1 // SPDX-License-Identifier: GPL-2.0-only
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
27 #include <linux/uaccess.h>
32 * kfree_const - conditionally free memory
33 * @x: pointer to the memory
35 * Function calls kfree only if @x is not in .rodata section.
37 void kfree_const(const void *x
)
39 if (!is_kernel_rodata((unsigned long)x
))
42 EXPORT_SYMBOL(kfree_const
);
45 * kstrdup - allocate space for and copy an existing string
46 * @s: the string to duplicate
47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
49 * Return: newly allocated copy of @s or %NULL in case of error
51 char *kstrdup(const char *s
, gfp_t gfp
)
60 buf
= kmalloc_track_caller(len
, gfp
);
65 EXPORT_SYMBOL(kstrdup
);
68 * kstrdup_const - conditionally duplicate an existing const string
69 * @s: the string to duplicate
70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const.
74 * Return: source string if it is in .rodata section otherwise
75 * fallback to kstrdup.
77 const char *kstrdup_const(const char *s
, gfp_t gfp
)
79 if (is_kernel_rodata((unsigned long)s
))
82 return kstrdup(s
, gfp
);
84 EXPORT_SYMBOL(kstrdup_const
);
87 * kstrndup - allocate space for and copy an existing string
88 * @s: the string to duplicate
89 * @max: read at most @max chars from @s
90 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
92 * Note: Use kmemdup_nul() instead if the size is known exactly.
94 * Return: newly allocated copy of @s or %NULL in case of error
96 char *kstrndup(const char *s
, size_t max
, gfp_t gfp
)
104 len
= strnlen(s
, max
);
105 buf
= kmalloc_track_caller(len
+1, gfp
);
112 EXPORT_SYMBOL(kstrndup
);
115 * kmemdup - duplicate region of memory
117 * @src: memory region to duplicate
118 * @len: memory region length
119 * @gfp: GFP mask to use
121 * Return: newly allocated copy of @src or %NULL in case of error
123 void *kmemdup(const void *src
, size_t len
, gfp_t gfp
)
127 p
= kmalloc_track_caller(len
, gfp
);
132 EXPORT_SYMBOL(kmemdup
);
135 * kmemdup_nul - Create a NUL-terminated string from unterminated data
136 * @s: The data to stringify
137 * @len: The size of the data
138 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
140 * Return: newly allocated copy of @s with NUL-termination or %NULL in
143 char *kmemdup_nul(const char *s
, size_t len
, gfp_t gfp
)
150 buf
= kmalloc_track_caller(len
+ 1, gfp
);
157 EXPORT_SYMBOL(kmemdup_nul
);
160 * memdup_user - duplicate memory region from user space
162 * @src: source address in user space
163 * @len: number of bytes to copy
165 * Return: an ERR_PTR() on failure. Result is physically
166 * contiguous, to be freed by kfree().
168 void *memdup_user(const void __user
*src
, size_t len
)
172 p
= kmalloc_track_caller(len
, GFP_USER
| __GFP_NOWARN
);
174 return ERR_PTR(-ENOMEM
);
176 if (copy_from_user(p
, src
, len
)) {
178 return ERR_PTR(-EFAULT
);
183 EXPORT_SYMBOL(memdup_user
);
186 * vmemdup_user - duplicate memory region from user space
188 * @src: source address in user space
189 * @len: number of bytes to copy
191 * Return: an ERR_PTR() on failure. Result may be not
192 * physically contiguous. Use kvfree() to free.
194 void *vmemdup_user(const void __user
*src
, size_t len
)
198 p
= kvmalloc(len
, GFP_USER
);
200 return ERR_PTR(-ENOMEM
);
202 if (copy_from_user(p
, src
, len
)) {
204 return ERR_PTR(-EFAULT
);
209 EXPORT_SYMBOL(vmemdup_user
);
212 * strndup_user - duplicate an existing string from user space
213 * @s: The string to duplicate
214 * @n: Maximum number of bytes to copy, including the trailing NUL.
216 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
218 char *strndup_user(const char __user
*s
, long n
)
223 length
= strnlen_user(s
, n
);
226 return ERR_PTR(-EFAULT
);
229 return ERR_PTR(-EINVAL
);
231 p
= memdup_user(s
, length
);
236 p
[length
- 1] = '\0';
240 EXPORT_SYMBOL(strndup_user
);
243 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
245 * @src: source address in user space
246 * @len: number of bytes to copy
248 * Return: an ERR_PTR() on failure.
250 void *memdup_user_nul(const void __user
*src
, size_t len
)
255 * Always use GFP_KERNEL, since copy_from_user() can sleep and
256 * cause pagefault, which makes it pointless to use GFP_NOFS
259 p
= kmalloc_track_caller(len
+ 1, GFP_KERNEL
);
261 return ERR_PTR(-ENOMEM
);
263 if (copy_from_user(p
, src
, len
)) {
265 return ERR_PTR(-EFAULT
);
271 EXPORT_SYMBOL(memdup_user_nul
);
273 void __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
274 struct vm_area_struct
*prev
)
276 struct vm_area_struct
*next
;
280 next
= prev
->vm_next
;
291 void __vma_unlink_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
293 struct vm_area_struct
*prev
, *next
;
298 prev
->vm_next
= next
;
302 next
->vm_prev
= prev
;
305 /* Check if the vma is being used as a stack by this task */
306 int vma_is_stack_for_current(struct vm_area_struct
*vma
)
308 struct task_struct
* __maybe_unused t
= current
;
310 return (vma
->vm_start
<= KSTK_ESP(t
) && vma
->vm_end
>= KSTK_ESP(t
));
313 #ifndef STACK_RND_MASK
314 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
317 unsigned long randomize_stack_top(unsigned long stack_top
)
319 unsigned long random_variable
= 0;
321 if (current
->flags
& PF_RANDOMIZE
) {
322 random_variable
= get_random_long();
323 random_variable
&= STACK_RND_MASK
;
324 random_variable
<<= PAGE_SHIFT
;
326 #ifdef CONFIG_STACK_GROWSUP
327 return PAGE_ALIGN(stack_top
) + random_variable
;
329 return PAGE_ALIGN(stack_top
) - random_variable
;
333 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
334 unsigned long arch_randomize_brk(struct mm_struct
*mm
)
336 /* Is the current task 32bit ? */
337 if (!IS_ENABLED(CONFIG_64BIT
) || is_compat_task())
338 return randomize_page(mm
->brk
, SZ_32M
);
340 return randomize_page(mm
->brk
, SZ_1G
);
343 unsigned long arch_mmap_rnd(void)
347 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
348 if (is_compat_task())
349 rnd
= get_random_long() & ((1UL << mmap_rnd_compat_bits
) - 1);
351 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
352 rnd
= get_random_long() & ((1UL << mmap_rnd_bits
) - 1);
354 return rnd
<< PAGE_SHIFT
;
357 static int mmap_is_legacy(struct rlimit
*rlim_stack
)
359 if (current
->personality
& ADDR_COMPAT_LAYOUT
)
362 if (rlim_stack
->rlim_cur
== RLIM_INFINITY
)
365 return sysctl_legacy_va_layout
;
369 * Leave enough space between the mmap area and the stack to honour ulimit in
370 * the face of randomisation.
372 #define MIN_GAP (SZ_128M)
373 #define MAX_GAP (STACK_TOP / 6 * 5)
375 static unsigned long mmap_base(unsigned long rnd
, struct rlimit
*rlim_stack
)
377 unsigned long gap
= rlim_stack
->rlim_cur
;
378 unsigned long pad
= stack_guard_gap
;
380 /* Account for stack randomization if necessary */
381 if (current
->flags
& PF_RANDOMIZE
)
382 pad
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
384 /* Values close to RLIM_INFINITY can overflow. */
390 else if (gap
> MAX_GAP
)
393 return PAGE_ALIGN(STACK_TOP
- gap
- rnd
);
396 void arch_pick_mmap_layout(struct mm_struct
*mm
, struct rlimit
*rlim_stack
)
398 unsigned long random_factor
= 0UL;
400 if (current
->flags
& PF_RANDOMIZE
)
401 random_factor
= arch_mmap_rnd();
403 if (mmap_is_legacy(rlim_stack
)) {
404 mm
->mmap_base
= TASK_UNMAPPED_BASE
+ random_factor
;
405 mm
->get_unmapped_area
= arch_get_unmapped_area
;
407 mm
->mmap_base
= mmap_base(random_factor
, rlim_stack
);
408 mm
->get_unmapped_area
= arch_get_unmapped_area_topdown
;
411 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
412 void arch_pick_mmap_layout(struct mm_struct
*mm
, struct rlimit
*rlim_stack
)
414 mm
->mmap_base
= TASK_UNMAPPED_BASE
;
415 mm
->get_unmapped_area
= arch_get_unmapped_area
;
420 * __account_locked_vm - account locked pages to an mm's locked_vm
421 * @mm: mm to account against
422 * @pages: number of pages to account
423 * @inc: %true if @pages should be considered positive, %false if not
424 * @task: task used to check RLIMIT_MEMLOCK
425 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
427 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
428 * that mmap_lock is held as writer.
432 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
434 int __account_locked_vm(struct mm_struct
*mm
, unsigned long pages
, bool inc
,
435 struct task_struct
*task
, bool bypass_rlim
)
437 unsigned long locked_vm
, limit
;
440 mmap_assert_write_locked(mm
);
442 locked_vm
= mm
->locked_vm
;
445 limit
= task_rlimit(task
, RLIMIT_MEMLOCK
) >> PAGE_SHIFT
;
446 if (locked_vm
+ pages
> limit
)
450 mm
->locked_vm
= locked_vm
+ pages
;
452 WARN_ON_ONCE(pages
> locked_vm
);
453 mm
->locked_vm
= locked_vm
- pages
;
456 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__
, task
->pid
,
457 (void *)_RET_IP_
, (inc
) ? '+' : '-', pages
<< PAGE_SHIFT
,
458 locked_vm
<< PAGE_SHIFT
, task_rlimit(task
, RLIMIT_MEMLOCK
),
459 ret
? " - exceeded" : "");
463 EXPORT_SYMBOL_GPL(__account_locked_vm
);
466 * account_locked_vm - account locked pages to an mm's locked_vm
467 * @mm: mm to account against, may be NULL
468 * @pages: number of pages to account
469 * @inc: %true if @pages should be considered positive, %false if not
471 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
474 * * 0 on success, or if mm is NULL
475 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
477 int account_locked_vm(struct mm_struct
*mm
, unsigned long pages
, bool inc
)
481 if (pages
== 0 || !mm
)
485 ret
= __account_locked_vm(mm
, pages
, inc
, current
,
486 capable(CAP_IPC_LOCK
));
487 mmap_write_unlock(mm
);
491 EXPORT_SYMBOL_GPL(account_locked_vm
);
493 unsigned long vm_mmap_pgoff(struct file
*file
, unsigned long addr
,
494 unsigned long len
, unsigned long prot
,
495 unsigned long flag
, unsigned long pgoff
)
498 struct mm_struct
*mm
= current
->mm
;
499 unsigned long populate
;
502 ret
= security_mmap_file(file
, prot
, flag
);
504 if (mmap_write_lock_killable(mm
))
506 ret
= do_mmap_pgoff(file
, addr
, len
, prot
, flag
, pgoff
,
508 mmap_write_unlock(mm
);
509 userfaultfd_unmap_complete(mm
, &uf
);
511 mm_populate(ret
, populate
);
516 unsigned long vm_mmap(struct file
*file
, unsigned long addr
,
517 unsigned long len
, unsigned long prot
,
518 unsigned long flag
, unsigned long offset
)
520 if (unlikely(offset
+ PAGE_ALIGN(len
) < offset
))
522 if (unlikely(offset_in_page(offset
)))
525 return vm_mmap_pgoff(file
, addr
, len
, prot
, flag
, offset
>> PAGE_SHIFT
);
527 EXPORT_SYMBOL(vm_mmap
);
530 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
531 * failure, fall back to non-contiguous (vmalloc) allocation.
532 * @size: size of the request.
533 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
534 * @node: numa node to allocate from
536 * Uses kmalloc to get the memory but if the allocation fails then falls back
537 * to the vmalloc allocator. Use kvfree for freeing the memory.
539 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
540 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
541 * preferable to the vmalloc fallback, due to visible performance drawbacks.
543 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
544 * fall back to vmalloc.
546 * Return: pointer to the allocated memory of %NULL in case of failure
548 void *kvmalloc_node(size_t size
, gfp_t flags
, int node
)
550 gfp_t kmalloc_flags
= flags
;
554 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
555 * so the given set of flags has to be compatible.
557 if ((flags
& GFP_KERNEL
) != GFP_KERNEL
)
558 return kmalloc_node(size
, flags
, node
);
561 * We want to attempt a large physically contiguous block first because
562 * it is less likely to fragment multiple larger blocks and therefore
563 * contribute to a long term fragmentation less than vmalloc fallback.
564 * However make sure that larger requests are not too disruptive - no
565 * OOM killer and no allocation failure warnings as we have a fallback.
567 if (size
> PAGE_SIZE
) {
568 kmalloc_flags
|= __GFP_NOWARN
;
570 if (!(kmalloc_flags
& __GFP_RETRY_MAYFAIL
))
571 kmalloc_flags
|= __GFP_NORETRY
;
574 ret
= kmalloc_node(size
, kmalloc_flags
, node
);
577 * It doesn't really make sense to fallback to vmalloc for sub page
580 if (ret
|| size
<= PAGE_SIZE
)
583 return __vmalloc_node(size
, 1, flags
, node
,
584 __builtin_return_address(0));
586 EXPORT_SYMBOL(kvmalloc_node
);
589 * kvfree() - Free memory.
590 * @addr: Pointer to allocated memory.
592 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
593 * It is slightly more efficient to use kfree() or vfree() if you are certain
594 * that you know which one to use.
596 * Context: Either preemptible task context or not-NMI interrupt.
598 void kvfree(const void *addr
)
600 if (is_vmalloc_addr(addr
))
605 EXPORT_SYMBOL(kvfree
);
608 * kvfree_sensitive - Free a data object containing sensitive information.
609 * @addr: address of the data object to be freed.
610 * @len: length of the data object.
612 * Use the special memzero_explicit() function to clear the content of a
613 * kvmalloc'ed object containing sensitive data to make sure that the
614 * compiler won't optimize out the data clearing.
616 void kvfree_sensitive(const void *addr
, size_t len
)
618 if (likely(!ZERO_OR_NULL_PTR(addr
))) {
619 memzero_explicit((void *)addr
, len
);
623 EXPORT_SYMBOL(kvfree_sensitive
);
625 static inline void *__page_rmapping(struct page
*page
)
627 unsigned long mapping
;
629 mapping
= (unsigned long)page
->mapping
;
630 mapping
&= ~PAGE_MAPPING_FLAGS
;
632 return (void *)mapping
;
635 /* Neutral page->mapping pointer to address_space or anon_vma or other */
636 void *page_rmapping(struct page
*page
)
638 page
= compound_head(page
);
639 return __page_rmapping(page
);
643 * Return true if this page is mapped into pagetables.
644 * For compound page it returns true if any subpage of compound page is mapped.
646 bool page_mapped(struct page
*page
)
650 if (likely(!PageCompound(page
)))
651 return atomic_read(&page
->_mapcount
) >= 0;
652 page
= compound_head(page
);
653 if (atomic_read(compound_mapcount_ptr(page
)) >= 0)
657 for (i
= 0; i
< compound_nr(page
); i
++) {
658 if (atomic_read(&page
[i
]._mapcount
) >= 0)
663 EXPORT_SYMBOL(page_mapped
);
665 struct anon_vma
*page_anon_vma(struct page
*page
)
667 unsigned long mapping
;
669 page
= compound_head(page
);
670 mapping
= (unsigned long)page
->mapping
;
671 if ((mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
673 return __page_rmapping(page
);
676 struct address_space
*page_mapping(struct page
*page
)
678 struct address_space
*mapping
;
680 page
= compound_head(page
);
682 /* This happens if someone calls flush_dcache_page on slab page */
683 if (unlikely(PageSlab(page
)))
686 if (unlikely(PageSwapCache(page
))) {
689 entry
.val
= page_private(page
);
690 return swap_address_space(entry
);
693 mapping
= page
->mapping
;
694 if ((unsigned long)mapping
& PAGE_MAPPING_ANON
)
697 return (void *)((unsigned long)mapping
& ~PAGE_MAPPING_FLAGS
);
699 EXPORT_SYMBOL(page_mapping
);
702 * For file cache pages, return the address_space, otherwise return NULL
704 struct address_space
*page_mapping_file(struct page
*page
)
706 if (unlikely(PageSwapCache(page
)))
708 return page_mapping(page
);
711 /* Slow path of page_mapcount() for compound pages */
712 int __page_mapcount(struct page
*page
)
716 ret
= atomic_read(&page
->_mapcount
) + 1;
718 * For file THP page->_mapcount contains total number of mapping
719 * of the page: no need to look into compound_mapcount.
721 if (!PageAnon(page
) && !PageHuge(page
))
723 page
= compound_head(page
);
724 ret
+= atomic_read(compound_mapcount_ptr(page
)) + 1;
725 if (PageDoubleMap(page
))
729 EXPORT_SYMBOL_GPL(__page_mapcount
);
731 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
;
732 int sysctl_overcommit_ratio __read_mostly
= 50;
733 unsigned long sysctl_overcommit_kbytes __read_mostly
;
734 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
735 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
736 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
738 int overcommit_ratio_handler(struct ctl_table
*table
, int write
, void *buffer
,
739 size_t *lenp
, loff_t
*ppos
)
743 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
744 if (ret
== 0 && write
)
745 sysctl_overcommit_kbytes
= 0;
749 int overcommit_kbytes_handler(struct ctl_table
*table
, int write
, void *buffer
,
750 size_t *lenp
, loff_t
*ppos
)
754 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
755 if (ret
== 0 && write
)
756 sysctl_overcommit_ratio
= 0;
761 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
763 unsigned long vm_commit_limit(void)
765 unsigned long allowed
;
767 if (sysctl_overcommit_kbytes
)
768 allowed
= sysctl_overcommit_kbytes
>> (PAGE_SHIFT
- 10);
770 allowed
= ((totalram_pages() - hugetlb_total_pages())
771 * sysctl_overcommit_ratio
/ 100);
772 allowed
+= total_swap_pages
;
778 * Make sure vm_committed_as in one cacheline and not cacheline shared with
779 * other variables. It can be updated by several CPUs frequently.
781 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
784 * The global memory commitment made in the system can be a metric
785 * that can be used to drive ballooning decisions when Linux is hosted
786 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
787 * balancing memory across competing virtual machines that are hosted.
788 * Several metrics drive this policy engine including the guest reported
791 unsigned long vm_memory_committed(void)
793 return percpu_counter_read_positive(&vm_committed_as
);
795 EXPORT_SYMBOL_GPL(vm_memory_committed
);
798 * Check that a process has enough memory to allocate a new virtual
799 * mapping. 0 means there is enough memory for the allocation to
800 * succeed and -ENOMEM implies there is not.
802 * We currently support three overcommit policies, which are set via the
803 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
805 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
806 * Additional code 2002 Jul 20 by Robert Love.
808 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
810 * Note this is a helper function intended to be used by LSMs which
811 * wish to use this logic.
813 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
817 vm_acct_memory(pages
);
820 * Sometimes we want to use more memory than we have
822 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
825 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
826 if (pages
> totalram_pages() + total_swap_pages
)
831 allowed
= vm_commit_limit();
833 * Reserve some for root
836 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
839 * Don't let a single process grow so big a user can't recover
842 long reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
844 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
847 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
850 vm_unacct_memory(pages
);
856 * get_cmdline() - copy the cmdline value to a buffer.
857 * @task: the task whose cmdline value to copy.
858 * @buffer: the buffer to copy to.
859 * @buflen: the length of the buffer. Larger cmdline values are truncated
862 * Return: the size of the cmdline field copied. Note that the copy does
863 * not guarantee an ending NULL byte.
865 int get_cmdline(struct task_struct
*task
, char *buffer
, int buflen
)
869 struct mm_struct
*mm
= get_task_mm(task
);
870 unsigned long arg_start
, arg_end
, env_start
, env_end
;
874 goto out_mm
; /* Shh! No looking before we're done */
876 spin_lock(&mm
->arg_lock
);
877 arg_start
= mm
->arg_start
;
878 arg_end
= mm
->arg_end
;
879 env_start
= mm
->env_start
;
880 env_end
= mm
->env_end
;
881 spin_unlock(&mm
->arg_lock
);
883 len
= arg_end
- arg_start
;
888 res
= access_process_vm(task
, arg_start
, buffer
, len
, FOLL_FORCE
);
891 * If the nul at the end of args has been overwritten, then
892 * assume application is using setproctitle(3).
894 if (res
> 0 && buffer
[res
-1] != '\0' && len
< buflen
) {
895 len
= strnlen(buffer
, res
);
899 len
= env_end
- env_start
;
900 if (len
> buflen
- res
)
902 res
+= access_process_vm(task
, env_start
,
905 res
= strnlen(buffer
, res
);
914 int memcmp_pages(struct page
*page1
, struct page
*page2
)
919 addr1
= kmap_atomic(page1
);
920 addr2
= kmap_atomic(page2
);
921 ret
= memcmp(addr1
, addr2
, PAGE_SIZE
);
922 kunmap_atomic(addr2
);
923 kunmap_atomic(addr1
);