1 // SPDX-License-Identifier: GPL-2.0
3 * sparse memory mappings.
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
19 #include <asm/pgalloc.h>
22 * Permanent SPARSEMEM data:
24 * 1) mem_section - memory sections, mem_map's for valid memory
26 #ifdef CONFIG_SPARSEMEM_EXTREME
27 struct mem_section
**mem_section
;
29 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
30 ____cacheline_internodealigned_in_smp
;
32 EXPORT_SYMBOL(mem_section
);
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
36 * If we did not store the node number in the page then we have to
37 * do a lookup in the section_to_node_table in order to find which
38 * node the page belongs to.
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
43 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
46 int page_to_nid(const struct page
*page
)
48 return section_to_node_table
[page_to_section(page
)];
50 EXPORT_SYMBOL(page_to_nid
);
52 static void set_section_nid(unsigned long section_nr
, int nid
)
54 section_to_node_table
[section_nr
] = nid
;
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr
, int nid
)
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline
struct mem_section __ref
*sparse_index_alloc(int nid
)
65 struct mem_section
*section
= NULL
;
66 unsigned long array_size
= SECTIONS_PER_ROOT
*
67 sizeof(struct mem_section
);
69 if (slab_is_available()) {
70 section
= kzalloc_node(array_size
, GFP_KERNEL
, nid
);
72 section
= memblock_alloc_node(array_size
, SMP_CACHE_BYTES
,
75 panic("%s: Failed to allocate %lu bytes nid=%d\n",
76 __func__
, array_size
, nid
);
82 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
84 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
85 struct mem_section
*section
;
88 * An existing section is possible in the sub-section hotplug
89 * case. First hot-add instantiates, follow-on hot-add reuses
90 * the existing section.
92 * The mem_hotplug_lock resolves the apparent race below.
94 if (mem_section
[root
])
97 section
= sparse_index_alloc(nid
);
101 mem_section
[root
] = section
;
105 #else /* !SPARSEMEM_EXTREME */
106 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
112 #ifdef CONFIG_SPARSEMEM_EXTREME
113 unsigned long __section_nr(struct mem_section
*ms
)
115 unsigned long root_nr
;
116 struct mem_section
*root
= NULL
;
118 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
119 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
123 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
129 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
132 unsigned long __section_nr(struct mem_section
*ms
)
134 return (unsigned long)(ms
- mem_section
[0]);
139 * During early boot, before section_mem_map is used for an actual
140 * mem_map, we use section_mem_map to store the section's NUMA
141 * node. This keeps us from having to use another data structure. The
142 * node information is cleared just before we store the real mem_map.
144 static inline unsigned long sparse_encode_early_nid(int nid
)
146 return (nid
<< SECTION_NID_SHIFT
);
149 static inline int sparse_early_nid(struct mem_section
*section
)
151 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
154 /* Validate the physical addressing limitations of the model */
155 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
156 unsigned long *end_pfn
)
158 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
161 * Sanity checks - do not allow an architecture to pass
162 * in larger pfns than the maximum scope of sparsemem:
164 if (*start_pfn
> max_sparsemem_pfn
) {
165 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
166 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
167 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
169 *start_pfn
= max_sparsemem_pfn
;
170 *end_pfn
= max_sparsemem_pfn
;
171 } else if (*end_pfn
> max_sparsemem_pfn
) {
172 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
173 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
174 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
176 *end_pfn
= max_sparsemem_pfn
;
181 * There are a number of times that we loop over NR_MEM_SECTIONS,
182 * looking for section_present() on each. But, when we have very
183 * large physical address spaces, NR_MEM_SECTIONS can also be
184 * very large which makes the loops quite long.
186 * Keeping track of this gives us an easy way to break out of
189 unsigned long __highest_present_section_nr
;
190 static void section_mark_present(struct mem_section
*ms
)
192 unsigned long section_nr
= __section_nr(ms
);
194 if (section_nr
> __highest_present_section_nr
)
195 __highest_present_section_nr
= section_nr
;
197 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
200 #define for_each_present_section_nr(start, section_nr) \
201 for (section_nr = next_present_section_nr(start-1); \
202 ((section_nr != -1) && \
203 (section_nr <= __highest_present_section_nr)); \
204 section_nr = next_present_section_nr(section_nr))
206 static inline unsigned long first_present_section_nr(void)
208 return next_present_section_nr(-1);
211 #ifdef CONFIG_SPARSEMEM_VMEMMAP
212 static void subsection_mask_set(unsigned long *map
, unsigned long pfn
,
213 unsigned long nr_pages
)
215 int idx
= subsection_map_index(pfn
);
216 int end
= subsection_map_index(pfn
+ nr_pages
- 1);
218 bitmap_set(map
, idx
, end
- idx
+ 1);
221 void __init
subsection_map_init(unsigned long pfn
, unsigned long nr_pages
)
223 int end_sec
= pfn_to_section_nr(pfn
+ nr_pages
- 1);
224 unsigned long nr
, start_sec
= pfn_to_section_nr(pfn
);
229 for (nr
= start_sec
; nr
<= end_sec
; nr
++) {
230 struct mem_section
*ms
;
233 pfns
= min(nr_pages
, PAGES_PER_SECTION
234 - (pfn
& ~PAGE_SECTION_MASK
));
235 ms
= __nr_to_section(nr
);
236 subsection_mask_set(ms
->usage
->subsection_map
, pfn
, pfns
);
238 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__
, nr
,
239 pfns
, subsection_map_index(pfn
),
240 subsection_map_index(pfn
+ pfns
- 1));
247 void __init
subsection_map_init(unsigned long pfn
, unsigned long nr_pages
)
252 /* Record a memory area against a node. */
253 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
257 #ifdef CONFIG_SPARSEMEM_EXTREME
258 if (unlikely(!mem_section
)) {
259 unsigned long size
, align
;
261 size
= sizeof(struct mem_section
*) * NR_SECTION_ROOTS
;
262 align
= 1 << (INTERNODE_CACHE_SHIFT
);
263 mem_section
= memblock_alloc(size
, align
);
265 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
266 __func__
, size
, align
);
270 start
&= PAGE_SECTION_MASK
;
271 mminit_validate_memmodel_limits(&start
, &end
);
272 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
273 unsigned long section
= pfn_to_section_nr(pfn
);
274 struct mem_section
*ms
;
276 sparse_index_init(section
, nid
);
277 set_section_nid(section
, nid
);
279 ms
= __nr_to_section(section
);
280 if (!ms
->section_mem_map
) {
281 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
283 section_mark_present(ms
);
289 * Mark all memblocks as present using memory_present(). This is a
290 * convenience function that is useful for a number of arches
291 * to mark all of the systems memory as present during initialization.
293 void __init
memblocks_present(void)
295 struct memblock_region
*reg
;
297 for_each_memblock(memory
, reg
) {
298 memory_present(memblock_get_region_node(reg
),
299 memblock_region_memory_base_pfn(reg
),
300 memblock_region_memory_end_pfn(reg
));
305 * Subtle, we encode the real pfn into the mem_map such that
306 * the identity pfn - section_mem_map will return the actual
307 * physical page frame number.
309 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
311 unsigned long coded_mem_map
=
312 (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
313 BUILD_BUG_ON(SECTION_MAP_LAST_BIT
> (1UL<<PFN_SECTION_SHIFT
));
314 BUG_ON(coded_mem_map
& ~SECTION_MAP_MASK
);
315 return coded_mem_map
;
319 * Decode mem_map from the coded memmap
321 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
323 /* mask off the extra low bits of information */
324 coded_mem_map
&= SECTION_MAP_MASK
;
325 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
328 static void __meminit
sparse_init_one_section(struct mem_section
*ms
,
329 unsigned long pnum
, struct page
*mem_map
,
330 struct mem_section_usage
*usage
, unsigned long flags
)
332 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
333 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
)
334 | SECTION_HAS_MEM_MAP
| flags
;
338 static unsigned long usemap_size(void)
340 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS
) * sizeof(unsigned long);
343 size_t mem_section_usage_size(void)
345 return sizeof(struct mem_section_usage
) + usemap_size();
348 #ifdef CONFIG_MEMORY_HOTREMOVE
349 static struct mem_section_usage
* __init
350 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
353 struct mem_section_usage
*usage
;
354 unsigned long goal
, limit
;
357 * A page may contain usemaps for other sections preventing the
358 * page being freed and making a section unremovable while
359 * other sections referencing the usemap remain active. Similarly,
360 * a pgdat can prevent a section being removed. If section A
361 * contains a pgdat and section B contains the usemap, both
362 * sections become inter-dependent. This allocates usemaps
363 * from the same section as the pgdat where possible to avoid
366 goal
= __pa(pgdat
) & (PAGE_SECTION_MASK
<< PAGE_SHIFT
);
367 limit
= goal
+ (1UL << PA_SECTION_SHIFT
);
368 nid
= early_pfn_to_nid(goal
>> PAGE_SHIFT
);
370 usage
= memblock_alloc_try_nid(size
, SMP_CACHE_BYTES
, goal
, limit
, nid
);
371 if (!usage
&& limit
) {
378 static void __init
check_usemap_section_nr(int nid
,
379 struct mem_section_usage
*usage
)
381 unsigned long usemap_snr
, pgdat_snr
;
382 static unsigned long old_usemap_snr
;
383 static unsigned long old_pgdat_snr
;
384 struct pglist_data
*pgdat
= NODE_DATA(nid
);
388 if (!old_usemap_snr
) {
389 old_usemap_snr
= NR_MEM_SECTIONS
;
390 old_pgdat_snr
= NR_MEM_SECTIONS
;
393 usemap_snr
= pfn_to_section_nr(__pa(usage
) >> PAGE_SHIFT
);
394 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
395 if (usemap_snr
== pgdat_snr
)
398 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
399 /* skip redundant message */
402 old_usemap_snr
= usemap_snr
;
403 old_pgdat_snr
= pgdat_snr
;
405 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
406 if (usemap_nid
!= nid
) {
407 pr_info("node %d must be removed before remove section %ld\n",
412 * There is a circular dependency.
413 * Some platforms allow un-removable section because they will just
414 * gather other removable sections for dynamic partitioning.
415 * Just notify un-removable section's number here.
417 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
418 usemap_snr
, pgdat_snr
, nid
);
421 static struct mem_section_usage
* __init
422 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
425 return memblock_alloc_node(size
, SMP_CACHE_BYTES
, pgdat
->node_id
);
428 static void __init
check_usemap_section_nr(int nid
,
429 struct mem_section_usage
*usage
)
432 #endif /* CONFIG_MEMORY_HOTREMOVE */
434 #ifdef CONFIG_SPARSEMEM_VMEMMAP
435 static unsigned long __init
section_map_size(void)
437 return ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
, PMD_SIZE
);
441 static unsigned long __init
section_map_size(void)
443 return PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
);
446 struct page __init
*__populate_section_memmap(unsigned long pfn
,
447 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
449 unsigned long size
= section_map_size();
450 struct page
*map
= sparse_buffer_alloc(size
);
451 phys_addr_t addr
= __pa(MAX_DMA_ADDRESS
);
456 map
= memblock_alloc_try_nid_raw(size
, size
, addr
,
457 MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
459 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
460 __func__
, size
, PAGE_SIZE
, nid
, &addr
);
464 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
466 static void *sparsemap_buf __meminitdata
;
467 static void *sparsemap_buf_end __meminitdata
;
469 static inline void __meminit
sparse_buffer_free(unsigned long size
)
471 WARN_ON(!sparsemap_buf
|| size
== 0);
472 memblock_free_early(__pa(sparsemap_buf
), size
);
475 static void __init
sparse_buffer_init(unsigned long size
, int nid
)
477 phys_addr_t addr
= __pa(MAX_DMA_ADDRESS
);
478 WARN_ON(sparsemap_buf
); /* forgot to call sparse_buffer_fini()? */
480 * Pre-allocated buffer is mainly used by __populate_section_memmap
481 * and we want it to be properly aligned to the section size - this is
482 * especially the case for VMEMMAP which maps memmap to PMDs
484 sparsemap_buf
= memblock_alloc_exact_nid_raw(size
, section_map_size(),
485 addr
, MEMBLOCK_ALLOC_ACCESSIBLE
, nid
);
486 sparsemap_buf_end
= sparsemap_buf
+ size
;
489 static void __init
sparse_buffer_fini(void)
491 unsigned long size
= sparsemap_buf_end
- sparsemap_buf
;
493 if (sparsemap_buf
&& size
> 0)
494 sparse_buffer_free(size
);
495 sparsemap_buf
= NULL
;
498 void * __meminit
sparse_buffer_alloc(unsigned long size
)
503 ptr
= (void *) roundup((unsigned long)sparsemap_buf
, size
);
504 if (ptr
+ size
> sparsemap_buf_end
)
507 /* Free redundant aligned space */
508 if ((unsigned long)(ptr
- sparsemap_buf
) > 0)
509 sparse_buffer_free((unsigned long)(ptr
- sparsemap_buf
));
510 sparsemap_buf
= ptr
+ size
;
516 void __weak __meminit
vmemmap_populate_print_last(void)
521 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
522 * And number of present sections in this node is map_count.
524 static void __init
sparse_init_nid(int nid
, unsigned long pnum_begin
,
525 unsigned long pnum_end
,
526 unsigned long map_count
)
528 struct mem_section_usage
*usage
;
532 usage
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid
),
533 mem_section_usage_size() * map_count
);
535 pr_err("%s: node[%d] usemap allocation failed", __func__
, nid
);
538 sparse_buffer_init(map_count
* section_map_size(), nid
);
539 for_each_present_section_nr(pnum_begin
, pnum
) {
540 unsigned long pfn
= section_nr_to_pfn(pnum
);
542 if (pnum
>= pnum_end
)
545 map
= __populate_section_memmap(pfn
, PAGES_PER_SECTION
,
548 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
553 check_usemap_section_nr(nid
, usage
);
554 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
, usage
,
556 usage
= (void *) usage
+ mem_section_usage_size();
558 sparse_buffer_fini();
561 /* We failed to allocate, mark all the following pnums as not present */
562 for_each_present_section_nr(pnum_begin
, pnum
) {
563 struct mem_section
*ms
;
565 if (pnum
>= pnum_end
)
567 ms
= __nr_to_section(pnum
);
568 ms
->section_mem_map
= 0;
573 * Allocate the accumulated non-linear sections, allocate a mem_map
574 * for each and record the physical to section mapping.
576 void __init
sparse_init(void)
578 unsigned long pnum_begin
= first_present_section_nr();
579 int nid_begin
= sparse_early_nid(__nr_to_section(pnum_begin
));
580 unsigned long pnum_end
, map_count
= 1;
582 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
583 set_pageblock_order();
585 for_each_present_section_nr(pnum_begin
+ 1, pnum_end
) {
586 int nid
= sparse_early_nid(__nr_to_section(pnum_end
));
588 if (nid
== nid_begin
) {
592 /* Init node with sections in range [pnum_begin, pnum_end) */
593 sparse_init_nid(nid_begin
, pnum_begin
, pnum_end
, map_count
);
595 pnum_begin
= pnum_end
;
598 /* cover the last node */
599 sparse_init_nid(nid_begin
, pnum_begin
, pnum_end
, map_count
);
600 vmemmap_populate_print_last();
603 #ifdef CONFIG_MEMORY_HOTPLUG
605 /* Mark all memory sections within the pfn range as online */
606 void online_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
610 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
611 unsigned long section_nr
= pfn_to_section_nr(pfn
);
612 struct mem_section
*ms
;
614 /* onlining code should never touch invalid ranges */
615 if (WARN_ON(!valid_section_nr(section_nr
)))
618 ms
= __nr_to_section(section_nr
);
619 ms
->section_mem_map
|= SECTION_IS_ONLINE
;
623 #ifdef CONFIG_MEMORY_HOTREMOVE
624 /* Mark all memory sections within the pfn range as offline */
625 void offline_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
629 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
630 unsigned long section_nr
= pfn_to_section_nr(pfn
);
631 struct mem_section
*ms
;
634 * TODO this needs some double checking. Offlining code makes
635 * sure to check pfn_valid but those checks might be just bogus
637 if (WARN_ON(!valid_section_nr(section_nr
)))
640 ms
= __nr_to_section(section_nr
);
641 ms
->section_mem_map
&= ~SECTION_IS_ONLINE
;
646 #ifdef CONFIG_SPARSEMEM_VMEMMAP
647 static struct page
* __meminit
populate_section_memmap(unsigned long pfn
,
648 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
650 return __populate_section_memmap(pfn
, nr_pages
, nid
, altmap
);
653 static void depopulate_section_memmap(unsigned long pfn
, unsigned long nr_pages
,
654 struct vmem_altmap
*altmap
)
656 unsigned long start
= (unsigned long) pfn_to_page(pfn
);
657 unsigned long end
= start
+ nr_pages
* sizeof(struct page
);
659 vmemmap_free(start
, end
, altmap
);
661 static void free_map_bootmem(struct page
*memmap
)
663 unsigned long start
= (unsigned long)memmap
;
664 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
666 vmemmap_free(start
, end
, NULL
);
669 static int clear_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
671 DECLARE_BITMAP(map
, SUBSECTIONS_PER_SECTION
) = { 0 };
672 DECLARE_BITMAP(tmp
, SUBSECTIONS_PER_SECTION
) = { 0 };
673 struct mem_section
*ms
= __pfn_to_section(pfn
);
674 unsigned long *subsection_map
= ms
->usage
675 ? &ms
->usage
->subsection_map
[0] : NULL
;
677 subsection_mask_set(map
, pfn
, nr_pages
);
679 bitmap_and(tmp
, map
, subsection_map
, SUBSECTIONS_PER_SECTION
);
681 if (WARN(!subsection_map
|| !bitmap_equal(tmp
, map
, SUBSECTIONS_PER_SECTION
),
682 "section already deactivated (%#lx + %ld)\n",
686 bitmap_xor(subsection_map
, map
, subsection_map
, SUBSECTIONS_PER_SECTION
);
690 static bool is_subsection_map_empty(struct mem_section
*ms
)
692 return bitmap_empty(&ms
->usage
->subsection_map
[0],
693 SUBSECTIONS_PER_SECTION
);
696 static int fill_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
698 struct mem_section
*ms
= __pfn_to_section(pfn
);
699 DECLARE_BITMAP(map
, SUBSECTIONS_PER_SECTION
) = { 0 };
700 unsigned long *subsection_map
;
703 subsection_mask_set(map
, pfn
, nr_pages
);
705 subsection_map
= &ms
->usage
->subsection_map
[0];
707 if (bitmap_empty(map
, SUBSECTIONS_PER_SECTION
))
709 else if (bitmap_intersects(map
, subsection_map
, SUBSECTIONS_PER_SECTION
))
712 bitmap_or(subsection_map
, map
, subsection_map
,
713 SUBSECTIONS_PER_SECTION
);
718 struct page
* __meminit
populate_section_memmap(unsigned long pfn
,
719 unsigned long nr_pages
, int nid
, struct vmem_altmap
*altmap
)
721 return kvmalloc_node(array_size(sizeof(struct page
),
722 PAGES_PER_SECTION
), GFP_KERNEL
, nid
);
725 static void depopulate_section_memmap(unsigned long pfn
, unsigned long nr_pages
,
726 struct vmem_altmap
*altmap
)
728 kvfree(pfn_to_page(pfn
));
731 static void free_map_bootmem(struct page
*memmap
)
733 unsigned long maps_section_nr
, removing_section_nr
, i
;
734 unsigned long magic
, nr_pages
;
735 struct page
*page
= virt_to_page(memmap
);
737 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
740 for (i
= 0; i
< nr_pages
; i
++, page
++) {
741 magic
= (unsigned long) page
->freelist
;
743 BUG_ON(magic
== NODE_INFO
);
745 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
746 removing_section_nr
= page_private(page
);
749 * When this function is called, the removing section is
750 * logical offlined state. This means all pages are isolated
751 * from page allocator. If removing section's memmap is placed
752 * on the same section, it must not be freed.
753 * If it is freed, page allocator may allocate it which will
754 * be removed physically soon.
756 if (maps_section_nr
!= removing_section_nr
)
757 put_page_bootmem(page
);
761 static int clear_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
766 static bool is_subsection_map_empty(struct mem_section
*ms
)
771 static int fill_subsection_map(unsigned long pfn
, unsigned long nr_pages
)
775 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
778 * To deactivate a memory region, there are 3 cases to handle across
779 * two configurations (SPARSEMEM_VMEMMAP={y,n}):
781 * 1. deactivation of a partial hot-added section (only possible in
782 * the SPARSEMEM_VMEMMAP=y case).
783 * a) section was present at memory init.
784 * b) section was hot-added post memory init.
785 * 2. deactivation of a complete hot-added section.
786 * 3. deactivation of a complete section from memory init.
788 * For 1, when subsection_map does not empty we will not be freeing the
789 * usage map, but still need to free the vmemmap range.
791 * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
793 static void section_deactivate(unsigned long pfn
, unsigned long nr_pages
,
794 struct vmem_altmap
*altmap
)
796 struct mem_section
*ms
= __pfn_to_section(pfn
);
797 bool section_is_early
= early_section(ms
);
798 struct page
*memmap
= NULL
;
801 if (clear_subsection_map(pfn
, nr_pages
))
804 empty
= is_subsection_map_empty(ms
);
806 unsigned long section_nr
= pfn_to_section_nr(pfn
);
809 * When removing an early section, the usage map is kept (as the
810 * usage maps of other sections fall into the same page). It
811 * will be re-used when re-adding the section - which is then no
812 * longer an early section. If the usage map is PageReserved, it
813 * was allocated during boot.
815 if (!PageReserved(virt_to_page(ms
->usage
))) {
819 memmap
= sparse_decode_mem_map(ms
->section_mem_map
, section_nr
);
821 * Mark the section invalid so that valid_section()
822 * return false. This prevents code from dereferencing
825 ms
->section_mem_map
&= ~SECTION_HAS_MEM_MAP
;
828 if (section_is_early
&& memmap
)
829 free_map_bootmem(memmap
);
831 depopulate_section_memmap(pfn
, nr_pages
, altmap
);
834 ms
->section_mem_map
= (unsigned long)NULL
;
837 static struct page
* __meminit
section_activate(int nid
, unsigned long pfn
,
838 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
840 struct mem_section
*ms
= __pfn_to_section(pfn
);
841 struct mem_section_usage
*usage
= NULL
;
846 usage
= kzalloc(mem_section_usage_size(), GFP_KERNEL
);
848 return ERR_PTR(-ENOMEM
);
852 rc
= fill_subsection_map(pfn
, nr_pages
);
861 * The early init code does not consider partially populated
862 * initial sections, it simply assumes that memory will never be
863 * referenced. If we hot-add memory into such a section then we
864 * do not need to populate the memmap and can simply reuse what
867 if (nr_pages
< PAGES_PER_SECTION
&& early_section(ms
))
868 return pfn_to_page(pfn
);
870 memmap
= populate_section_memmap(pfn
, nr_pages
, nid
, altmap
);
872 section_deactivate(pfn
, nr_pages
, altmap
);
873 return ERR_PTR(-ENOMEM
);
880 * sparse_add_section - add a memory section, or populate an existing one
881 * @nid: The node to add section on
882 * @start_pfn: start pfn of the memory range
883 * @nr_pages: number of pfns to add in the section
884 * @altmap: device page map
886 * This is only intended for hotplug.
888 * Note that only VMEMMAP supports sub-section aligned hotplug,
889 * the proper alignment and size are gated by check_pfn_span().
894 * * -EEXIST - Section has been present.
895 * * -ENOMEM - Out of memory.
897 int __meminit
sparse_add_section(int nid
, unsigned long start_pfn
,
898 unsigned long nr_pages
, struct vmem_altmap
*altmap
)
900 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
901 struct mem_section
*ms
;
905 ret
= sparse_index_init(section_nr
, nid
);
909 memmap
= section_activate(nid
, start_pfn
, nr_pages
, altmap
);
911 return PTR_ERR(memmap
);
914 * Poison uninitialized struct pages in order to catch invalid flags
917 page_init_poison(memmap
, sizeof(struct page
) * nr_pages
);
919 ms
= __nr_to_section(section_nr
);
920 set_section_nid(section_nr
, nid
);
921 section_mark_present(ms
);
923 /* Align memmap to section boundary in the subsection case */
924 if (section_nr_to_pfn(section_nr
) != start_pfn
)
925 memmap
= pfn_to_page(section_nr_to_pfn(section_nr
));
926 sparse_init_one_section(ms
, section_nr
, memmap
, ms
->usage
, 0);
931 #ifdef CONFIG_MEMORY_FAILURE
932 static void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
937 * A further optimization is to have per section refcounted
938 * num_poisoned_pages. But that would need more space per memmap, so
939 * for now just do a quick global check to speed up this routine in the
940 * absence of bad pages.
942 if (atomic_long_read(&num_poisoned_pages
) == 0)
945 for (i
= 0; i
< nr_pages
; i
++) {
946 if (PageHWPoison(&memmap
[i
])) {
947 num_poisoned_pages_dec();
948 ClearPageHWPoison(&memmap
[i
]);
953 static inline void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
958 void sparse_remove_section(struct mem_section
*ms
, unsigned long pfn
,
959 unsigned long nr_pages
, unsigned long map_offset
,
960 struct vmem_altmap
*altmap
)
962 clear_hwpoisoned_pages(pfn_to_page(pfn
) + map_offset
,
963 nr_pages
- map_offset
);
964 section_deactivate(pfn
, nr_pages
, altmap
);
966 #endif /* CONFIG_MEMORY_HOTPLUG */