, so
1902 * we have two iterations to achieve avalanche. In those two iterations,
1903 * we have six layers of mixing, which is enough to spread one bit's
1904 * influence out to 2^6 = 64 state bits.
1906 * Rotate constants are scored by considering either 64 one-bit input
1907 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1908 * probability of that delta causing a change to each of the 128 output
1909 * bits, using a sample of random initial states.
1911 * The Shannon entropy of the computed probabilities is then summed
1912 * to produce a score. Ideally, any input change has a 50% chance of
1913 * toggling any given output bit.
1915 * Mixing scores (in bits) for (12,45):
1916 * Input delta: 1-bit 2-bit
1917 * 1 round: 713.3 42542.6
1918 * 2 rounds: 2753.7 140389.8
1919 * 3 rounds: 5954.1 233458.2
1920 * 4 rounds: 7862.6 256672.2
1921 * Perfect: 8192 258048
1922 * (64*128) (64*63/2 * 128)
1924 #define HASH_MIX(x, y, a) \
1926 y ^= x, x = rol64(x,12),\
1927 x += y, y = rol64(y,45),\
1931 * Fold two longs into one 32-bit hash value. This must be fast, but
1932 * latency isn't quite as critical, as there is a fair bit of additional
1933 * work done before the hash value is used.
1935 static inline unsigned int fold_hash(unsigned long x
, unsigned long y
)
1937 y
^= x
* GOLDEN_RATIO_64
;
1938 y
*= GOLDEN_RATIO_64
;
1942 #else /* 32-bit case */
1945 * Mixing scores (in bits) for (7,20):
1946 * Input delta: 1-bit 2-bit
1947 * 1 round: 330.3 9201.6
1948 * 2 rounds: 1246.4 25475.4
1949 * 3 rounds: 1907.1 31295.1
1950 * 4 rounds: 2042.3 31718.6
1951 * Perfect: 2048 31744
1952 * (32*64) (32*31/2 * 64)
1954 #define HASH_MIX(x, y, a) \
1956 y ^= x, x = rol32(x, 7),\
1957 x += y, y = rol32(y,20),\
1960 static inline unsigned int fold_hash(unsigned long x
, unsigned long y
)
1962 /* Use arch-optimized multiply if one exists */
1963 return __hash_32(y
^ __hash_32(x
));
1969 * Return the hash of a string of known length. This is carfully
1970 * designed to match hash_name(), which is the more critical function.
1971 * In particular, we must end by hashing a final word containing 0..7
1972 * payload bytes, to match the way that hash_name() iterates until it
1973 * finds the delimiter after the name.
1975 unsigned int full_name_hash(const void *salt
, const char *name
, unsigned int len
)
1977 unsigned long a
, x
= 0, y
= (unsigned long)salt
;
1982 a
= load_unaligned_zeropad(name
);
1983 if (len
< sizeof(unsigned long))
1986 name
+= sizeof(unsigned long);
1987 len
-= sizeof(unsigned long);
1989 x
^= a
& bytemask_from_count(len
);
1991 return fold_hash(x
, y
);
1993 EXPORT_SYMBOL(full_name_hash
);
1995 /* Return the "hash_len" (hash and length) of a null-terminated string */
1996 u64
hashlen_string(const void *salt
, const char *name
)
1998 unsigned long a
= 0, x
= 0, y
= (unsigned long)salt
;
1999 unsigned long adata
, mask
, len
;
2000 const struct word_at_a_time constants
= WORD_AT_A_TIME_CONSTANTS
;
2007 len
+= sizeof(unsigned long);
2009 a
= load_unaligned_zeropad(name
+len
);
2010 } while (!has_zero(a
, &adata
, &constants
));
2012 adata
= prep_zero_mask(a
, adata
, &constants
);
2013 mask
= create_zero_mask(adata
);
2014 x
^= a
& zero_bytemask(mask
);
2016 return hashlen_create(fold_hash(x
, y
), len
+ find_zero(mask
));
2018 EXPORT_SYMBOL(hashlen_string
);
2021 * Calculate the length and hash of the path component, and
2022 * return the "hash_len" as the result.
2024 static inline u64
hash_name(const void *salt
, const char *name
)
2026 unsigned long a
= 0, b
, x
= 0, y
= (unsigned long)salt
;
2027 unsigned long adata
, bdata
, mask
, len
;
2028 const struct word_at_a_time constants
= WORD_AT_A_TIME_CONSTANTS
;
2035 len
+= sizeof(unsigned long);
2037 a
= load_unaligned_zeropad(name
+len
);
2038 b
= a
^ REPEAT_BYTE('/');
2039 } while (!(has_zero(a
, &adata
, &constants
) | has_zero(b
, &bdata
, &constants
)));
2041 adata
= prep_zero_mask(a
, adata
, &constants
);
2042 bdata
= prep_zero_mask(b
, bdata
, &constants
);
2043 mask
= create_zero_mask(adata
| bdata
);
2044 x
^= a
& zero_bytemask(mask
);
2046 return hashlen_create(fold_hash(x
, y
), len
+ find_zero(mask
));
2049 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2051 /* Return the hash of a string of known length */
2052 unsigned int full_name_hash(const void *salt
, const char *name
, unsigned int len
)
2054 unsigned long hash
= init_name_hash(salt
);
2056 hash
= partial_name_hash((unsigned char)*name
++, hash
);
2057 return end_name_hash(hash
);
2059 EXPORT_SYMBOL(full_name_hash
);
2061 /* Return the "hash_len" (hash and length) of a null-terminated string */
2062 u64
hashlen_string(const void *salt
, const char *name
)
2064 unsigned long hash
= init_name_hash(salt
);
2065 unsigned long len
= 0, c
;
2067 c
= (unsigned char)*name
;
2070 hash
= partial_name_hash(c
, hash
);
2071 c
= (unsigned char)name
[len
];
2073 return hashlen_create(end_name_hash(hash
), len
);
2075 EXPORT_SYMBOL(hashlen_string
);
2078 * We know there's a real path component here of at least
2081 static inline u64
hash_name(const void *salt
, const char *name
)
2083 unsigned long hash
= init_name_hash(salt
);
2084 unsigned long len
= 0, c
;
2086 c
= (unsigned char)*name
;
2089 hash
= partial_name_hash(c
, hash
);
2090 c
= (unsigned char)name
[len
];
2091 } while (c
&& c
!= '/');
2092 return hashlen_create(end_name_hash(hash
), len
);
2099 * This is the basic name resolution function, turning a pathname into
2100 * the final dentry. We expect 'base' to be positive and a directory.
2102 * Returns 0 and nd will have valid dentry and mnt on success.
2103 * Returns error and drops reference to input namei data on failure.
2105 static int link_path_walk(const char *name
, struct nameidata
*nd
)
2107 int depth
= 0; // depth <= nd->depth
2110 nd
->last_type
= LAST_ROOT
;
2111 nd
->flags
|= LOOKUP_PARENT
;
2113 return PTR_ERR(name
);
2119 /* At this point we know we have a real path component. */
2125 err
= may_lookup(nd
);
2129 hash_len
= hash_name(nd
->path
.dentry
, name
);
2132 if (name
[0] == '.') switch (hashlen_len(hash_len
)) {
2134 if (name
[1] == '.') {
2136 nd
->flags
|= LOOKUP_JUMPED
;
2142 if (likely(type
== LAST_NORM
)) {
2143 struct dentry
*parent
= nd
->path
.dentry
;
2144 nd
->flags
&= ~LOOKUP_JUMPED
;
2145 if (unlikely(parent
->d_flags
& DCACHE_OP_HASH
)) {
2146 struct qstr
this = { { .hash_len
= hash_len
}, .name
= name
};
2147 err
= parent
->d_op
->d_hash(parent
, &this);
2150 hash_len
= this.hash_len
;
2155 nd
->last
.hash_len
= hash_len
;
2156 nd
->last
.name
= name
;
2157 nd
->last_type
= type
;
2159 name
+= hashlen_len(hash_len
);
2163 * If it wasn't NUL, we know it was '/'. Skip that
2164 * slash, and continue until no more slashes.
2168 } while (unlikely(*name
== '/'));
2169 if (unlikely(!*name
)) {
2171 /* pathname or trailing symlink, done */
2173 nd
->dir_uid
= nd
->inode
->i_uid
;
2174 nd
->dir_mode
= nd
->inode
->i_mode
;
2175 nd
->flags
&= ~LOOKUP_PARENT
;
2178 /* last component of nested symlink */
2179 name
= nd
->stack
[--depth
].name
;
2180 link
= walk_component(nd
, 0);
2182 /* not the last component */
2183 link
= walk_component(nd
, WALK_MORE
);
2185 if (unlikely(link
)) {
2187 return PTR_ERR(link
);
2188 /* a symlink to follow */
2189 nd
->stack
[depth
++].name
= name
;
2193 if (unlikely(!d_can_lookup(nd
->path
.dentry
))) {
2194 if (nd
->flags
& LOOKUP_RCU
) {
2195 if (unlazy_walk(nd
))
2203 /* must be paired with terminate_walk() */
2204 static const char *path_init(struct nameidata
*nd
, unsigned flags
)
2207 const char *s
= nd
->name
->name
;
2210 flags
&= ~LOOKUP_RCU
;
2211 if (flags
& LOOKUP_RCU
)
2214 nd
->flags
= flags
| LOOKUP_JUMPED
;
2217 nd
->m_seq
= __read_seqcount_begin(&mount_lock
.seqcount
);
2218 nd
->r_seq
= __read_seqcount_begin(&rename_lock
.seqcount
);
2221 if (flags
& LOOKUP_ROOT
) {
2222 struct dentry
*root
= nd
->root
.dentry
;
2223 struct inode
*inode
= root
->d_inode
;
2224 if (*s
&& unlikely(!d_can_lookup(root
)))
2225 return ERR_PTR(-ENOTDIR
);
2226 nd
->path
= nd
->root
;
2228 if (flags
& LOOKUP_RCU
) {
2229 nd
->seq
= read_seqcount_begin(&nd
->path
.dentry
->d_seq
);
2230 nd
->root_seq
= nd
->seq
;
2232 path_get(&nd
->path
);
2237 nd
->root
.mnt
= NULL
;
2238 nd
->path
.mnt
= NULL
;
2239 nd
->path
.dentry
= NULL
;
2241 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2242 if (*s
== '/' && !(flags
& LOOKUP_IN_ROOT
)) {
2243 error
= nd_jump_root(nd
);
2244 if (unlikely(error
))
2245 return ERR_PTR(error
);
2249 /* Relative pathname -- get the starting-point it is relative to. */
2250 if (nd
->dfd
== AT_FDCWD
) {
2251 if (flags
& LOOKUP_RCU
) {
2252 struct fs_struct
*fs
= current
->fs
;
2256 seq
= read_seqcount_begin(&fs
->seq
);
2258 nd
->inode
= nd
->path
.dentry
->d_inode
;
2259 nd
->seq
= __read_seqcount_begin(&nd
->path
.dentry
->d_seq
);
2260 } while (read_seqcount_retry(&fs
->seq
, seq
));
2262 get_fs_pwd(current
->fs
, &nd
->path
);
2263 nd
->inode
= nd
->path
.dentry
->d_inode
;
2266 /* Caller must check execute permissions on the starting path component */
2267 struct fd f
= fdget_raw(nd
->dfd
);
2268 struct dentry
*dentry
;
2271 return ERR_PTR(-EBADF
);
2273 dentry
= f
.file
->f_path
.dentry
;
2275 if (*s
&& unlikely(!d_can_lookup(dentry
))) {
2277 return ERR_PTR(-ENOTDIR
);
2280 nd
->path
= f
.file
->f_path
;
2281 if (flags
& LOOKUP_RCU
) {
2282 nd
->inode
= nd
->path
.dentry
->d_inode
;
2283 nd
->seq
= read_seqcount_begin(&nd
->path
.dentry
->d_seq
);
2285 path_get(&nd
->path
);
2286 nd
->inode
= nd
->path
.dentry
->d_inode
;
2291 /* For scoped-lookups we need to set the root to the dirfd as well. */
2292 if (flags
& LOOKUP_IS_SCOPED
) {
2293 nd
->root
= nd
->path
;
2294 if (flags
& LOOKUP_RCU
) {
2295 nd
->root_seq
= nd
->seq
;
2297 path_get(&nd
->root
);
2298 nd
->flags
|= LOOKUP_ROOT_GRABBED
;
2304 static inline const char *lookup_last(struct nameidata
*nd
)
2306 if (nd
->last_type
== LAST_NORM
&& nd
->last
.name
[nd
->last
.len
])
2307 nd
->flags
|= LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
;
2309 return walk_component(nd
, WALK_TRAILING
);
2312 static int handle_lookup_down(struct nameidata
*nd
)
2314 if (!(nd
->flags
& LOOKUP_RCU
))
2315 dget(nd
->path
.dentry
);
2316 return PTR_ERR(step_into(nd
, WALK_NOFOLLOW
,
2317 nd
->path
.dentry
, nd
->inode
, nd
->seq
));
2320 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2321 static int path_lookupat(struct nameidata
*nd
, unsigned flags
, struct path
*path
)
2323 const char *s
= path_init(nd
, flags
);
2326 if (unlikely(flags
& LOOKUP_DOWN
) && !IS_ERR(s
)) {
2327 err
= handle_lookup_down(nd
);
2328 if (unlikely(err
< 0))
2332 while (!(err
= link_path_walk(s
, nd
)) &&
2333 (s
= lookup_last(nd
)) != NULL
)
2336 err
= complete_walk(nd
);
2338 if (!err
&& nd
->flags
& LOOKUP_DIRECTORY
)
2339 if (!d_can_lookup(nd
->path
.dentry
))
2341 if (!err
&& unlikely(nd
->flags
& LOOKUP_MOUNTPOINT
)) {
2342 err
= handle_lookup_down(nd
);
2343 nd
->flags
&= ~LOOKUP_JUMPED
; // no d_weak_revalidate(), please...
2347 nd
->path
.mnt
= NULL
;
2348 nd
->path
.dentry
= NULL
;
2354 int filename_lookup(int dfd
, struct filename
*name
, unsigned flags
,
2355 struct path
*path
, struct path
*root
)
2358 struct nameidata nd
;
2360 return PTR_ERR(name
);
2361 if (unlikely(root
)) {
2363 flags
|= LOOKUP_ROOT
;
2365 set_nameidata(&nd
, dfd
, name
);
2366 retval
= path_lookupat(&nd
, flags
| LOOKUP_RCU
, path
);
2367 if (unlikely(retval
== -ECHILD
))
2368 retval
= path_lookupat(&nd
, flags
, path
);
2369 if (unlikely(retval
== -ESTALE
))
2370 retval
= path_lookupat(&nd
, flags
| LOOKUP_REVAL
, path
);
2372 if (likely(!retval
))
2373 audit_inode(name
, path
->dentry
,
2374 flags
& LOOKUP_MOUNTPOINT
? AUDIT_INODE_NOEVAL
: 0);
2375 restore_nameidata();
2380 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2381 static int path_parentat(struct nameidata
*nd
, unsigned flags
,
2382 struct path
*parent
)
2384 const char *s
= path_init(nd
, flags
);
2385 int err
= link_path_walk(s
, nd
);
2387 err
= complete_walk(nd
);
2390 nd
->path
.mnt
= NULL
;
2391 nd
->path
.dentry
= NULL
;
2397 static struct filename
*filename_parentat(int dfd
, struct filename
*name
,
2398 unsigned int flags
, struct path
*parent
,
2399 struct qstr
*last
, int *type
)
2402 struct nameidata nd
;
2406 set_nameidata(&nd
, dfd
, name
);
2407 retval
= path_parentat(&nd
, flags
| LOOKUP_RCU
, parent
);
2408 if (unlikely(retval
== -ECHILD
))
2409 retval
= path_parentat(&nd
, flags
, parent
);
2410 if (unlikely(retval
== -ESTALE
))
2411 retval
= path_parentat(&nd
, flags
| LOOKUP_REVAL
, parent
);
2412 if (likely(!retval
)) {
2414 *type
= nd
.last_type
;
2415 audit_inode(name
, parent
->dentry
, AUDIT_INODE_PARENT
);
2418 name
= ERR_PTR(retval
);
2420 restore_nameidata();
2424 /* does lookup, returns the object with parent locked */
2425 struct dentry
*kern_path_locked(const char *name
, struct path
*path
)
2427 struct filename
*filename
;
2432 filename
= filename_parentat(AT_FDCWD
, getname_kernel(name
), 0, path
,
2434 if (IS_ERR(filename
))
2435 return ERR_CAST(filename
);
2436 if (unlikely(type
!= LAST_NORM
)) {
2439 return ERR_PTR(-EINVAL
);
2441 inode_lock_nested(path
->dentry
->d_inode
, I_MUTEX_PARENT
);
2442 d
= __lookup_hash(&last
, path
->dentry
, 0);
2444 inode_unlock(path
->dentry
->d_inode
);
2451 int kern_path(const char *name
, unsigned int flags
, struct path
*path
)
2453 return filename_lookup(AT_FDCWD
, getname_kernel(name
),
2456 EXPORT_SYMBOL(kern_path
);
2459 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2460 * @dentry: pointer to dentry of the base directory
2461 * @mnt: pointer to vfs mount of the base directory
2462 * @name: pointer to file name
2463 * @flags: lookup flags
2464 * @path: pointer to struct path to fill
2466 int vfs_path_lookup(struct dentry
*dentry
, struct vfsmount
*mnt
,
2467 const char *name
, unsigned int flags
,
2470 struct path root
= {.mnt
= mnt
, .dentry
= dentry
};
2471 /* the first argument of filename_lookup() is ignored with root */
2472 return filename_lookup(AT_FDCWD
, getname_kernel(name
),
2473 flags
, path
, &root
);
2475 EXPORT_SYMBOL(vfs_path_lookup
);
2477 static int lookup_one_len_common(const char *name
, struct dentry
*base
,
2478 int len
, struct qstr
*this)
2482 this->hash
= full_name_hash(base
, name
, len
);
2486 if (unlikely(name
[0] == '.')) {
2487 if (len
< 2 || (len
== 2 && name
[1] == '.'))
2492 unsigned int c
= *(const unsigned char *)name
++;
2493 if (c
== '/' || c
== '\0')
2497 * See if the low-level filesystem might want
2498 * to use its own hash..
2500 if (base
->d_flags
& DCACHE_OP_HASH
) {
2501 int err
= base
->d_op
->d_hash(base
, this);
2506 return inode_permission(base
->d_inode
, MAY_EXEC
);
2510 * try_lookup_one_len - filesystem helper to lookup single pathname component
2511 * @name: pathname component to lookup
2512 * @base: base directory to lookup from
2513 * @len: maximum length @len should be interpreted to
2515 * Look up a dentry by name in the dcache, returning NULL if it does not
2516 * currently exist. The function does not try to create a dentry.
2518 * Note that this routine is purely a helper for filesystem usage and should
2519 * not be called by generic code.
2521 * The caller must hold base->i_mutex.
2523 struct dentry
*try_lookup_one_len(const char *name
, struct dentry
*base
, int len
)
2528 WARN_ON_ONCE(!inode_is_locked(base
->d_inode
));
2530 err
= lookup_one_len_common(name
, base
, len
, &this);
2532 return ERR_PTR(err
);
2534 return lookup_dcache(&this, base
, 0);
2536 EXPORT_SYMBOL(try_lookup_one_len
);
2539 * lookup_one_len - filesystem helper to lookup single pathname component
2540 * @name: pathname component to lookup
2541 * @base: base directory to lookup from
2542 * @len: maximum length @len should be interpreted to
2544 * Note that this routine is purely a helper for filesystem usage and should
2545 * not be called by generic code.
2547 * The caller must hold base->i_mutex.
2549 struct dentry
*lookup_one_len(const char *name
, struct dentry
*base
, int len
)
2551 struct dentry
*dentry
;
2555 WARN_ON_ONCE(!inode_is_locked(base
->d_inode
));
2557 err
= lookup_one_len_common(name
, base
, len
, &this);
2559 return ERR_PTR(err
);
2561 dentry
= lookup_dcache(&this, base
, 0);
2562 return dentry
? dentry
: __lookup_slow(&this, base
, 0);
2564 EXPORT_SYMBOL(lookup_one_len
);
2567 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2568 * @name: pathname component to lookup
2569 * @base: base directory to lookup from
2570 * @len: maximum length @len should be interpreted to
2572 * Note that this routine is purely a helper for filesystem usage and should
2573 * not be called by generic code.
2575 * Unlike lookup_one_len, it should be called without the parent
2576 * i_mutex held, and will take the i_mutex itself if necessary.
2578 struct dentry
*lookup_one_len_unlocked(const char *name
,
2579 struct dentry
*base
, int len
)
2585 err
= lookup_one_len_common(name
, base
, len
, &this);
2587 return ERR_PTR(err
);
2589 ret
= lookup_dcache(&this, base
, 0);
2591 ret
= lookup_slow(&this, base
, 0);
2594 EXPORT_SYMBOL(lookup_one_len_unlocked
);
2597 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2598 * on negatives. Returns known positive or ERR_PTR(); that's what
2599 * most of the users want. Note that pinned negative with unlocked parent
2600 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2601 * need to be very careful; pinned positives have ->d_inode stable, so
2602 * this one avoids such problems.
2604 struct dentry
*lookup_positive_unlocked(const char *name
,
2605 struct dentry
*base
, int len
)
2607 struct dentry
*ret
= lookup_one_len_unlocked(name
, base
, len
);
2608 if (!IS_ERR(ret
) && d_flags_negative(smp_load_acquire(&ret
->d_flags
))) {
2610 ret
= ERR_PTR(-ENOENT
);
2614 EXPORT_SYMBOL(lookup_positive_unlocked
);
2616 #ifdef CONFIG_UNIX98_PTYS
2617 int path_pts(struct path
*path
)
2619 /* Find something mounted on "pts" in the same directory as
2622 struct dentry
*parent
= dget_parent(path
->dentry
);
2623 struct dentry
*child
;
2624 struct qstr
this = QSTR_INIT("pts", 3);
2626 if (unlikely(!path_connected(path
->mnt
, parent
))) {
2631 path
->dentry
= parent
;
2632 child
= d_hash_and_lookup(parent
, &this);
2636 path
->dentry
= child
;
2643 int user_path_at_empty(int dfd
, const char __user
*name
, unsigned flags
,
2644 struct path
*path
, int *empty
)
2646 return filename_lookup(dfd
, getname_flags(name
, flags
, empty
),
2649 EXPORT_SYMBOL(user_path_at_empty
);
2651 int __check_sticky(struct inode
*dir
, struct inode
*inode
)
2653 kuid_t fsuid
= current_fsuid();
2655 if (uid_eq(inode
->i_uid
, fsuid
))
2657 if (uid_eq(dir
->i_uid
, fsuid
))
2659 return !capable_wrt_inode_uidgid(inode
, CAP_FOWNER
);
2661 EXPORT_SYMBOL(__check_sticky
);
2664 * Check whether we can remove a link victim from directory dir, check
2665 * whether the type of victim is right.
2666 * 1. We can't do it if dir is read-only (done in permission())
2667 * 2. We should have write and exec permissions on dir
2668 * 3. We can't remove anything from append-only dir
2669 * 4. We can't do anything with immutable dir (done in permission())
2670 * 5. If the sticky bit on dir is set we should either
2671 * a. be owner of dir, or
2672 * b. be owner of victim, or
2673 * c. have CAP_FOWNER capability
2674 * 6. If the victim is append-only or immutable we can't do antyhing with
2675 * links pointing to it.
2676 * 7. If the victim has an unknown uid or gid we can't change the inode.
2677 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2678 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2679 * 10. We can't remove a root or mountpoint.
2680 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2681 * nfs_async_unlink().
2683 static int may_delete(struct inode
*dir
, struct dentry
*victim
, bool isdir
)
2685 struct inode
*inode
= d_backing_inode(victim
);
2688 if (d_is_negative(victim
))
2692 BUG_ON(victim
->d_parent
->d_inode
!= dir
);
2694 /* Inode writeback is not safe when the uid or gid are invalid. */
2695 if (!uid_valid(inode
->i_uid
) || !gid_valid(inode
->i_gid
))
2698 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
2700 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
2706 if (check_sticky(dir
, inode
) || IS_APPEND(inode
) ||
2707 IS_IMMUTABLE(inode
) || IS_SWAPFILE(inode
) || HAS_UNMAPPED_ID(inode
))
2710 if (!d_is_dir(victim
))
2712 if (IS_ROOT(victim
))
2714 } else if (d_is_dir(victim
))
2716 if (IS_DEADDIR(dir
))
2718 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
2723 /* Check whether we can create an object with dentry child in directory
2725 * 1. We can't do it if child already exists (open has special treatment for
2726 * this case, but since we are inlined it's OK)
2727 * 2. We can't do it if dir is read-only (done in permission())
2728 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2729 * 4. We should have write and exec permissions on dir
2730 * 5. We can't do it if dir is immutable (done in permission())
2732 static inline int may_create(struct inode
*dir
, struct dentry
*child
)
2734 struct user_namespace
*s_user_ns
;
2735 audit_inode_child(dir
, child
, AUDIT_TYPE_CHILD_CREATE
);
2738 if (IS_DEADDIR(dir
))
2740 s_user_ns
= dir
->i_sb
->s_user_ns
;
2741 if (!kuid_has_mapping(s_user_ns
, current_fsuid()) ||
2742 !kgid_has_mapping(s_user_ns
, current_fsgid()))
2744 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
2748 * p1 and p2 should be directories on the same fs.
2750 struct dentry
*lock_rename(struct dentry
*p1
, struct dentry
*p2
)
2755 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT
);
2759 mutex_lock(&p1
->d_sb
->s_vfs_rename_mutex
);
2761 p
= d_ancestor(p2
, p1
);
2763 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT
);
2764 inode_lock_nested(p1
->d_inode
, I_MUTEX_CHILD
);
2768 p
= d_ancestor(p1
, p2
);
2770 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT
);
2771 inode_lock_nested(p2
->d_inode
, I_MUTEX_CHILD
);
2775 inode_lock_nested(p1
->d_inode
, I_MUTEX_PARENT
);
2776 inode_lock_nested(p2
->d_inode
, I_MUTEX_PARENT2
);
2779 EXPORT_SYMBOL(lock_rename
);
2781 void unlock_rename(struct dentry
*p1
, struct dentry
*p2
)
2783 inode_unlock(p1
->d_inode
);
2785 inode_unlock(p2
->d_inode
);
2786 mutex_unlock(&p1
->d_sb
->s_vfs_rename_mutex
);
2789 EXPORT_SYMBOL(unlock_rename
);
2791 int vfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
2794 int error
= may_create(dir
, dentry
);
2798 if (!dir
->i_op
->create
)
2799 return -EACCES
; /* shouldn't it be ENOSYS? */
2802 error
= security_inode_create(dir
, dentry
, mode
);
2805 error
= dir
->i_op
->create(dir
, dentry
, mode
, want_excl
);
2807 fsnotify_create(dir
, dentry
);
2810 EXPORT_SYMBOL(vfs_create
);
2812 int vfs_mkobj(struct dentry
*dentry
, umode_t mode
,
2813 int (*f
)(struct dentry
*, umode_t
, void *),
2816 struct inode
*dir
= dentry
->d_parent
->d_inode
;
2817 int error
= may_create(dir
, dentry
);
2823 error
= security_inode_create(dir
, dentry
, mode
);
2826 error
= f(dentry
, mode
, arg
);
2828 fsnotify_create(dir
, dentry
);
2831 EXPORT_SYMBOL(vfs_mkobj
);
2833 bool may_open_dev(const struct path
*path
)
2835 return !(path
->mnt
->mnt_flags
& MNT_NODEV
) &&
2836 !(path
->mnt
->mnt_sb
->s_iflags
& SB_I_NODEV
);
2839 static int may_open(const struct path
*path
, int acc_mode
, int flag
)
2841 struct dentry
*dentry
= path
->dentry
;
2842 struct inode
*inode
= dentry
->d_inode
;
2848 switch (inode
->i_mode
& S_IFMT
) {
2852 if (acc_mode
& MAY_WRITE
)
2857 if (!may_open_dev(path
))
2866 error
= inode_permission(inode
, MAY_OPEN
| acc_mode
);
2871 * An append-only file must be opened in append mode for writing.
2873 if (IS_APPEND(inode
)) {
2874 if ((flag
& O_ACCMODE
) != O_RDONLY
&& !(flag
& O_APPEND
))
2880 /* O_NOATIME can only be set by the owner or superuser */
2881 if (flag
& O_NOATIME
&& !inode_owner_or_capable(inode
))
2887 static int handle_truncate(struct file
*filp
)
2889 const struct path
*path
= &filp
->f_path
;
2890 struct inode
*inode
= path
->dentry
->d_inode
;
2891 int error
= get_write_access(inode
);
2895 * Refuse to truncate files with mandatory locks held on them.
2897 error
= locks_verify_locked(filp
);
2899 error
= security_path_truncate(path
);
2901 error
= do_truncate(path
->dentry
, 0,
2902 ATTR_MTIME
|ATTR_CTIME
|ATTR_OPEN
,
2905 put_write_access(inode
);
2909 static inline int open_to_namei_flags(int flag
)
2911 if ((flag
& O_ACCMODE
) == 3)
2916 static int may_o_create(const struct path
*dir
, struct dentry
*dentry
, umode_t mode
)
2918 struct user_namespace
*s_user_ns
;
2919 int error
= security_path_mknod(dir
, dentry
, mode
, 0);
2923 s_user_ns
= dir
->dentry
->d_sb
->s_user_ns
;
2924 if (!kuid_has_mapping(s_user_ns
, current_fsuid()) ||
2925 !kgid_has_mapping(s_user_ns
, current_fsgid()))
2928 error
= inode_permission(dir
->dentry
->d_inode
, MAY_WRITE
| MAY_EXEC
);
2932 return security_inode_create(dir
->dentry
->d_inode
, dentry
, mode
);
2936 * Attempt to atomically look up, create and open a file from a negative
2939 * Returns 0 if successful. The file will have been created and attached to
2940 * @file by the filesystem calling finish_open().
2942 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2943 * be set. The caller will need to perform the open themselves. @path will
2944 * have been updated to point to the new dentry. This may be negative.
2946 * Returns an error code otherwise.
2948 static struct dentry
*atomic_open(struct nameidata
*nd
, struct dentry
*dentry
,
2950 int open_flag
, umode_t mode
)
2952 struct dentry
*const DENTRY_NOT_SET
= (void *) -1UL;
2953 struct inode
*dir
= nd
->path
.dentry
->d_inode
;
2956 if (nd
->flags
& LOOKUP_DIRECTORY
)
2957 open_flag
|= O_DIRECTORY
;
2959 file
->f_path
.dentry
= DENTRY_NOT_SET
;
2960 file
->f_path
.mnt
= nd
->path
.mnt
;
2961 error
= dir
->i_op
->atomic_open(dir
, dentry
, file
,
2962 open_to_namei_flags(open_flag
), mode
);
2963 d_lookup_done(dentry
);
2965 if (file
->f_mode
& FMODE_OPENED
) {
2966 if (unlikely(dentry
!= file
->f_path
.dentry
)) {
2968 dentry
= dget(file
->f_path
.dentry
);
2970 } else if (WARN_ON(file
->f_path
.dentry
== DENTRY_NOT_SET
)) {
2973 if (file
->f_path
.dentry
) {
2975 dentry
= file
->f_path
.dentry
;
2977 if (unlikely(d_is_negative(dentry
)))
2983 dentry
= ERR_PTR(error
);
2989 * Look up and maybe create and open the last component.
2991 * Must be called with parent locked (exclusive in O_CREAT case).
2993 * Returns 0 on success, that is, if
2994 * the file was successfully atomically created (if necessary) and opened, or
2995 * the file was not completely opened at this time, though lookups and
2996 * creations were performed.
2997 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
2998 * In the latter case dentry returned in @path might be negative if O_CREAT
2999 * hadn't been specified.
3001 * An error code is returned on failure.
3003 static struct dentry
*lookup_open(struct nameidata
*nd
, struct file
*file
,
3004 const struct open_flags
*op
,
3007 struct dentry
*dir
= nd
->path
.dentry
;
3008 struct inode
*dir_inode
= dir
->d_inode
;
3009 int open_flag
= op
->open_flag
;
3010 struct dentry
*dentry
;
3011 int error
, create_error
= 0;
3012 umode_t mode
= op
->mode
;
3013 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq
);
3015 if (unlikely(IS_DEADDIR(dir_inode
)))
3016 return ERR_PTR(-ENOENT
);
3018 file
->f_mode
&= ~FMODE_CREATED
;
3019 dentry
= d_lookup(dir
, &nd
->last
);
3022 dentry
= d_alloc_parallel(dir
, &nd
->last
, &wq
);
3026 if (d_in_lookup(dentry
))
3029 error
= d_revalidate(dentry
, nd
->flags
);
3030 if (likely(error
> 0))
3034 d_invalidate(dentry
);
3038 if (dentry
->d_inode
) {
3039 /* Cached positive dentry: will open in f_op->open */
3044 * Checking write permission is tricky, bacuse we don't know if we are
3045 * going to actually need it: O_CREAT opens should work as long as the
3046 * file exists. But checking existence breaks atomicity. The trick is
3047 * to check access and if not granted clear O_CREAT from the flags.
3049 * Another problem is returing the "right" error value (e.g. for an
3050 * O_EXCL open we want to return EEXIST not EROFS).
3052 if (unlikely(!got_write
))
3053 open_flag
&= ~O_TRUNC
;
3054 if (open_flag
& O_CREAT
) {
3055 if (open_flag
& O_EXCL
)
3056 open_flag
&= ~O_TRUNC
;
3057 if (!IS_POSIXACL(dir
->d_inode
))
3058 mode
&= ~current_umask();
3059 if (likely(got_write
))
3060 create_error
= may_o_create(&nd
->path
, dentry
, mode
);
3062 create_error
= -EROFS
;
3065 open_flag
&= ~O_CREAT
;
3066 if (dir_inode
->i_op
->atomic_open
) {
3067 dentry
= atomic_open(nd
, dentry
, file
, open_flag
, mode
);
3068 if (unlikely(create_error
) && dentry
== ERR_PTR(-ENOENT
))
3069 dentry
= ERR_PTR(create_error
);
3073 if (d_in_lookup(dentry
)) {
3074 struct dentry
*res
= dir_inode
->i_op
->lookup(dir_inode
, dentry
,
3076 d_lookup_done(dentry
);
3077 if (unlikely(res
)) {
3079 error
= PTR_ERR(res
);
3087 /* Negative dentry, just create the file */
3088 if (!dentry
->d_inode
&& (open_flag
& O_CREAT
)) {
3089 file
->f_mode
|= FMODE_CREATED
;
3090 audit_inode_child(dir_inode
, dentry
, AUDIT_TYPE_CHILD_CREATE
);
3091 if (!dir_inode
->i_op
->create
) {
3095 error
= dir_inode
->i_op
->create(dir_inode
, dentry
, mode
,
3096 open_flag
& O_EXCL
);
3100 if (unlikely(create_error
) && !dentry
->d_inode
) {
3101 error
= create_error
;
3108 return ERR_PTR(error
);
3111 static const char *open_last_lookups(struct nameidata
*nd
,
3112 struct file
*file
, const struct open_flags
*op
)
3114 struct dentry
*dir
= nd
->path
.dentry
;
3115 int open_flag
= op
->open_flag
;
3116 bool got_write
= false;
3118 struct inode
*inode
;
3119 struct dentry
*dentry
;
3123 nd
->flags
|= op
->intent
;
3125 if (nd
->last_type
!= LAST_NORM
) {
3128 return handle_dots(nd
, nd
->last_type
);
3131 if (!(open_flag
& O_CREAT
)) {
3132 if (nd
->last
.name
[nd
->last
.len
])
3133 nd
->flags
|= LOOKUP_FOLLOW
| LOOKUP_DIRECTORY
;
3134 /* we _can_ be in RCU mode here */
3135 dentry
= lookup_fast(nd
, &inode
, &seq
);
3137 return ERR_CAST(dentry
);
3141 BUG_ON(nd
->flags
& LOOKUP_RCU
);
3143 /* create side of things */
3144 if (nd
->flags
& LOOKUP_RCU
) {
3145 error
= unlazy_walk(nd
);
3146 if (unlikely(error
))
3147 return ERR_PTR(error
);
3149 audit_inode(nd
->name
, dir
, AUDIT_INODE_PARENT
);
3150 /* trailing slashes? */
3151 if (unlikely(nd
->last
.name
[nd
->last
.len
]))
3152 return ERR_PTR(-EISDIR
);
3155 if (open_flag
& (O_CREAT
| O_TRUNC
| O_WRONLY
| O_RDWR
)) {
3156 error
= mnt_want_write(nd
->path
.mnt
);
3160 * do _not_ fail yet - we might not need that or fail with
3161 * a different error; let lookup_open() decide; we'll be
3162 * dropping this one anyway.
3165 if (open_flag
& O_CREAT
)
3166 inode_lock(dir
->d_inode
);
3168 inode_lock_shared(dir
->d_inode
);
3169 dentry
= lookup_open(nd
, file
, op
, got_write
);
3170 if (!IS_ERR(dentry
) && (file
->f_mode
& FMODE_CREATED
))
3171 fsnotify_create(dir
->d_inode
, dentry
);
3172 if (open_flag
& O_CREAT
)
3173 inode_unlock(dir
->d_inode
);
3175 inode_unlock_shared(dir
->d_inode
);
3178 mnt_drop_write(nd
->path
.mnt
);
3181 return ERR_CAST(dentry
);
3183 if (file
->f_mode
& (FMODE_OPENED
| FMODE_CREATED
)) {
3184 dput(nd
->path
.dentry
);
3185 nd
->path
.dentry
= dentry
;
3192 res
= step_into(nd
, WALK_TRAILING
, dentry
, inode
, seq
);
3194 nd
->flags
&= ~(LOOKUP_OPEN
|LOOKUP_CREATE
|LOOKUP_EXCL
);
3199 * Handle the last step of open()
3201 static int do_open(struct nameidata
*nd
,
3202 struct file
*file
, const struct open_flags
*op
)
3204 int open_flag
= op
->open_flag
;
3209 if (!(file
->f_mode
& (FMODE_OPENED
| FMODE_CREATED
))) {
3210 error
= complete_walk(nd
);
3214 if (!(file
->f_mode
& FMODE_CREATED
))
3215 audit_inode(nd
->name
, nd
->path
.dentry
, 0);
3216 if (open_flag
& O_CREAT
) {
3217 if ((open_flag
& O_EXCL
) && !(file
->f_mode
& FMODE_CREATED
))
3219 if (d_is_dir(nd
->path
.dentry
))
3221 error
= may_create_in_sticky(nd
->dir_mode
, nd
->dir_uid
,
3222 d_backing_inode(nd
->path
.dentry
));
3223 if (unlikely(error
))
3226 if ((nd
->flags
& LOOKUP_DIRECTORY
) && !d_can_lookup(nd
->path
.dentry
))
3229 do_truncate
= false;
3230 acc_mode
= op
->acc_mode
;
3231 if (file
->f_mode
& FMODE_CREATED
) {
3232 /* Don't check for write permission, don't truncate */
3233 open_flag
&= ~O_TRUNC
;
3235 } else if (d_is_reg(nd
->path
.dentry
) && open_flag
& O_TRUNC
) {
3236 error
= mnt_want_write(nd
->path
.mnt
);
3241 error
= may_open(&nd
->path
, acc_mode
, open_flag
);
3242 if (!error
&& !(file
->f_mode
& FMODE_OPENED
))
3243 error
= vfs_open(&nd
->path
, file
);
3245 error
= ima_file_check(file
, op
->acc_mode
);
3246 if (!error
&& do_truncate
)
3247 error
= handle_truncate(file
);
3248 if (unlikely(error
> 0)) {
3253 mnt_drop_write(nd
->path
.mnt
);
3257 struct dentry
*vfs_tmpfile(struct dentry
*dentry
, umode_t mode
, int open_flag
)
3259 struct dentry
*child
= NULL
;
3260 struct inode
*dir
= dentry
->d_inode
;
3261 struct inode
*inode
;
3264 /* we want directory to be writable */
3265 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
3268 error
= -EOPNOTSUPP
;
3269 if (!dir
->i_op
->tmpfile
)
3272 child
= d_alloc(dentry
, &slash_name
);
3273 if (unlikely(!child
))
3275 error
= dir
->i_op
->tmpfile(dir
, child
, mode
);
3279 inode
= child
->d_inode
;
3280 if (unlikely(!inode
))
3282 if (!(open_flag
& O_EXCL
)) {
3283 spin_lock(&inode
->i_lock
);
3284 inode
->i_state
|= I_LINKABLE
;
3285 spin_unlock(&inode
->i_lock
);
3287 ima_post_create_tmpfile(inode
);
3292 return ERR_PTR(error
);
3294 EXPORT_SYMBOL(vfs_tmpfile
);
3296 static int do_tmpfile(struct nameidata
*nd
, unsigned flags
,
3297 const struct open_flags
*op
,
3300 struct dentry
*child
;
3302 int error
= path_lookupat(nd
, flags
| LOOKUP_DIRECTORY
, &path
);
3303 if (unlikely(error
))
3305 error
= mnt_want_write(path
.mnt
);
3306 if (unlikely(error
))
3308 child
= vfs_tmpfile(path
.dentry
, op
->mode
, op
->open_flag
);
3309 error
= PTR_ERR(child
);
3313 path
.dentry
= child
;
3314 audit_inode(nd
->name
, child
, 0);
3315 /* Don't check for other permissions, the inode was just created */
3316 error
= may_open(&path
, 0, op
->open_flag
);
3319 file
->f_path
.mnt
= path
.mnt
;
3320 error
= finish_open(file
, child
, NULL
);
3322 mnt_drop_write(path
.mnt
);
3328 static int do_o_path(struct nameidata
*nd
, unsigned flags
, struct file
*file
)
3331 int error
= path_lookupat(nd
, flags
, &path
);
3333 audit_inode(nd
->name
, path
.dentry
, 0);
3334 error
= vfs_open(&path
, file
);
3340 static struct file
*path_openat(struct nameidata
*nd
,
3341 const struct open_flags
*op
, unsigned flags
)
3346 file
= alloc_empty_file(op
->open_flag
, current_cred());
3350 if (unlikely(file
->f_flags
& __O_TMPFILE
)) {
3351 error
= do_tmpfile(nd
, flags
, op
, file
);
3352 } else if (unlikely(file
->f_flags
& O_PATH
)) {
3353 error
= do_o_path(nd
, flags
, file
);
3355 const char *s
= path_init(nd
, flags
);
3356 while (!(error
= link_path_walk(s
, nd
)) &&
3357 (s
= open_last_lookups(nd
, file
, op
)) != NULL
)
3360 error
= do_open(nd
, file
, op
);
3363 if (likely(!error
)) {
3364 if (likely(file
->f_mode
& FMODE_OPENED
))
3370 if (error
== -EOPENSTALE
) {
3371 if (flags
& LOOKUP_RCU
)
3376 return ERR_PTR(error
);
3379 struct file
*do_filp_open(int dfd
, struct filename
*pathname
,
3380 const struct open_flags
*op
)
3382 struct nameidata nd
;
3383 int flags
= op
->lookup_flags
;
3386 set_nameidata(&nd
, dfd
, pathname
);
3387 filp
= path_openat(&nd
, op
, flags
| LOOKUP_RCU
);
3388 if (unlikely(filp
== ERR_PTR(-ECHILD
)))
3389 filp
= path_openat(&nd
, op
, flags
);
3390 if (unlikely(filp
== ERR_PTR(-ESTALE
)))
3391 filp
= path_openat(&nd
, op
, flags
| LOOKUP_REVAL
);
3392 restore_nameidata();
3396 struct file
*do_file_open_root(struct dentry
*dentry
, struct vfsmount
*mnt
,
3397 const char *name
, const struct open_flags
*op
)
3399 struct nameidata nd
;
3401 struct filename
*filename
;
3402 int flags
= op
->lookup_flags
| LOOKUP_ROOT
;
3405 nd
.root
.dentry
= dentry
;
3407 if (d_is_symlink(dentry
) && op
->intent
& LOOKUP_OPEN
)
3408 return ERR_PTR(-ELOOP
);
3410 filename
= getname_kernel(name
);
3411 if (IS_ERR(filename
))
3412 return ERR_CAST(filename
);
3414 set_nameidata(&nd
, -1, filename
);
3415 file
= path_openat(&nd
, op
, flags
| LOOKUP_RCU
);
3416 if (unlikely(file
== ERR_PTR(-ECHILD
)))
3417 file
= path_openat(&nd
, op
, flags
);
3418 if (unlikely(file
== ERR_PTR(-ESTALE
)))
3419 file
= path_openat(&nd
, op
, flags
| LOOKUP_REVAL
);
3420 restore_nameidata();
3425 static struct dentry
*filename_create(int dfd
, struct filename
*name
,
3426 struct path
*path
, unsigned int lookup_flags
)
3428 struct dentry
*dentry
= ERR_PTR(-EEXIST
);
3433 bool is_dir
= (lookup_flags
& LOOKUP_DIRECTORY
);
3436 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3437 * other flags passed in are ignored!
3439 lookup_flags
&= LOOKUP_REVAL
;
3441 name
= filename_parentat(dfd
, name
, lookup_flags
, path
, &last
, &type
);
3443 return ERR_CAST(name
);
3446 * Yucky last component or no last component at all?
3447 * (foo/., foo/.., /////)
3449 if (unlikely(type
!= LAST_NORM
))
3452 /* don't fail immediately if it's r/o, at least try to report other errors */
3453 err2
= mnt_want_write(path
->mnt
);
3455 * Do the final lookup.
3457 lookup_flags
|= LOOKUP_CREATE
| LOOKUP_EXCL
;
3458 inode_lock_nested(path
->dentry
->d_inode
, I_MUTEX_PARENT
);
3459 dentry
= __lookup_hash(&last
, path
->dentry
, lookup_flags
);
3464 if (d_is_positive(dentry
))
3468 * Special case - lookup gave negative, but... we had foo/bar/
3469 * From the vfs_mknod() POV we just have a negative dentry -
3470 * all is fine. Let's be bastards - you had / on the end, you've
3471 * been asking for (non-existent) directory. -ENOENT for you.
3473 if (unlikely(!is_dir
&& last
.name
[last
.len
])) {
3477 if (unlikely(err2
)) {
3485 dentry
= ERR_PTR(error
);
3487 inode_unlock(path
->dentry
->d_inode
);
3489 mnt_drop_write(path
->mnt
);
3496 struct dentry
*kern_path_create(int dfd
, const char *pathname
,
3497 struct path
*path
, unsigned int lookup_flags
)
3499 return filename_create(dfd
, getname_kernel(pathname
),
3500 path
, lookup_flags
);
3502 EXPORT_SYMBOL(kern_path_create
);
3504 void done_path_create(struct path
*path
, struct dentry
*dentry
)
3507 inode_unlock(path
->dentry
->d_inode
);
3508 mnt_drop_write(path
->mnt
);
3511 EXPORT_SYMBOL(done_path_create
);
3513 inline struct dentry
*user_path_create(int dfd
, const char __user
*pathname
,
3514 struct path
*path
, unsigned int lookup_flags
)
3516 return filename_create(dfd
, getname(pathname
), path
, lookup_flags
);
3518 EXPORT_SYMBOL(user_path_create
);
3520 int vfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
3522 bool is_whiteout
= S_ISCHR(mode
) && dev
== WHITEOUT_DEV
;
3523 int error
= may_create(dir
, dentry
);
3528 if ((S_ISCHR(mode
) || S_ISBLK(mode
)) && !is_whiteout
&&
3529 !capable(CAP_MKNOD
))
3532 if (!dir
->i_op
->mknod
)
3535 error
= devcgroup_inode_mknod(mode
, dev
);
3539 error
= security_inode_mknod(dir
, dentry
, mode
, dev
);
3543 error
= dir
->i_op
->mknod(dir
, dentry
, mode
, dev
);
3545 fsnotify_create(dir
, dentry
);
3548 EXPORT_SYMBOL(vfs_mknod
);
3550 static int may_mknod(umode_t mode
)
3552 switch (mode
& S_IFMT
) {
3558 case 0: /* zero mode translates to S_IFREG */
3567 long do_mknodat(int dfd
, const char __user
*filename
, umode_t mode
,
3570 struct dentry
*dentry
;
3573 unsigned int lookup_flags
= 0;
3575 error
= may_mknod(mode
);
3579 dentry
= user_path_create(dfd
, filename
, &path
, lookup_flags
);
3581 return PTR_ERR(dentry
);
3583 if (!IS_POSIXACL(path
.dentry
->d_inode
))
3584 mode
&= ~current_umask();
3585 error
= security_path_mknod(&path
, dentry
, mode
, dev
);
3588 switch (mode
& S_IFMT
) {
3589 case 0: case S_IFREG
:
3590 error
= vfs_create(path
.dentry
->d_inode
,dentry
,mode
,true);
3592 ima_post_path_mknod(dentry
);
3594 case S_IFCHR
: case S_IFBLK
:
3595 error
= vfs_mknod(path
.dentry
->d_inode
,dentry
,mode
,
3596 new_decode_dev(dev
));
3598 case S_IFIFO
: case S_IFSOCK
:
3599 error
= vfs_mknod(path
.dentry
->d_inode
,dentry
,mode
,0);
3603 done_path_create(&path
, dentry
);
3604 if (retry_estale(error
, lookup_flags
)) {
3605 lookup_flags
|= LOOKUP_REVAL
;
3611 SYSCALL_DEFINE4(mknodat
, int, dfd
, const char __user
*, filename
, umode_t
, mode
,
3614 return do_mknodat(dfd
, filename
, mode
, dev
);
3617 SYSCALL_DEFINE3(mknod
, const char __user
*, filename
, umode_t
, mode
, unsigned, dev
)
3619 return do_mknodat(AT_FDCWD
, filename
, mode
, dev
);
3622 int vfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
3624 int error
= may_create(dir
, dentry
);
3625 unsigned max_links
= dir
->i_sb
->s_max_links
;
3630 if (!dir
->i_op
->mkdir
)
3633 mode
&= (S_IRWXUGO
|S_ISVTX
);
3634 error
= security_inode_mkdir(dir
, dentry
, mode
);
3638 if (max_links
&& dir
->i_nlink
>= max_links
)
3641 error
= dir
->i_op
->mkdir(dir
, dentry
, mode
);
3643 fsnotify_mkdir(dir
, dentry
);
3646 EXPORT_SYMBOL(vfs_mkdir
);
3648 long do_mkdirat(int dfd
, const char __user
*pathname
, umode_t mode
)
3650 struct dentry
*dentry
;
3653 unsigned int lookup_flags
= LOOKUP_DIRECTORY
;
3656 dentry
= user_path_create(dfd
, pathname
, &path
, lookup_flags
);
3658 return PTR_ERR(dentry
);
3660 if (!IS_POSIXACL(path
.dentry
->d_inode
))
3661 mode
&= ~current_umask();
3662 error
= security_path_mkdir(&path
, dentry
, mode
);
3664 error
= vfs_mkdir(path
.dentry
->d_inode
, dentry
, mode
);
3665 done_path_create(&path
, dentry
);
3666 if (retry_estale(error
, lookup_flags
)) {
3667 lookup_flags
|= LOOKUP_REVAL
;
3673 SYSCALL_DEFINE3(mkdirat
, int, dfd
, const char __user
*, pathname
, umode_t
, mode
)
3675 return do_mkdirat(dfd
, pathname
, mode
);
3678 SYSCALL_DEFINE2(mkdir
, const char __user
*, pathname
, umode_t
, mode
)
3680 return do_mkdirat(AT_FDCWD
, pathname
, mode
);
3683 int vfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3685 int error
= may_delete(dir
, dentry
, 1);
3690 if (!dir
->i_op
->rmdir
)
3694 inode_lock(dentry
->d_inode
);
3697 if (is_local_mountpoint(dentry
))
3700 error
= security_inode_rmdir(dir
, dentry
);
3704 error
= dir
->i_op
->rmdir(dir
, dentry
);
3708 shrink_dcache_parent(dentry
);
3709 dentry
->d_inode
->i_flags
|= S_DEAD
;
3711 detach_mounts(dentry
);
3712 fsnotify_rmdir(dir
, dentry
);
3715 inode_unlock(dentry
->d_inode
);
3721 EXPORT_SYMBOL(vfs_rmdir
);
3723 long do_rmdir(int dfd
, const char __user
*pathname
)
3726 struct filename
*name
;
3727 struct dentry
*dentry
;
3731 unsigned int lookup_flags
= 0;
3733 name
= filename_parentat(dfd
, getname(pathname
), lookup_flags
,
3734 &path
, &last
, &type
);
3736 return PTR_ERR(name
);
3750 error
= mnt_want_write(path
.mnt
);
3754 inode_lock_nested(path
.dentry
->d_inode
, I_MUTEX_PARENT
);
3755 dentry
= __lookup_hash(&last
, path
.dentry
, lookup_flags
);
3756 error
= PTR_ERR(dentry
);
3759 if (!dentry
->d_inode
) {
3763 error
= security_path_rmdir(&path
, dentry
);
3766 error
= vfs_rmdir(path
.dentry
->d_inode
, dentry
);
3770 inode_unlock(path
.dentry
->d_inode
);
3771 mnt_drop_write(path
.mnt
);
3775 if (retry_estale(error
, lookup_flags
)) {
3776 lookup_flags
|= LOOKUP_REVAL
;
3782 SYSCALL_DEFINE1(rmdir
, const char __user
*, pathname
)
3784 return do_rmdir(AT_FDCWD
, pathname
);
3788 * vfs_unlink - unlink a filesystem object
3789 * @dir: parent directory
3791 * @delegated_inode: returns victim inode, if the inode is delegated.
3793 * The caller must hold dir->i_mutex.
3795 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3796 * return a reference to the inode in delegated_inode. The caller
3797 * should then break the delegation on that inode and retry. Because
3798 * breaking a delegation may take a long time, the caller should drop
3799 * dir->i_mutex before doing so.
3801 * Alternatively, a caller may pass NULL for delegated_inode. This may
3802 * be appropriate for callers that expect the underlying filesystem not
3803 * to be NFS exported.
3805 int vfs_unlink(struct inode
*dir
, struct dentry
*dentry
, struct inode
**delegated_inode
)
3807 struct inode
*target
= dentry
->d_inode
;
3808 int error
= may_delete(dir
, dentry
, 0);
3813 if (!dir
->i_op
->unlink
)
3817 if (is_local_mountpoint(dentry
))
3820 error
= security_inode_unlink(dir
, dentry
);
3822 error
= try_break_deleg(target
, delegated_inode
);
3825 error
= dir
->i_op
->unlink(dir
, dentry
);
3828 detach_mounts(dentry
);
3829 fsnotify_unlink(dir
, dentry
);
3834 inode_unlock(target
);
3836 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3837 if (!error
&& !(dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)) {
3838 fsnotify_link_count(target
);
3844 EXPORT_SYMBOL(vfs_unlink
);
3847 * Make sure that the actual truncation of the file will occur outside its
3848 * directory's i_mutex. Truncate can take a long time if there is a lot of
3849 * writeout happening, and we don't want to prevent access to the directory
3850 * while waiting on the I/O.
3852 long do_unlinkat(int dfd
, struct filename
*name
)
3855 struct dentry
*dentry
;
3859 struct inode
*inode
= NULL
;
3860 struct inode
*delegated_inode
= NULL
;
3861 unsigned int lookup_flags
= 0;
3863 name
= filename_parentat(dfd
, name
, lookup_flags
, &path
, &last
, &type
);
3865 return PTR_ERR(name
);
3868 if (type
!= LAST_NORM
)
3871 error
= mnt_want_write(path
.mnt
);
3875 inode_lock_nested(path
.dentry
->d_inode
, I_MUTEX_PARENT
);
3876 dentry
= __lookup_hash(&last
, path
.dentry
, lookup_flags
);
3877 error
= PTR_ERR(dentry
);
3878 if (!IS_ERR(dentry
)) {
3879 /* Why not before? Because we want correct error value */
3880 if (last
.name
[last
.len
])
3882 inode
= dentry
->d_inode
;
3883 if (d_is_negative(dentry
))
3886 error
= security_path_unlink(&path
, dentry
);
3889 error
= vfs_unlink(path
.dentry
->d_inode
, dentry
, &delegated_inode
);
3893 inode_unlock(path
.dentry
->d_inode
);
3895 iput(inode
); /* truncate the inode here */
3897 if (delegated_inode
) {
3898 error
= break_deleg_wait(&delegated_inode
);
3902 mnt_drop_write(path
.mnt
);
3905 if (retry_estale(error
, lookup_flags
)) {
3906 lookup_flags
|= LOOKUP_REVAL
;
3914 if (d_is_negative(dentry
))
3916 else if (d_is_dir(dentry
))
3923 SYSCALL_DEFINE3(unlinkat
, int, dfd
, const char __user
*, pathname
, int, flag
)
3925 if ((flag
& ~AT_REMOVEDIR
) != 0)
3928 if (flag
& AT_REMOVEDIR
)
3929 return do_rmdir(dfd
, pathname
);
3931 return do_unlinkat(dfd
, getname(pathname
));
3934 SYSCALL_DEFINE1(unlink
, const char __user
*, pathname
)
3936 return do_unlinkat(AT_FDCWD
, getname(pathname
));
3939 int vfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *oldname
)
3941 int error
= may_create(dir
, dentry
);
3946 if (!dir
->i_op
->symlink
)
3949 error
= security_inode_symlink(dir
, dentry
, oldname
);
3953 error
= dir
->i_op
->symlink(dir
, dentry
, oldname
);
3955 fsnotify_create(dir
, dentry
);
3958 EXPORT_SYMBOL(vfs_symlink
);
3960 long do_symlinkat(const char __user
*oldname
, int newdfd
,
3961 const char __user
*newname
)
3964 struct filename
*from
;
3965 struct dentry
*dentry
;
3967 unsigned int lookup_flags
= 0;
3969 from
= getname(oldname
);
3971 return PTR_ERR(from
);
3973 dentry
= user_path_create(newdfd
, newname
, &path
, lookup_flags
);
3974 error
= PTR_ERR(dentry
);
3978 error
= security_path_symlink(&path
, dentry
, from
->name
);
3980 error
= vfs_symlink(path
.dentry
->d_inode
, dentry
, from
->name
);
3981 done_path_create(&path
, dentry
);
3982 if (retry_estale(error
, lookup_flags
)) {
3983 lookup_flags
|= LOOKUP_REVAL
;
3991 SYSCALL_DEFINE3(symlinkat
, const char __user
*, oldname
,
3992 int, newdfd
, const char __user
*, newname
)
3994 return do_symlinkat(oldname
, newdfd
, newname
);
3997 SYSCALL_DEFINE2(symlink
, const char __user
*, oldname
, const char __user
*, newname
)
3999 return do_symlinkat(oldname
, AT_FDCWD
, newname
);
4003 * vfs_link - create a new link
4004 * @old_dentry: object to be linked
4006 * @new_dentry: where to create the new link
4007 * @delegated_inode: returns inode needing a delegation break
4009 * The caller must hold dir->i_mutex
4011 * If vfs_link discovers a delegation on the to-be-linked file in need
4012 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4013 * inode in delegated_inode. The caller should then break the delegation
4014 * and retry. Because breaking a delegation may take a long time, the
4015 * caller should drop the i_mutex before doing so.
4017 * Alternatively, a caller may pass NULL for delegated_inode. This may
4018 * be appropriate for callers that expect the underlying filesystem not
4019 * to be NFS exported.
4021 int vfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*new_dentry
, struct inode
**delegated_inode
)
4023 struct inode
*inode
= old_dentry
->d_inode
;
4024 unsigned max_links
= dir
->i_sb
->s_max_links
;
4030 error
= may_create(dir
, new_dentry
);
4034 if (dir
->i_sb
!= inode
->i_sb
)
4038 * A link to an append-only or immutable file cannot be created.
4040 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4043 * Updating the link count will likely cause i_uid and i_gid to
4044 * be writen back improperly if their true value is unknown to
4047 if (HAS_UNMAPPED_ID(inode
))
4049 if (!dir
->i_op
->link
)
4051 if (S_ISDIR(inode
->i_mode
))
4054 error
= security_inode_link(old_dentry
, dir
, new_dentry
);
4059 /* Make sure we don't allow creating hardlink to an unlinked file */
4060 if (inode
->i_nlink
== 0 && !(inode
->i_state
& I_LINKABLE
))
4062 else if (max_links
&& inode
->i_nlink
>= max_links
)
4065 error
= try_break_deleg(inode
, delegated_inode
);
4067 error
= dir
->i_op
->link(old_dentry
, dir
, new_dentry
);
4070 if (!error
&& (inode
->i_state
& I_LINKABLE
)) {
4071 spin_lock(&inode
->i_lock
);
4072 inode
->i_state
&= ~I_LINKABLE
;
4073 spin_unlock(&inode
->i_lock
);
4075 inode_unlock(inode
);
4077 fsnotify_link(dir
, inode
, new_dentry
);
4080 EXPORT_SYMBOL(vfs_link
);
4083 * Hardlinks are often used in delicate situations. We avoid
4084 * security-related surprises by not following symlinks on the
4087 * We don't follow them on the oldname either to be compatible
4088 * with linux 2.0, and to avoid hard-linking to directories
4089 * and other special files. --ADM
4091 int do_linkat(int olddfd
, const char __user
*oldname
, int newdfd
,
4092 const char __user
*newname
, int flags
)
4094 struct dentry
*new_dentry
;
4095 struct path old_path
, new_path
;
4096 struct inode
*delegated_inode
= NULL
;
4100 if ((flags
& ~(AT_SYMLINK_FOLLOW
| AT_EMPTY_PATH
)) != 0)
4103 * To use null names we require CAP_DAC_READ_SEARCH
4104 * This ensures that not everyone will be able to create
4105 * handlink using the passed filedescriptor.
4107 if (flags
& AT_EMPTY_PATH
) {
4108 if (!capable(CAP_DAC_READ_SEARCH
))
4113 if (flags
& AT_SYMLINK_FOLLOW
)
4114 how
|= LOOKUP_FOLLOW
;
4116 error
= user_path_at(olddfd
, oldname
, how
, &old_path
);
4120 new_dentry
= user_path_create(newdfd
, newname
, &new_path
,
4121 (how
& LOOKUP_REVAL
));
4122 error
= PTR_ERR(new_dentry
);
4123 if (IS_ERR(new_dentry
))
4127 if (old_path
.mnt
!= new_path
.mnt
)
4129 error
= may_linkat(&old_path
);
4130 if (unlikely(error
))
4132 error
= security_path_link(old_path
.dentry
, &new_path
, new_dentry
);
4135 error
= vfs_link(old_path
.dentry
, new_path
.dentry
->d_inode
, new_dentry
, &delegated_inode
);
4137 done_path_create(&new_path
, new_dentry
);
4138 if (delegated_inode
) {
4139 error
= break_deleg_wait(&delegated_inode
);
4141 path_put(&old_path
);
4145 if (retry_estale(error
, how
)) {
4146 path_put(&old_path
);
4147 how
|= LOOKUP_REVAL
;
4151 path_put(&old_path
);
4156 SYSCALL_DEFINE5(linkat
, int, olddfd
, const char __user
*, oldname
,
4157 int, newdfd
, const char __user
*, newname
, int, flags
)
4159 return do_linkat(olddfd
, oldname
, newdfd
, newname
, flags
);
4162 SYSCALL_DEFINE2(link
, const char __user
*, oldname
, const char __user
*, newname
)
4164 return do_linkat(AT_FDCWD
, oldname
, AT_FDCWD
, newname
, 0);
4168 * vfs_rename - rename a filesystem object
4169 * @old_dir: parent of source
4170 * @old_dentry: source
4171 * @new_dir: parent of destination
4172 * @new_dentry: destination
4173 * @delegated_inode: returns an inode needing a delegation break
4174 * @flags: rename flags
4176 * The caller must hold multiple mutexes--see lock_rename()).
4178 * If vfs_rename discovers a delegation in need of breaking at either
4179 * the source or destination, it will return -EWOULDBLOCK and return a
4180 * reference to the inode in delegated_inode. The caller should then
4181 * break the delegation and retry. Because breaking a delegation may
4182 * take a long time, the caller should drop all locks before doing
4185 * Alternatively, a caller may pass NULL for delegated_inode. This may
4186 * be appropriate for callers that expect the underlying filesystem not
4187 * to be NFS exported.
4189 * The worst of all namespace operations - renaming directory. "Perverted"
4190 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4193 * a) we can get into loop creation.
4194 * b) race potential - two innocent renames can create a loop together.
4195 * That's where 4.4 screws up. Current fix: serialization on
4196 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4198 * c) we have to lock _four_ objects - parents and victim (if it exists),
4199 * and source (if it is not a directory).
4200 * And that - after we got ->i_mutex on parents (until then we don't know
4201 * whether the target exists). Solution: try to be smart with locking
4202 * order for inodes. We rely on the fact that tree topology may change
4203 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4204 * move will be locked. Thus we can rank directories by the tree
4205 * (ancestors first) and rank all non-directories after them.
4206 * That works since everybody except rename does "lock parent, lookup,
4207 * lock child" and rename is under ->s_vfs_rename_mutex.
4208 * HOWEVER, it relies on the assumption that any object with ->lookup()
4209 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4210 * we'd better make sure that there's no link(2) for them.
4211 * d) conversion from fhandle to dentry may come in the wrong moment - when
4212 * we are removing the target. Solution: we will have to grab ->i_mutex
4213 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4214 * ->i_mutex on parents, which works but leads to some truly excessive
4217 int vfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
4218 struct inode
*new_dir
, struct dentry
*new_dentry
,
4219 struct inode
**delegated_inode
, unsigned int flags
)
4222 bool is_dir
= d_is_dir(old_dentry
);
4223 struct inode
*source
= old_dentry
->d_inode
;
4224 struct inode
*target
= new_dentry
->d_inode
;
4225 bool new_is_dir
= false;
4226 unsigned max_links
= new_dir
->i_sb
->s_max_links
;
4227 struct name_snapshot old_name
;
4229 if (source
== target
)
4232 error
= may_delete(old_dir
, old_dentry
, is_dir
);
4237 error
= may_create(new_dir
, new_dentry
);
4239 new_is_dir
= d_is_dir(new_dentry
);
4241 if (!(flags
& RENAME_EXCHANGE
))
4242 error
= may_delete(new_dir
, new_dentry
, is_dir
);
4244 error
= may_delete(new_dir
, new_dentry
, new_is_dir
);
4249 if (!old_dir
->i_op
->rename
)
4253 * If we are going to change the parent - check write permissions,
4254 * we'll need to flip '..'.
4256 if (new_dir
!= old_dir
) {
4258 error
= inode_permission(source
, MAY_WRITE
);
4262 if ((flags
& RENAME_EXCHANGE
) && new_is_dir
) {
4263 error
= inode_permission(target
, MAY_WRITE
);
4269 error
= security_inode_rename(old_dir
, old_dentry
, new_dir
, new_dentry
,
4274 take_dentry_name_snapshot(&old_name
, old_dentry
);
4276 if (!is_dir
|| (flags
& RENAME_EXCHANGE
))
4277 lock_two_nondirectories(source
, target
);
4282 if (is_local_mountpoint(old_dentry
) || is_local_mountpoint(new_dentry
))
4285 if (max_links
&& new_dir
!= old_dir
) {
4287 if (is_dir
&& !new_is_dir
&& new_dir
->i_nlink
>= max_links
)
4289 if ((flags
& RENAME_EXCHANGE
) && !is_dir
&& new_is_dir
&&
4290 old_dir
->i_nlink
>= max_links
)
4294 error
= try_break_deleg(source
, delegated_inode
);
4298 if (target
&& !new_is_dir
) {
4299 error
= try_break_deleg(target
, delegated_inode
);
4303 error
= old_dir
->i_op
->rename(old_dir
, old_dentry
,
4304 new_dir
, new_dentry
, flags
);
4308 if (!(flags
& RENAME_EXCHANGE
) && target
) {
4310 shrink_dcache_parent(new_dentry
);
4311 target
->i_flags
|= S_DEAD
;
4313 dont_mount(new_dentry
);
4314 detach_mounts(new_dentry
);
4316 if (!(old_dir
->i_sb
->s_type
->fs_flags
& FS_RENAME_DOES_D_MOVE
)) {
4317 if (!(flags
& RENAME_EXCHANGE
))
4318 d_move(old_dentry
, new_dentry
);
4320 d_exchange(old_dentry
, new_dentry
);
4323 if (!is_dir
|| (flags
& RENAME_EXCHANGE
))
4324 unlock_two_nondirectories(source
, target
);
4326 inode_unlock(target
);
4329 fsnotify_move(old_dir
, new_dir
, &old_name
.name
, is_dir
,
4330 !(flags
& RENAME_EXCHANGE
) ? target
: NULL
, old_dentry
);
4331 if (flags
& RENAME_EXCHANGE
) {
4332 fsnotify_move(new_dir
, old_dir
, &old_dentry
->d_name
,
4333 new_is_dir
, NULL
, new_dentry
);
4336 release_dentry_name_snapshot(&old_name
);
4340 EXPORT_SYMBOL(vfs_rename
);
4342 static int do_renameat2(int olddfd
, const char __user
*oldname
, int newdfd
,
4343 const char __user
*newname
, unsigned int flags
)
4345 struct dentry
*old_dentry
, *new_dentry
;
4346 struct dentry
*trap
;
4347 struct path old_path
, new_path
;
4348 struct qstr old_last
, new_last
;
4349 int old_type
, new_type
;
4350 struct inode
*delegated_inode
= NULL
;
4351 struct filename
*from
;
4352 struct filename
*to
;
4353 unsigned int lookup_flags
= 0, target_flags
= LOOKUP_RENAME_TARGET
;
4354 bool should_retry
= false;
4357 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
4360 if ((flags
& (RENAME_NOREPLACE
| RENAME_WHITEOUT
)) &&
4361 (flags
& RENAME_EXCHANGE
))
4364 if (flags
& RENAME_EXCHANGE
)
4368 from
= filename_parentat(olddfd
, getname(oldname
), lookup_flags
,
4369 &old_path
, &old_last
, &old_type
);
4371 error
= PTR_ERR(from
);
4375 to
= filename_parentat(newdfd
, getname(newname
), lookup_flags
,
4376 &new_path
, &new_last
, &new_type
);
4378 error
= PTR_ERR(to
);
4383 if (old_path
.mnt
!= new_path
.mnt
)
4387 if (old_type
!= LAST_NORM
)
4390 if (flags
& RENAME_NOREPLACE
)
4392 if (new_type
!= LAST_NORM
)
4395 error
= mnt_want_write(old_path
.mnt
);
4400 trap
= lock_rename(new_path
.dentry
, old_path
.dentry
);
4402 old_dentry
= __lookup_hash(&old_last
, old_path
.dentry
, lookup_flags
);
4403 error
= PTR_ERR(old_dentry
);
4404 if (IS_ERR(old_dentry
))
4406 /* source must exist */
4408 if (d_is_negative(old_dentry
))
4410 new_dentry
= __lookup_hash(&new_last
, new_path
.dentry
, lookup_flags
| target_flags
);
4411 error
= PTR_ERR(new_dentry
);
4412 if (IS_ERR(new_dentry
))
4415 if ((flags
& RENAME_NOREPLACE
) && d_is_positive(new_dentry
))
4417 if (flags
& RENAME_EXCHANGE
) {
4419 if (d_is_negative(new_dentry
))
4422 if (!d_is_dir(new_dentry
)) {
4424 if (new_last
.name
[new_last
.len
])
4428 /* unless the source is a directory trailing slashes give -ENOTDIR */
4429 if (!d_is_dir(old_dentry
)) {
4431 if (old_last
.name
[old_last
.len
])
4433 if (!(flags
& RENAME_EXCHANGE
) && new_last
.name
[new_last
.len
])
4436 /* source should not be ancestor of target */
4438 if (old_dentry
== trap
)
4440 /* target should not be an ancestor of source */
4441 if (!(flags
& RENAME_EXCHANGE
))
4443 if (new_dentry
== trap
)
4446 error
= security_path_rename(&old_path
, old_dentry
,
4447 &new_path
, new_dentry
, flags
);
4450 error
= vfs_rename(old_path
.dentry
->d_inode
, old_dentry
,
4451 new_path
.dentry
->d_inode
, new_dentry
,
4452 &delegated_inode
, flags
);
4458 unlock_rename(new_path
.dentry
, old_path
.dentry
);
4459 if (delegated_inode
) {
4460 error
= break_deleg_wait(&delegated_inode
);
4464 mnt_drop_write(old_path
.mnt
);
4466 if (retry_estale(error
, lookup_flags
))
4467 should_retry
= true;
4468 path_put(&new_path
);
4471 path_put(&old_path
);
4474 should_retry
= false;
4475 lookup_flags
|= LOOKUP_REVAL
;
4482 SYSCALL_DEFINE5(renameat2
, int, olddfd
, const char __user
*, oldname
,
4483 int, newdfd
, const char __user
*, newname
, unsigned int, flags
)
4485 return do_renameat2(olddfd
, oldname
, newdfd
, newname
, flags
);
4488 SYSCALL_DEFINE4(renameat
, int, olddfd
, const char __user
*, oldname
,
4489 int, newdfd
, const char __user
*, newname
)
4491 return do_renameat2(olddfd
, oldname
, newdfd
, newname
, 0);
4494 SYSCALL_DEFINE2(rename
, const char __user
*, oldname
, const char __user
*, newname
)
4496 return do_renameat2(AT_FDCWD
, oldname
, AT_FDCWD
, newname
, 0);
4499 int readlink_copy(char __user
*buffer
, int buflen
, const char *link
)
4501 int len
= PTR_ERR(link
);
4506 if (len
> (unsigned) buflen
)
4508 if (copy_to_user(buffer
, link
, len
))
4515 * vfs_readlink - copy symlink body into userspace buffer
4516 * @dentry: dentry on which to get symbolic link
4517 * @buffer: user memory pointer
4518 * @buflen: size of buffer
4520 * Does not touch atime. That's up to the caller if necessary
4522 * Does not call security hook.
4524 int vfs_readlink(struct dentry
*dentry
, char __user
*buffer
, int buflen
)
4526 struct inode
*inode
= d_inode(dentry
);
4527 DEFINE_DELAYED_CALL(done
);
4531 if (unlikely(!(inode
->i_opflags
& IOP_DEFAULT_READLINK
))) {
4532 if (unlikely(inode
->i_op
->readlink
))
4533 return inode
->i_op
->readlink(dentry
, buffer
, buflen
);
4535 if (!d_is_symlink(dentry
))
4538 spin_lock(&inode
->i_lock
);
4539 inode
->i_opflags
|= IOP_DEFAULT_READLINK
;
4540 spin_unlock(&inode
->i_lock
);
4543 link
= READ_ONCE(inode
->i_link
);
4545 link
= inode
->i_op
->get_link(dentry
, inode
, &done
);
4547 return PTR_ERR(link
);
4549 res
= readlink_copy(buffer
, buflen
, link
);
4550 do_delayed_call(&done
);
4553 EXPORT_SYMBOL(vfs_readlink
);
4556 * vfs_get_link - get symlink body
4557 * @dentry: dentry on which to get symbolic link
4558 * @done: caller needs to free returned data with this
4560 * Calls security hook and i_op->get_link() on the supplied inode.
4562 * It does not touch atime. That's up to the caller if necessary.
4564 * Does not work on "special" symlinks like /proc/$$/fd/N
4566 const char *vfs_get_link(struct dentry
*dentry
, struct delayed_call
*done
)
4568 const char *res
= ERR_PTR(-EINVAL
);
4569 struct inode
*inode
= d_inode(dentry
);
4571 if (d_is_symlink(dentry
)) {
4572 res
= ERR_PTR(security_inode_readlink(dentry
));
4574 res
= inode
->i_op
->get_link(dentry
, inode
, done
);
4578 EXPORT_SYMBOL(vfs_get_link
);
4580 /* get the link contents into pagecache */
4581 const char *page_get_link(struct dentry
*dentry
, struct inode
*inode
,
4582 struct delayed_call
*callback
)
4586 struct address_space
*mapping
= inode
->i_mapping
;
4589 page
= find_get_page(mapping
, 0);
4591 return ERR_PTR(-ECHILD
);
4592 if (!PageUptodate(page
)) {
4594 return ERR_PTR(-ECHILD
);
4597 page
= read_mapping_page(mapping
, 0, NULL
);
4601 set_delayed_call(callback
, page_put_link
, page
);
4602 BUG_ON(mapping_gfp_mask(mapping
) & __GFP_HIGHMEM
);
4603 kaddr
= page_address(page
);
4604 nd_terminate_link(kaddr
, inode
->i_size
, PAGE_SIZE
- 1);
4608 EXPORT_SYMBOL(page_get_link
);
4610 void page_put_link(void *arg
)
4614 EXPORT_SYMBOL(page_put_link
);
4616 int page_readlink(struct dentry
*dentry
, char __user
*buffer
, int buflen
)
4618 DEFINE_DELAYED_CALL(done
);
4619 int res
= readlink_copy(buffer
, buflen
,
4620 page_get_link(dentry
, d_inode(dentry
),
4622 do_delayed_call(&done
);
4625 EXPORT_SYMBOL(page_readlink
);
4628 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4630 int __page_symlink(struct inode
*inode
, const char *symname
, int len
, int nofs
)
4632 struct address_space
*mapping
= inode
->i_mapping
;
4636 unsigned int flags
= 0;
4638 flags
|= AOP_FLAG_NOFS
;
4641 err
= pagecache_write_begin(NULL
, mapping
, 0, len
-1,
4642 flags
, &page
, &fsdata
);
4646 memcpy(page_address(page
), symname
, len
-1);
4648 err
= pagecache_write_end(NULL
, mapping
, 0, len
-1, len
-1,
4655 mark_inode_dirty(inode
);
4660 EXPORT_SYMBOL(__page_symlink
);
4662 int page_symlink(struct inode
*inode
, const char *symname
, int len
)
4664 return __page_symlink(inode
, symname
, len
,
4665 !mapping_gfp_constraint(inode
->i_mapping
, __GFP_FS
));
4667 EXPORT_SYMBOL(page_symlink
);
4669 const struct inode_operations page_symlink_inode_operations
= {
4670 .get_link
= page_get_link
,
4672 EXPORT_SYMBOL(page_symlink_inode_operations
);