Merge tag 'for-5.8/dm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[linux/fpc-iii.git] / mm / swap_state.c
blob05889e8e3c97df01e2dcefe2db817414d6199694
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/swap_state.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
9 */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include "internal.h"
27 * swapper_space is a fiction, retained to simplify the path through
28 * vmscan's shrink_page_list.
30 static const struct address_space_operations swap_aops = {
31 .writepage = swap_writepage,
32 .set_page_dirty = swap_set_page_dirty,
33 #ifdef CONFIG_MIGRATION
34 .migratepage = migrate_page,
35 #endif
38 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
39 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static bool enable_vma_readahead __read_mostly = true;
42 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
43 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
44 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
45 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
48 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
49 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
51 #define SWAP_RA_VAL(addr, win, hits) \
52 (((addr) & PAGE_MASK) | \
53 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
54 ((hits) & SWAP_RA_HITS_MASK))
56 /* Initial readahead hits is 4 to start up with a small window */
57 #define GET_SWAP_RA_VAL(vma) \
58 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
61 #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
63 static struct {
64 unsigned long add_total;
65 unsigned long del_total;
66 unsigned long find_success;
67 unsigned long find_total;
68 } swap_cache_info;
70 unsigned long total_swapcache_pages(void)
72 unsigned int i, j, nr;
73 unsigned long ret = 0;
74 struct address_space *spaces;
75 struct swap_info_struct *si;
77 for (i = 0; i < MAX_SWAPFILES; i++) {
78 swp_entry_t entry = swp_entry(i, 1);
80 /* Avoid get_swap_device() to warn for bad swap entry */
81 if (!swp_swap_info(entry))
82 continue;
83 /* Prevent swapoff to free swapper_spaces */
84 si = get_swap_device(entry);
85 if (!si)
86 continue;
87 nr = nr_swapper_spaces[i];
88 spaces = swapper_spaces[i];
89 for (j = 0; j < nr; j++)
90 ret += spaces[j].nrpages;
91 put_swap_device(si);
93 return ret;
96 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
98 void show_swap_cache_info(void)
100 printk("%lu pages in swap cache\n", total_swapcache_pages());
101 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102 swap_cache_info.add_total, swap_cache_info.del_total,
103 swap_cache_info.find_success, swap_cache_info.find_total);
104 printk("Free swap = %ldkB\n",
105 get_nr_swap_pages() << (PAGE_SHIFT - 10));
106 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
110 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
111 * but sets SwapCache flag and private instead of mapping and index.
113 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp)
115 struct address_space *address_space = swap_address_space(entry);
116 pgoff_t idx = swp_offset(entry);
117 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
118 unsigned long i, nr = hpage_nr_pages(page);
120 VM_BUG_ON_PAGE(!PageLocked(page), page);
121 VM_BUG_ON_PAGE(PageSwapCache(page), page);
122 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
124 page_ref_add(page, nr);
125 SetPageSwapCache(page);
127 do {
128 xas_lock_irq(&xas);
129 xas_create_range(&xas);
130 if (xas_error(&xas))
131 goto unlock;
132 for (i = 0; i < nr; i++) {
133 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
134 set_page_private(page + i, entry.val + i);
135 xas_store(&xas, page);
136 xas_next(&xas);
138 address_space->nrpages += nr;
139 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
140 ADD_CACHE_INFO(add_total, nr);
141 unlock:
142 xas_unlock_irq(&xas);
143 } while (xas_nomem(&xas, gfp));
145 if (!xas_error(&xas))
146 return 0;
148 ClearPageSwapCache(page);
149 page_ref_sub(page, nr);
150 return xas_error(&xas);
154 * This must be called only on pages that have
155 * been verified to be in the swap cache.
157 void __delete_from_swap_cache(struct page *page, swp_entry_t entry)
159 struct address_space *address_space = swap_address_space(entry);
160 int i, nr = hpage_nr_pages(page);
161 pgoff_t idx = swp_offset(entry);
162 XA_STATE(xas, &address_space->i_pages, idx);
164 VM_BUG_ON_PAGE(!PageLocked(page), page);
165 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
166 VM_BUG_ON_PAGE(PageWriteback(page), page);
168 for (i = 0; i < nr; i++) {
169 void *entry = xas_store(&xas, NULL);
170 VM_BUG_ON_PAGE(entry != page, entry);
171 set_page_private(page + i, 0);
172 xas_next(&xas);
174 ClearPageSwapCache(page);
175 address_space->nrpages -= nr;
176 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
177 ADD_CACHE_INFO(del_total, nr);
181 * add_to_swap - allocate swap space for a page
182 * @page: page we want to move to swap
184 * Allocate swap space for the page and add the page to the
185 * swap cache. Caller needs to hold the page lock.
187 int add_to_swap(struct page *page)
189 swp_entry_t entry;
190 int err;
192 VM_BUG_ON_PAGE(!PageLocked(page), page);
193 VM_BUG_ON_PAGE(!PageUptodate(page), page);
195 entry = get_swap_page(page);
196 if (!entry.val)
197 return 0;
200 * XArray node allocations from PF_MEMALLOC contexts could
201 * completely exhaust the page allocator. __GFP_NOMEMALLOC
202 * stops emergency reserves from being allocated.
204 * TODO: this could cause a theoretical memory reclaim
205 * deadlock in the swap out path.
208 * Add it to the swap cache.
210 err = add_to_swap_cache(page, entry,
211 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
212 if (err)
214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 * clear SWAP_HAS_CACHE flag.
217 goto fail;
219 * Normally the page will be dirtied in unmap because its pte should be
220 * dirty. A special case is MADV_FREE page. The page'e pte could have
221 * dirty bit cleared but the page's SwapBacked bit is still set because
222 * clearing the dirty bit and SwapBacked bit has no lock protected. For
223 * such page, unmap will not set dirty bit for it, so page reclaim will
224 * not write the page out. This can cause data corruption when the page
225 * is swap in later. Always setting the dirty bit for the page solves
226 * the problem.
228 set_page_dirty(page);
230 return 1;
232 fail:
233 put_swap_page(page, entry);
234 return 0;
238 * This must be called only on pages that have
239 * been verified to be in the swap cache and locked.
240 * It will never put the page into the free list,
241 * the caller has a reference on the page.
243 void delete_from_swap_cache(struct page *page)
245 swp_entry_t entry = { .val = page_private(page) };
246 struct address_space *address_space = swap_address_space(entry);
248 xa_lock_irq(&address_space->i_pages);
249 __delete_from_swap_cache(page, entry);
250 xa_unlock_irq(&address_space->i_pages);
252 put_swap_page(page, entry);
253 page_ref_sub(page, hpage_nr_pages(page));
257 * If we are the only user, then try to free up the swap cache.
259 * Its ok to check for PageSwapCache without the page lock
260 * here because we are going to recheck again inside
261 * try_to_free_swap() _with_ the lock.
262 * - Marcelo
264 static inline void free_swap_cache(struct page *page)
266 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
267 try_to_free_swap(page);
268 unlock_page(page);
273 * Perform a free_page(), also freeing any swap cache associated with
274 * this page if it is the last user of the page.
276 void free_page_and_swap_cache(struct page *page)
278 free_swap_cache(page);
279 if (!is_huge_zero_page(page))
280 put_page(page);
284 * Passed an array of pages, drop them all from swapcache and then release
285 * them. They are removed from the LRU and freed if this is their last use.
287 void free_pages_and_swap_cache(struct page **pages, int nr)
289 struct page **pagep = pages;
290 int i;
292 lru_add_drain();
293 for (i = 0; i < nr; i++)
294 free_swap_cache(pagep[i]);
295 release_pages(pagep, nr);
298 static inline bool swap_use_vma_readahead(void)
300 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
304 * Lookup a swap entry in the swap cache. A found page will be returned
305 * unlocked and with its refcount incremented - we rely on the kernel
306 * lock getting page table operations atomic even if we drop the page
307 * lock before returning.
309 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
310 unsigned long addr)
312 struct page *page;
313 struct swap_info_struct *si;
315 si = get_swap_device(entry);
316 if (!si)
317 return NULL;
318 page = find_get_page(swap_address_space(entry), swp_offset(entry));
319 put_swap_device(si);
321 INC_CACHE_INFO(find_total);
322 if (page) {
323 bool vma_ra = swap_use_vma_readahead();
324 bool readahead;
326 INC_CACHE_INFO(find_success);
328 * At the moment, we don't support PG_readahead for anon THP
329 * so let's bail out rather than confusing the readahead stat.
331 if (unlikely(PageTransCompound(page)))
332 return page;
334 readahead = TestClearPageReadahead(page);
335 if (vma && vma_ra) {
336 unsigned long ra_val;
337 int win, hits;
339 ra_val = GET_SWAP_RA_VAL(vma);
340 win = SWAP_RA_WIN(ra_val);
341 hits = SWAP_RA_HITS(ra_val);
342 if (readahead)
343 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
344 atomic_long_set(&vma->swap_readahead_info,
345 SWAP_RA_VAL(addr, win, hits));
348 if (readahead) {
349 count_vm_event(SWAP_RA_HIT);
350 if (!vma || !vma_ra)
351 atomic_inc(&swapin_readahead_hits);
355 return page;
358 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
359 struct vm_area_struct *vma, unsigned long addr,
360 bool *new_page_allocated)
362 struct swap_info_struct *si;
363 struct page *page;
365 *new_page_allocated = false;
367 for (;;) {
368 int err;
370 * First check the swap cache. Since this is normally
371 * called after lookup_swap_cache() failed, re-calling
372 * that would confuse statistics.
374 si = get_swap_device(entry);
375 if (!si)
376 return NULL;
377 page = find_get_page(swap_address_space(entry),
378 swp_offset(entry));
379 put_swap_device(si);
380 if (page)
381 return page;
384 * Just skip read ahead for unused swap slot.
385 * During swap_off when swap_slot_cache is disabled,
386 * we have to handle the race between putting
387 * swap entry in swap cache and marking swap slot
388 * as SWAP_HAS_CACHE. That's done in later part of code or
389 * else swap_off will be aborted if we return NULL.
391 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
392 return NULL;
395 * Get a new page to read into from swap. Allocate it now,
396 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
397 * cause any racers to loop around until we add it to cache.
399 page = alloc_page_vma(gfp_mask, vma, addr);
400 if (!page)
401 return NULL;
404 * Swap entry may have been freed since our caller observed it.
406 err = swapcache_prepare(entry);
407 if (!err)
408 break;
410 put_page(page);
411 if (err != -EEXIST)
412 return NULL;
415 * We might race against __delete_from_swap_cache(), and
416 * stumble across a swap_map entry whose SWAP_HAS_CACHE
417 * has not yet been cleared. Or race against another
418 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
419 * in swap_map, but not yet added its page to swap cache.
421 cond_resched();
425 * The swap entry is ours to swap in. Prepare the new page.
428 __SetPageLocked(page);
429 __SetPageSwapBacked(page);
431 /* May fail (-ENOMEM) if XArray node allocation failed. */
432 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK)) {
433 put_swap_page(page, entry);
434 goto fail_unlock;
437 if (mem_cgroup_charge(page, NULL, gfp_mask)) {
438 delete_from_swap_cache(page);
439 goto fail_unlock;
442 /* XXX: Move to lru_cache_add() when it supports new vs putback */
443 spin_lock_irq(&page_pgdat(page)->lru_lock);
444 lru_note_cost_page(page);
445 spin_unlock_irq(&page_pgdat(page)->lru_lock);
447 /* Caller will initiate read into locked page */
448 SetPageWorkingset(page);
449 lru_cache_add(page);
450 *new_page_allocated = true;
451 return page;
453 fail_unlock:
454 unlock_page(page);
455 put_page(page);
456 return NULL;
460 * Locate a page of swap in physical memory, reserving swap cache space
461 * and reading the disk if it is not already cached.
462 * A failure return means that either the page allocation failed or that
463 * the swap entry is no longer in use.
465 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
466 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
468 bool page_was_allocated;
469 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
470 vma, addr, &page_was_allocated);
472 if (page_was_allocated)
473 swap_readpage(retpage, do_poll);
475 return retpage;
478 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
479 unsigned long offset,
480 int hits,
481 int max_pages,
482 int prev_win)
484 unsigned int pages, last_ra;
487 * This heuristic has been found to work well on both sequential and
488 * random loads, swapping to hard disk or to SSD: please don't ask
489 * what the "+ 2" means, it just happens to work well, that's all.
491 pages = hits + 2;
492 if (pages == 2) {
494 * We can have no readahead hits to judge by: but must not get
495 * stuck here forever, so check for an adjacent offset instead
496 * (and don't even bother to check whether swap type is same).
498 if (offset != prev_offset + 1 && offset != prev_offset - 1)
499 pages = 1;
500 } else {
501 unsigned int roundup = 4;
502 while (roundup < pages)
503 roundup <<= 1;
504 pages = roundup;
507 if (pages > max_pages)
508 pages = max_pages;
510 /* Don't shrink readahead too fast */
511 last_ra = prev_win / 2;
512 if (pages < last_ra)
513 pages = last_ra;
515 return pages;
518 static unsigned long swapin_nr_pages(unsigned long offset)
520 static unsigned long prev_offset;
521 unsigned int hits, pages, max_pages;
522 static atomic_t last_readahead_pages;
524 max_pages = 1 << READ_ONCE(page_cluster);
525 if (max_pages <= 1)
526 return 1;
528 hits = atomic_xchg(&swapin_readahead_hits, 0);
529 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
530 max_pages,
531 atomic_read(&last_readahead_pages));
532 if (!hits)
533 WRITE_ONCE(prev_offset, offset);
534 atomic_set(&last_readahead_pages, pages);
536 return pages;
540 * swap_cluster_readahead - swap in pages in hope we need them soon
541 * @entry: swap entry of this memory
542 * @gfp_mask: memory allocation flags
543 * @vmf: fault information
545 * Returns the struct page for entry and addr, after queueing swapin.
547 * Primitive swap readahead code. We simply read an aligned block of
548 * (1 << page_cluster) entries in the swap area. This method is chosen
549 * because it doesn't cost us any seek time. We also make sure to queue
550 * the 'original' request together with the readahead ones...
552 * This has been extended to use the NUMA policies from the mm triggering
553 * the readahead.
555 * Caller must hold read mmap_lock if vmf->vma is not NULL.
557 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
558 struct vm_fault *vmf)
560 struct page *page;
561 unsigned long entry_offset = swp_offset(entry);
562 unsigned long offset = entry_offset;
563 unsigned long start_offset, end_offset;
564 unsigned long mask;
565 struct swap_info_struct *si = swp_swap_info(entry);
566 struct blk_plug plug;
567 bool do_poll = true, page_allocated;
568 struct vm_area_struct *vma = vmf->vma;
569 unsigned long addr = vmf->address;
571 mask = swapin_nr_pages(offset) - 1;
572 if (!mask)
573 goto skip;
575 /* Test swap type to make sure the dereference is safe */
576 if (likely(si->flags & (SWP_BLKDEV | SWP_FS))) {
577 struct inode *inode = si->swap_file->f_mapping->host;
578 if (inode_read_congested(inode))
579 goto skip;
582 do_poll = false;
583 /* Read a page_cluster sized and aligned cluster around offset. */
584 start_offset = offset & ~mask;
585 end_offset = offset | mask;
586 if (!start_offset) /* First page is swap header. */
587 start_offset++;
588 if (end_offset >= si->max)
589 end_offset = si->max - 1;
591 blk_start_plug(&plug);
592 for (offset = start_offset; offset <= end_offset ; offset++) {
593 /* Ok, do the async read-ahead now */
594 page = __read_swap_cache_async(
595 swp_entry(swp_type(entry), offset),
596 gfp_mask, vma, addr, &page_allocated);
597 if (!page)
598 continue;
599 if (page_allocated) {
600 swap_readpage(page, false);
601 if (offset != entry_offset) {
602 SetPageReadahead(page);
603 count_vm_event(SWAP_RA);
606 put_page(page);
608 blk_finish_plug(&plug);
610 lru_add_drain(); /* Push any new pages onto the LRU now */
611 skip:
612 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
615 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
617 struct address_space *spaces, *space;
618 unsigned int i, nr;
620 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
621 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
622 if (!spaces)
623 return -ENOMEM;
624 for (i = 0; i < nr; i++) {
625 space = spaces + i;
626 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
627 atomic_set(&space->i_mmap_writable, 0);
628 space->a_ops = &swap_aops;
629 /* swap cache doesn't use writeback related tags */
630 mapping_set_no_writeback_tags(space);
632 nr_swapper_spaces[type] = nr;
633 swapper_spaces[type] = spaces;
635 return 0;
638 void exit_swap_address_space(unsigned int type)
640 kvfree(swapper_spaces[type]);
641 nr_swapper_spaces[type] = 0;
642 swapper_spaces[type] = NULL;
645 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
646 unsigned long faddr,
647 unsigned long lpfn,
648 unsigned long rpfn,
649 unsigned long *start,
650 unsigned long *end)
652 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
653 PFN_DOWN(faddr & PMD_MASK));
654 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
655 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
658 static void swap_ra_info(struct vm_fault *vmf,
659 struct vma_swap_readahead *ra_info)
661 struct vm_area_struct *vma = vmf->vma;
662 unsigned long ra_val;
663 swp_entry_t entry;
664 unsigned long faddr, pfn, fpfn;
665 unsigned long start, end;
666 pte_t *pte, *orig_pte;
667 unsigned int max_win, hits, prev_win, win, left;
668 #ifndef CONFIG_64BIT
669 pte_t *tpte;
670 #endif
672 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
673 SWAP_RA_ORDER_CEILING);
674 if (max_win == 1) {
675 ra_info->win = 1;
676 return;
679 faddr = vmf->address;
680 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
681 entry = pte_to_swp_entry(*pte);
682 if ((unlikely(non_swap_entry(entry)))) {
683 pte_unmap(orig_pte);
684 return;
687 fpfn = PFN_DOWN(faddr);
688 ra_val = GET_SWAP_RA_VAL(vma);
689 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
690 prev_win = SWAP_RA_WIN(ra_val);
691 hits = SWAP_RA_HITS(ra_val);
692 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
693 max_win, prev_win);
694 atomic_long_set(&vma->swap_readahead_info,
695 SWAP_RA_VAL(faddr, win, 0));
697 if (win == 1) {
698 pte_unmap(orig_pte);
699 return;
702 /* Copy the PTEs because the page table may be unmapped */
703 if (fpfn == pfn + 1)
704 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
705 else if (pfn == fpfn + 1)
706 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
707 &start, &end);
708 else {
709 left = (win - 1) / 2;
710 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
711 &start, &end);
713 ra_info->nr_pte = end - start;
714 ra_info->offset = fpfn - start;
715 pte -= ra_info->offset;
716 #ifdef CONFIG_64BIT
717 ra_info->ptes = pte;
718 #else
719 tpte = ra_info->ptes;
720 for (pfn = start; pfn != end; pfn++)
721 *tpte++ = *pte++;
722 #endif
723 pte_unmap(orig_pte);
727 * swap_vma_readahead - swap in pages in hope we need them soon
728 * @entry: swap entry of this memory
729 * @gfp_mask: memory allocation flags
730 * @vmf: fault information
732 * Returns the struct page for entry and addr, after queueing swapin.
734 * Primitive swap readahead code. We simply read in a few pages whoes
735 * virtual addresses are around the fault address in the same vma.
737 * Caller must hold read mmap_lock if vmf->vma is not NULL.
740 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
741 struct vm_fault *vmf)
743 struct blk_plug plug;
744 struct vm_area_struct *vma = vmf->vma;
745 struct page *page;
746 pte_t *pte, pentry;
747 swp_entry_t entry;
748 unsigned int i;
749 bool page_allocated;
750 struct vma_swap_readahead ra_info = {0,};
752 swap_ra_info(vmf, &ra_info);
753 if (ra_info.win == 1)
754 goto skip;
756 blk_start_plug(&plug);
757 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
758 i++, pte++) {
759 pentry = *pte;
760 if (pte_none(pentry))
761 continue;
762 if (pte_present(pentry))
763 continue;
764 entry = pte_to_swp_entry(pentry);
765 if (unlikely(non_swap_entry(entry)))
766 continue;
767 page = __read_swap_cache_async(entry, gfp_mask, vma,
768 vmf->address, &page_allocated);
769 if (!page)
770 continue;
771 if (page_allocated) {
772 swap_readpage(page, false);
773 if (i != ra_info.offset) {
774 SetPageReadahead(page);
775 count_vm_event(SWAP_RA);
778 put_page(page);
780 blk_finish_plug(&plug);
781 lru_add_drain();
782 skip:
783 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
784 ra_info.win == 1);
788 * swapin_readahead - swap in pages in hope we need them soon
789 * @entry: swap entry of this memory
790 * @gfp_mask: memory allocation flags
791 * @vmf: fault information
793 * Returns the struct page for entry and addr, after queueing swapin.
795 * It's a main entry function for swap readahead. By the configuration,
796 * it will read ahead blocks by cluster-based(ie, physical disk based)
797 * or vma-based(ie, virtual address based on faulty address) readahead.
799 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
800 struct vm_fault *vmf)
802 return swap_use_vma_readahead() ?
803 swap_vma_readahead(entry, gfp_mask, vmf) :
804 swap_cluster_readahead(entry, gfp_mask, vmf);
807 #ifdef CONFIG_SYSFS
808 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
809 struct kobj_attribute *attr, char *buf)
811 return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
813 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
814 struct kobj_attribute *attr,
815 const char *buf, size_t count)
817 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
818 enable_vma_readahead = true;
819 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
820 enable_vma_readahead = false;
821 else
822 return -EINVAL;
824 return count;
826 static struct kobj_attribute vma_ra_enabled_attr =
827 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
828 vma_ra_enabled_store);
830 static struct attribute *swap_attrs[] = {
831 &vma_ra_enabled_attr.attr,
832 NULL,
835 static struct attribute_group swap_attr_group = {
836 .attrs = swap_attrs,
839 static int __init swap_init_sysfs(void)
841 int err;
842 struct kobject *swap_kobj;
844 swap_kobj = kobject_create_and_add("swap", mm_kobj);
845 if (!swap_kobj) {
846 pr_err("failed to create swap kobject\n");
847 return -ENOMEM;
849 err = sysfs_create_group(swap_kobj, &swap_attr_group);
850 if (err) {
851 pr_err("failed to register swap group\n");
852 goto delete_obj;
854 return 0;
856 delete_obj:
857 kobject_put(swap_kobj);
858 return err;
860 subsys_initcall(swap_init_sysfs);
861 #endif