Linux 5.6.5
[linux/fpc-iii.git] / mm / memcontrol.c
blob615d73acd0da6c187fbf9b1e2e1bf6b04cb28592
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
67 #include <linux/uaccess.h>
69 #include <trace/events/vmscan.h>
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
128 * cgroup_event represents events which userspace want to receive.
130 struct mem_cgroup_event {
132 * memcg which the event belongs to.
134 struct mem_cgroup *memcg;
136 * eventfd to signal userspace about the event.
138 struct eventfd_ctx *eventfd;
140 * Each of these stored in a list by the cgroup.
142 struct list_head list;
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
170 /* Stuffs for move charges at task migration. */
172 * Types of charges to be moved.
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
240 static inline bool should_force_charge(void)
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
259 #ifdef CONFIG_MEMCG_KMEM
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
277 void memcg_get_cache_ids(void)
279 down_read(&memcg_cache_ids_sem);
282 void memcg_put_cache_ids(void)
284 up_read(&memcg_cache_ids_sem);
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
325 struct memcg_shrinker_map *new, *old;
326 int nid;
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 if (!new)
339 return -ENOMEM;
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
349 return 0;
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
358 if (mem_cgroup_is_root(memcg))
359 return;
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
375 if (mem_cgroup_is_root(memcg))
376 return 0;
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
389 mutex_unlock(&memcg_shrinker_map_mutex);
391 return ret;
394 int memcg_expand_shrinker_maps(int new_id)
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
414 goto unlock;
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
451 struct mem_cgroup *memcg;
453 memcg = page->mem_cgroup;
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
458 return &memcg->css;
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
474 ino_t page_cgroup_ino(struct page *page)
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
479 rcu_read_lock();
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
495 int nid = page_to_nid(page);
497 return memcg->nodeinfo[nid];
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
503 return soft_limit_tree.rb_tree_per_node[nid];
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
509 int nid = page_to_nid(page);
511 return soft_limit_tree.rb_tree_per_node[nid];
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
523 if (mz->on_tree)
524 return;
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 tree_node);
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 p = &(*p)->rb_left;
535 rightmost = false;
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
557 if (!mz->on_tree)
558 return;
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
570 unsigned long flags;
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
586 return excess;
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
595 mctz = soft_limit_tree_from_page(page);
596 if (!mctz)
597 return;
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
609 if (excess || mz->on_tree) {
610 unsigned long flags;
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
614 if (mz->on_tree)
615 __mem_cgroup_remove_exceeded(mz, mctz);
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
632 for_each_node(nid) {
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
643 struct mem_cgroup_per_node *mz;
645 retry:
646 mz = NULL;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget_online(&mz->memcg->css))
660 goto retry;
661 done:
662 return mz;
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
668 struct mem_cgroup_per_node *mz;
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
673 return mz;
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
684 long x;
686 if (mem_cgroup_disabled())
687 return;
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
700 x = 0;
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
708 struct mem_cgroup *parent;
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 long x;
734 /* Update node */
735 __mod_node_page_state(pgdat, idx, val);
737 if (mem_cgroup_disabled())
738 return;
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
743 /* Update memcg */
744 __mod_memcg_state(memcg, idx, val);
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
755 x = 0;
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
762 struct page *page = virt_to_head_page(p);
763 pg_data_t *pgdat = page_pgdat(page);
764 struct mem_cgroup *memcg;
765 struct lruvec *lruvec;
767 rcu_read_lock();
768 memcg = memcg_from_slab_page(page);
770 /* Untracked pages have no memcg, no lruvec. Update only the node */
771 if (!memcg || memcg == root_mem_cgroup) {
772 __mod_node_page_state(pgdat, idx, val);
773 } else {
774 lruvec = mem_cgroup_lruvec(memcg, pgdat);
775 __mod_lruvec_state(lruvec, idx, val);
777 rcu_read_unlock();
780 void mod_memcg_obj_state(void *p, int idx, int val)
782 struct mem_cgroup *memcg;
784 rcu_read_lock();
785 memcg = mem_cgroup_from_obj(p);
786 if (memcg)
787 mod_memcg_state(memcg, idx, val);
788 rcu_read_unlock();
792 * __count_memcg_events - account VM events in a cgroup
793 * @memcg: the memory cgroup
794 * @idx: the event item
795 * @count: the number of events that occured
797 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
798 unsigned long count)
800 unsigned long x;
802 if (mem_cgroup_disabled())
803 return;
805 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
806 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
807 struct mem_cgroup *mi;
810 * Batch local counters to keep them in sync with
811 * the hierarchical ones.
813 __this_cpu_add(memcg->vmstats_local->events[idx], x);
814 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
815 atomic_long_add(x, &mi->vmevents[idx]);
816 x = 0;
818 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
823 return atomic_long_read(&memcg->vmevents[event]);
826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
828 long x = 0;
829 int cpu;
831 for_each_possible_cpu(cpu)
832 x += per_cpu(memcg->vmstats_local->events[event], cpu);
833 return x;
836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837 struct page *page,
838 bool compound, int nr_pages)
841 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
842 * counted as CACHE even if it's on ANON LRU.
844 if (PageAnon(page))
845 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
846 else {
847 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
848 if (PageSwapBacked(page))
849 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
852 if (compound) {
853 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
854 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
857 /* pagein of a big page is an event. So, ignore page size */
858 if (nr_pages > 0)
859 __count_memcg_events(memcg, PGPGIN, 1);
860 else {
861 __count_memcg_events(memcg, PGPGOUT, 1);
862 nr_pages = -nr_pages; /* for event */
865 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
868 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
869 enum mem_cgroup_events_target target)
871 unsigned long val, next;
873 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
874 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
875 /* from time_after() in jiffies.h */
876 if ((long)(next - val) < 0) {
877 switch (target) {
878 case MEM_CGROUP_TARGET_THRESH:
879 next = val + THRESHOLDS_EVENTS_TARGET;
880 break;
881 case MEM_CGROUP_TARGET_SOFTLIMIT:
882 next = val + SOFTLIMIT_EVENTS_TARGET;
883 break;
884 default:
885 break;
887 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
888 return true;
890 return false;
894 * Check events in order.
897 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
899 /* threshold event is triggered in finer grain than soft limit */
900 if (unlikely(mem_cgroup_event_ratelimit(memcg,
901 MEM_CGROUP_TARGET_THRESH))) {
902 bool do_softlimit;
904 do_softlimit = mem_cgroup_event_ratelimit(memcg,
905 MEM_CGROUP_TARGET_SOFTLIMIT);
906 mem_cgroup_threshold(memcg);
907 if (unlikely(do_softlimit))
908 mem_cgroup_update_tree(memcg, page);
912 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
915 * mm_update_next_owner() may clear mm->owner to NULL
916 * if it races with swapoff, page migration, etc.
917 * So this can be called with p == NULL.
919 if (unlikely(!p))
920 return NULL;
922 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
924 EXPORT_SYMBOL(mem_cgroup_from_task);
927 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
928 * @mm: mm from which memcg should be extracted. It can be NULL.
930 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
931 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
932 * returned.
934 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
936 struct mem_cgroup *memcg;
938 if (mem_cgroup_disabled())
939 return NULL;
941 rcu_read_lock();
942 do {
944 * Page cache insertions can happen withou an
945 * actual mm context, e.g. during disk probing
946 * on boot, loopback IO, acct() writes etc.
948 if (unlikely(!mm))
949 memcg = root_mem_cgroup;
950 else {
951 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
952 if (unlikely(!memcg))
953 memcg = root_mem_cgroup;
955 } while (!css_tryget(&memcg->css));
956 rcu_read_unlock();
957 return memcg;
959 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
962 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
963 * @page: page from which memcg should be extracted.
965 * Obtain a reference on page->memcg and returns it if successful. Otherwise
966 * root_mem_cgroup is returned.
968 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
970 struct mem_cgroup *memcg = page->mem_cgroup;
972 if (mem_cgroup_disabled())
973 return NULL;
975 rcu_read_lock();
976 if (!memcg || !css_tryget_online(&memcg->css))
977 memcg = root_mem_cgroup;
978 rcu_read_unlock();
979 return memcg;
981 EXPORT_SYMBOL(get_mem_cgroup_from_page);
984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
988 if (unlikely(current->active_memcg)) {
989 struct mem_cgroup *memcg = root_mem_cgroup;
991 rcu_read_lock();
992 if (css_tryget_online(&current->active_memcg->css))
993 memcg = current->active_memcg;
994 rcu_read_unlock();
995 return memcg;
997 return get_mem_cgroup_from_mm(current->mm);
1001 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1002 * @root: hierarchy root
1003 * @prev: previously returned memcg, NULL on first invocation
1004 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1006 * Returns references to children of the hierarchy below @root, or
1007 * @root itself, or %NULL after a full round-trip.
1009 * Caller must pass the return value in @prev on subsequent
1010 * invocations for reference counting, or use mem_cgroup_iter_break()
1011 * to cancel a hierarchy walk before the round-trip is complete.
1013 * Reclaimers can specify a node and a priority level in @reclaim to
1014 * divide up the memcgs in the hierarchy among all concurrent
1015 * reclaimers operating on the same node and priority.
1017 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1018 struct mem_cgroup *prev,
1019 struct mem_cgroup_reclaim_cookie *reclaim)
1021 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1022 struct cgroup_subsys_state *css = NULL;
1023 struct mem_cgroup *memcg = NULL;
1024 struct mem_cgroup *pos = NULL;
1026 if (mem_cgroup_disabled())
1027 return NULL;
1029 if (!root)
1030 root = root_mem_cgroup;
1032 if (prev && !reclaim)
1033 pos = prev;
1035 if (!root->use_hierarchy && root != root_mem_cgroup) {
1036 if (prev)
1037 goto out;
1038 return root;
1041 rcu_read_lock();
1043 if (reclaim) {
1044 struct mem_cgroup_per_node *mz;
1046 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1047 iter = &mz->iter;
1049 if (prev && reclaim->generation != iter->generation)
1050 goto out_unlock;
1052 while (1) {
1053 pos = READ_ONCE(iter->position);
1054 if (!pos || css_tryget(&pos->css))
1055 break;
1057 * css reference reached zero, so iter->position will
1058 * be cleared by ->css_released. However, we should not
1059 * rely on this happening soon, because ->css_released
1060 * is called from a work queue, and by busy-waiting we
1061 * might block it. So we clear iter->position right
1062 * away.
1064 (void)cmpxchg(&iter->position, pos, NULL);
1068 if (pos)
1069 css = &pos->css;
1071 for (;;) {
1072 css = css_next_descendant_pre(css, &root->css);
1073 if (!css) {
1075 * Reclaimers share the hierarchy walk, and a
1076 * new one might jump in right at the end of
1077 * the hierarchy - make sure they see at least
1078 * one group and restart from the beginning.
1080 if (!prev)
1081 continue;
1082 break;
1086 * Verify the css and acquire a reference. The root
1087 * is provided by the caller, so we know it's alive
1088 * and kicking, and don't take an extra reference.
1090 memcg = mem_cgroup_from_css(css);
1092 if (css == &root->css)
1093 break;
1095 if (css_tryget(css))
1096 break;
1098 memcg = NULL;
1101 if (reclaim) {
1103 * The position could have already been updated by a competing
1104 * thread, so check that the value hasn't changed since we read
1105 * it to avoid reclaiming from the same cgroup twice.
1107 (void)cmpxchg(&iter->position, pos, memcg);
1109 if (pos)
1110 css_put(&pos->css);
1112 if (!memcg)
1113 iter->generation++;
1114 else if (!prev)
1115 reclaim->generation = iter->generation;
1118 out_unlock:
1119 rcu_read_unlock();
1120 out:
1121 if (prev && prev != root)
1122 css_put(&prev->css);
1124 return memcg;
1128 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1129 * @root: hierarchy root
1130 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1132 void mem_cgroup_iter_break(struct mem_cgroup *root,
1133 struct mem_cgroup *prev)
1135 if (!root)
1136 root = root_mem_cgroup;
1137 if (prev && prev != root)
1138 css_put(&prev->css);
1141 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1142 struct mem_cgroup *dead_memcg)
1144 struct mem_cgroup_reclaim_iter *iter;
1145 struct mem_cgroup_per_node *mz;
1146 int nid;
1148 for_each_node(nid) {
1149 mz = mem_cgroup_nodeinfo(from, nid);
1150 iter = &mz->iter;
1151 cmpxchg(&iter->position, dead_memcg, NULL);
1155 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1157 struct mem_cgroup *memcg = dead_memcg;
1158 struct mem_cgroup *last;
1160 do {
1161 __invalidate_reclaim_iterators(memcg, dead_memcg);
1162 last = memcg;
1163 } while ((memcg = parent_mem_cgroup(memcg)));
1166 * When cgruop1 non-hierarchy mode is used,
1167 * parent_mem_cgroup() does not walk all the way up to the
1168 * cgroup root (root_mem_cgroup). So we have to handle
1169 * dead_memcg from cgroup root separately.
1171 if (last != root_mem_cgroup)
1172 __invalidate_reclaim_iterators(root_mem_cgroup,
1173 dead_memcg);
1177 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1178 * @memcg: hierarchy root
1179 * @fn: function to call for each task
1180 * @arg: argument passed to @fn
1182 * This function iterates over tasks attached to @memcg or to any of its
1183 * descendants and calls @fn for each task. If @fn returns a non-zero
1184 * value, the function breaks the iteration loop and returns the value.
1185 * Otherwise, it will iterate over all tasks and return 0.
1187 * This function must not be called for the root memory cgroup.
1189 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1190 int (*fn)(struct task_struct *, void *), void *arg)
1192 struct mem_cgroup *iter;
1193 int ret = 0;
1195 BUG_ON(memcg == root_mem_cgroup);
1197 for_each_mem_cgroup_tree(iter, memcg) {
1198 struct css_task_iter it;
1199 struct task_struct *task;
1201 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1202 while (!ret && (task = css_task_iter_next(&it)))
1203 ret = fn(task, arg);
1204 css_task_iter_end(&it);
1205 if (ret) {
1206 mem_cgroup_iter_break(memcg, iter);
1207 break;
1210 return ret;
1214 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1215 * @page: the page
1216 * @pgdat: pgdat of the page
1218 * This function is only safe when following the LRU page isolation
1219 * and putback protocol: the LRU lock must be held, and the page must
1220 * either be PageLRU() or the caller must have isolated/allocated it.
1222 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1224 struct mem_cgroup_per_node *mz;
1225 struct mem_cgroup *memcg;
1226 struct lruvec *lruvec;
1228 if (mem_cgroup_disabled()) {
1229 lruvec = &pgdat->__lruvec;
1230 goto out;
1233 memcg = page->mem_cgroup;
1235 * Swapcache readahead pages are added to the LRU - and
1236 * possibly migrated - before they are charged.
1238 if (!memcg)
1239 memcg = root_mem_cgroup;
1241 mz = mem_cgroup_page_nodeinfo(memcg, page);
1242 lruvec = &mz->lruvec;
1243 out:
1245 * Since a node can be onlined after the mem_cgroup was created,
1246 * we have to be prepared to initialize lruvec->zone here;
1247 * and if offlined then reonlined, we need to reinitialize it.
1249 if (unlikely(lruvec->pgdat != pgdat))
1250 lruvec->pgdat = pgdat;
1251 return lruvec;
1255 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1256 * @lruvec: mem_cgroup per zone lru vector
1257 * @lru: index of lru list the page is sitting on
1258 * @zid: zone id of the accounted pages
1259 * @nr_pages: positive when adding or negative when removing
1261 * This function must be called under lru_lock, just before a page is added
1262 * to or just after a page is removed from an lru list (that ordering being
1263 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1265 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1266 int zid, int nr_pages)
1268 struct mem_cgroup_per_node *mz;
1269 unsigned long *lru_size;
1270 long size;
1272 if (mem_cgroup_disabled())
1273 return;
1275 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1276 lru_size = &mz->lru_zone_size[zid][lru];
1278 if (nr_pages < 0)
1279 *lru_size += nr_pages;
1281 size = *lru_size;
1282 if (WARN_ONCE(size < 0,
1283 "%s(%p, %d, %d): lru_size %ld\n",
1284 __func__, lruvec, lru, nr_pages, size)) {
1285 VM_BUG_ON(1);
1286 *lru_size = 0;
1289 if (nr_pages > 0)
1290 *lru_size += nr_pages;
1294 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1295 * @memcg: the memory cgroup
1297 * Returns the maximum amount of memory @mem can be charged with, in
1298 * pages.
1300 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1302 unsigned long margin = 0;
1303 unsigned long count;
1304 unsigned long limit;
1306 count = page_counter_read(&memcg->memory);
1307 limit = READ_ONCE(memcg->memory.max);
1308 if (count < limit)
1309 margin = limit - count;
1311 if (do_memsw_account()) {
1312 count = page_counter_read(&memcg->memsw);
1313 limit = READ_ONCE(memcg->memsw.max);
1314 if (count <= limit)
1315 margin = min(margin, limit - count);
1316 else
1317 margin = 0;
1320 return margin;
1324 * A routine for checking "mem" is under move_account() or not.
1326 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1327 * moving cgroups. This is for waiting at high-memory pressure
1328 * caused by "move".
1330 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1332 struct mem_cgroup *from;
1333 struct mem_cgroup *to;
1334 bool ret = false;
1336 * Unlike task_move routines, we access mc.to, mc.from not under
1337 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1339 spin_lock(&mc.lock);
1340 from = mc.from;
1341 to = mc.to;
1342 if (!from)
1343 goto unlock;
1345 ret = mem_cgroup_is_descendant(from, memcg) ||
1346 mem_cgroup_is_descendant(to, memcg);
1347 unlock:
1348 spin_unlock(&mc.lock);
1349 return ret;
1352 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1354 if (mc.moving_task && current != mc.moving_task) {
1355 if (mem_cgroup_under_move(memcg)) {
1356 DEFINE_WAIT(wait);
1357 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1358 /* moving charge context might have finished. */
1359 if (mc.moving_task)
1360 schedule();
1361 finish_wait(&mc.waitq, &wait);
1362 return true;
1365 return false;
1368 static char *memory_stat_format(struct mem_cgroup *memcg)
1370 struct seq_buf s;
1371 int i;
1373 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1374 if (!s.buffer)
1375 return NULL;
1378 * Provide statistics on the state of the memory subsystem as
1379 * well as cumulative event counters that show past behavior.
1381 * This list is ordered following a combination of these gradients:
1382 * 1) generic big picture -> specifics and details
1383 * 2) reflecting userspace activity -> reflecting kernel heuristics
1385 * Current memory state:
1388 seq_buf_printf(&s, "anon %llu\n",
1389 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1390 PAGE_SIZE);
1391 seq_buf_printf(&s, "file %llu\n",
1392 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "kernel_stack %llu\n",
1395 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1396 1024);
1397 seq_buf_printf(&s, "slab %llu\n",
1398 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1399 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1400 PAGE_SIZE);
1401 seq_buf_printf(&s, "sock %llu\n",
1402 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1403 PAGE_SIZE);
1405 seq_buf_printf(&s, "shmem %llu\n",
1406 (u64)memcg_page_state(memcg, NR_SHMEM) *
1407 PAGE_SIZE);
1408 seq_buf_printf(&s, "file_mapped %llu\n",
1409 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1410 PAGE_SIZE);
1411 seq_buf_printf(&s, "file_dirty %llu\n",
1412 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1413 PAGE_SIZE);
1414 seq_buf_printf(&s, "file_writeback %llu\n",
1415 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1416 PAGE_SIZE);
1419 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1420 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1421 * arse because it requires migrating the work out of rmap to a place
1422 * where the page->mem_cgroup is set up and stable.
1424 seq_buf_printf(&s, "anon_thp %llu\n",
1425 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1426 PAGE_SIZE);
1428 for (i = 0; i < NR_LRU_LISTS; i++)
1429 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1430 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1431 PAGE_SIZE);
1433 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1434 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1435 PAGE_SIZE);
1436 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1437 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1438 PAGE_SIZE);
1440 /* Accumulated memory events */
1442 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1443 memcg_events(memcg, PGFAULT));
1444 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1445 memcg_events(memcg, PGMAJFAULT));
1447 seq_buf_printf(&s, "workingset_refault %lu\n",
1448 memcg_page_state(memcg, WORKINGSET_REFAULT));
1449 seq_buf_printf(&s, "workingset_activate %lu\n",
1450 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1451 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1452 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1454 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1455 memcg_events(memcg, PGREFILL));
1456 seq_buf_printf(&s, "pgscan %lu\n",
1457 memcg_events(memcg, PGSCAN_KSWAPD) +
1458 memcg_events(memcg, PGSCAN_DIRECT));
1459 seq_buf_printf(&s, "pgsteal %lu\n",
1460 memcg_events(memcg, PGSTEAL_KSWAPD) +
1461 memcg_events(memcg, PGSTEAL_DIRECT));
1462 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1463 memcg_events(memcg, PGACTIVATE));
1464 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1465 memcg_events(memcg, PGDEACTIVATE));
1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1467 memcg_events(memcg, PGLAZYFREE));
1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1469 memcg_events(memcg, PGLAZYFREED));
1471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1472 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1473 memcg_events(memcg, THP_FAULT_ALLOC));
1474 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1475 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1478 /* The above should easily fit into one page */
1479 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1481 return s.buffer;
1484 #define K(x) ((x) << (PAGE_SHIFT-10))
1486 * mem_cgroup_print_oom_context: Print OOM information relevant to
1487 * memory controller.
1488 * @memcg: The memory cgroup that went over limit
1489 * @p: Task that is going to be killed
1491 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1492 * enabled
1494 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1496 rcu_read_lock();
1498 if (memcg) {
1499 pr_cont(",oom_memcg=");
1500 pr_cont_cgroup_path(memcg->css.cgroup);
1501 } else
1502 pr_cont(",global_oom");
1503 if (p) {
1504 pr_cont(",task_memcg=");
1505 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1507 rcu_read_unlock();
1511 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1512 * memory controller.
1513 * @memcg: The memory cgroup that went over limit
1515 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1517 char *buf;
1519 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1520 K((u64)page_counter_read(&memcg->memory)),
1521 K((u64)memcg->memory.max), memcg->memory.failcnt);
1522 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1523 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1524 K((u64)page_counter_read(&memcg->swap)),
1525 K((u64)memcg->swap.max), memcg->swap.failcnt);
1526 else {
1527 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1528 K((u64)page_counter_read(&memcg->memsw)),
1529 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1530 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->kmem)),
1532 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1535 pr_info("Memory cgroup stats for ");
1536 pr_cont_cgroup_path(memcg->css.cgroup);
1537 pr_cont(":");
1538 buf = memory_stat_format(memcg);
1539 if (!buf)
1540 return;
1541 pr_info("%s", buf);
1542 kfree(buf);
1546 * Return the memory (and swap, if configured) limit for a memcg.
1548 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1550 unsigned long max;
1552 max = memcg->memory.max;
1553 if (mem_cgroup_swappiness(memcg)) {
1554 unsigned long memsw_max;
1555 unsigned long swap_max;
1557 memsw_max = memcg->memsw.max;
1558 swap_max = memcg->swap.max;
1559 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1560 max = min(max + swap_max, memsw_max);
1562 return max;
1565 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1567 return page_counter_read(&memcg->memory);
1570 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1571 int order)
1573 struct oom_control oc = {
1574 .zonelist = NULL,
1575 .nodemask = NULL,
1576 .memcg = memcg,
1577 .gfp_mask = gfp_mask,
1578 .order = order,
1580 bool ret;
1582 if (mutex_lock_killable(&oom_lock))
1583 return true;
1585 * A few threads which were not waiting at mutex_lock_killable() can
1586 * fail to bail out. Therefore, check again after holding oom_lock.
1588 ret = should_force_charge() || out_of_memory(&oc);
1589 mutex_unlock(&oom_lock);
1590 return ret;
1593 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1594 pg_data_t *pgdat,
1595 gfp_t gfp_mask,
1596 unsigned long *total_scanned)
1598 struct mem_cgroup *victim = NULL;
1599 int total = 0;
1600 int loop = 0;
1601 unsigned long excess;
1602 unsigned long nr_scanned;
1603 struct mem_cgroup_reclaim_cookie reclaim = {
1604 .pgdat = pgdat,
1607 excess = soft_limit_excess(root_memcg);
1609 while (1) {
1610 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1611 if (!victim) {
1612 loop++;
1613 if (loop >= 2) {
1615 * If we have not been able to reclaim
1616 * anything, it might because there are
1617 * no reclaimable pages under this hierarchy
1619 if (!total)
1620 break;
1622 * We want to do more targeted reclaim.
1623 * excess >> 2 is not to excessive so as to
1624 * reclaim too much, nor too less that we keep
1625 * coming back to reclaim from this cgroup
1627 if (total >= (excess >> 2) ||
1628 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1629 break;
1631 continue;
1633 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1634 pgdat, &nr_scanned);
1635 *total_scanned += nr_scanned;
1636 if (!soft_limit_excess(root_memcg))
1637 break;
1639 mem_cgroup_iter_break(root_memcg, victim);
1640 return total;
1643 #ifdef CONFIG_LOCKDEP
1644 static struct lockdep_map memcg_oom_lock_dep_map = {
1645 .name = "memcg_oom_lock",
1647 #endif
1649 static DEFINE_SPINLOCK(memcg_oom_lock);
1652 * Check OOM-Killer is already running under our hierarchy.
1653 * If someone is running, return false.
1655 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1657 struct mem_cgroup *iter, *failed = NULL;
1659 spin_lock(&memcg_oom_lock);
1661 for_each_mem_cgroup_tree(iter, memcg) {
1662 if (iter->oom_lock) {
1664 * this subtree of our hierarchy is already locked
1665 * so we cannot give a lock.
1667 failed = iter;
1668 mem_cgroup_iter_break(memcg, iter);
1669 break;
1670 } else
1671 iter->oom_lock = true;
1674 if (failed) {
1676 * OK, we failed to lock the whole subtree so we have
1677 * to clean up what we set up to the failing subtree
1679 for_each_mem_cgroup_tree(iter, memcg) {
1680 if (iter == failed) {
1681 mem_cgroup_iter_break(memcg, iter);
1682 break;
1684 iter->oom_lock = false;
1686 } else
1687 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1689 spin_unlock(&memcg_oom_lock);
1691 return !failed;
1694 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1696 struct mem_cgroup *iter;
1698 spin_lock(&memcg_oom_lock);
1699 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1700 for_each_mem_cgroup_tree(iter, memcg)
1701 iter->oom_lock = false;
1702 spin_unlock(&memcg_oom_lock);
1705 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1707 struct mem_cgroup *iter;
1709 spin_lock(&memcg_oom_lock);
1710 for_each_mem_cgroup_tree(iter, memcg)
1711 iter->under_oom++;
1712 spin_unlock(&memcg_oom_lock);
1715 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1717 struct mem_cgroup *iter;
1720 * When a new child is created while the hierarchy is under oom,
1721 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1723 spin_lock(&memcg_oom_lock);
1724 for_each_mem_cgroup_tree(iter, memcg)
1725 if (iter->under_oom > 0)
1726 iter->under_oom--;
1727 spin_unlock(&memcg_oom_lock);
1730 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1732 struct oom_wait_info {
1733 struct mem_cgroup *memcg;
1734 wait_queue_entry_t wait;
1737 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1738 unsigned mode, int sync, void *arg)
1740 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1741 struct mem_cgroup *oom_wait_memcg;
1742 struct oom_wait_info *oom_wait_info;
1744 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1745 oom_wait_memcg = oom_wait_info->memcg;
1747 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1748 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1749 return 0;
1750 return autoremove_wake_function(wait, mode, sync, arg);
1753 static void memcg_oom_recover(struct mem_cgroup *memcg)
1756 * For the following lockless ->under_oom test, the only required
1757 * guarantee is that it must see the state asserted by an OOM when
1758 * this function is called as a result of userland actions
1759 * triggered by the notification of the OOM. This is trivially
1760 * achieved by invoking mem_cgroup_mark_under_oom() before
1761 * triggering notification.
1763 if (memcg && memcg->under_oom)
1764 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1767 enum oom_status {
1768 OOM_SUCCESS,
1769 OOM_FAILED,
1770 OOM_ASYNC,
1771 OOM_SKIPPED
1774 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1776 enum oom_status ret;
1777 bool locked;
1779 if (order > PAGE_ALLOC_COSTLY_ORDER)
1780 return OOM_SKIPPED;
1782 memcg_memory_event(memcg, MEMCG_OOM);
1785 * We are in the middle of the charge context here, so we
1786 * don't want to block when potentially sitting on a callstack
1787 * that holds all kinds of filesystem and mm locks.
1789 * cgroup1 allows disabling the OOM killer and waiting for outside
1790 * handling until the charge can succeed; remember the context and put
1791 * the task to sleep at the end of the page fault when all locks are
1792 * released.
1794 * On the other hand, in-kernel OOM killer allows for an async victim
1795 * memory reclaim (oom_reaper) and that means that we are not solely
1796 * relying on the oom victim to make a forward progress and we can
1797 * invoke the oom killer here.
1799 * Please note that mem_cgroup_out_of_memory might fail to find a
1800 * victim and then we have to bail out from the charge path.
1802 if (memcg->oom_kill_disable) {
1803 if (!current->in_user_fault)
1804 return OOM_SKIPPED;
1805 css_get(&memcg->css);
1806 current->memcg_in_oom = memcg;
1807 current->memcg_oom_gfp_mask = mask;
1808 current->memcg_oom_order = order;
1810 return OOM_ASYNC;
1813 mem_cgroup_mark_under_oom(memcg);
1815 locked = mem_cgroup_oom_trylock(memcg);
1817 if (locked)
1818 mem_cgroup_oom_notify(memcg);
1820 mem_cgroup_unmark_under_oom(memcg);
1821 if (mem_cgroup_out_of_memory(memcg, mask, order))
1822 ret = OOM_SUCCESS;
1823 else
1824 ret = OOM_FAILED;
1826 if (locked)
1827 mem_cgroup_oom_unlock(memcg);
1829 return ret;
1833 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1834 * @handle: actually kill/wait or just clean up the OOM state
1836 * This has to be called at the end of a page fault if the memcg OOM
1837 * handler was enabled.
1839 * Memcg supports userspace OOM handling where failed allocations must
1840 * sleep on a waitqueue until the userspace task resolves the
1841 * situation. Sleeping directly in the charge context with all kinds
1842 * of locks held is not a good idea, instead we remember an OOM state
1843 * in the task and mem_cgroup_oom_synchronize() has to be called at
1844 * the end of the page fault to complete the OOM handling.
1846 * Returns %true if an ongoing memcg OOM situation was detected and
1847 * completed, %false otherwise.
1849 bool mem_cgroup_oom_synchronize(bool handle)
1851 struct mem_cgroup *memcg = current->memcg_in_oom;
1852 struct oom_wait_info owait;
1853 bool locked;
1855 /* OOM is global, do not handle */
1856 if (!memcg)
1857 return false;
1859 if (!handle)
1860 goto cleanup;
1862 owait.memcg = memcg;
1863 owait.wait.flags = 0;
1864 owait.wait.func = memcg_oom_wake_function;
1865 owait.wait.private = current;
1866 INIT_LIST_HEAD(&owait.wait.entry);
1868 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1869 mem_cgroup_mark_under_oom(memcg);
1871 locked = mem_cgroup_oom_trylock(memcg);
1873 if (locked)
1874 mem_cgroup_oom_notify(memcg);
1876 if (locked && !memcg->oom_kill_disable) {
1877 mem_cgroup_unmark_under_oom(memcg);
1878 finish_wait(&memcg_oom_waitq, &owait.wait);
1879 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1880 current->memcg_oom_order);
1881 } else {
1882 schedule();
1883 mem_cgroup_unmark_under_oom(memcg);
1884 finish_wait(&memcg_oom_waitq, &owait.wait);
1887 if (locked) {
1888 mem_cgroup_oom_unlock(memcg);
1890 * There is no guarantee that an OOM-lock contender
1891 * sees the wakeups triggered by the OOM kill
1892 * uncharges. Wake any sleepers explicitely.
1894 memcg_oom_recover(memcg);
1896 cleanup:
1897 current->memcg_in_oom = NULL;
1898 css_put(&memcg->css);
1899 return true;
1903 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1904 * @victim: task to be killed by the OOM killer
1905 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1907 * Returns a pointer to a memory cgroup, which has to be cleaned up
1908 * by killing all belonging OOM-killable tasks.
1910 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1912 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1913 struct mem_cgroup *oom_domain)
1915 struct mem_cgroup *oom_group = NULL;
1916 struct mem_cgroup *memcg;
1918 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1919 return NULL;
1921 if (!oom_domain)
1922 oom_domain = root_mem_cgroup;
1924 rcu_read_lock();
1926 memcg = mem_cgroup_from_task(victim);
1927 if (memcg == root_mem_cgroup)
1928 goto out;
1931 * Traverse the memory cgroup hierarchy from the victim task's
1932 * cgroup up to the OOMing cgroup (or root) to find the
1933 * highest-level memory cgroup with oom.group set.
1935 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1936 if (memcg->oom_group)
1937 oom_group = memcg;
1939 if (memcg == oom_domain)
1940 break;
1943 if (oom_group)
1944 css_get(&oom_group->css);
1945 out:
1946 rcu_read_unlock();
1948 return oom_group;
1951 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1953 pr_info("Tasks in ");
1954 pr_cont_cgroup_path(memcg->css.cgroup);
1955 pr_cont(" are going to be killed due to memory.oom.group set\n");
1959 * lock_page_memcg - lock a page->mem_cgroup binding
1960 * @page: the page
1962 * This function protects unlocked LRU pages from being moved to
1963 * another cgroup.
1965 * It ensures lifetime of the returned memcg. Caller is responsible
1966 * for the lifetime of the page; __unlock_page_memcg() is available
1967 * when @page might get freed inside the locked section.
1969 struct mem_cgroup *lock_page_memcg(struct page *page)
1971 struct mem_cgroup *memcg;
1972 unsigned long flags;
1975 * The RCU lock is held throughout the transaction. The fast
1976 * path can get away without acquiring the memcg->move_lock
1977 * because page moving starts with an RCU grace period.
1979 * The RCU lock also protects the memcg from being freed when
1980 * the page state that is going to change is the only thing
1981 * preventing the page itself from being freed. E.g. writeback
1982 * doesn't hold a page reference and relies on PG_writeback to
1983 * keep off truncation, migration and so forth.
1985 rcu_read_lock();
1987 if (mem_cgroup_disabled())
1988 return NULL;
1989 again:
1990 memcg = page->mem_cgroup;
1991 if (unlikely(!memcg))
1992 return NULL;
1994 if (atomic_read(&memcg->moving_account) <= 0)
1995 return memcg;
1997 spin_lock_irqsave(&memcg->move_lock, flags);
1998 if (memcg != page->mem_cgroup) {
1999 spin_unlock_irqrestore(&memcg->move_lock, flags);
2000 goto again;
2004 * When charge migration first begins, we can have locked and
2005 * unlocked page stat updates happening concurrently. Track
2006 * the task who has the lock for unlock_page_memcg().
2008 memcg->move_lock_task = current;
2009 memcg->move_lock_flags = flags;
2011 return memcg;
2013 EXPORT_SYMBOL(lock_page_memcg);
2016 * __unlock_page_memcg - unlock and unpin a memcg
2017 * @memcg: the memcg
2019 * Unlock and unpin a memcg returned by lock_page_memcg().
2021 void __unlock_page_memcg(struct mem_cgroup *memcg)
2023 if (memcg && memcg->move_lock_task == current) {
2024 unsigned long flags = memcg->move_lock_flags;
2026 memcg->move_lock_task = NULL;
2027 memcg->move_lock_flags = 0;
2029 spin_unlock_irqrestore(&memcg->move_lock, flags);
2032 rcu_read_unlock();
2036 * unlock_page_memcg - unlock a page->mem_cgroup binding
2037 * @page: the page
2039 void unlock_page_memcg(struct page *page)
2041 __unlock_page_memcg(page->mem_cgroup);
2043 EXPORT_SYMBOL(unlock_page_memcg);
2045 struct memcg_stock_pcp {
2046 struct mem_cgroup *cached; /* this never be root cgroup */
2047 unsigned int nr_pages;
2048 struct work_struct work;
2049 unsigned long flags;
2050 #define FLUSHING_CACHED_CHARGE 0
2052 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2053 static DEFINE_MUTEX(percpu_charge_mutex);
2056 * consume_stock: Try to consume stocked charge on this cpu.
2057 * @memcg: memcg to consume from.
2058 * @nr_pages: how many pages to charge.
2060 * The charges will only happen if @memcg matches the current cpu's memcg
2061 * stock, and at least @nr_pages are available in that stock. Failure to
2062 * service an allocation will refill the stock.
2064 * returns true if successful, false otherwise.
2066 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2068 struct memcg_stock_pcp *stock;
2069 unsigned long flags;
2070 bool ret = false;
2072 if (nr_pages > MEMCG_CHARGE_BATCH)
2073 return ret;
2075 local_irq_save(flags);
2077 stock = this_cpu_ptr(&memcg_stock);
2078 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2079 stock->nr_pages -= nr_pages;
2080 ret = true;
2083 local_irq_restore(flags);
2085 return ret;
2089 * Returns stocks cached in percpu and reset cached information.
2091 static void drain_stock(struct memcg_stock_pcp *stock)
2093 struct mem_cgroup *old = stock->cached;
2095 if (stock->nr_pages) {
2096 page_counter_uncharge(&old->memory, stock->nr_pages);
2097 if (do_memsw_account())
2098 page_counter_uncharge(&old->memsw, stock->nr_pages);
2099 css_put_many(&old->css, stock->nr_pages);
2100 stock->nr_pages = 0;
2102 stock->cached = NULL;
2105 static void drain_local_stock(struct work_struct *dummy)
2107 struct memcg_stock_pcp *stock;
2108 unsigned long flags;
2111 * The only protection from memory hotplug vs. drain_stock races is
2112 * that we always operate on local CPU stock here with IRQ disabled
2114 local_irq_save(flags);
2116 stock = this_cpu_ptr(&memcg_stock);
2117 drain_stock(stock);
2118 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2120 local_irq_restore(flags);
2124 * Cache charges(val) to local per_cpu area.
2125 * This will be consumed by consume_stock() function, later.
2127 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2129 struct memcg_stock_pcp *stock;
2130 unsigned long flags;
2132 local_irq_save(flags);
2134 stock = this_cpu_ptr(&memcg_stock);
2135 if (stock->cached != memcg) { /* reset if necessary */
2136 drain_stock(stock);
2137 stock->cached = memcg;
2139 stock->nr_pages += nr_pages;
2141 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2142 drain_stock(stock);
2144 local_irq_restore(flags);
2148 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2149 * of the hierarchy under it.
2151 static void drain_all_stock(struct mem_cgroup *root_memcg)
2153 int cpu, curcpu;
2155 /* If someone's already draining, avoid adding running more workers. */
2156 if (!mutex_trylock(&percpu_charge_mutex))
2157 return;
2159 * Notify other cpus that system-wide "drain" is running
2160 * We do not care about races with the cpu hotplug because cpu down
2161 * as well as workers from this path always operate on the local
2162 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2164 curcpu = get_cpu();
2165 for_each_online_cpu(cpu) {
2166 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2167 struct mem_cgroup *memcg;
2168 bool flush = false;
2170 rcu_read_lock();
2171 memcg = stock->cached;
2172 if (memcg && stock->nr_pages &&
2173 mem_cgroup_is_descendant(memcg, root_memcg))
2174 flush = true;
2175 rcu_read_unlock();
2177 if (flush &&
2178 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2179 if (cpu == curcpu)
2180 drain_local_stock(&stock->work);
2181 else
2182 schedule_work_on(cpu, &stock->work);
2185 put_cpu();
2186 mutex_unlock(&percpu_charge_mutex);
2189 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2191 struct memcg_stock_pcp *stock;
2192 struct mem_cgroup *memcg, *mi;
2194 stock = &per_cpu(memcg_stock, cpu);
2195 drain_stock(stock);
2197 for_each_mem_cgroup(memcg) {
2198 int i;
2200 for (i = 0; i < MEMCG_NR_STAT; i++) {
2201 int nid;
2202 long x;
2204 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2205 if (x)
2206 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2207 atomic_long_add(x, &memcg->vmstats[i]);
2209 if (i >= NR_VM_NODE_STAT_ITEMS)
2210 continue;
2212 for_each_node(nid) {
2213 struct mem_cgroup_per_node *pn;
2215 pn = mem_cgroup_nodeinfo(memcg, nid);
2216 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2217 if (x)
2218 do {
2219 atomic_long_add(x, &pn->lruvec_stat[i]);
2220 } while ((pn = parent_nodeinfo(pn, nid)));
2224 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2225 long x;
2227 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2228 if (x)
2229 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2230 atomic_long_add(x, &memcg->vmevents[i]);
2234 return 0;
2237 static void reclaim_high(struct mem_cgroup *memcg,
2238 unsigned int nr_pages,
2239 gfp_t gfp_mask)
2241 do {
2242 if (page_counter_read(&memcg->memory) <= memcg->high)
2243 continue;
2244 memcg_memory_event(memcg, MEMCG_HIGH);
2245 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2246 } while ((memcg = parent_mem_cgroup(memcg)));
2249 static void high_work_func(struct work_struct *work)
2251 struct mem_cgroup *memcg;
2253 memcg = container_of(work, struct mem_cgroup, high_work);
2254 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2258 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2259 * enough to still cause a significant slowdown in most cases, while still
2260 * allowing diagnostics and tracing to proceed without becoming stuck.
2262 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2265 * When calculating the delay, we use these either side of the exponentiation to
2266 * maintain precision and scale to a reasonable number of jiffies (see the table
2267 * below.
2269 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2270 * overage ratio to a delay.
2271 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2272 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2273 * to produce a reasonable delay curve.
2275 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2276 * reasonable delay curve compared to precision-adjusted overage, not
2277 * penalising heavily at first, but still making sure that growth beyond the
2278 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2279 * example, with a high of 100 megabytes:
2281 * +-------+------------------------+
2282 * | usage | time to allocate in ms |
2283 * +-------+------------------------+
2284 * | 100M | 0 |
2285 * | 101M | 6 |
2286 * | 102M | 25 |
2287 * | 103M | 57 |
2288 * | 104M | 102 |
2289 * | 105M | 159 |
2290 * | 106M | 230 |
2291 * | 107M | 313 |
2292 * | 108M | 409 |
2293 * | 109M | 518 |
2294 * | 110M | 639 |
2295 * | 111M | 774 |
2296 * | 112M | 921 |
2297 * | 113M | 1081 |
2298 * | 114M | 1254 |
2299 * | 115M | 1439 |
2300 * | 116M | 1638 |
2301 * | 117M | 1849 |
2302 * | 118M | 2000 |
2303 * | 119M | 2000 |
2304 * | 120M | 2000 |
2305 * +-------+------------------------+
2307 #define MEMCG_DELAY_PRECISION_SHIFT 20
2308 #define MEMCG_DELAY_SCALING_SHIFT 14
2311 * Get the number of jiffies that we should penalise a mischievous cgroup which
2312 * is exceeding its memory.high by checking both it and its ancestors.
2314 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2315 unsigned int nr_pages)
2317 unsigned long penalty_jiffies;
2318 u64 max_overage = 0;
2320 do {
2321 unsigned long usage, high;
2322 u64 overage;
2324 usage = page_counter_read(&memcg->memory);
2325 high = READ_ONCE(memcg->high);
2327 if (usage <= high)
2328 continue;
2331 * Prevent division by 0 in overage calculation by acting as if
2332 * it was a threshold of 1 page
2334 high = max(high, 1UL);
2336 overage = usage - high;
2337 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2338 overage = div64_u64(overage, high);
2340 if (overage > max_overage)
2341 max_overage = overage;
2342 } while ((memcg = parent_mem_cgroup(memcg)) &&
2343 !mem_cgroup_is_root(memcg));
2345 if (!max_overage)
2346 return 0;
2349 * We use overage compared to memory.high to calculate the number of
2350 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2351 * fairly lenient on small overages, and increasingly harsh when the
2352 * memcg in question makes it clear that it has no intention of stopping
2353 * its crazy behaviour, so we exponentially increase the delay based on
2354 * overage amount.
2356 penalty_jiffies = max_overage * max_overage * HZ;
2357 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2358 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2361 * Factor in the task's own contribution to the overage, such that four
2362 * N-sized allocations are throttled approximately the same as one
2363 * 4N-sized allocation.
2365 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2366 * larger the current charge patch is than that.
2368 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2371 * Clamp the max delay per usermode return so as to still keep the
2372 * application moving forwards and also permit diagnostics, albeit
2373 * extremely slowly.
2375 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2379 * Scheduled by try_charge() to be executed from the userland return path
2380 * and reclaims memory over the high limit.
2382 void mem_cgroup_handle_over_high(void)
2384 unsigned long penalty_jiffies;
2385 unsigned long pflags;
2386 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2387 struct mem_cgroup *memcg;
2389 if (likely(!nr_pages))
2390 return;
2392 memcg = get_mem_cgroup_from_mm(current->mm);
2393 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2394 current->memcg_nr_pages_over_high = 0;
2397 * memory.high is breached and reclaim is unable to keep up. Throttle
2398 * allocators proactively to slow down excessive growth.
2400 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2403 * Don't sleep if the amount of jiffies this memcg owes us is so low
2404 * that it's not even worth doing, in an attempt to be nice to those who
2405 * go only a small amount over their memory.high value and maybe haven't
2406 * been aggressively reclaimed enough yet.
2408 if (penalty_jiffies <= HZ / 100)
2409 goto out;
2412 * If we exit early, we're guaranteed to die (since
2413 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2414 * need to account for any ill-begotten jiffies to pay them off later.
2416 psi_memstall_enter(&pflags);
2417 schedule_timeout_killable(penalty_jiffies);
2418 psi_memstall_leave(&pflags);
2420 out:
2421 css_put(&memcg->css);
2424 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2425 unsigned int nr_pages)
2427 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2428 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2429 struct mem_cgroup *mem_over_limit;
2430 struct page_counter *counter;
2431 unsigned long nr_reclaimed;
2432 bool may_swap = true;
2433 bool drained = false;
2434 enum oom_status oom_status;
2436 if (mem_cgroup_is_root(memcg))
2437 return 0;
2438 retry:
2439 if (consume_stock(memcg, nr_pages))
2440 return 0;
2442 if (!do_memsw_account() ||
2443 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2444 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2445 goto done_restock;
2446 if (do_memsw_account())
2447 page_counter_uncharge(&memcg->memsw, batch);
2448 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2449 } else {
2450 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2451 may_swap = false;
2454 if (batch > nr_pages) {
2455 batch = nr_pages;
2456 goto retry;
2460 * Memcg doesn't have a dedicated reserve for atomic
2461 * allocations. But like the global atomic pool, we need to
2462 * put the burden of reclaim on regular allocation requests
2463 * and let these go through as privileged allocations.
2465 if (gfp_mask & __GFP_ATOMIC)
2466 goto force;
2469 * Unlike in global OOM situations, memcg is not in a physical
2470 * memory shortage. Allow dying and OOM-killed tasks to
2471 * bypass the last charges so that they can exit quickly and
2472 * free their memory.
2474 if (unlikely(should_force_charge()))
2475 goto force;
2478 * Prevent unbounded recursion when reclaim operations need to
2479 * allocate memory. This might exceed the limits temporarily,
2480 * but we prefer facilitating memory reclaim and getting back
2481 * under the limit over triggering OOM kills in these cases.
2483 if (unlikely(current->flags & PF_MEMALLOC))
2484 goto force;
2486 if (unlikely(task_in_memcg_oom(current)))
2487 goto nomem;
2489 if (!gfpflags_allow_blocking(gfp_mask))
2490 goto nomem;
2492 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2494 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2495 gfp_mask, may_swap);
2497 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2498 goto retry;
2500 if (!drained) {
2501 drain_all_stock(mem_over_limit);
2502 drained = true;
2503 goto retry;
2506 if (gfp_mask & __GFP_NORETRY)
2507 goto nomem;
2509 * Even though the limit is exceeded at this point, reclaim
2510 * may have been able to free some pages. Retry the charge
2511 * before killing the task.
2513 * Only for regular pages, though: huge pages are rather
2514 * unlikely to succeed so close to the limit, and we fall back
2515 * to regular pages anyway in case of failure.
2517 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2518 goto retry;
2520 * At task move, charge accounts can be doubly counted. So, it's
2521 * better to wait until the end of task_move if something is going on.
2523 if (mem_cgroup_wait_acct_move(mem_over_limit))
2524 goto retry;
2526 if (nr_retries--)
2527 goto retry;
2529 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2530 goto nomem;
2532 if (gfp_mask & __GFP_NOFAIL)
2533 goto force;
2535 if (fatal_signal_pending(current))
2536 goto force;
2539 * keep retrying as long as the memcg oom killer is able to make
2540 * a forward progress or bypass the charge if the oom killer
2541 * couldn't make any progress.
2543 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2544 get_order(nr_pages * PAGE_SIZE));
2545 switch (oom_status) {
2546 case OOM_SUCCESS:
2547 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2548 goto retry;
2549 case OOM_FAILED:
2550 goto force;
2551 default:
2552 goto nomem;
2554 nomem:
2555 if (!(gfp_mask & __GFP_NOFAIL))
2556 return -ENOMEM;
2557 force:
2559 * The allocation either can't fail or will lead to more memory
2560 * being freed very soon. Allow memory usage go over the limit
2561 * temporarily by force charging it.
2563 page_counter_charge(&memcg->memory, nr_pages);
2564 if (do_memsw_account())
2565 page_counter_charge(&memcg->memsw, nr_pages);
2566 css_get_many(&memcg->css, nr_pages);
2568 return 0;
2570 done_restock:
2571 css_get_many(&memcg->css, batch);
2572 if (batch > nr_pages)
2573 refill_stock(memcg, batch - nr_pages);
2576 * If the hierarchy is above the normal consumption range, schedule
2577 * reclaim on returning to userland. We can perform reclaim here
2578 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2579 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2580 * not recorded as it most likely matches current's and won't
2581 * change in the meantime. As high limit is checked again before
2582 * reclaim, the cost of mismatch is negligible.
2584 do {
2585 if (page_counter_read(&memcg->memory) > memcg->high) {
2586 /* Don't bother a random interrupted task */
2587 if (in_interrupt()) {
2588 schedule_work(&memcg->high_work);
2589 break;
2591 current->memcg_nr_pages_over_high += batch;
2592 set_notify_resume(current);
2593 break;
2595 } while ((memcg = parent_mem_cgroup(memcg)));
2597 return 0;
2600 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2602 if (mem_cgroup_is_root(memcg))
2603 return;
2605 page_counter_uncharge(&memcg->memory, nr_pages);
2606 if (do_memsw_account())
2607 page_counter_uncharge(&memcg->memsw, nr_pages);
2609 css_put_many(&memcg->css, nr_pages);
2612 static void lock_page_lru(struct page *page, int *isolated)
2614 pg_data_t *pgdat = page_pgdat(page);
2616 spin_lock_irq(&pgdat->lru_lock);
2617 if (PageLRU(page)) {
2618 struct lruvec *lruvec;
2620 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2621 ClearPageLRU(page);
2622 del_page_from_lru_list(page, lruvec, page_lru(page));
2623 *isolated = 1;
2624 } else
2625 *isolated = 0;
2628 static void unlock_page_lru(struct page *page, int isolated)
2630 pg_data_t *pgdat = page_pgdat(page);
2632 if (isolated) {
2633 struct lruvec *lruvec;
2635 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2636 VM_BUG_ON_PAGE(PageLRU(page), page);
2637 SetPageLRU(page);
2638 add_page_to_lru_list(page, lruvec, page_lru(page));
2640 spin_unlock_irq(&pgdat->lru_lock);
2643 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2644 bool lrucare)
2646 int isolated;
2648 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2651 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2652 * may already be on some other mem_cgroup's LRU. Take care of it.
2654 if (lrucare)
2655 lock_page_lru(page, &isolated);
2658 * Nobody should be changing or seriously looking at
2659 * page->mem_cgroup at this point:
2661 * - the page is uncharged
2663 * - the page is off-LRU
2665 * - an anonymous fault has exclusive page access, except for
2666 * a locked page table
2668 * - a page cache insertion, a swapin fault, or a migration
2669 * have the page locked
2671 page->mem_cgroup = memcg;
2673 if (lrucare)
2674 unlock_page_lru(page, isolated);
2677 #ifdef CONFIG_MEMCG_KMEM
2679 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2681 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2682 * cgroup_mutex, etc.
2684 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2686 struct page *page;
2688 if (mem_cgroup_disabled())
2689 return NULL;
2691 page = virt_to_head_page(p);
2694 * Slab pages don't have page->mem_cgroup set because corresponding
2695 * kmem caches can be reparented during the lifetime. That's why
2696 * memcg_from_slab_page() should be used instead.
2698 if (PageSlab(page))
2699 return memcg_from_slab_page(page);
2701 /* All other pages use page->mem_cgroup */
2702 return page->mem_cgroup;
2705 static int memcg_alloc_cache_id(void)
2707 int id, size;
2708 int err;
2710 id = ida_simple_get(&memcg_cache_ida,
2711 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2712 if (id < 0)
2713 return id;
2715 if (id < memcg_nr_cache_ids)
2716 return id;
2719 * There's no space for the new id in memcg_caches arrays,
2720 * so we have to grow them.
2722 down_write(&memcg_cache_ids_sem);
2724 size = 2 * (id + 1);
2725 if (size < MEMCG_CACHES_MIN_SIZE)
2726 size = MEMCG_CACHES_MIN_SIZE;
2727 else if (size > MEMCG_CACHES_MAX_SIZE)
2728 size = MEMCG_CACHES_MAX_SIZE;
2730 err = memcg_update_all_caches(size);
2731 if (!err)
2732 err = memcg_update_all_list_lrus(size);
2733 if (!err)
2734 memcg_nr_cache_ids = size;
2736 up_write(&memcg_cache_ids_sem);
2738 if (err) {
2739 ida_simple_remove(&memcg_cache_ida, id);
2740 return err;
2742 return id;
2745 static void memcg_free_cache_id(int id)
2747 ida_simple_remove(&memcg_cache_ida, id);
2750 struct memcg_kmem_cache_create_work {
2751 struct mem_cgroup *memcg;
2752 struct kmem_cache *cachep;
2753 struct work_struct work;
2756 static void memcg_kmem_cache_create_func(struct work_struct *w)
2758 struct memcg_kmem_cache_create_work *cw =
2759 container_of(w, struct memcg_kmem_cache_create_work, work);
2760 struct mem_cgroup *memcg = cw->memcg;
2761 struct kmem_cache *cachep = cw->cachep;
2763 memcg_create_kmem_cache(memcg, cachep);
2765 css_put(&memcg->css);
2766 kfree(cw);
2770 * Enqueue the creation of a per-memcg kmem_cache.
2772 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2773 struct kmem_cache *cachep)
2775 struct memcg_kmem_cache_create_work *cw;
2777 if (!css_tryget_online(&memcg->css))
2778 return;
2780 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2781 if (!cw)
2782 return;
2784 cw->memcg = memcg;
2785 cw->cachep = cachep;
2786 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2788 queue_work(memcg_kmem_cache_wq, &cw->work);
2791 static inline bool memcg_kmem_bypass(void)
2793 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2794 return true;
2795 return false;
2799 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2800 * @cachep: the original global kmem cache
2802 * Return the kmem_cache we're supposed to use for a slab allocation.
2803 * We try to use the current memcg's version of the cache.
2805 * If the cache does not exist yet, if we are the first user of it, we
2806 * create it asynchronously in a workqueue and let the current allocation
2807 * go through with the original cache.
2809 * This function takes a reference to the cache it returns to assure it
2810 * won't get destroyed while we are working with it. Once the caller is
2811 * done with it, memcg_kmem_put_cache() must be called to release the
2812 * reference.
2814 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2816 struct mem_cgroup *memcg;
2817 struct kmem_cache *memcg_cachep;
2818 struct memcg_cache_array *arr;
2819 int kmemcg_id;
2821 VM_BUG_ON(!is_root_cache(cachep));
2823 if (memcg_kmem_bypass())
2824 return cachep;
2826 rcu_read_lock();
2828 if (unlikely(current->active_memcg))
2829 memcg = current->active_memcg;
2830 else
2831 memcg = mem_cgroup_from_task(current);
2833 if (!memcg || memcg == root_mem_cgroup)
2834 goto out_unlock;
2836 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2837 if (kmemcg_id < 0)
2838 goto out_unlock;
2840 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2843 * Make sure we will access the up-to-date value. The code updating
2844 * memcg_caches issues a write barrier to match the data dependency
2845 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2847 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2850 * If we are in a safe context (can wait, and not in interrupt
2851 * context), we could be be predictable and return right away.
2852 * This would guarantee that the allocation being performed
2853 * already belongs in the new cache.
2855 * However, there are some clashes that can arrive from locking.
2856 * For instance, because we acquire the slab_mutex while doing
2857 * memcg_create_kmem_cache, this means no further allocation
2858 * could happen with the slab_mutex held. So it's better to
2859 * defer everything.
2861 * If the memcg is dying or memcg_cache is about to be released,
2862 * don't bother creating new kmem_caches. Because memcg_cachep
2863 * is ZEROed as the fist step of kmem offlining, we don't need
2864 * percpu_ref_tryget_live() here. css_tryget_online() check in
2865 * memcg_schedule_kmem_cache_create() will prevent us from
2866 * creation of a new kmem_cache.
2868 if (unlikely(!memcg_cachep))
2869 memcg_schedule_kmem_cache_create(memcg, cachep);
2870 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2871 cachep = memcg_cachep;
2872 out_unlock:
2873 rcu_read_unlock();
2874 return cachep;
2878 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2879 * @cachep: the cache returned by memcg_kmem_get_cache
2881 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2883 if (!is_root_cache(cachep))
2884 percpu_ref_put(&cachep->memcg_params.refcnt);
2888 * __memcg_kmem_charge_memcg: charge a kmem page
2889 * @page: page to charge
2890 * @gfp: reclaim mode
2891 * @order: allocation order
2892 * @memcg: memory cgroup to charge
2894 * Returns 0 on success, an error code on failure.
2896 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2897 struct mem_cgroup *memcg)
2899 unsigned int nr_pages = 1 << order;
2900 struct page_counter *counter;
2901 int ret;
2903 ret = try_charge(memcg, gfp, nr_pages);
2904 if (ret)
2905 return ret;
2907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2908 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2911 * Enforce __GFP_NOFAIL allocation because callers are not
2912 * prepared to see failures and likely do not have any failure
2913 * handling code.
2915 if (gfp & __GFP_NOFAIL) {
2916 page_counter_charge(&memcg->kmem, nr_pages);
2917 return 0;
2919 cancel_charge(memcg, nr_pages);
2920 return -ENOMEM;
2922 return 0;
2926 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2927 * @page: page to charge
2928 * @gfp: reclaim mode
2929 * @order: allocation order
2931 * Returns 0 on success, an error code on failure.
2933 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2935 struct mem_cgroup *memcg;
2936 int ret = 0;
2938 if (memcg_kmem_bypass())
2939 return 0;
2941 memcg = get_mem_cgroup_from_current();
2942 if (!mem_cgroup_is_root(memcg)) {
2943 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2944 if (!ret) {
2945 page->mem_cgroup = memcg;
2946 __SetPageKmemcg(page);
2949 css_put(&memcg->css);
2950 return ret;
2954 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2955 * @memcg: memcg to uncharge
2956 * @nr_pages: number of pages to uncharge
2958 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2959 unsigned int nr_pages)
2961 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2962 page_counter_uncharge(&memcg->kmem, nr_pages);
2964 page_counter_uncharge(&memcg->memory, nr_pages);
2965 if (do_memsw_account())
2966 page_counter_uncharge(&memcg->memsw, nr_pages);
2969 * __memcg_kmem_uncharge: uncharge a kmem page
2970 * @page: page to uncharge
2971 * @order: allocation order
2973 void __memcg_kmem_uncharge(struct page *page, int order)
2975 struct mem_cgroup *memcg = page->mem_cgroup;
2976 unsigned int nr_pages = 1 << order;
2978 if (!memcg)
2979 return;
2981 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2982 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2983 page->mem_cgroup = NULL;
2985 /* slab pages do not have PageKmemcg flag set */
2986 if (PageKmemcg(page))
2987 __ClearPageKmemcg(page);
2989 css_put_many(&memcg->css, nr_pages);
2991 #endif /* CONFIG_MEMCG_KMEM */
2993 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2996 * Because tail pages are not marked as "used", set it. We're under
2997 * pgdat->lru_lock and migration entries setup in all page mappings.
2999 void mem_cgroup_split_huge_fixup(struct page *head)
3001 int i;
3003 if (mem_cgroup_disabled())
3004 return;
3006 for (i = 1; i < HPAGE_PMD_NR; i++)
3007 head[i].mem_cgroup = head->mem_cgroup;
3009 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3011 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3013 #ifdef CONFIG_MEMCG_SWAP
3015 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3016 * @entry: swap entry to be moved
3017 * @from: mem_cgroup which the entry is moved from
3018 * @to: mem_cgroup which the entry is moved to
3020 * It succeeds only when the swap_cgroup's record for this entry is the same
3021 * as the mem_cgroup's id of @from.
3023 * Returns 0 on success, -EINVAL on failure.
3025 * The caller must have charged to @to, IOW, called page_counter_charge() about
3026 * both res and memsw, and called css_get().
3028 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3029 struct mem_cgroup *from, struct mem_cgroup *to)
3031 unsigned short old_id, new_id;
3033 old_id = mem_cgroup_id(from);
3034 new_id = mem_cgroup_id(to);
3036 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3037 mod_memcg_state(from, MEMCG_SWAP, -1);
3038 mod_memcg_state(to, MEMCG_SWAP, 1);
3039 return 0;
3041 return -EINVAL;
3043 #else
3044 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3045 struct mem_cgroup *from, struct mem_cgroup *to)
3047 return -EINVAL;
3049 #endif
3051 static DEFINE_MUTEX(memcg_max_mutex);
3053 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3054 unsigned long max, bool memsw)
3056 bool enlarge = false;
3057 bool drained = false;
3058 int ret;
3059 bool limits_invariant;
3060 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3062 do {
3063 if (signal_pending(current)) {
3064 ret = -EINTR;
3065 break;
3068 mutex_lock(&memcg_max_mutex);
3070 * Make sure that the new limit (memsw or memory limit) doesn't
3071 * break our basic invariant rule memory.max <= memsw.max.
3073 limits_invariant = memsw ? max >= memcg->memory.max :
3074 max <= memcg->memsw.max;
3075 if (!limits_invariant) {
3076 mutex_unlock(&memcg_max_mutex);
3077 ret = -EINVAL;
3078 break;
3080 if (max > counter->max)
3081 enlarge = true;
3082 ret = page_counter_set_max(counter, max);
3083 mutex_unlock(&memcg_max_mutex);
3085 if (!ret)
3086 break;
3088 if (!drained) {
3089 drain_all_stock(memcg);
3090 drained = true;
3091 continue;
3094 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3095 GFP_KERNEL, !memsw)) {
3096 ret = -EBUSY;
3097 break;
3099 } while (true);
3101 if (!ret && enlarge)
3102 memcg_oom_recover(memcg);
3104 return ret;
3107 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3108 gfp_t gfp_mask,
3109 unsigned long *total_scanned)
3111 unsigned long nr_reclaimed = 0;
3112 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3113 unsigned long reclaimed;
3114 int loop = 0;
3115 struct mem_cgroup_tree_per_node *mctz;
3116 unsigned long excess;
3117 unsigned long nr_scanned;
3119 if (order > 0)
3120 return 0;
3122 mctz = soft_limit_tree_node(pgdat->node_id);
3125 * Do not even bother to check the largest node if the root
3126 * is empty. Do it lockless to prevent lock bouncing. Races
3127 * are acceptable as soft limit is best effort anyway.
3129 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3130 return 0;
3133 * This loop can run a while, specially if mem_cgroup's continuously
3134 * keep exceeding their soft limit and putting the system under
3135 * pressure
3137 do {
3138 if (next_mz)
3139 mz = next_mz;
3140 else
3141 mz = mem_cgroup_largest_soft_limit_node(mctz);
3142 if (!mz)
3143 break;
3145 nr_scanned = 0;
3146 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3147 gfp_mask, &nr_scanned);
3148 nr_reclaimed += reclaimed;
3149 *total_scanned += nr_scanned;
3150 spin_lock_irq(&mctz->lock);
3151 __mem_cgroup_remove_exceeded(mz, mctz);
3154 * If we failed to reclaim anything from this memory cgroup
3155 * it is time to move on to the next cgroup
3157 next_mz = NULL;
3158 if (!reclaimed)
3159 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3161 excess = soft_limit_excess(mz->memcg);
3163 * One school of thought says that we should not add
3164 * back the node to the tree if reclaim returns 0.
3165 * But our reclaim could return 0, simply because due
3166 * to priority we are exposing a smaller subset of
3167 * memory to reclaim from. Consider this as a longer
3168 * term TODO.
3170 /* If excess == 0, no tree ops */
3171 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3172 spin_unlock_irq(&mctz->lock);
3173 css_put(&mz->memcg->css);
3174 loop++;
3176 * Could not reclaim anything and there are no more
3177 * mem cgroups to try or we seem to be looping without
3178 * reclaiming anything.
3180 if (!nr_reclaimed &&
3181 (next_mz == NULL ||
3182 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3183 break;
3184 } while (!nr_reclaimed);
3185 if (next_mz)
3186 css_put(&next_mz->memcg->css);
3187 return nr_reclaimed;
3191 * Test whether @memcg has children, dead or alive. Note that this
3192 * function doesn't care whether @memcg has use_hierarchy enabled and
3193 * returns %true if there are child csses according to the cgroup
3194 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3196 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3198 bool ret;
3200 rcu_read_lock();
3201 ret = css_next_child(NULL, &memcg->css);
3202 rcu_read_unlock();
3203 return ret;
3207 * Reclaims as many pages from the given memcg as possible.
3209 * Caller is responsible for holding css reference for memcg.
3211 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3213 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3215 /* we call try-to-free pages for make this cgroup empty */
3216 lru_add_drain_all();
3218 drain_all_stock(memcg);
3220 /* try to free all pages in this cgroup */
3221 while (nr_retries && page_counter_read(&memcg->memory)) {
3222 int progress;
3224 if (signal_pending(current))
3225 return -EINTR;
3227 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3228 GFP_KERNEL, true);
3229 if (!progress) {
3230 nr_retries--;
3231 /* maybe some writeback is necessary */
3232 congestion_wait(BLK_RW_ASYNC, HZ/10);
3237 return 0;
3240 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3241 char *buf, size_t nbytes,
3242 loff_t off)
3244 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3246 if (mem_cgroup_is_root(memcg))
3247 return -EINVAL;
3248 return mem_cgroup_force_empty(memcg) ?: nbytes;
3251 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3252 struct cftype *cft)
3254 return mem_cgroup_from_css(css)->use_hierarchy;
3257 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3258 struct cftype *cft, u64 val)
3260 int retval = 0;
3261 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3262 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3264 if (memcg->use_hierarchy == val)
3265 return 0;
3268 * If parent's use_hierarchy is set, we can't make any modifications
3269 * in the child subtrees. If it is unset, then the change can
3270 * occur, provided the current cgroup has no children.
3272 * For the root cgroup, parent_mem is NULL, we allow value to be
3273 * set if there are no children.
3275 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3276 (val == 1 || val == 0)) {
3277 if (!memcg_has_children(memcg))
3278 memcg->use_hierarchy = val;
3279 else
3280 retval = -EBUSY;
3281 } else
3282 retval = -EINVAL;
3284 return retval;
3287 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3289 unsigned long val;
3291 if (mem_cgroup_is_root(memcg)) {
3292 val = memcg_page_state(memcg, MEMCG_CACHE) +
3293 memcg_page_state(memcg, MEMCG_RSS);
3294 if (swap)
3295 val += memcg_page_state(memcg, MEMCG_SWAP);
3296 } else {
3297 if (!swap)
3298 val = page_counter_read(&memcg->memory);
3299 else
3300 val = page_counter_read(&memcg->memsw);
3302 return val;
3305 enum {
3306 RES_USAGE,
3307 RES_LIMIT,
3308 RES_MAX_USAGE,
3309 RES_FAILCNT,
3310 RES_SOFT_LIMIT,
3313 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3314 struct cftype *cft)
3316 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3317 struct page_counter *counter;
3319 switch (MEMFILE_TYPE(cft->private)) {
3320 case _MEM:
3321 counter = &memcg->memory;
3322 break;
3323 case _MEMSWAP:
3324 counter = &memcg->memsw;
3325 break;
3326 case _KMEM:
3327 counter = &memcg->kmem;
3328 break;
3329 case _TCP:
3330 counter = &memcg->tcpmem;
3331 break;
3332 default:
3333 BUG();
3336 switch (MEMFILE_ATTR(cft->private)) {
3337 case RES_USAGE:
3338 if (counter == &memcg->memory)
3339 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3340 if (counter == &memcg->memsw)
3341 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3342 return (u64)page_counter_read(counter) * PAGE_SIZE;
3343 case RES_LIMIT:
3344 return (u64)counter->max * PAGE_SIZE;
3345 case RES_MAX_USAGE:
3346 return (u64)counter->watermark * PAGE_SIZE;
3347 case RES_FAILCNT:
3348 return counter->failcnt;
3349 case RES_SOFT_LIMIT:
3350 return (u64)memcg->soft_limit * PAGE_SIZE;
3351 default:
3352 BUG();
3356 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3358 unsigned long stat[MEMCG_NR_STAT] = {0};
3359 struct mem_cgroup *mi;
3360 int node, cpu, i;
3362 for_each_online_cpu(cpu)
3363 for (i = 0; i < MEMCG_NR_STAT; i++)
3364 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3366 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3367 for (i = 0; i < MEMCG_NR_STAT; i++)
3368 atomic_long_add(stat[i], &mi->vmstats[i]);
3370 for_each_node(node) {
3371 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3372 struct mem_cgroup_per_node *pi;
3374 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3375 stat[i] = 0;
3377 for_each_online_cpu(cpu)
3378 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3379 stat[i] += per_cpu(
3380 pn->lruvec_stat_cpu->count[i], cpu);
3382 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3383 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3384 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3388 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3390 unsigned long events[NR_VM_EVENT_ITEMS];
3391 struct mem_cgroup *mi;
3392 int cpu, i;
3394 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3395 events[i] = 0;
3397 for_each_online_cpu(cpu)
3398 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3399 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3400 cpu);
3402 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3403 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3404 atomic_long_add(events[i], &mi->vmevents[i]);
3407 #ifdef CONFIG_MEMCG_KMEM
3408 static int memcg_online_kmem(struct mem_cgroup *memcg)
3410 int memcg_id;
3412 if (cgroup_memory_nokmem)
3413 return 0;
3415 BUG_ON(memcg->kmemcg_id >= 0);
3416 BUG_ON(memcg->kmem_state);
3418 memcg_id = memcg_alloc_cache_id();
3419 if (memcg_id < 0)
3420 return memcg_id;
3422 static_branch_inc(&memcg_kmem_enabled_key);
3424 * A memory cgroup is considered kmem-online as soon as it gets
3425 * kmemcg_id. Setting the id after enabling static branching will
3426 * guarantee no one starts accounting before all call sites are
3427 * patched.
3429 memcg->kmemcg_id = memcg_id;
3430 memcg->kmem_state = KMEM_ONLINE;
3431 INIT_LIST_HEAD(&memcg->kmem_caches);
3433 return 0;
3436 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3438 struct cgroup_subsys_state *css;
3439 struct mem_cgroup *parent, *child;
3440 int kmemcg_id;
3442 if (memcg->kmem_state != KMEM_ONLINE)
3443 return;
3445 * Clear the online state before clearing memcg_caches array
3446 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3447 * guarantees that no cache will be created for this cgroup
3448 * after we are done (see memcg_create_kmem_cache()).
3450 memcg->kmem_state = KMEM_ALLOCATED;
3452 parent = parent_mem_cgroup(memcg);
3453 if (!parent)
3454 parent = root_mem_cgroup;
3457 * Deactivate and reparent kmem_caches.
3459 memcg_deactivate_kmem_caches(memcg, parent);
3461 kmemcg_id = memcg->kmemcg_id;
3462 BUG_ON(kmemcg_id < 0);
3465 * Change kmemcg_id of this cgroup and all its descendants to the
3466 * parent's id, and then move all entries from this cgroup's list_lrus
3467 * to ones of the parent. After we have finished, all list_lrus
3468 * corresponding to this cgroup are guaranteed to remain empty. The
3469 * ordering is imposed by list_lru_node->lock taken by
3470 * memcg_drain_all_list_lrus().
3472 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3473 css_for_each_descendant_pre(css, &memcg->css) {
3474 child = mem_cgroup_from_css(css);
3475 BUG_ON(child->kmemcg_id != kmemcg_id);
3476 child->kmemcg_id = parent->kmemcg_id;
3477 if (!memcg->use_hierarchy)
3478 break;
3480 rcu_read_unlock();
3482 memcg_drain_all_list_lrus(kmemcg_id, parent);
3484 memcg_free_cache_id(kmemcg_id);
3487 static void memcg_free_kmem(struct mem_cgroup *memcg)
3489 /* css_alloc() failed, offlining didn't happen */
3490 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3491 memcg_offline_kmem(memcg);
3493 if (memcg->kmem_state == KMEM_ALLOCATED) {
3494 WARN_ON(!list_empty(&memcg->kmem_caches));
3495 static_branch_dec(&memcg_kmem_enabled_key);
3498 #else
3499 static int memcg_online_kmem(struct mem_cgroup *memcg)
3501 return 0;
3503 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3506 static void memcg_free_kmem(struct mem_cgroup *memcg)
3509 #endif /* CONFIG_MEMCG_KMEM */
3511 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3512 unsigned long max)
3514 int ret;
3516 mutex_lock(&memcg_max_mutex);
3517 ret = page_counter_set_max(&memcg->kmem, max);
3518 mutex_unlock(&memcg_max_mutex);
3519 return ret;
3522 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3524 int ret;
3526 mutex_lock(&memcg_max_mutex);
3528 ret = page_counter_set_max(&memcg->tcpmem, max);
3529 if (ret)
3530 goto out;
3532 if (!memcg->tcpmem_active) {
3534 * The active flag needs to be written after the static_key
3535 * update. This is what guarantees that the socket activation
3536 * function is the last one to run. See mem_cgroup_sk_alloc()
3537 * for details, and note that we don't mark any socket as
3538 * belonging to this memcg until that flag is up.
3540 * We need to do this, because static_keys will span multiple
3541 * sites, but we can't control their order. If we mark a socket
3542 * as accounted, but the accounting functions are not patched in
3543 * yet, we'll lose accounting.
3545 * We never race with the readers in mem_cgroup_sk_alloc(),
3546 * because when this value change, the code to process it is not
3547 * patched in yet.
3549 static_branch_inc(&memcg_sockets_enabled_key);
3550 memcg->tcpmem_active = true;
3552 out:
3553 mutex_unlock(&memcg_max_mutex);
3554 return ret;
3558 * The user of this function is...
3559 * RES_LIMIT.
3561 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3562 char *buf, size_t nbytes, loff_t off)
3564 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3565 unsigned long nr_pages;
3566 int ret;
3568 buf = strstrip(buf);
3569 ret = page_counter_memparse(buf, "-1", &nr_pages);
3570 if (ret)
3571 return ret;
3573 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3574 case RES_LIMIT:
3575 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3576 ret = -EINVAL;
3577 break;
3579 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3580 case _MEM:
3581 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3582 break;
3583 case _MEMSWAP:
3584 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3585 break;
3586 case _KMEM:
3587 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3588 "Please report your usecase to linux-mm@kvack.org if you "
3589 "depend on this functionality.\n");
3590 ret = memcg_update_kmem_max(memcg, nr_pages);
3591 break;
3592 case _TCP:
3593 ret = memcg_update_tcp_max(memcg, nr_pages);
3594 break;
3596 break;
3597 case RES_SOFT_LIMIT:
3598 memcg->soft_limit = nr_pages;
3599 ret = 0;
3600 break;
3602 return ret ?: nbytes;
3605 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3606 size_t nbytes, loff_t off)
3608 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3609 struct page_counter *counter;
3611 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3612 case _MEM:
3613 counter = &memcg->memory;
3614 break;
3615 case _MEMSWAP:
3616 counter = &memcg->memsw;
3617 break;
3618 case _KMEM:
3619 counter = &memcg->kmem;
3620 break;
3621 case _TCP:
3622 counter = &memcg->tcpmem;
3623 break;
3624 default:
3625 BUG();
3628 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3629 case RES_MAX_USAGE:
3630 page_counter_reset_watermark(counter);
3631 break;
3632 case RES_FAILCNT:
3633 counter->failcnt = 0;
3634 break;
3635 default:
3636 BUG();
3639 return nbytes;
3642 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3643 struct cftype *cft)
3645 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3648 #ifdef CONFIG_MMU
3649 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3650 struct cftype *cft, u64 val)
3652 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3654 if (val & ~MOVE_MASK)
3655 return -EINVAL;
3658 * No kind of locking is needed in here, because ->can_attach() will
3659 * check this value once in the beginning of the process, and then carry
3660 * on with stale data. This means that changes to this value will only
3661 * affect task migrations starting after the change.
3663 memcg->move_charge_at_immigrate = val;
3664 return 0;
3666 #else
3667 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3668 struct cftype *cft, u64 val)
3670 return -ENOSYS;
3672 #endif
3674 #ifdef CONFIG_NUMA
3676 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3677 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3678 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3680 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3681 int nid, unsigned int lru_mask)
3683 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3684 unsigned long nr = 0;
3685 enum lru_list lru;
3687 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3689 for_each_lru(lru) {
3690 if (!(BIT(lru) & lru_mask))
3691 continue;
3692 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3694 return nr;
3697 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3698 unsigned int lru_mask)
3700 unsigned long nr = 0;
3701 enum lru_list lru;
3703 for_each_lru(lru) {
3704 if (!(BIT(lru) & lru_mask))
3705 continue;
3706 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3708 return nr;
3711 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3713 struct numa_stat {
3714 const char *name;
3715 unsigned int lru_mask;
3718 static const struct numa_stat stats[] = {
3719 { "total", LRU_ALL },
3720 { "file", LRU_ALL_FILE },
3721 { "anon", LRU_ALL_ANON },
3722 { "unevictable", BIT(LRU_UNEVICTABLE) },
3724 const struct numa_stat *stat;
3725 int nid;
3726 unsigned long nr;
3727 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3729 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3730 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3731 seq_printf(m, "%s=%lu", stat->name, nr);
3732 for_each_node_state(nid, N_MEMORY) {
3733 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3734 stat->lru_mask);
3735 seq_printf(m, " N%d=%lu", nid, nr);
3737 seq_putc(m, '\n');
3740 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3741 struct mem_cgroup *iter;
3743 nr = 0;
3744 for_each_mem_cgroup_tree(iter, memcg)
3745 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3746 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3747 for_each_node_state(nid, N_MEMORY) {
3748 nr = 0;
3749 for_each_mem_cgroup_tree(iter, memcg)
3750 nr += mem_cgroup_node_nr_lru_pages(
3751 iter, nid, stat->lru_mask);
3752 seq_printf(m, " N%d=%lu", nid, nr);
3754 seq_putc(m, '\n');
3757 return 0;
3759 #endif /* CONFIG_NUMA */
3761 static const unsigned int memcg1_stats[] = {
3762 MEMCG_CACHE,
3763 MEMCG_RSS,
3764 MEMCG_RSS_HUGE,
3765 NR_SHMEM,
3766 NR_FILE_MAPPED,
3767 NR_FILE_DIRTY,
3768 NR_WRITEBACK,
3769 MEMCG_SWAP,
3772 static const char *const memcg1_stat_names[] = {
3773 "cache",
3774 "rss",
3775 "rss_huge",
3776 "shmem",
3777 "mapped_file",
3778 "dirty",
3779 "writeback",
3780 "swap",
3783 /* Universal VM events cgroup1 shows, original sort order */
3784 static const unsigned int memcg1_events[] = {
3785 PGPGIN,
3786 PGPGOUT,
3787 PGFAULT,
3788 PGMAJFAULT,
3791 static int memcg_stat_show(struct seq_file *m, void *v)
3793 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3794 unsigned long memory, memsw;
3795 struct mem_cgroup *mi;
3796 unsigned int i;
3798 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3800 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3801 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3802 continue;
3803 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3804 memcg_page_state_local(memcg, memcg1_stats[i]) *
3805 PAGE_SIZE);
3808 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3809 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3810 memcg_events_local(memcg, memcg1_events[i]));
3812 for (i = 0; i < NR_LRU_LISTS; i++)
3813 seq_printf(m, "%s %lu\n", lru_list_name(i),
3814 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3815 PAGE_SIZE);
3817 /* Hierarchical information */
3818 memory = memsw = PAGE_COUNTER_MAX;
3819 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3820 memory = min(memory, mi->memory.max);
3821 memsw = min(memsw, mi->memsw.max);
3823 seq_printf(m, "hierarchical_memory_limit %llu\n",
3824 (u64)memory * PAGE_SIZE);
3825 if (do_memsw_account())
3826 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3827 (u64)memsw * PAGE_SIZE);
3829 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3830 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3831 continue;
3832 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3833 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3834 PAGE_SIZE);
3837 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3838 seq_printf(m, "total_%s %llu\n",
3839 vm_event_name(memcg1_events[i]),
3840 (u64)memcg_events(memcg, memcg1_events[i]));
3842 for (i = 0; i < NR_LRU_LISTS; i++)
3843 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3844 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3845 PAGE_SIZE);
3847 #ifdef CONFIG_DEBUG_VM
3849 pg_data_t *pgdat;
3850 struct mem_cgroup_per_node *mz;
3851 struct zone_reclaim_stat *rstat;
3852 unsigned long recent_rotated[2] = {0, 0};
3853 unsigned long recent_scanned[2] = {0, 0};
3855 for_each_online_pgdat(pgdat) {
3856 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3857 rstat = &mz->lruvec.reclaim_stat;
3859 recent_rotated[0] += rstat->recent_rotated[0];
3860 recent_rotated[1] += rstat->recent_rotated[1];
3861 recent_scanned[0] += rstat->recent_scanned[0];
3862 recent_scanned[1] += rstat->recent_scanned[1];
3864 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3865 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3866 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3867 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3869 #endif
3871 return 0;
3874 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3875 struct cftype *cft)
3877 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879 return mem_cgroup_swappiness(memcg);
3882 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3883 struct cftype *cft, u64 val)
3885 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3887 if (val > 100)
3888 return -EINVAL;
3890 if (css->parent)
3891 memcg->swappiness = val;
3892 else
3893 vm_swappiness = val;
3895 return 0;
3898 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3900 struct mem_cgroup_threshold_ary *t;
3901 unsigned long usage;
3902 int i;
3904 rcu_read_lock();
3905 if (!swap)
3906 t = rcu_dereference(memcg->thresholds.primary);
3907 else
3908 t = rcu_dereference(memcg->memsw_thresholds.primary);
3910 if (!t)
3911 goto unlock;
3913 usage = mem_cgroup_usage(memcg, swap);
3916 * current_threshold points to threshold just below or equal to usage.
3917 * If it's not true, a threshold was crossed after last
3918 * call of __mem_cgroup_threshold().
3920 i = t->current_threshold;
3923 * Iterate backward over array of thresholds starting from
3924 * current_threshold and check if a threshold is crossed.
3925 * If none of thresholds below usage is crossed, we read
3926 * only one element of the array here.
3928 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3929 eventfd_signal(t->entries[i].eventfd, 1);
3931 /* i = current_threshold + 1 */
3932 i++;
3935 * Iterate forward over array of thresholds starting from
3936 * current_threshold+1 and check if a threshold is crossed.
3937 * If none of thresholds above usage is crossed, we read
3938 * only one element of the array here.
3940 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3941 eventfd_signal(t->entries[i].eventfd, 1);
3943 /* Update current_threshold */
3944 t->current_threshold = i - 1;
3945 unlock:
3946 rcu_read_unlock();
3949 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3951 while (memcg) {
3952 __mem_cgroup_threshold(memcg, false);
3953 if (do_memsw_account())
3954 __mem_cgroup_threshold(memcg, true);
3956 memcg = parent_mem_cgroup(memcg);
3960 static int compare_thresholds(const void *a, const void *b)
3962 const struct mem_cgroup_threshold *_a = a;
3963 const struct mem_cgroup_threshold *_b = b;
3965 if (_a->threshold > _b->threshold)
3966 return 1;
3968 if (_a->threshold < _b->threshold)
3969 return -1;
3971 return 0;
3974 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3976 struct mem_cgroup_eventfd_list *ev;
3978 spin_lock(&memcg_oom_lock);
3980 list_for_each_entry(ev, &memcg->oom_notify, list)
3981 eventfd_signal(ev->eventfd, 1);
3983 spin_unlock(&memcg_oom_lock);
3984 return 0;
3987 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3989 struct mem_cgroup *iter;
3991 for_each_mem_cgroup_tree(iter, memcg)
3992 mem_cgroup_oom_notify_cb(iter);
3995 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3996 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3998 struct mem_cgroup_thresholds *thresholds;
3999 struct mem_cgroup_threshold_ary *new;
4000 unsigned long threshold;
4001 unsigned long usage;
4002 int i, size, ret;
4004 ret = page_counter_memparse(args, "-1", &threshold);
4005 if (ret)
4006 return ret;
4008 mutex_lock(&memcg->thresholds_lock);
4010 if (type == _MEM) {
4011 thresholds = &memcg->thresholds;
4012 usage = mem_cgroup_usage(memcg, false);
4013 } else if (type == _MEMSWAP) {
4014 thresholds = &memcg->memsw_thresholds;
4015 usage = mem_cgroup_usage(memcg, true);
4016 } else
4017 BUG();
4019 /* Check if a threshold crossed before adding a new one */
4020 if (thresholds->primary)
4021 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4023 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4025 /* Allocate memory for new array of thresholds */
4026 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4027 if (!new) {
4028 ret = -ENOMEM;
4029 goto unlock;
4031 new->size = size;
4033 /* Copy thresholds (if any) to new array */
4034 if (thresholds->primary) {
4035 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4036 sizeof(struct mem_cgroup_threshold));
4039 /* Add new threshold */
4040 new->entries[size - 1].eventfd = eventfd;
4041 new->entries[size - 1].threshold = threshold;
4043 /* Sort thresholds. Registering of new threshold isn't time-critical */
4044 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4045 compare_thresholds, NULL);
4047 /* Find current threshold */
4048 new->current_threshold = -1;
4049 for (i = 0; i < size; i++) {
4050 if (new->entries[i].threshold <= usage) {
4052 * new->current_threshold will not be used until
4053 * rcu_assign_pointer(), so it's safe to increment
4054 * it here.
4056 ++new->current_threshold;
4057 } else
4058 break;
4061 /* Free old spare buffer and save old primary buffer as spare */
4062 kfree(thresholds->spare);
4063 thresholds->spare = thresholds->primary;
4065 rcu_assign_pointer(thresholds->primary, new);
4067 /* To be sure that nobody uses thresholds */
4068 synchronize_rcu();
4070 unlock:
4071 mutex_unlock(&memcg->thresholds_lock);
4073 return ret;
4076 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4077 struct eventfd_ctx *eventfd, const char *args)
4079 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4082 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4083 struct eventfd_ctx *eventfd, const char *args)
4085 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4088 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4089 struct eventfd_ctx *eventfd, enum res_type type)
4091 struct mem_cgroup_thresholds *thresholds;
4092 struct mem_cgroup_threshold_ary *new;
4093 unsigned long usage;
4094 int i, j, size, entries;
4096 mutex_lock(&memcg->thresholds_lock);
4098 if (type == _MEM) {
4099 thresholds = &memcg->thresholds;
4100 usage = mem_cgroup_usage(memcg, false);
4101 } else if (type == _MEMSWAP) {
4102 thresholds = &memcg->memsw_thresholds;
4103 usage = mem_cgroup_usage(memcg, true);
4104 } else
4105 BUG();
4107 if (!thresholds->primary)
4108 goto unlock;
4110 /* Check if a threshold crossed before removing */
4111 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4113 /* Calculate new number of threshold */
4114 size = entries = 0;
4115 for (i = 0; i < thresholds->primary->size; i++) {
4116 if (thresholds->primary->entries[i].eventfd != eventfd)
4117 size++;
4118 else
4119 entries++;
4122 new = thresholds->spare;
4124 /* If no items related to eventfd have been cleared, nothing to do */
4125 if (!entries)
4126 goto unlock;
4128 /* Set thresholds array to NULL if we don't have thresholds */
4129 if (!size) {
4130 kfree(new);
4131 new = NULL;
4132 goto swap_buffers;
4135 new->size = size;
4137 /* Copy thresholds and find current threshold */
4138 new->current_threshold = -1;
4139 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4140 if (thresholds->primary->entries[i].eventfd == eventfd)
4141 continue;
4143 new->entries[j] = thresholds->primary->entries[i];
4144 if (new->entries[j].threshold <= usage) {
4146 * new->current_threshold will not be used
4147 * until rcu_assign_pointer(), so it's safe to increment
4148 * it here.
4150 ++new->current_threshold;
4152 j++;
4155 swap_buffers:
4156 /* Swap primary and spare array */
4157 thresholds->spare = thresholds->primary;
4159 rcu_assign_pointer(thresholds->primary, new);
4161 /* To be sure that nobody uses thresholds */
4162 synchronize_rcu();
4164 /* If all events are unregistered, free the spare array */
4165 if (!new) {
4166 kfree(thresholds->spare);
4167 thresholds->spare = NULL;
4169 unlock:
4170 mutex_unlock(&memcg->thresholds_lock);
4173 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4174 struct eventfd_ctx *eventfd)
4176 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4179 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4180 struct eventfd_ctx *eventfd)
4182 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4185 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4186 struct eventfd_ctx *eventfd, const char *args)
4188 struct mem_cgroup_eventfd_list *event;
4190 event = kmalloc(sizeof(*event), GFP_KERNEL);
4191 if (!event)
4192 return -ENOMEM;
4194 spin_lock(&memcg_oom_lock);
4196 event->eventfd = eventfd;
4197 list_add(&event->list, &memcg->oom_notify);
4199 /* already in OOM ? */
4200 if (memcg->under_oom)
4201 eventfd_signal(eventfd, 1);
4202 spin_unlock(&memcg_oom_lock);
4204 return 0;
4207 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4208 struct eventfd_ctx *eventfd)
4210 struct mem_cgroup_eventfd_list *ev, *tmp;
4212 spin_lock(&memcg_oom_lock);
4214 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4215 if (ev->eventfd == eventfd) {
4216 list_del(&ev->list);
4217 kfree(ev);
4221 spin_unlock(&memcg_oom_lock);
4224 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4226 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4228 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4229 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4230 seq_printf(sf, "oom_kill %lu\n",
4231 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4232 return 0;
4235 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4236 struct cftype *cft, u64 val)
4238 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4240 /* cannot set to root cgroup and only 0 and 1 are allowed */
4241 if (!css->parent || !((val == 0) || (val == 1)))
4242 return -EINVAL;
4244 memcg->oom_kill_disable = val;
4245 if (!val)
4246 memcg_oom_recover(memcg);
4248 return 0;
4251 #ifdef CONFIG_CGROUP_WRITEBACK
4253 #include <trace/events/writeback.h>
4255 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4257 return wb_domain_init(&memcg->cgwb_domain, gfp);
4260 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4262 wb_domain_exit(&memcg->cgwb_domain);
4265 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4267 wb_domain_size_changed(&memcg->cgwb_domain);
4270 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4272 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4274 if (!memcg->css.parent)
4275 return NULL;
4277 return &memcg->cgwb_domain;
4281 * idx can be of type enum memcg_stat_item or node_stat_item.
4282 * Keep in sync with memcg_exact_page().
4284 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4286 long x = atomic_long_read(&memcg->vmstats[idx]);
4287 int cpu;
4289 for_each_online_cpu(cpu)
4290 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4291 if (x < 0)
4292 x = 0;
4293 return x;
4297 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4298 * @wb: bdi_writeback in question
4299 * @pfilepages: out parameter for number of file pages
4300 * @pheadroom: out parameter for number of allocatable pages according to memcg
4301 * @pdirty: out parameter for number of dirty pages
4302 * @pwriteback: out parameter for number of pages under writeback
4304 * Determine the numbers of file, headroom, dirty, and writeback pages in
4305 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4306 * is a bit more involved.
4308 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4309 * headroom is calculated as the lowest headroom of itself and the
4310 * ancestors. Note that this doesn't consider the actual amount of
4311 * available memory in the system. The caller should further cap
4312 * *@pheadroom accordingly.
4314 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4315 unsigned long *pheadroom, unsigned long *pdirty,
4316 unsigned long *pwriteback)
4318 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4319 struct mem_cgroup *parent;
4321 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4323 /* this should eventually include NR_UNSTABLE_NFS */
4324 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4325 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4326 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4327 *pheadroom = PAGE_COUNTER_MAX;
4329 while ((parent = parent_mem_cgroup(memcg))) {
4330 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4331 unsigned long used = page_counter_read(&memcg->memory);
4333 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4334 memcg = parent;
4339 * Foreign dirty flushing
4341 * There's an inherent mismatch between memcg and writeback. The former
4342 * trackes ownership per-page while the latter per-inode. This was a
4343 * deliberate design decision because honoring per-page ownership in the
4344 * writeback path is complicated, may lead to higher CPU and IO overheads
4345 * and deemed unnecessary given that write-sharing an inode across
4346 * different cgroups isn't a common use-case.
4348 * Combined with inode majority-writer ownership switching, this works well
4349 * enough in most cases but there are some pathological cases. For
4350 * example, let's say there are two cgroups A and B which keep writing to
4351 * different but confined parts of the same inode. B owns the inode and
4352 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4353 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4354 * triggering background writeback. A will be slowed down without a way to
4355 * make writeback of the dirty pages happen.
4357 * Conditions like the above can lead to a cgroup getting repatedly and
4358 * severely throttled after making some progress after each
4359 * dirty_expire_interval while the underyling IO device is almost
4360 * completely idle.
4362 * Solving this problem completely requires matching the ownership tracking
4363 * granularities between memcg and writeback in either direction. However,
4364 * the more egregious behaviors can be avoided by simply remembering the
4365 * most recent foreign dirtying events and initiating remote flushes on
4366 * them when local writeback isn't enough to keep the memory clean enough.
4368 * The following two functions implement such mechanism. When a foreign
4369 * page - a page whose memcg and writeback ownerships don't match - is
4370 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4371 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4372 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4373 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4374 * foreign bdi_writebacks which haven't expired. Both the numbers of
4375 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4376 * limited to MEMCG_CGWB_FRN_CNT.
4378 * The mechanism only remembers IDs and doesn't hold any object references.
4379 * As being wrong occasionally doesn't matter, updates and accesses to the
4380 * records are lockless and racy.
4382 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4383 struct bdi_writeback *wb)
4385 struct mem_cgroup *memcg = page->mem_cgroup;
4386 struct memcg_cgwb_frn *frn;
4387 u64 now = get_jiffies_64();
4388 u64 oldest_at = now;
4389 int oldest = -1;
4390 int i;
4392 trace_track_foreign_dirty(page, wb);
4395 * Pick the slot to use. If there is already a slot for @wb, keep
4396 * using it. If not replace the oldest one which isn't being
4397 * written out.
4399 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4400 frn = &memcg->cgwb_frn[i];
4401 if (frn->bdi_id == wb->bdi->id &&
4402 frn->memcg_id == wb->memcg_css->id)
4403 break;
4404 if (time_before64(frn->at, oldest_at) &&
4405 atomic_read(&frn->done.cnt) == 1) {
4406 oldest = i;
4407 oldest_at = frn->at;
4411 if (i < MEMCG_CGWB_FRN_CNT) {
4413 * Re-using an existing one. Update timestamp lazily to
4414 * avoid making the cacheline hot. We want them to be
4415 * reasonably up-to-date and significantly shorter than
4416 * dirty_expire_interval as that's what expires the record.
4417 * Use the shorter of 1s and dirty_expire_interval / 8.
4419 unsigned long update_intv =
4420 min_t(unsigned long, HZ,
4421 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4423 if (time_before64(frn->at, now - update_intv))
4424 frn->at = now;
4425 } else if (oldest >= 0) {
4426 /* replace the oldest free one */
4427 frn = &memcg->cgwb_frn[oldest];
4428 frn->bdi_id = wb->bdi->id;
4429 frn->memcg_id = wb->memcg_css->id;
4430 frn->at = now;
4434 /* issue foreign writeback flushes for recorded foreign dirtying events */
4435 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4437 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4438 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4439 u64 now = jiffies_64;
4440 int i;
4442 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4443 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4446 * If the record is older than dirty_expire_interval,
4447 * writeback on it has already started. No need to kick it
4448 * off again. Also, don't start a new one if there's
4449 * already one in flight.
4451 if (time_after64(frn->at, now - intv) &&
4452 atomic_read(&frn->done.cnt) == 1) {
4453 frn->at = 0;
4454 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4455 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4456 WB_REASON_FOREIGN_FLUSH,
4457 &frn->done);
4462 #else /* CONFIG_CGROUP_WRITEBACK */
4464 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4466 return 0;
4469 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4473 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4477 #endif /* CONFIG_CGROUP_WRITEBACK */
4480 * DO NOT USE IN NEW FILES.
4482 * "cgroup.event_control" implementation.
4484 * This is way over-engineered. It tries to support fully configurable
4485 * events for each user. Such level of flexibility is completely
4486 * unnecessary especially in the light of the planned unified hierarchy.
4488 * Please deprecate this and replace with something simpler if at all
4489 * possible.
4493 * Unregister event and free resources.
4495 * Gets called from workqueue.
4497 static void memcg_event_remove(struct work_struct *work)
4499 struct mem_cgroup_event *event =
4500 container_of(work, struct mem_cgroup_event, remove);
4501 struct mem_cgroup *memcg = event->memcg;
4503 remove_wait_queue(event->wqh, &event->wait);
4505 event->unregister_event(memcg, event->eventfd);
4507 /* Notify userspace the event is going away. */
4508 eventfd_signal(event->eventfd, 1);
4510 eventfd_ctx_put(event->eventfd);
4511 kfree(event);
4512 css_put(&memcg->css);
4516 * Gets called on EPOLLHUP on eventfd when user closes it.
4518 * Called with wqh->lock held and interrupts disabled.
4520 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4521 int sync, void *key)
4523 struct mem_cgroup_event *event =
4524 container_of(wait, struct mem_cgroup_event, wait);
4525 struct mem_cgroup *memcg = event->memcg;
4526 __poll_t flags = key_to_poll(key);
4528 if (flags & EPOLLHUP) {
4530 * If the event has been detached at cgroup removal, we
4531 * can simply return knowing the other side will cleanup
4532 * for us.
4534 * We can't race against event freeing since the other
4535 * side will require wqh->lock via remove_wait_queue(),
4536 * which we hold.
4538 spin_lock(&memcg->event_list_lock);
4539 if (!list_empty(&event->list)) {
4540 list_del_init(&event->list);
4542 * We are in atomic context, but cgroup_event_remove()
4543 * may sleep, so we have to call it in workqueue.
4545 schedule_work(&event->remove);
4547 spin_unlock(&memcg->event_list_lock);
4550 return 0;
4553 static void memcg_event_ptable_queue_proc(struct file *file,
4554 wait_queue_head_t *wqh, poll_table *pt)
4556 struct mem_cgroup_event *event =
4557 container_of(pt, struct mem_cgroup_event, pt);
4559 event->wqh = wqh;
4560 add_wait_queue(wqh, &event->wait);
4564 * DO NOT USE IN NEW FILES.
4566 * Parse input and register new cgroup event handler.
4568 * Input must be in format '<event_fd> <control_fd> <args>'.
4569 * Interpretation of args is defined by control file implementation.
4571 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4572 char *buf, size_t nbytes, loff_t off)
4574 struct cgroup_subsys_state *css = of_css(of);
4575 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4576 struct mem_cgroup_event *event;
4577 struct cgroup_subsys_state *cfile_css;
4578 unsigned int efd, cfd;
4579 struct fd efile;
4580 struct fd cfile;
4581 const char *name;
4582 char *endp;
4583 int ret;
4585 buf = strstrip(buf);
4587 efd = simple_strtoul(buf, &endp, 10);
4588 if (*endp != ' ')
4589 return -EINVAL;
4590 buf = endp + 1;
4592 cfd = simple_strtoul(buf, &endp, 10);
4593 if ((*endp != ' ') && (*endp != '\0'))
4594 return -EINVAL;
4595 buf = endp + 1;
4597 event = kzalloc(sizeof(*event), GFP_KERNEL);
4598 if (!event)
4599 return -ENOMEM;
4601 event->memcg = memcg;
4602 INIT_LIST_HEAD(&event->list);
4603 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4604 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4605 INIT_WORK(&event->remove, memcg_event_remove);
4607 efile = fdget(efd);
4608 if (!efile.file) {
4609 ret = -EBADF;
4610 goto out_kfree;
4613 event->eventfd = eventfd_ctx_fileget(efile.file);
4614 if (IS_ERR(event->eventfd)) {
4615 ret = PTR_ERR(event->eventfd);
4616 goto out_put_efile;
4619 cfile = fdget(cfd);
4620 if (!cfile.file) {
4621 ret = -EBADF;
4622 goto out_put_eventfd;
4625 /* the process need read permission on control file */
4626 /* AV: shouldn't we check that it's been opened for read instead? */
4627 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4628 if (ret < 0)
4629 goto out_put_cfile;
4632 * Determine the event callbacks and set them in @event. This used
4633 * to be done via struct cftype but cgroup core no longer knows
4634 * about these events. The following is crude but the whole thing
4635 * is for compatibility anyway.
4637 * DO NOT ADD NEW FILES.
4639 name = cfile.file->f_path.dentry->d_name.name;
4641 if (!strcmp(name, "memory.usage_in_bytes")) {
4642 event->register_event = mem_cgroup_usage_register_event;
4643 event->unregister_event = mem_cgroup_usage_unregister_event;
4644 } else if (!strcmp(name, "memory.oom_control")) {
4645 event->register_event = mem_cgroup_oom_register_event;
4646 event->unregister_event = mem_cgroup_oom_unregister_event;
4647 } else if (!strcmp(name, "memory.pressure_level")) {
4648 event->register_event = vmpressure_register_event;
4649 event->unregister_event = vmpressure_unregister_event;
4650 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4651 event->register_event = memsw_cgroup_usage_register_event;
4652 event->unregister_event = memsw_cgroup_usage_unregister_event;
4653 } else {
4654 ret = -EINVAL;
4655 goto out_put_cfile;
4659 * Verify @cfile should belong to @css. Also, remaining events are
4660 * automatically removed on cgroup destruction but the removal is
4661 * asynchronous, so take an extra ref on @css.
4663 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4664 &memory_cgrp_subsys);
4665 ret = -EINVAL;
4666 if (IS_ERR(cfile_css))
4667 goto out_put_cfile;
4668 if (cfile_css != css) {
4669 css_put(cfile_css);
4670 goto out_put_cfile;
4673 ret = event->register_event(memcg, event->eventfd, buf);
4674 if (ret)
4675 goto out_put_css;
4677 vfs_poll(efile.file, &event->pt);
4679 spin_lock(&memcg->event_list_lock);
4680 list_add(&event->list, &memcg->event_list);
4681 spin_unlock(&memcg->event_list_lock);
4683 fdput(cfile);
4684 fdput(efile);
4686 return nbytes;
4688 out_put_css:
4689 css_put(css);
4690 out_put_cfile:
4691 fdput(cfile);
4692 out_put_eventfd:
4693 eventfd_ctx_put(event->eventfd);
4694 out_put_efile:
4695 fdput(efile);
4696 out_kfree:
4697 kfree(event);
4699 return ret;
4702 static struct cftype mem_cgroup_legacy_files[] = {
4704 .name = "usage_in_bytes",
4705 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4706 .read_u64 = mem_cgroup_read_u64,
4709 .name = "max_usage_in_bytes",
4710 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4711 .write = mem_cgroup_reset,
4712 .read_u64 = mem_cgroup_read_u64,
4715 .name = "limit_in_bytes",
4716 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4717 .write = mem_cgroup_write,
4718 .read_u64 = mem_cgroup_read_u64,
4721 .name = "soft_limit_in_bytes",
4722 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4723 .write = mem_cgroup_write,
4724 .read_u64 = mem_cgroup_read_u64,
4727 .name = "failcnt",
4728 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4729 .write = mem_cgroup_reset,
4730 .read_u64 = mem_cgroup_read_u64,
4733 .name = "stat",
4734 .seq_show = memcg_stat_show,
4737 .name = "force_empty",
4738 .write = mem_cgroup_force_empty_write,
4741 .name = "use_hierarchy",
4742 .write_u64 = mem_cgroup_hierarchy_write,
4743 .read_u64 = mem_cgroup_hierarchy_read,
4746 .name = "cgroup.event_control", /* XXX: for compat */
4747 .write = memcg_write_event_control,
4748 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4751 .name = "swappiness",
4752 .read_u64 = mem_cgroup_swappiness_read,
4753 .write_u64 = mem_cgroup_swappiness_write,
4756 .name = "move_charge_at_immigrate",
4757 .read_u64 = mem_cgroup_move_charge_read,
4758 .write_u64 = mem_cgroup_move_charge_write,
4761 .name = "oom_control",
4762 .seq_show = mem_cgroup_oom_control_read,
4763 .write_u64 = mem_cgroup_oom_control_write,
4764 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4767 .name = "pressure_level",
4769 #ifdef CONFIG_NUMA
4771 .name = "numa_stat",
4772 .seq_show = memcg_numa_stat_show,
4774 #endif
4776 .name = "kmem.limit_in_bytes",
4777 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4778 .write = mem_cgroup_write,
4779 .read_u64 = mem_cgroup_read_u64,
4782 .name = "kmem.usage_in_bytes",
4783 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4784 .read_u64 = mem_cgroup_read_u64,
4787 .name = "kmem.failcnt",
4788 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4789 .write = mem_cgroup_reset,
4790 .read_u64 = mem_cgroup_read_u64,
4793 .name = "kmem.max_usage_in_bytes",
4794 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4795 .write = mem_cgroup_reset,
4796 .read_u64 = mem_cgroup_read_u64,
4798 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4800 .name = "kmem.slabinfo",
4801 .seq_start = memcg_slab_start,
4802 .seq_next = memcg_slab_next,
4803 .seq_stop = memcg_slab_stop,
4804 .seq_show = memcg_slab_show,
4806 #endif
4808 .name = "kmem.tcp.limit_in_bytes",
4809 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4810 .write = mem_cgroup_write,
4811 .read_u64 = mem_cgroup_read_u64,
4814 .name = "kmem.tcp.usage_in_bytes",
4815 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4816 .read_u64 = mem_cgroup_read_u64,
4819 .name = "kmem.tcp.failcnt",
4820 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4821 .write = mem_cgroup_reset,
4822 .read_u64 = mem_cgroup_read_u64,
4825 .name = "kmem.tcp.max_usage_in_bytes",
4826 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4827 .write = mem_cgroup_reset,
4828 .read_u64 = mem_cgroup_read_u64,
4830 { }, /* terminate */
4834 * Private memory cgroup IDR
4836 * Swap-out records and page cache shadow entries need to store memcg
4837 * references in constrained space, so we maintain an ID space that is
4838 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4839 * memory-controlled cgroups to 64k.
4841 * However, there usually are many references to the oflline CSS after
4842 * the cgroup has been destroyed, such as page cache or reclaimable
4843 * slab objects, that don't need to hang on to the ID. We want to keep
4844 * those dead CSS from occupying IDs, or we might quickly exhaust the
4845 * relatively small ID space and prevent the creation of new cgroups
4846 * even when there are much fewer than 64k cgroups - possibly none.
4848 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4849 * be freed and recycled when it's no longer needed, which is usually
4850 * when the CSS is offlined.
4852 * The only exception to that are records of swapped out tmpfs/shmem
4853 * pages that need to be attributed to live ancestors on swapin. But
4854 * those references are manageable from userspace.
4857 static DEFINE_IDR(mem_cgroup_idr);
4859 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4861 if (memcg->id.id > 0) {
4862 idr_remove(&mem_cgroup_idr, memcg->id.id);
4863 memcg->id.id = 0;
4867 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4869 refcount_add(n, &memcg->id.ref);
4872 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4874 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4875 mem_cgroup_id_remove(memcg);
4877 /* Memcg ID pins CSS */
4878 css_put(&memcg->css);
4882 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4884 mem_cgroup_id_put_many(memcg, 1);
4888 * mem_cgroup_from_id - look up a memcg from a memcg id
4889 * @id: the memcg id to look up
4891 * Caller must hold rcu_read_lock().
4893 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4895 WARN_ON_ONCE(!rcu_read_lock_held());
4896 return idr_find(&mem_cgroup_idr, id);
4899 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4901 struct mem_cgroup_per_node *pn;
4902 int tmp = node;
4904 * This routine is called against possible nodes.
4905 * But it's BUG to call kmalloc() against offline node.
4907 * TODO: this routine can waste much memory for nodes which will
4908 * never be onlined. It's better to use memory hotplug callback
4909 * function.
4911 if (!node_state(node, N_NORMAL_MEMORY))
4912 tmp = -1;
4913 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4914 if (!pn)
4915 return 1;
4917 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4918 if (!pn->lruvec_stat_local) {
4919 kfree(pn);
4920 return 1;
4923 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4924 if (!pn->lruvec_stat_cpu) {
4925 free_percpu(pn->lruvec_stat_local);
4926 kfree(pn);
4927 return 1;
4930 lruvec_init(&pn->lruvec);
4931 pn->usage_in_excess = 0;
4932 pn->on_tree = false;
4933 pn->memcg = memcg;
4935 memcg->nodeinfo[node] = pn;
4936 return 0;
4939 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4941 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4943 if (!pn)
4944 return;
4946 free_percpu(pn->lruvec_stat_cpu);
4947 free_percpu(pn->lruvec_stat_local);
4948 kfree(pn);
4951 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4953 int node;
4955 for_each_node(node)
4956 free_mem_cgroup_per_node_info(memcg, node);
4957 free_percpu(memcg->vmstats_percpu);
4958 free_percpu(memcg->vmstats_local);
4959 kfree(memcg);
4962 static void mem_cgroup_free(struct mem_cgroup *memcg)
4964 memcg_wb_domain_exit(memcg);
4966 * Flush percpu vmstats and vmevents to guarantee the value correctness
4967 * on parent's and all ancestor levels.
4969 memcg_flush_percpu_vmstats(memcg);
4970 memcg_flush_percpu_vmevents(memcg);
4971 __mem_cgroup_free(memcg);
4974 static struct mem_cgroup *mem_cgroup_alloc(void)
4976 struct mem_cgroup *memcg;
4977 unsigned int size;
4978 int node;
4979 int __maybe_unused i;
4981 size = sizeof(struct mem_cgroup);
4982 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4984 memcg = kzalloc(size, GFP_KERNEL);
4985 if (!memcg)
4986 return NULL;
4988 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4989 1, MEM_CGROUP_ID_MAX,
4990 GFP_KERNEL);
4991 if (memcg->id.id < 0)
4992 goto fail;
4994 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4995 if (!memcg->vmstats_local)
4996 goto fail;
4998 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4999 if (!memcg->vmstats_percpu)
5000 goto fail;
5002 for_each_node(node)
5003 if (alloc_mem_cgroup_per_node_info(memcg, node))
5004 goto fail;
5006 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5007 goto fail;
5009 INIT_WORK(&memcg->high_work, high_work_func);
5010 INIT_LIST_HEAD(&memcg->oom_notify);
5011 mutex_init(&memcg->thresholds_lock);
5012 spin_lock_init(&memcg->move_lock);
5013 vmpressure_init(&memcg->vmpressure);
5014 INIT_LIST_HEAD(&memcg->event_list);
5015 spin_lock_init(&memcg->event_list_lock);
5016 memcg->socket_pressure = jiffies;
5017 #ifdef CONFIG_MEMCG_KMEM
5018 memcg->kmemcg_id = -1;
5019 #endif
5020 #ifdef CONFIG_CGROUP_WRITEBACK
5021 INIT_LIST_HEAD(&memcg->cgwb_list);
5022 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5023 memcg->cgwb_frn[i].done =
5024 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5025 #endif
5026 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5027 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5028 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5029 memcg->deferred_split_queue.split_queue_len = 0;
5030 #endif
5031 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5032 return memcg;
5033 fail:
5034 mem_cgroup_id_remove(memcg);
5035 __mem_cgroup_free(memcg);
5036 return NULL;
5039 static struct cgroup_subsys_state * __ref
5040 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5042 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5043 struct mem_cgroup *memcg;
5044 long error = -ENOMEM;
5046 memcg = mem_cgroup_alloc();
5047 if (!memcg)
5048 return ERR_PTR(error);
5050 memcg->high = PAGE_COUNTER_MAX;
5051 memcg->soft_limit = PAGE_COUNTER_MAX;
5052 if (parent) {
5053 memcg->swappiness = mem_cgroup_swappiness(parent);
5054 memcg->oom_kill_disable = parent->oom_kill_disable;
5056 if (parent && parent->use_hierarchy) {
5057 memcg->use_hierarchy = true;
5058 page_counter_init(&memcg->memory, &parent->memory);
5059 page_counter_init(&memcg->swap, &parent->swap);
5060 page_counter_init(&memcg->memsw, &parent->memsw);
5061 page_counter_init(&memcg->kmem, &parent->kmem);
5062 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5063 } else {
5064 page_counter_init(&memcg->memory, NULL);
5065 page_counter_init(&memcg->swap, NULL);
5066 page_counter_init(&memcg->memsw, NULL);
5067 page_counter_init(&memcg->kmem, NULL);
5068 page_counter_init(&memcg->tcpmem, NULL);
5070 * Deeper hierachy with use_hierarchy == false doesn't make
5071 * much sense so let cgroup subsystem know about this
5072 * unfortunate state in our controller.
5074 if (parent != root_mem_cgroup)
5075 memory_cgrp_subsys.broken_hierarchy = true;
5078 /* The following stuff does not apply to the root */
5079 if (!parent) {
5080 #ifdef CONFIG_MEMCG_KMEM
5081 INIT_LIST_HEAD(&memcg->kmem_caches);
5082 #endif
5083 root_mem_cgroup = memcg;
5084 return &memcg->css;
5087 error = memcg_online_kmem(memcg);
5088 if (error)
5089 goto fail;
5091 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5092 static_branch_inc(&memcg_sockets_enabled_key);
5094 return &memcg->css;
5095 fail:
5096 mem_cgroup_id_remove(memcg);
5097 mem_cgroup_free(memcg);
5098 return ERR_PTR(-ENOMEM);
5101 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5103 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5106 * A memcg must be visible for memcg_expand_shrinker_maps()
5107 * by the time the maps are allocated. So, we allocate maps
5108 * here, when for_each_mem_cgroup() can't skip it.
5110 if (memcg_alloc_shrinker_maps(memcg)) {
5111 mem_cgroup_id_remove(memcg);
5112 return -ENOMEM;
5115 /* Online state pins memcg ID, memcg ID pins CSS */
5116 refcount_set(&memcg->id.ref, 1);
5117 css_get(css);
5118 return 0;
5121 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5123 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5124 struct mem_cgroup_event *event, *tmp;
5127 * Unregister events and notify userspace.
5128 * Notify userspace about cgroup removing only after rmdir of cgroup
5129 * directory to avoid race between userspace and kernelspace.
5131 spin_lock(&memcg->event_list_lock);
5132 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5133 list_del_init(&event->list);
5134 schedule_work(&event->remove);
5136 spin_unlock(&memcg->event_list_lock);
5138 page_counter_set_min(&memcg->memory, 0);
5139 page_counter_set_low(&memcg->memory, 0);
5141 memcg_offline_kmem(memcg);
5142 wb_memcg_offline(memcg);
5144 drain_all_stock(memcg);
5146 mem_cgroup_id_put(memcg);
5149 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5153 invalidate_reclaim_iterators(memcg);
5156 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5158 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5159 int __maybe_unused i;
5161 #ifdef CONFIG_CGROUP_WRITEBACK
5162 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5163 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5164 #endif
5165 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5166 static_branch_dec(&memcg_sockets_enabled_key);
5168 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5169 static_branch_dec(&memcg_sockets_enabled_key);
5171 vmpressure_cleanup(&memcg->vmpressure);
5172 cancel_work_sync(&memcg->high_work);
5173 mem_cgroup_remove_from_trees(memcg);
5174 memcg_free_shrinker_maps(memcg);
5175 memcg_free_kmem(memcg);
5176 mem_cgroup_free(memcg);
5180 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5181 * @css: the target css
5183 * Reset the states of the mem_cgroup associated with @css. This is
5184 * invoked when the userland requests disabling on the default hierarchy
5185 * but the memcg is pinned through dependency. The memcg should stop
5186 * applying policies and should revert to the vanilla state as it may be
5187 * made visible again.
5189 * The current implementation only resets the essential configurations.
5190 * This needs to be expanded to cover all the visible parts.
5192 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5194 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5196 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5197 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5198 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5199 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5200 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5201 page_counter_set_min(&memcg->memory, 0);
5202 page_counter_set_low(&memcg->memory, 0);
5203 memcg->high = PAGE_COUNTER_MAX;
5204 memcg->soft_limit = PAGE_COUNTER_MAX;
5205 memcg_wb_domain_size_changed(memcg);
5208 #ifdef CONFIG_MMU
5209 /* Handlers for move charge at task migration. */
5210 static int mem_cgroup_do_precharge(unsigned long count)
5212 int ret;
5214 /* Try a single bulk charge without reclaim first, kswapd may wake */
5215 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5216 if (!ret) {
5217 mc.precharge += count;
5218 return ret;
5221 /* Try charges one by one with reclaim, but do not retry */
5222 while (count--) {
5223 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5224 if (ret)
5225 return ret;
5226 mc.precharge++;
5227 cond_resched();
5229 return 0;
5232 union mc_target {
5233 struct page *page;
5234 swp_entry_t ent;
5237 enum mc_target_type {
5238 MC_TARGET_NONE = 0,
5239 MC_TARGET_PAGE,
5240 MC_TARGET_SWAP,
5241 MC_TARGET_DEVICE,
5244 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5245 unsigned long addr, pte_t ptent)
5247 struct page *page = vm_normal_page(vma, addr, ptent);
5249 if (!page || !page_mapped(page))
5250 return NULL;
5251 if (PageAnon(page)) {
5252 if (!(mc.flags & MOVE_ANON))
5253 return NULL;
5254 } else {
5255 if (!(mc.flags & MOVE_FILE))
5256 return NULL;
5258 if (!get_page_unless_zero(page))
5259 return NULL;
5261 return page;
5264 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5265 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5266 pte_t ptent, swp_entry_t *entry)
5268 struct page *page = NULL;
5269 swp_entry_t ent = pte_to_swp_entry(ptent);
5271 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5272 return NULL;
5275 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5276 * a device and because they are not accessible by CPU they are store
5277 * as special swap entry in the CPU page table.
5279 if (is_device_private_entry(ent)) {
5280 page = device_private_entry_to_page(ent);
5282 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5283 * a refcount of 1 when free (unlike normal page)
5285 if (!page_ref_add_unless(page, 1, 1))
5286 return NULL;
5287 return page;
5291 * Because lookup_swap_cache() updates some statistics counter,
5292 * we call find_get_page() with swapper_space directly.
5294 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5295 if (do_memsw_account())
5296 entry->val = ent.val;
5298 return page;
5300 #else
5301 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5302 pte_t ptent, swp_entry_t *entry)
5304 return NULL;
5306 #endif
5308 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5309 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5311 struct page *page = NULL;
5312 struct address_space *mapping;
5313 pgoff_t pgoff;
5315 if (!vma->vm_file) /* anonymous vma */
5316 return NULL;
5317 if (!(mc.flags & MOVE_FILE))
5318 return NULL;
5320 mapping = vma->vm_file->f_mapping;
5321 pgoff = linear_page_index(vma, addr);
5323 /* page is moved even if it's not RSS of this task(page-faulted). */
5324 #ifdef CONFIG_SWAP
5325 /* shmem/tmpfs may report page out on swap: account for that too. */
5326 if (shmem_mapping(mapping)) {
5327 page = find_get_entry(mapping, pgoff);
5328 if (xa_is_value(page)) {
5329 swp_entry_t swp = radix_to_swp_entry(page);
5330 if (do_memsw_account())
5331 *entry = swp;
5332 page = find_get_page(swap_address_space(swp),
5333 swp_offset(swp));
5335 } else
5336 page = find_get_page(mapping, pgoff);
5337 #else
5338 page = find_get_page(mapping, pgoff);
5339 #endif
5340 return page;
5344 * mem_cgroup_move_account - move account of the page
5345 * @page: the page
5346 * @compound: charge the page as compound or small page
5347 * @from: mem_cgroup which the page is moved from.
5348 * @to: mem_cgroup which the page is moved to. @from != @to.
5350 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5352 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5353 * from old cgroup.
5355 static int mem_cgroup_move_account(struct page *page,
5356 bool compound,
5357 struct mem_cgroup *from,
5358 struct mem_cgroup *to)
5360 struct lruvec *from_vec, *to_vec;
5361 struct pglist_data *pgdat;
5362 unsigned long flags;
5363 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5364 int ret;
5365 bool anon;
5367 VM_BUG_ON(from == to);
5368 VM_BUG_ON_PAGE(PageLRU(page), page);
5369 VM_BUG_ON(compound && !PageTransHuge(page));
5372 * Prevent mem_cgroup_migrate() from looking at
5373 * page->mem_cgroup of its source page while we change it.
5375 ret = -EBUSY;
5376 if (!trylock_page(page))
5377 goto out;
5379 ret = -EINVAL;
5380 if (page->mem_cgroup != from)
5381 goto out_unlock;
5383 anon = PageAnon(page);
5385 pgdat = page_pgdat(page);
5386 from_vec = mem_cgroup_lruvec(from, pgdat);
5387 to_vec = mem_cgroup_lruvec(to, pgdat);
5389 spin_lock_irqsave(&from->move_lock, flags);
5391 if (!anon && page_mapped(page)) {
5392 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5393 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5397 * move_lock grabbed above and caller set from->moving_account, so
5398 * mod_memcg_page_state will serialize updates to PageDirty.
5399 * So mapping should be stable for dirty pages.
5401 if (!anon && PageDirty(page)) {
5402 struct address_space *mapping = page_mapping(page);
5404 if (mapping_cap_account_dirty(mapping)) {
5405 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5406 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5410 if (PageWriteback(page)) {
5411 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5412 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5416 * It is safe to change page->mem_cgroup here because the page
5417 * is referenced, charged, and isolated - we can't race with
5418 * uncharging, charging, migration, or LRU putback.
5421 /* caller should have done css_get */
5422 page->mem_cgroup = to;
5424 spin_unlock_irqrestore(&from->move_lock, flags);
5426 ret = 0;
5428 local_irq_disable();
5429 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5430 memcg_check_events(to, page);
5431 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5432 memcg_check_events(from, page);
5433 local_irq_enable();
5434 out_unlock:
5435 unlock_page(page);
5436 out:
5437 return ret;
5441 * get_mctgt_type - get target type of moving charge
5442 * @vma: the vma the pte to be checked belongs
5443 * @addr: the address corresponding to the pte to be checked
5444 * @ptent: the pte to be checked
5445 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5447 * Returns
5448 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5449 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5450 * move charge. if @target is not NULL, the page is stored in target->page
5451 * with extra refcnt got(Callers should handle it).
5452 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5453 * target for charge migration. if @target is not NULL, the entry is stored
5454 * in target->ent.
5455 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5456 * (so ZONE_DEVICE page and thus not on the lru).
5457 * For now we such page is charge like a regular page would be as for all
5458 * intent and purposes it is just special memory taking the place of a
5459 * regular page.
5461 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5463 * Called with pte lock held.
5466 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5467 unsigned long addr, pte_t ptent, union mc_target *target)
5469 struct page *page = NULL;
5470 enum mc_target_type ret = MC_TARGET_NONE;
5471 swp_entry_t ent = { .val = 0 };
5473 if (pte_present(ptent))
5474 page = mc_handle_present_pte(vma, addr, ptent);
5475 else if (is_swap_pte(ptent))
5476 page = mc_handle_swap_pte(vma, ptent, &ent);
5477 else if (pte_none(ptent))
5478 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5480 if (!page && !ent.val)
5481 return ret;
5482 if (page) {
5484 * Do only loose check w/o serialization.
5485 * mem_cgroup_move_account() checks the page is valid or
5486 * not under LRU exclusion.
5488 if (page->mem_cgroup == mc.from) {
5489 ret = MC_TARGET_PAGE;
5490 if (is_device_private_page(page))
5491 ret = MC_TARGET_DEVICE;
5492 if (target)
5493 target->page = page;
5495 if (!ret || !target)
5496 put_page(page);
5499 * There is a swap entry and a page doesn't exist or isn't charged.
5500 * But we cannot move a tail-page in a THP.
5502 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5503 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5504 ret = MC_TARGET_SWAP;
5505 if (target)
5506 target->ent = ent;
5508 return ret;
5511 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5513 * We don't consider PMD mapped swapping or file mapped pages because THP does
5514 * not support them for now.
5515 * Caller should make sure that pmd_trans_huge(pmd) is true.
5517 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5518 unsigned long addr, pmd_t pmd, union mc_target *target)
5520 struct page *page = NULL;
5521 enum mc_target_type ret = MC_TARGET_NONE;
5523 if (unlikely(is_swap_pmd(pmd))) {
5524 VM_BUG_ON(thp_migration_supported() &&
5525 !is_pmd_migration_entry(pmd));
5526 return ret;
5528 page = pmd_page(pmd);
5529 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5530 if (!(mc.flags & MOVE_ANON))
5531 return ret;
5532 if (page->mem_cgroup == mc.from) {
5533 ret = MC_TARGET_PAGE;
5534 if (target) {
5535 get_page(page);
5536 target->page = page;
5539 return ret;
5541 #else
5542 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5543 unsigned long addr, pmd_t pmd, union mc_target *target)
5545 return MC_TARGET_NONE;
5547 #endif
5549 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5550 unsigned long addr, unsigned long end,
5551 struct mm_walk *walk)
5553 struct vm_area_struct *vma = walk->vma;
5554 pte_t *pte;
5555 spinlock_t *ptl;
5557 ptl = pmd_trans_huge_lock(pmd, vma);
5558 if (ptl) {
5560 * Note their can not be MC_TARGET_DEVICE for now as we do not
5561 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5562 * this might change.
5564 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5565 mc.precharge += HPAGE_PMD_NR;
5566 spin_unlock(ptl);
5567 return 0;
5570 if (pmd_trans_unstable(pmd))
5571 return 0;
5572 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5573 for (; addr != end; pte++, addr += PAGE_SIZE)
5574 if (get_mctgt_type(vma, addr, *pte, NULL))
5575 mc.precharge++; /* increment precharge temporarily */
5576 pte_unmap_unlock(pte - 1, ptl);
5577 cond_resched();
5579 return 0;
5582 static const struct mm_walk_ops precharge_walk_ops = {
5583 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5586 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5588 unsigned long precharge;
5590 down_read(&mm->mmap_sem);
5591 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5592 up_read(&mm->mmap_sem);
5594 precharge = mc.precharge;
5595 mc.precharge = 0;
5597 return precharge;
5600 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5602 unsigned long precharge = mem_cgroup_count_precharge(mm);
5604 VM_BUG_ON(mc.moving_task);
5605 mc.moving_task = current;
5606 return mem_cgroup_do_precharge(precharge);
5609 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5610 static void __mem_cgroup_clear_mc(void)
5612 struct mem_cgroup *from = mc.from;
5613 struct mem_cgroup *to = mc.to;
5615 /* we must uncharge all the leftover precharges from mc.to */
5616 if (mc.precharge) {
5617 cancel_charge(mc.to, mc.precharge);
5618 mc.precharge = 0;
5621 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5622 * we must uncharge here.
5624 if (mc.moved_charge) {
5625 cancel_charge(mc.from, mc.moved_charge);
5626 mc.moved_charge = 0;
5628 /* we must fixup refcnts and charges */
5629 if (mc.moved_swap) {
5630 /* uncharge swap account from the old cgroup */
5631 if (!mem_cgroup_is_root(mc.from))
5632 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5634 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5637 * we charged both to->memory and to->memsw, so we
5638 * should uncharge to->memory.
5640 if (!mem_cgroup_is_root(mc.to))
5641 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5643 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5644 css_put_many(&mc.to->css, mc.moved_swap);
5646 mc.moved_swap = 0;
5648 memcg_oom_recover(from);
5649 memcg_oom_recover(to);
5650 wake_up_all(&mc.waitq);
5653 static void mem_cgroup_clear_mc(void)
5655 struct mm_struct *mm = mc.mm;
5658 * we must clear moving_task before waking up waiters at the end of
5659 * task migration.
5661 mc.moving_task = NULL;
5662 __mem_cgroup_clear_mc();
5663 spin_lock(&mc.lock);
5664 mc.from = NULL;
5665 mc.to = NULL;
5666 mc.mm = NULL;
5667 spin_unlock(&mc.lock);
5669 mmput(mm);
5672 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5674 struct cgroup_subsys_state *css;
5675 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5676 struct mem_cgroup *from;
5677 struct task_struct *leader, *p;
5678 struct mm_struct *mm;
5679 unsigned long move_flags;
5680 int ret = 0;
5682 /* charge immigration isn't supported on the default hierarchy */
5683 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5684 return 0;
5687 * Multi-process migrations only happen on the default hierarchy
5688 * where charge immigration is not used. Perform charge
5689 * immigration if @tset contains a leader and whine if there are
5690 * multiple.
5692 p = NULL;
5693 cgroup_taskset_for_each_leader(leader, css, tset) {
5694 WARN_ON_ONCE(p);
5695 p = leader;
5696 memcg = mem_cgroup_from_css(css);
5698 if (!p)
5699 return 0;
5702 * We are now commited to this value whatever it is. Changes in this
5703 * tunable will only affect upcoming migrations, not the current one.
5704 * So we need to save it, and keep it going.
5706 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5707 if (!move_flags)
5708 return 0;
5710 from = mem_cgroup_from_task(p);
5712 VM_BUG_ON(from == memcg);
5714 mm = get_task_mm(p);
5715 if (!mm)
5716 return 0;
5717 /* We move charges only when we move a owner of the mm */
5718 if (mm->owner == p) {
5719 VM_BUG_ON(mc.from);
5720 VM_BUG_ON(mc.to);
5721 VM_BUG_ON(mc.precharge);
5722 VM_BUG_ON(mc.moved_charge);
5723 VM_BUG_ON(mc.moved_swap);
5725 spin_lock(&mc.lock);
5726 mc.mm = mm;
5727 mc.from = from;
5728 mc.to = memcg;
5729 mc.flags = move_flags;
5730 spin_unlock(&mc.lock);
5731 /* We set mc.moving_task later */
5733 ret = mem_cgroup_precharge_mc(mm);
5734 if (ret)
5735 mem_cgroup_clear_mc();
5736 } else {
5737 mmput(mm);
5739 return ret;
5742 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5744 if (mc.to)
5745 mem_cgroup_clear_mc();
5748 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5749 unsigned long addr, unsigned long end,
5750 struct mm_walk *walk)
5752 int ret = 0;
5753 struct vm_area_struct *vma = walk->vma;
5754 pte_t *pte;
5755 spinlock_t *ptl;
5756 enum mc_target_type target_type;
5757 union mc_target target;
5758 struct page *page;
5760 ptl = pmd_trans_huge_lock(pmd, vma);
5761 if (ptl) {
5762 if (mc.precharge < HPAGE_PMD_NR) {
5763 spin_unlock(ptl);
5764 return 0;
5766 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5767 if (target_type == MC_TARGET_PAGE) {
5768 page = target.page;
5769 if (!isolate_lru_page(page)) {
5770 if (!mem_cgroup_move_account(page, true,
5771 mc.from, mc.to)) {
5772 mc.precharge -= HPAGE_PMD_NR;
5773 mc.moved_charge += HPAGE_PMD_NR;
5775 putback_lru_page(page);
5777 put_page(page);
5778 } else if (target_type == MC_TARGET_DEVICE) {
5779 page = target.page;
5780 if (!mem_cgroup_move_account(page, true,
5781 mc.from, mc.to)) {
5782 mc.precharge -= HPAGE_PMD_NR;
5783 mc.moved_charge += HPAGE_PMD_NR;
5785 put_page(page);
5787 spin_unlock(ptl);
5788 return 0;
5791 if (pmd_trans_unstable(pmd))
5792 return 0;
5793 retry:
5794 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5795 for (; addr != end; addr += PAGE_SIZE) {
5796 pte_t ptent = *(pte++);
5797 bool device = false;
5798 swp_entry_t ent;
5800 if (!mc.precharge)
5801 break;
5803 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5804 case MC_TARGET_DEVICE:
5805 device = true;
5806 /* fall through */
5807 case MC_TARGET_PAGE:
5808 page = target.page;
5810 * We can have a part of the split pmd here. Moving it
5811 * can be done but it would be too convoluted so simply
5812 * ignore such a partial THP and keep it in original
5813 * memcg. There should be somebody mapping the head.
5815 if (PageTransCompound(page))
5816 goto put;
5817 if (!device && isolate_lru_page(page))
5818 goto put;
5819 if (!mem_cgroup_move_account(page, false,
5820 mc.from, mc.to)) {
5821 mc.precharge--;
5822 /* we uncharge from mc.from later. */
5823 mc.moved_charge++;
5825 if (!device)
5826 putback_lru_page(page);
5827 put: /* get_mctgt_type() gets the page */
5828 put_page(page);
5829 break;
5830 case MC_TARGET_SWAP:
5831 ent = target.ent;
5832 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5833 mc.precharge--;
5834 /* we fixup refcnts and charges later. */
5835 mc.moved_swap++;
5837 break;
5838 default:
5839 break;
5842 pte_unmap_unlock(pte - 1, ptl);
5843 cond_resched();
5845 if (addr != end) {
5847 * We have consumed all precharges we got in can_attach().
5848 * We try charge one by one, but don't do any additional
5849 * charges to mc.to if we have failed in charge once in attach()
5850 * phase.
5852 ret = mem_cgroup_do_precharge(1);
5853 if (!ret)
5854 goto retry;
5857 return ret;
5860 static const struct mm_walk_ops charge_walk_ops = {
5861 .pmd_entry = mem_cgroup_move_charge_pte_range,
5864 static void mem_cgroup_move_charge(void)
5866 lru_add_drain_all();
5868 * Signal lock_page_memcg() to take the memcg's move_lock
5869 * while we're moving its pages to another memcg. Then wait
5870 * for already started RCU-only updates to finish.
5872 atomic_inc(&mc.from->moving_account);
5873 synchronize_rcu();
5874 retry:
5875 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5877 * Someone who are holding the mmap_sem might be waiting in
5878 * waitq. So we cancel all extra charges, wake up all waiters,
5879 * and retry. Because we cancel precharges, we might not be able
5880 * to move enough charges, but moving charge is a best-effort
5881 * feature anyway, so it wouldn't be a big problem.
5883 __mem_cgroup_clear_mc();
5884 cond_resched();
5885 goto retry;
5888 * When we have consumed all precharges and failed in doing
5889 * additional charge, the page walk just aborts.
5891 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5892 NULL);
5894 up_read(&mc.mm->mmap_sem);
5895 atomic_dec(&mc.from->moving_account);
5898 static void mem_cgroup_move_task(void)
5900 if (mc.to) {
5901 mem_cgroup_move_charge();
5902 mem_cgroup_clear_mc();
5905 #else /* !CONFIG_MMU */
5906 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5908 return 0;
5910 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5913 static void mem_cgroup_move_task(void)
5916 #endif
5919 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5920 * to verify whether we're attached to the default hierarchy on each mount
5921 * attempt.
5923 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5926 * use_hierarchy is forced on the default hierarchy. cgroup core
5927 * guarantees that @root doesn't have any children, so turning it
5928 * on for the root memcg is enough.
5930 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5931 root_mem_cgroup->use_hierarchy = true;
5932 else
5933 root_mem_cgroup->use_hierarchy = false;
5936 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5938 if (value == PAGE_COUNTER_MAX)
5939 seq_puts(m, "max\n");
5940 else
5941 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5943 return 0;
5946 static u64 memory_current_read(struct cgroup_subsys_state *css,
5947 struct cftype *cft)
5949 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5951 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5954 static int memory_min_show(struct seq_file *m, void *v)
5956 return seq_puts_memcg_tunable(m,
5957 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5960 static ssize_t memory_min_write(struct kernfs_open_file *of,
5961 char *buf, size_t nbytes, loff_t off)
5963 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5964 unsigned long min;
5965 int err;
5967 buf = strstrip(buf);
5968 err = page_counter_memparse(buf, "max", &min);
5969 if (err)
5970 return err;
5972 page_counter_set_min(&memcg->memory, min);
5974 return nbytes;
5977 static int memory_low_show(struct seq_file *m, void *v)
5979 return seq_puts_memcg_tunable(m,
5980 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5983 static ssize_t memory_low_write(struct kernfs_open_file *of,
5984 char *buf, size_t nbytes, loff_t off)
5986 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5987 unsigned long low;
5988 int err;
5990 buf = strstrip(buf);
5991 err = page_counter_memparse(buf, "max", &low);
5992 if (err)
5993 return err;
5995 page_counter_set_low(&memcg->memory, low);
5997 return nbytes;
6000 static int memory_high_show(struct seq_file *m, void *v)
6002 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6005 static ssize_t memory_high_write(struct kernfs_open_file *of,
6006 char *buf, size_t nbytes, loff_t off)
6008 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6009 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6010 bool drained = false;
6011 unsigned long high;
6012 int err;
6014 buf = strstrip(buf);
6015 err = page_counter_memparse(buf, "max", &high);
6016 if (err)
6017 return err;
6019 memcg->high = high;
6021 for (;;) {
6022 unsigned long nr_pages = page_counter_read(&memcg->memory);
6023 unsigned long reclaimed;
6025 if (nr_pages <= high)
6026 break;
6028 if (signal_pending(current))
6029 break;
6031 if (!drained) {
6032 drain_all_stock(memcg);
6033 drained = true;
6034 continue;
6037 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6038 GFP_KERNEL, true);
6040 if (!reclaimed && !nr_retries--)
6041 break;
6044 return nbytes;
6047 static int memory_max_show(struct seq_file *m, void *v)
6049 return seq_puts_memcg_tunable(m,
6050 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6053 static ssize_t memory_max_write(struct kernfs_open_file *of,
6054 char *buf, size_t nbytes, loff_t off)
6056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6057 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6058 bool drained = false;
6059 unsigned long max;
6060 int err;
6062 buf = strstrip(buf);
6063 err = page_counter_memparse(buf, "max", &max);
6064 if (err)
6065 return err;
6067 xchg(&memcg->memory.max, max);
6069 for (;;) {
6070 unsigned long nr_pages = page_counter_read(&memcg->memory);
6072 if (nr_pages <= max)
6073 break;
6075 if (signal_pending(current))
6076 break;
6078 if (!drained) {
6079 drain_all_stock(memcg);
6080 drained = true;
6081 continue;
6084 if (nr_reclaims) {
6085 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6086 GFP_KERNEL, true))
6087 nr_reclaims--;
6088 continue;
6091 memcg_memory_event(memcg, MEMCG_OOM);
6092 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6093 break;
6096 memcg_wb_domain_size_changed(memcg);
6097 return nbytes;
6100 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6102 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6103 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6104 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6105 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6106 seq_printf(m, "oom_kill %lu\n",
6107 atomic_long_read(&events[MEMCG_OOM_KILL]));
6110 static int memory_events_show(struct seq_file *m, void *v)
6112 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6114 __memory_events_show(m, memcg->memory_events);
6115 return 0;
6118 static int memory_events_local_show(struct seq_file *m, void *v)
6120 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6122 __memory_events_show(m, memcg->memory_events_local);
6123 return 0;
6126 static int memory_stat_show(struct seq_file *m, void *v)
6128 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6129 char *buf;
6131 buf = memory_stat_format(memcg);
6132 if (!buf)
6133 return -ENOMEM;
6134 seq_puts(m, buf);
6135 kfree(buf);
6136 return 0;
6139 static int memory_oom_group_show(struct seq_file *m, void *v)
6141 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6143 seq_printf(m, "%d\n", memcg->oom_group);
6145 return 0;
6148 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6149 char *buf, size_t nbytes, loff_t off)
6151 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6152 int ret, oom_group;
6154 buf = strstrip(buf);
6155 if (!buf)
6156 return -EINVAL;
6158 ret = kstrtoint(buf, 0, &oom_group);
6159 if (ret)
6160 return ret;
6162 if (oom_group != 0 && oom_group != 1)
6163 return -EINVAL;
6165 memcg->oom_group = oom_group;
6167 return nbytes;
6170 static struct cftype memory_files[] = {
6172 .name = "current",
6173 .flags = CFTYPE_NOT_ON_ROOT,
6174 .read_u64 = memory_current_read,
6177 .name = "min",
6178 .flags = CFTYPE_NOT_ON_ROOT,
6179 .seq_show = memory_min_show,
6180 .write = memory_min_write,
6183 .name = "low",
6184 .flags = CFTYPE_NOT_ON_ROOT,
6185 .seq_show = memory_low_show,
6186 .write = memory_low_write,
6189 .name = "high",
6190 .flags = CFTYPE_NOT_ON_ROOT,
6191 .seq_show = memory_high_show,
6192 .write = memory_high_write,
6195 .name = "max",
6196 .flags = CFTYPE_NOT_ON_ROOT,
6197 .seq_show = memory_max_show,
6198 .write = memory_max_write,
6201 .name = "events",
6202 .flags = CFTYPE_NOT_ON_ROOT,
6203 .file_offset = offsetof(struct mem_cgroup, events_file),
6204 .seq_show = memory_events_show,
6207 .name = "events.local",
6208 .flags = CFTYPE_NOT_ON_ROOT,
6209 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6210 .seq_show = memory_events_local_show,
6213 .name = "stat",
6214 .flags = CFTYPE_NOT_ON_ROOT,
6215 .seq_show = memory_stat_show,
6218 .name = "oom.group",
6219 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6220 .seq_show = memory_oom_group_show,
6221 .write = memory_oom_group_write,
6223 { } /* terminate */
6226 struct cgroup_subsys memory_cgrp_subsys = {
6227 .css_alloc = mem_cgroup_css_alloc,
6228 .css_online = mem_cgroup_css_online,
6229 .css_offline = mem_cgroup_css_offline,
6230 .css_released = mem_cgroup_css_released,
6231 .css_free = mem_cgroup_css_free,
6232 .css_reset = mem_cgroup_css_reset,
6233 .can_attach = mem_cgroup_can_attach,
6234 .cancel_attach = mem_cgroup_cancel_attach,
6235 .post_attach = mem_cgroup_move_task,
6236 .bind = mem_cgroup_bind,
6237 .dfl_cftypes = memory_files,
6238 .legacy_cftypes = mem_cgroup_legacy_files,
6239 .early_init = 0,
6243 * mem_cgroup_protected - check if memory consumption is in the normal range
6244 * @root: the top ancestor of the sub-tree being checked
6245 * @memcg: the memory cgroup to check
6247 * WARNING: This function is not stateless! It can only be used as part
6248 * of a top-down tree iteration, not for isolated queries.
6250 * Returns one of the following:
6251 * MEMCG_PROT_NONE: cgroup memory is not protected
6252 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6253 * an unprotected supply of reclaimable memory from other cgroups.
6254 * MEMCG_PROT_MIN: cgroup memory is protected
6256 * @root is exclusive; it is never protected when looked at directly
6258 * To provide a proper hierarchical behavior, effective memory.min/low values
6259 * are used. Below is the description of how effective memory.low is calculated.
6260 * Effective memory.min values is calculated in the same way.
6262 * Effective memory.low is always equal or less than the original memory.low.
6263 * If there is no memory.low overcommittment (which is always true for
6264 * top-level memory cgroups), these two values are equal.
6265 * Otherwise, it's a part of parent's effective memory.low,
6266 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6267 * memory.low usages, where memory.low usage is the size of actually
6268 * protected memory.
6270 * low_usage
6271 * elow = min( memory.low, parent->elow * ------------------ ),
6272 * siblings_low_usage
6274 * | memory.current, if memory.current < memory.low
6275 * low_usage = |
6276 * | 0, otherwise.
6279 * Such definition of the effective memory.low provides the expected
6280 * hierarchical behavior: parent's memory.low value is limiting
6281 * children, unprotected memory is reclaimed first and cgroups,
6282 * which are not using their guarantee do not affect actual memory
6283 * distribution.
6285 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6287 * A A/memory.low = 2G, A/memory.current = 6G
6288 * //\\
6289 * BC DE B/memory.low = 3G B/memory.current = 2G
6290 * C/memory.low = 1G C/memory.current = 2G
6291 * D/memory.low = 0 D/memory.current = 2G
6292 * E/memory.low = 10G E/memory.current = 0
6294 * and the memory pressure is applied, the following memory distribution
6295 * is expected (approximately):
6297 * A/memory.current = 2G
6299 * B/memory.current = 1.3G
6300 * C/memory.current = 0.6G
6301 * D/memory.current = 0
6302 * E/memory.current = 0
6304 * These calculations require constant tracking of the actual low usages
6305 * (see propagate_protected_usage()), as well as recursive calculation of
6306 * effective memory.low values. But as we do call mem_cgroup_protected()
6307 * path for each memory cgroup top-down from the reclaim,
6308 * it's possible to optimize this part, and save calculated elow
6309 * for next usage. This part is intentionally racy, but it's ok,
6310 * as memory.low is a best-effort mechanism.
6312 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6313 struct mem_cgroup *memcg)
6315 struct mem_cgroup *parent;
6316 unsigned long emin, parent_emin;
6317 unsigned long elow, parent_elow;
6318 unsigned long usage;
6320 if (mem_cgroup_disabled())
6321 return MEMCG_PROT_NONE;
6323 if (!root)
6324 root = root_mem_cgroup;
6325 if (memcg == root)
6326 return MEMCG_PROT_NONE;
6328 usage = page_counter_read(&memcg->memory);
6329 if (!usage)
6330 return MEMCG_PROT_NONE;
6332 emin = memcg->memory.min;
6333 elow = memcg->memory.low;
6335 parent = parent_mem_cgroup(memcg);
6336 /* No parent means a non-hierarchical mode on v1 memcg */
6337 if (!parent)
6338 return MEMCG_PROT_NONE;
6340 if (parent == root)
6341 goto exit;
6343 parent_emin = READ_ONCE(parent->memory.emin);
6344 emin = min(emin, parent_emin);
6345 if (emin && parent_emin) {
6346 unsigned long min_usage, siblings_min_usage;
6348 min_usage = min(usage, memcg->memory.min);
6349 siblings_min_usage = atomic_long_read(
6350 &parent->memory.children_min_usage);
6352 if (min_usage && siblings_min_usage)
6353 emin = min(emin, parent_emin * min_usage /
6354 siblings_min_usage);
6357 parent_elow = READ_ONCE(parent->memory.elow);
6358 elow = min(elow, parent_elow);
6359 if (elow && parent_elow) {
6360 unsigned long low_usage, siblings_low_usage;
6362 low_usage = min(usage, memcg->memory.low);
6363 siblings_low_usage = atomic_long_read(
6364 &parent->memory.children_low_usage);
6366 if (low_usage && siblings_low_usage)
6367 elow = min(elow, parent_elow * low_usage /
6368 siblings_low_usage);
6371 exit:
6372 memcg->memory.emin = emin;
6373 memcg->memory.elow = elow;
6375 if (usage <= emin)
6376 return MEMCG_PROT_MIN;
6377 else if (usage <= elow)
6378 return MEMCG_PROT_LOW;
6379 else
6380 return MEMCG_PROT_NONE;
6384 * mem_cgroup_try_charge - try charging a page
6385 * @page: page to charge
6386 * @mm: mm context of the victim
6387 * @gfp_mask: reclaim mode
6388 * @memcgp: charged memcg return
6389 * @compound: charge the page as compound or small page
6391 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6392 * pages according to @gfp_mask if necessary.
6394 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6395 * Otherwise, an error code is returned.
6397 * After page->mapping has been set up, the caller must finalize the
6398 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6399 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6401 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6402 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6403 bool compound)
6405 struct mem_cgroup *memcg = NULL;
6406 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6407 int ret = 0;
6409 if (mem_cgroup_disabled())
6410 goto out;
6412 if (PageSwapCache(page)) {
6414 * Every swap fault against a single page tries to charge the
6415 * page, bail as early as possible. shmem_unuse() encounters
6416 * already charged pages, too. The USED bit is protected by
6417 * the page lock, which serializes swap cache removal, which
6418 * in turn serializes uncharging.
6420 VM_BUG_ON_PAGE(!PageLocked(page), page);
6421 if (compound_head(page)->mem_cgroup)
6422 goto out;
6424 if (do_swap_account) {
6425 swp_entry_t ent = { .val = page_private(page), };
6426 unsigned short id = lookup_swap_cgroup_id(ent);
6428 rcu_read_lock();
6429 memcg = mem_cgroup_from_id(id);
6430 if (memcg && !css_tryget_online(&memcg->css))
6431 memcg = NULL;
6432 rcu_read_unlock();
6436 if (!memcg)
6437 memcg = get_mem_cgroup_from_mm(mm);
6439 ret = try_charge(memcg, gfp_mask, nr_pages);
6441 css_put(&memcg->css);
6442 out:
6443 *memcgp = memcg;
6444 return ret;
6447 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6448 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6449 bool compound)
6451 struct mem_cgroup *memcg;
6452 int ret;
6454 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6455 memcg = *memcgp;
6456 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6457 return ret;
6461 * mem_cgroup_commit_charge - commit a page charge
6462 * @page: page to charge
6463 * @memcg: memcg to charge the page to
6464 * @lrucare: page might be on LRU already
6465 * @compound: charge the page as compound or small page
6467 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6468 * after page->mapping has been set up. This must happen atomically
6469 * as part of the page instantiation, i.e. under the page table lock
6470 * for anonymous pages, under the page lock for page and swap cache.
6472 * In addition, the page must not be on the LRU during the commit, to
6473 * prevent racing with task migration. If it might be, use @lrucare.
6475 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6477 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6478 bool lrucare, bool compound)
6480 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6482 VM_BUG_ON_PAGE(!page->mapping, page);
6483 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6485 if (mem_cgroup_disabled())
6486 return;
6488 * Swap faults will attempt to charge the same page multiple
6489 * times. But reuse_swap_page() might have removed the page
6490 * from swapcache already, so we can't check PageSwapCache().
6492 if (!memcg)
6493 return;
6495 commit_charge(page, memcg, lrucare);
6497 local_irq_disable();
6498 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6499 memcg_check_events(memcg, page);
6500 local_irq_enable();
6502 if (do_memsw_account() && PageSwapCache(page)) {
6503 swp_entry_t entry = { .val = page_private(page) };
6505 * The swap entry might not get freed for a long time,
6506 * let's not wait for it. The page already received a
6507 * memory+swap charge, drop the swap entry duplicate.
6509 mem_cgroup_uncharge_swap(entry, nr_pages);
6514 * mem_cgroup_cancel_charge - cancel a page charge
6515 * @page: page to charge
6516 * @memcg: memcg to charge the page to
6517 * @compound: charge the page as compound or small page
6519 * Cancel a charge transaction started by mem_cgroup_try_charge().
6521 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6522 bool compound)
6524 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6526 if (mem_cgroup_disabled())
6527 return;
6529 * Swap faults will attempt to charge the same page multiple
6530 * times. But reuse_swap_page() might have removed the page
6531 * from swapcache already, so we can't check PageSwapCache().
6533 if (!memcg)
6534 return;
6536 cancel_charge(memcg, nr_pages);
6539 struct uncharge_gather {
6540 struct mem_cgroup *memcg;
6541 unsigned long pgpgout;
6542 unsigned long nr_anon;
6543 unsigned long nr_file;
6544 unsigned long nr_kmem;
6545 unsigned long nr_huge;
6546 unsigned long nr_shmem;
6547 struct page *dummy_page;
6550 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6552 memset(ug, 0, sizeof(*ug));
6555 static void uncharge_batch(const struct uncharge_gather *ug)
6557 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6558 unsigned long flags;
6560 if (!mem_cgroup_is_root(ug->memcg)) {
6561 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6562 if (do_memsw_account())
6563 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6564 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6565 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6566 memcg_oom_recover(ug->memcg);
6569 local_irq_save(flags);
6570 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6571 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6572 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6573 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6574 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6575 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6576 memcg_check_events(ug->memcg, ug->dummy_page);
6577 local_irq_restore(flags);
6579 if (!mem_cgroup_is_root(ug->memcg))
6580 css_put_many(&ug->memcg->css, nr_pages);
6583 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6585 VM_BUG_ON_PAGE(PageLRU(page), page);
6586 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6587 !PageHWPoison(page) , page);
6589 if (!page->mem_cgroup)
6590 return;
6593 * Nobody should be changing or seriously looking at
6594 * page->mem_cgroup at this point, we have fully
6595 * exclusive access to the page.
6598 if (ug->memcg != page->mem_cgroup) {
6599 if (ug->memcg) {
6600 uncharge_batch(ug);
6601 uncharge_gather_clear(ug);
6603 ug->memcg = page->mem_cgroup;
6606 if (!PageKmemcg(page)) {
6607 unsigned int nr_pages = 1;
6609 if (PageTransHuge(page)) {
6610 nr_pages = compound_nr(page);
6611 ug->nr_huge += nr_pages;
6613 if (PageAnon(page))
6614 ug->nr_anon += nr_pages;
6615 else {
6616 ug->nr_file += nr_pages;
6617 if (PageSwapBacked(page))
6618 ug->nr_shmem += nr_pages;
6620 ug->pgpgout++;
6621 } else {
6622 ug->nr_kmem += compound_nr(page);
6623 __ClearPageKmemcg(page);
6626 ug->dummy_page = page;
6627 page->mem_cgroup = NULL;
6630 static void uncharge_list(struct list_head *page_list)
6632 struct uncharge_gather ug;
6633 struct list_head *next;
6635 uncharge_gather_clear(&ug);
6638 * Note that the list can be a single page->lru; hence the
6639 * do-while loop instead of a simple list_for_each_entry().
6641 next = page_list->next;
6642 do {
6643 struct page *page;
6645 page = list_entry(next, struct page, lru);
6646 next = page->lru.next;
6648 uncharge_page(page, &ug);
6649 } while (next != page_list);
6651 if (ug.memcg)
6652 uncharge_batch(&ug);
6656 * mem_cgroup_uncharge - uncharge a page
6657 * @page: page to uncharge
6659 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6660 * mem_cgroup_commit_charge().
6662 void mem_cgroup_uncharge(struct page *page)
6664 struct uncharge_gather ug;
6666 if (mem_cgroup_disabled())
6667 return;
6669 /* Don't touch page->lru of any random page, pre-check: */
6670 if (!page->mem_cgroup)
6671 return;
6673 uncharge_gather_clear(&ug);
6674 uncharge_page(page, &ug);
6675 uncharge_batch(&ug);
6679 * mem_cgroup_uncharge_list - uncharge a list of page
6680 * @page_list: list of pages to uncharge
6682 * Uncharge a list of pages previously charged with
6683 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6685 void mem_cgroup_uncharge_list(struct list_head *page_list)
6687 if (mem_cgroup_disabled())
6688 return;
6690 if (!list_empty(page_list))
6691 uncharge_list(page_list);
6695 * mem_cgroup_migrate - charge a page's replacement
6696 * @oldpage: currently circulating page
6697 * @newpage: replacement page
6699 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6700 * be uncharged upon free.
6702 * Both pages must be locked, @newpage->mapping must be set up.
6704 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6706 struct mem_cgroup *memcg;
6707 unsigned int nr_pages;
6708 unsigned long flags;
6710 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6711 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6712 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6713 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6714 newpage);
6716 if (mem_cgroup_disabled())
6717 return;
6719 /* Page cache replacement: new page already charged? */
6720 if (newpage->mem_cgroup)
6721 return;
6723 /* Swapcache readahead pages can get replaced before being charged */
6724 memcg = oldpage->mem_cgroup;
6725 if (!memcg)
6726 return;
6728 /* Force-charge the new page. The old one will be freed soon */
6729 nr_pages = hpage_nr_pages(newpage);
6731 page_counter_charge(&memcg->memory, nr_pages);
6732 if (do_memsw_account())
6733 page_counter_charge(&memcg->memsw, nr_pages);
6734 css_get_many(&memcg->css, nr_pages);
6736 commit_charge(newpage, memcg, false);
6738 local_irq_save(flags);
6739 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6740 nr_pages);
6741 memcg_check_events(memcg, newpage);
6742 local_irq_restore(flags);
6745 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6746 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6748 void mem_cgroup_sk_alloc(struct sock *sk)
6750 struct mem_cgroup *memcg;
6752 if (!mem_cgroup_sockets_enabled)
6753 return;
6755 /* Do not associate the sock with unrelated interrupted task's memcg. */
6756 if (in_interrupt())
6757 return;
6759 rcu_read_lock();
6760 memcg = mem_cgroup_from_task(current);
6761 if (memcg == root_mem_cgroup)
6762 goto out;
6763 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6764 goto out;
6765 if (css_tryget_online(&memcg->css))
6766 sk->sk_memcg = memcg;
6767 out:
6768 rcu_read_unlock();
6771 void mem_cgroup_sk_free(struct sock *sk)
6773 if (sk->sk_memcg)
6774 css_put(&sk->sk_memcg->css);
6778 * mem_cgroup_charge_skmem - charge socket memory
6779 * @memcg: memcg to charge
6780 * @nr_pages: number of pages to charge
6782 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6783 * @memcg's configured limit, %false if the charge had to be forced.
6785 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6787 gfp_t gfp_mask = GFP_KERNEL;
6789 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6790 struct page_counter *fail;
6792 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6793 memcg->tcpmem_pressure = 0;
6794 return true;
6796 page_counter_charge(&memcg->tcpmem, nr_pages);
6797 memcg->tcpmem_pressure = 1;
6798 return false;
6801 /* Don't block in the packet receive path */
6802 if (in_softirq())
6803 gfp_mask = GFP_NOWAIT;
6805 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6807 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6808 return true;
6810 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6811 return false;
6815 * mem_cgroup_uncharge_skmem - uncharge socket memory
6816 * @memcg: memcg to uncharge
6817 * @nr_pages: number of pages to uncharge
6819 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6821 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6822 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6823 return;
6826 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6828 refill_stock(memcg, nr_pages);
6831 static int __init cgroup_memory(char *s)
6833 char *token;
6835 while ((token = strsep(&s, ",")) != NULL) {
6836 if (!*token)
6837 continue;
6838 if (!strcmp(token, "nosocket"))
6839 cgroup_memory_nosocket = true;
6840 if (!strcmp(token, "nokmem"))
6841 cgroup_memory_nokmem = true;
6843 return 0;
6845 __setup("cgroup.memory=", cgroup_memory);
6848 * subsys_initcall() for memory controller.
6850 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6851 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6852 * basically everything that doesn't depend on a specific mem_cgroup structure
6853 * should be initialized from here.
6855 static int __init mem_cgroup_init(void)
6857 int cpu, node;
6859 #ifdef CONFIG_MEMCG_KMEM
6861 * Kmem cache creation is mostly done with the slab_mutex held,
6862 * so use a workqueue with limited concurrency to avoid stalling
6863 * all worker threads in case lots of cgroups are created and
6864 * destroyed simultaneously.
6866 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6867 BUG_ON(!memcg_kmem_cache_wq);
6868 #endif
6870 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6871 memcg_hotplug_cpu_dead);
6873 for_each_possible_cpu(cpu)
6874 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6875 drain_local_stock);
6877 for_each_node(node) {
6878 struct mem_cgroup_tree_per_node *rtpn;
6880 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6881 node_online(node) ? node : NUMA_NO_NODE);
6883 rtpn->rb_root = RB_ROOT;
6884 rtpn->rb_rightmost = NULL;
6885 spin_lock_init(&rtpn->lock);
6886 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6889 return 0;
6891 subsys_initcall(mem_cgroup_init);
6893 #ifdef CONFIG_MEMCG_SWAP
6894 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6896 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6898 * The root cgroup cannot be destroyed, so it's refcount must
6899 * always be >= 1.
6901 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6902 VM_BUG_ON(1);
6903 break;
6905 memcg = parent_mem_cgroup(memcg);
6906 if (!memcg)
6907 memcg = root_mem_cgroup;
6909 return memcg;
6913 * mem_cgroup_swapout - transfer a memsw charge to swap
6914 * @page: page whose memsw charge to transfer
6915 * @entry: swap entry to move the charge to
6917 * Transfer the memsw charge of @page to @entry.
6919 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6921 struct mem_cgroup *memcg, *swap_memcg;
6922 unsigned int nr_entries;
6923 unsigned short oldid;
6925 VM_BUG_ON_PAGE(PageLRU(page), page);
6926 VM_BUG_ON_PAGE(page_count(page), page);
6928 if (!do_memsw_account())
6929 return;
6931 memcg = page->mem_cgroup;
6933 /* Readahead page, never charged */
6934 if (!memcg)
6935 return;
6938 * In case the memcg owning these pages has been offlined and doesn't
6939 * have an ID allocated to it anymore, charge the closest online
6940 * ancestor for the swap instead and transfer the memory+swap charge.
6942 swap_memcg = mem_cgroup_id_get_online(memcg);
6943 nr_entries = hpage_nr_pages(page);
6944 /* Get references for the tail pages, too */
6945 if (nr_entries > 1)
6946 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6947 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6948 nr_entries);
6949 VM_BUG_ON_PAGE(oldid, page);
6950 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6952 page->mem_cgroup = NULL;
6954 if (!mem_cgroup_is_root(memcg))
6955 page_counter_uncharge(&memcg->memory, nr_entries);
6957 if (memcg != swap_memcg) {
6958 if (!mem_cgroup_is_root(swap_memcg))
6959 page_counter_charge(&swap_memcg->memsw, nr_entries);
6960 page_counter_uncharge(&memcg->memsw, nr_entries);
6964 * Interrupts should be disabled here because the caller holds the
6965 * i_pages lock which is taken with interrupts-off. It is
6966 * important here to have the interrupts disabled because it is the
6967 * only synchronisation we have for updating the per-CPU variables.
6969 VM_BUG_ON(!irqs_disabled());
6970 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6971 -nr_entries);
6972 memcg_check_events(memcg, page);
6974 if (!mem_cgroup_is_root(memcg))
6975 css_put_many(&memcg->css, nr_entries);
6979 * mem_cgroup_try_charge_swap - try charging swap space for a page
6980 * @page: page being added to swap
6981 * @entry: swap entry to charge
6983 * Try to charge @page's memcg for the swap space at @entry.
6985 * Returns 0 on success, -ENOMEM on failure.
6987 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6989 unsigned int nr_pages = hpage_nr_pages(page);
6990 struct page_counter *counter;
6991 struct mem_cgroup *memcg;
6992 unsigned short oldid;
6994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6995 return 0;
6997 memcg = page->mem_cgroup;
6999 /* Readahead page, never charged */
7000 if (!memcg)
7001 return 0;
7003 if (!entry.val) {
7004 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7005 return 0;
7008 memcg = mem_cgroup_id_get_online(memcg);
7010 if (!mem_cgroup_is_root(memcg) &&
7011 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7012 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7013 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7014 mem_cgroup_id_put(memcg);
7015 return -ENOMEM;
7018 /* Get references for the tail pages, too */
7019 if (nr_pages > 1)
7020 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7021 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7022 VM_BUG_ON_PAGE(oldid, page);
7023 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7025 return 0;
7029 * mem_cgroup_uncharge_swap - uncharge swap space
7030 * @entry: swap entry to uncharge
7031 * @nr_pages: the amount of swap space to uncharge
7033 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7035 struct mem_cgroup *memcg;
7036 unsigned short id;
7038 if (!do_swap_account)
7039 return;
7041 id = swap_cgroup_record(entry, 0, nr_pages);
7042 rcu_read_lock();
7043 memcg = mem_cgroup_from_id(id);
7044 if (memcg) {
7045 if (!mem_cgroup_is_root(memcg)) {
7046 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7047 page_counter_uncharge(&memcg->swap, nr_pages);
7048 else
7049 page_counter_uncharge(&memcg->memsw, nr_pages);
7051 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7052 mem_cgroup_id_put_many(memcg, nr_pages);
7054 rcu_read_unlock();
7057 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7059 long nr_swap_pages = get_nr_swap_pages();
7061 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7062 return nr_swap_pages;
7063 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7064 nr_swap_pages = min_t(long, nr_swap_pages,
7065 READ_ONCE(memcg->swap.max) -
7066 page_counter_read(&memcg->swap));
7067 return nr_swap_pages;
7070 bool mem_cgroup_swap_full(struct page *page)
7072 struct mem_cgroup *memcg;
7074 VM_BUG_ON_PAGE(!PageLocked(page), page);
7076 if (vm_swap_full())
7077 return true;
7078 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7079 return false;
7081 memcg = page->mem_cgroup;
7082 if (!memcg)
7083 return false;
7085 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7086 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7087 return true;
7089 return false;
7092 /* for remember boot option*/
7093 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7094 static int really_do_swap_account __initdata = 1;
7095 #else
7096 static int really_do_swap_account __initdata;
7097 #endif
7099 static int __init enable_swap_account(char *s)
7101 if (!strcmp(s, "1"))
7102 really_do_swap_account = 1;
7103 else if (!strcmp(s, "0"))
7104 really_do_swap_account = 0;
7105 return 1;
7107 __setup("swapaccount=", enable_swap_account);
7109 static u64 swap_current_read(struct cgroup_subsys_state *css,
7110 struct cftype *cft)
7112 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7114 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7117 static int swap_max_show(struct seq_file *m, void *v)
7119 return seq_puts_memcg_tunable(m,
7120 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7123 static ssize_t swap_max_write(struct kernfs_open_file *of,
7124 char *buf, size_t nbytes, loff_t off)
7126 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7127 unsigned long max;
7128 int err;
7130 buf = strstrip(buf);
7131 err = page_counter_memparse(buf, "max", &max);
7132 if (err)
7133 return err;
7135 xchg(&memcg->swap.max, max);
7137 return nbytes;
7140 static int swap_events_show(struct seq_file *m, void *v)
7142 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7144 seq_printf(m, "max %lu\n",
7145 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7146 seq_printf(m, "fail %lu\n",
7147 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7149 return 0;
7152 static struct cftype swap_files[] = {
7154 .name = "swap.current",
7155 .flags = CFTYPE_NOT_ON_ROOT,
7156 .read_u64 = swap_current_read,
7159 .name = "swap.max",
7160 .flags = CFTYPE_NOT_ON_ROOT,
7161 .seq_show = swap_max_show,
7162 .write = swap_max_write,
7165 .name = "swap.events",
7166 .flags = CFTYPE_NOT_ON_ROOT,
7167 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7168 .seq_show = swap_events_show,
7170 { } /* terminate */
7173 static struct cftype memsw_cgroup_files[] = {
7175 .name = "memsw.usage_in_bytes",
7176 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7177 .read_u64 = mem_cgroup_read_u64,
7180 .name = "memsw.max_usage_in_bytes",
7181 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7182 .write = mem_cgroup_reset,
7183 .read_u64 = mem_cgroup_read_u64,
7186 .name = "memsw.limit_in_bytes",
7187 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7188 .write = mem_cgroup_write,
7189 .read_u64 = mem_cgroup_read_u64,
7192 .name = "memsw.failcnt",
7193 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7194 .write = mem_cgroup_reset,
7195 .read_u64 = mem_cgroup_read_u64,
7197 { }, /* terminate */
7200 static int __init mem_cgroup_swap_init(void)
7202 if (!mem_cgroup_disabled() && really_do_swap_account) {
7203 do_swap_account = 1;
7204 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7205 swap_files));
7206 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7207 memsw_cgroup_files));
7209 return 0;
7211 subsys_initcall(mem_cgroup_swap_init);
7213 #endif /* CONFIG_MEMCG_SWAP */