arm64: restore bogomips information in /proc/cpuinfo
[linux/fpc-iii.git] / mm / mempolicy.c
blob936866e72b1d9c28522aca317be83d2d2caff0fd
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
99 #include "internal.h"
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
113 * run-time system-wide default policy => local allocation
115 static struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
123 static struct mempolicy *get_task_policy(struct task_struct *p)
125 struct mempolicy *pol = p->mempolicy;
127 if (!pol) {
128 int node = numa_node_id();
130 if (node != NUMA_NO_NODE) {
131 pol = &preferred_node_policy[node];
133 * preferred_node_policy is not initialised early in
134 * boot
136 if (!pol->mode)
137 pol = NULL;
141 return pol;
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
164 /* Check that the nodemask contains at least one populated zone */
165 static int is_valid_nodemask(const nodemask_t *nodemask)
167 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
170 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
172 return pol->flags & MPOL_MODE_FLAGS;
175 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
176 const nodemask_t *rel)
178 nodemask_t tmp;
179 nodes_fold(tmp, *orig, nodes_weight(*rel));
180 nodes_onto(*ret, tmp, *rel);
183 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
185 if (nodes_empty(*nodes))
186 return -EINVAL;
187 pol->v.nodes = *nodes;
188 return 0;
191 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
193 if (!nodes)
194 pol->flags |= MPOL_F_LOCAL; /* local allocation */
195 else if (nodes_empty(*nodes))
196 return -EINVAL; /* no allowed nodes */
197 else
198 pol->v.preferred_node = first_node(*nodes);
199 return 0;
202 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
204 if (!is_valid_nodemask(nodes))
205 return -EINVAL;
206 pol->v.nodes = *nodes;
207 return 0;
211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
212 * any, for the new policy. mpol_new() has already validated the nodes
213 * parameter with respect to the policy mode and flags. But, we need to
214 * handle an empty nodemask with MPOL_PREFERRED here.
216 * Must be called holding task's alloc_lock to protect task's mems_allowed
217 * and mempolicy. May also be called holding the mmap_semaphore for write.
219 static int mpol_set_nodemask(struct mempolicy *pol,
220 const nodemask_t *nodes, struct nodemask_scratch *nsc)
222 int ret;
224 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
225 if (pol == NULL)
226 return 0;
227 /* Check N_MEMORY */
228 nodes_and(nsc->mask1,
229 cpuset_current_mems_allowed, node_states[N_MEMORY]);
231 VM_BUG_ON(!nodes);
232 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
233 nodes = NULL; /* explicit local allocation */
234 else {
235 if (pol->flags & MPOL_F_RELATIVE_NODES)
236 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
237 else
238 nodes_and(nsc->mask2, *nodes, nsc->mask1);
240 if (mpol_store_user_nodemask(pol))
241 pol->w.user_nodemask = *nodes;
242 else
243 pol->w.cpuset_mems_allowed =
244 cpuset_current_mems_allowed;
247 if (nodes)
248 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
249 else
250 ret = mpol_ops[pol->mode].create(pol, NULL);
251 return ret;
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 nodemask_t *nodes)
261 struct mempolicy *policy;
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
269 return NULL;
271 VM_BUG_ON(!nodes);
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
284 } else if (mode == MPOL_LOCAL) {
285 if (!nodes_empty(*nodes))
286 return ERR_PTR(-EINVAL);
287 mode = MPOL_PREFERRED;
288 } else if (nodes_empty(*nodes))
289 return ERR_PTR(-EINVAL);
290 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
291 if (!policy)
292 return ERR_PTR(-ENOMEM);
293 atomic_set(&policy->refcnt, 1);
294 policy->mode = mode;
295 policy->flags = flags;
297 return policy;
300 /* Slow path of a mpol destructor. */
301 void __mpol_put(struct mempolicy *p)
303 if (!atomic_dec_and_test(&p->refcnt))
304 return;
305 kmem_cache_free(policy_cache, p);
308 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
309 enum mpol_rebind_step step)
314 * step:
315 * MPOL_REBIND_ONCE - do rebind work at once
316 * MPOL_REBIND_STEP1 - set all the newly nodes
317 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
320 enum mpol_rebind_step step)
322 nodemask_t tmp;
324 if (pol->flags & MPOL_F_STATIC_NODES)
325 nodes_and(tmp, pol->w.user_nodemask, *nodes);
326 else if (pol->flags & MPOL_F_RELATIVE_NODES)
327 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 else {
330 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
331 * result
333 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
334 nodes_remap(tmp, pol->v.nodes,
335 pol->w.cpuset_mems_allowed, *nodes);
336 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
337 } else if (step == MPOL_REBIND_STEP2) {
338 tmp = pol->w.cpuset_mems_allowed;
339 pol->w.cpuset_mems_allowed = *nodes;
340 } else
341 BUG();
344 if (nodes_empty(tmp))
345 tmp = *nodes;
347 if (step == MPOL_REBIND_STEP1)
348 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
349 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
350 pol->v.nodes = tmp;
351 else
352 BUG();
354 if (!node_isset(current->il_next, tmp)) {
355 current->il_next = next_node(current->il_next, tmp);
356 if (current->il_next >= MAX_NUMNODES)
357 current->il_next = first_node(tmp);
358 if (current->il_next >= MAX_NUMNODES)
359 current->il_next = numa_node_id();
363 static void mpol_rebind_preferred(struct mempolicy *pol,
364 const nodemask_t *nodes,
365 enum mpol_rebind_step step)
367 nodemask_t tmp;
369 if (pol->flags & MPOL_F_STATIC_NODES) {
370 int node = first_node(pol->w.user_nodemask);
372 if (node_isset(node, *nodes)) {
373 pol->v.preferred_node = node;
374 pol->flags &= ~MPOL_F_LOCAL;
375 } else
376 pol->flags |= MPOL_F_LOCAL;
377 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
378 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
379 pol->v.preferred_node = first_node(tmp);
380 } else if (!(pol->flags & MPOL_F_LOCAL)) {
381 pol->v.preferred_node = node_remap(pol->v.preferred_node,
382 pol->w.cpuset_mems_allowed,
383 *nodes);
384 pol->w.cpuset_mems_allowed = *nodes;
389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
391 * If read-side task has no lock to protect task->mempolicy, write-side
392 * task will rebind the task->mempolicy by two step. The first step is
393 * setting all the newly nodes, and the second step is cleaning all the
394 * disallowed nodes. In this way, we can avoid finding no node to alloc
395 * page.
396 * If we have a lock to protect task->mempolicy in read-side, we do
397 * rebind directly.
399 * step:
400 * MPOL_REBIND_ONCE - do rebind work at once
401 * MPOL_REBIND_STEP1 - set all the newly nodes
402 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
404 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
405 enum mpol_rebind_step step)
407 if (!pol)
408 return;
409 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
410 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
411 return;
413 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
414 return;
416 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
417 BUG();
419 if (step == MPOL_REBIND_STEP1)
420 pol->flags |= MPOL_F_REBINDING;
421 else if (step == MPOL_REBIND_STEP2)
422 pol->flags &= ~MPOL_F_REBINDING;
423 else if (step >= MPOL_REBIND_NSTEP)
424 BUG();
426 mpol_ops[pol->mode].rebind(pol, newmask, step);
430 * Wrapper for mpol_rebind_policy() that just requires task
431 * pointer, and updates task mempolicy.
433 * Called with task's alloc_lock held.
436 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
437 enum mpol_rebind_step step)
439 mpol_rebind_policy(tsk->mempolicy, new, step);
443 * Rebind each vma in mm to new nodemask.
445 * Call holding a reference to mm. Takes mm->mmap_sem during call.
448 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
450 struct vm_area_struct *vma;
452 down_write(&mm->mmap_sem);
453 for (vma = mm->mmap; vma; vma = vma->vm_next)
454 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
455 up_write(&mm->mmap_sem);
458 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
459 [MPOL_DEFAULT] = {
460 .rebind = mpol_rebind_default,
462 [MPOL_INTERLEAVE] = {
463 .create = mpol_new_interleave,
464 .rebind = mpol_rebind_nodemask,
466 [MPOL_PREFERRED] = {
467 .create = mpol_new_preferred,
468 .rebind = mpol_rebind_preferred,
470 [MPOL_BIND] = {
471 .create = mpol_new_bind,
472 .rebind = mpol_rebind_nodemask,
476 static void migrate_page_add(struct page *page, struct list_head *pagelist,
477 unsigned long flags);
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
483 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
484 unsigned long addr, unsigned long end,
485 const nodemask_t *nodes, unsigned long flags,
486 void *private)
488 pte_t *orig_pte;
489 pte_t *pte;
490 spinlock_t *ptl;
492 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
493 do {
494 struct page *page;
495 int nid;
497 if (!pte_present(*pte))
498 continue;
499 page = vm_normal_page(vma, addr, *pte);
500 if (!page)
501 continue;
503 * vm_normal_page() filters out zero pages, but there might
504 * still be PageReserved pages to skip, perhaps in a VDSO.
506 if (PageReserved(page))
507 continue;
508 nid = page_to_nid(page);
509 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
510 continue;
512 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
513 migrate_page_add(page, private, flags);
514 else
515 break;
516 } while (pte++, addr += PAGE_SIZE, addr != end);
517 pte_unmap_unlock(orig_pte, ptl);
518 return addr != end;
521 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
522 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
523 void *private)
525 #ifdef CONFIG_HUGETLB_PAGE
526 int nid;
527 struct page *page;
528 spinlock_t *ptl;
529 pte_t entry;
531 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
532 entry = huge_ptep_get((pte_t *)pmd);
533 if (!pte_present(entry))
534 goto unlock;
535 page = pte_page(entry);
536 nid = page_to_nid(page);
537 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
538 goto unlock;
539 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
540 if (flags & (MPOL_MF_MOVE_ALL) ||
541 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
542 isolate_huge_page(page, private);
543 unlock:
544 spin_unlock(ptl);
545 #else
546 BUG();
547 #endif
550 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
551 unsigned long addr, unsigned long end,
552 const nodemask_t *nodes, unsigned long flags,
553 void *private)
555 pmd_t *pmd;
556 unsigned long next;
558 pmd = pmd_offset(pud, addr);
559 do {
560 next = pmd_addr_end(addr, end);
561 if (!pmd_present(*pmd))
562 continue;
563 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
564 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
565 flags, private);
566 continue;
568 split_huge_page_pmd(vma, addr, pmd);
569 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
570 continue;
571 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
572 flags, private))
573 return -EIO;
574 } while (pmd++, addr = next, addr != end);
575 return 0;
578 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
579 unsigned long addr, unsigned long end,
580 const nodemask_t *nodes, unsigned long flags,
581 void *private)
583 pud_t *pud;
584 unsigned long next;
586 pud = pud_offset(pgd, addr);
587 do {
588 next = pud_addr_end(addr, end);
589 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
590 continue;
591 if (pud_none_or_clear_bad(pud))
592 continue;
593 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
594 flags, private))
595 return -EIO;
596 } while (pud++, addr = next, addr != end);
597 return 0;
600 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
601 unsigned long addr, unsigned long end,
602 const nodemask_t *nodes, unsigned long flags,
603 void *private)
605 pgd_t *pgd;
606 unsigned long next;
608 pgd = pgd_offset(vma->vm_mm, addr);
609 do {
610 next = pgd_addr_end(addr, end);
611 if (pgd_none_or_clear_bad(pgd))
612 continue;
613 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
614 flags, private))
615 return -EIO;
616 } while (pgd++, addr = next, addr != end);
617 return 0;
620 #ifdef CONFIG_NUMA_BALANCING
622 * This is used to mark a range of virtual addresses to be inaccessible.
623 * These are later cleared by a NUMA hinting fault. Depending on these
624 * faults, pages may be migrated for better NUMA placement.
626 * This is assuming that NUMA faults are handled using PROT_NONE. If
627 * an architecture makes a different choice, it will need further
628 * changes to the core.
630 unsigned long change_prot_numa(struct vm_area_struct *vma,
631 unsigned long addr, unsigned long end)
633 int nr_updated;
635 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
636 if (nr_updated)
637 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
639 return nr_updated;
641 #else
642 static unsigned long change_prot_numa(struct vm_area_struct *vma,
643 unsigned long addr, unsigned long end)
645 return 0;
647 #endif /* CONFIG_NUMA_BALANCING */
650 * Walk through page tables and collect pages to be migrated.
652 * If pages found in a given range are on a set of nodes (determined by
653 * @nodes and @flags,) it's isolated and queued to the pagelist which is
654 * passed via @private.)
656 static int
657 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
658 const nodemask_t *nodes, unsigned long flags, void *private)
660 int err = 0;
661 struct vm_area_struct *vma, *prev;
663 vma = find_vma(mm, start);
664 if (!vma)
665 return -EFAULT;
666 prev = NULL;
667 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
668 unsigned long endvma = vma->vm_end;
670 if (endvma > end)
671 endvma = end;
672 if (vma->vm_start > start)
673 start = vma->vm_start;
675 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
676 if (!vma->vm_next && vma->vm_end < end)
677 return -EFAULT;
678 if (prev && prev->vm_end < vma->vm_start)
679 return -EFAULT;
682 if (flags & MPOL_MF_LAZY) {
683 change_prot_numa(vma, start, endvma);
684 goto next;
687 if ((flags & MPOL_MF_STRICT) ||
688 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
689 vma_migratable(vma))) {
691 err = queue_pages_pgd_range(vma, start, endvma, nodes,
692 flags, private);
693 if (err)
694 break;
696 next:
697 prev = vma;
699 return err;
703 * Apply policy to a single VMA
704 * This must be called with the mmap_sem held for writing.
706 static int vma_replace_policy(struct vm_area_struct *vma,
707 struct mempolicy *pol)
709 int err;
710 struct mempolicy *old;
711 struct mempolicy *new;
713 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
714 vma->vm_start, vma->vm_end, vma->vm_pgoff,
715 vma->vm_ops, vma->vm_file,
716 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
718 new = mpol_dup(pol);
719 if (IS_ERR(new))
720 return PTR_ERR(new);
722 if (vma->vm_ops && vma->vm_ops->set_policy) {
723 err = vma->vm_ops->set_policy(vma, new);
724 if (err)
725 goto err_out;
728 old = vma->vm_policy;
729 vma->vm_policy = new; /* protected by mmap_sem */
730 mpol_put(old);
732 return 0;
733 err_out:
734 mpol_put(new);
735 return err;
738 /* Step 2: apply policy to a range and do splits. */
739 static int mbind_range(struct mm_struct *mm, unsigned long start,
740 unsigned long end, struct mempolicy *new_pol)
742 struct vm_area_struct *next;
743 struct vm_area_struct *prev;
744 struct vm_area_struct *vma;
745 int err = 0;
746 pgoff_t pgoff;
747 unsigned long vmstart;
748 unsigned long vmend;
750 vma = find_vma(mm, start);
751 if (!vma || vma->vm_start > start)
752 return -EFAULT;
754 prev = vma->vm_prev;
755 if (start > vma->vm_start)
756 prev = vma;
758 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
759 next = vma->vm_next;
760 vmstart = max(start, vma->vm_start);
761 vmend = min(end, vma->vm_end);
763 if (mpol_equal(vma_policy(vma), new_pol))
764 continue;
766 pgoff = vma->vm_pgoff +
767 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
768 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
769 vma->anon_vma, vma->vm_file, pgoff,
770 new_pol);
771 if (prev) {
772 vma = prev;
773 next = vma->vm_next;
774 if (mpol_equal(vma_policy(vma), new_pol))
775 continue;
776 /* vma_merge() joined vma && vma->next, case 8 */
777 goto replace;
779 if (vma->vm_start != vmstart) {
780 err = split_vma(vma->vm_mm, vma, vmstart, 1);
781 if (err)
782 goto out;
784 if (vma->vm_end != vmend) {
785 err = split_vma(vma->vm_mm, vma, vmend, 0);
786 if (err)
787 goto out;
789 replace:
790 err = vma_replace_policy(vma, new_pol);
791 if (err)
792 goto out;
795 out:
796 return err;
800 * Update task->flags PF_MEMPOLICY bit: set iff non-default
801 * mempolicy. Allows more rapid checking of this (combined perhaps
802 * with other PF_* flag bits) on memory allocation hot code paths.
804 * If called from outside this file, the task 'p' should -only- be
805 * a newly forked child not yet visible on the task list, because
806 * manipulating the task flags of a visible task is not safe.
808 * The above limitation is why this routine has the funny name
809 * mpol_fix_fork_child_flag().
811 * It is also safe to call this with a task pointer of current,
812 * which the static wrapper mpol_set_task_struct_flag() does,
813 * for use within this file.
816 void mpol_fix_fork_child_flag(struct task_struct *p)
818 if (p->mempolicy)
819 p->flags |= PF_MEMPOLICY;
820 else
821 p->flags &= ~PF_MEMPOLICY;
824 static void mpol_set_task_struct_flag(void)
826 mpol_fix_fork_child_flag(current);
829 /* Set the process memory policy */
830 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
831 nodemask_t *nodes)
833 struct mempolicy *new, *old;
834 struct mm_struct *mm = current->mm;
835 NODEMASK_SCRATCH(scratch);
836 int ret;
838 if (!scratch)
839 return -ENOMEM;
841 new = mpol_new(mode, flags, nodes);
842 if (IS_ERR(new)) {
843 ret = PTR_ERR(new);
844 goto out;
847 * prevent changing our mempolicy while show_numa_maps()
848 * is using it.
849 * Note: do_set_mempolicy() can be called at init time
850 * with no 'mm'.
852 if (mm)
853 down_write(&mm->mmap_sem);
854 task_lock(current);
855 ret = mpol_set_nodemask(new, nodes, scratch);
856 if (ret) {
857 task_unlock(current);
858 if (mm)
859 up_write(&mm->mmap_sem);
860 mpol_put(new);
861 goto out;
863 old = current->mempolicy;
864 current->mempolicy = new;
865 mpol_set_task_struct_flag();
866 if (new && new->mode == MPOL_INTERLEAVE &&
867 nodes_weight(new->v.nodes))
868 current->il_next = first_node(new->v.nodes);
869 task_unlock(current);
870 if (mm)
871 up_write(&mm->mmap_sem);
873 mpol_put(old);
874 ret = 0;
875 out:
876 NODEMASK_SCRATCH_FREE(scratch);
877 return ret;
881 * Return nodemask for policy for get_mempolicy() query
883 * Called with task's alloc_lock held
885 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
887 nodes_clear(*nodes);
888 if (p == &default_policy)
889 return;
891 switch (p->mode) {
892 case MPOL_BIND:
893 /* Fall through */
894 case MPOL_INTERLEAVE:
895 *nodes = p->v.nodes;
896 break;
897 case MPOL_PREFERRED:
898 if (!(p->flags & MPOL_F_LOCAL))
899 node_set(p->v.preferred_node, *nodes);
900 /* else return empty node mask for local allocation */
901 break;
902 default:
903 BUG();
907 static int lookup_node(struct mm_struct *mm, unsigned long addr)
909 struct page *p;
910 int err;
912 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
913 if (err >= 0) {
914 err = page_to_nid(p);
915 put_page(p);
917 return err;
920 /* Retrieve NUMA policy */
921 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
922 unsigned long addr, unsigned long flags)
924 int err;
925 struct mm_struct *mm = current->mm;
926 struct vm_area_struct *vma = NULL;
927 struct mempolicy *pol = current->mempolicy;
929 if (flags &
930 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
931 return -EINVAL;
933 if (flags & MPOL_F_MEMS_ALLOWED) {
934 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
935 return -EINVAL;
936 *policy = 0; /* just so it's initialized */
937 task_lock(current);
938 *nmask = cpuset_current_mems_allowed;
939 task_unlock(current);
940 return 0;
943 if (flags & MPOL_F_ADDR) {
945 * Do NOT fall back to task policy if the
946 * vma/shared policy at addr is NULL. We
947 * want to return MPOL_DEFAULT in this case.
949 down_read(&mm->mmap_sem);
950 vma = find_vma_intersection(mm, addr, addr+1);
951 if (!vma) {
952 up_read(&mm->mmap_sem);
953 return -EFAULT;
955 if (vma->vm_ops && vma->vm_ops->get_policy)
956 pol = vma->vm_ops->get_policy(vma, addr);
957 else
958 pol = vma->vm_policy;
959 } else if (addr)
960 return -EINVAL;
962 if (!pol)
963 pol = &default_policy; /* indicates default behavior */
965 if (flags & MPOL_F_NODE) {
966 if (flags & MPOL_F_ADDR) {
967 err = lookup_node(mm, addr);
968 if (err < 0)
969 goto out;
970 *policy = err;
971 } else if (pol == current->mempolicy &&
972 pol->mode == MPOL_INTERLEAVE) {
973 *policy = current->il_next;
974 } else {
975 err = -EINVAL;
976 goto out;
978 } else {
979 *policy = pol == &default_policy ? MPOL_DEFAULT :
980 pol->mode;
982 * Internal mempolicy flags must be masked off before exposing
983 * the policy to userspace.
985 *policy |= (pol->flags & MPOL_MODE_FLAGS);
988 if (vma) {
989 up_read(&current->mm->mmap_sem);
990 vma = NULL;
993 err = 0;
994 if (nmask) {
995 if (mpol_store_user_nodemask(pol)) {
996 *nmask = pol->w.user_nodemask;
997 } else {
998 task_lock(current);
999 get_policy_nodemask(pol, nmask);
1000 task_unlock(current);
1004 out:
1005 mpol_cond_put(pol);
1006 if (vma)
1007 up_read(&current->mm->mmap_sem);
1008 return err;
1011 #ifdef CONFIG_MIGRATION
1013 * page migration
1015 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1016 unsigned long flags)
1019 * Avoid migrating a page that is shared with others.
1021 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
1022 if (!isolate_lru_page(page)) {
1023 list_add_tail(&page->lru, pagelist);
1024 inc_zone_page_state(page, NR_ISOLATED_ANON +
1025 page_is_file_cache(page));
1030 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1032 if (PageHuge(page))
1033 return alloc_huge_page_node(page_hstate(compound_head(page)),
1034 node);
1035 else
1036 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1040 * Migrate pages from one node to a target node.
1041 * Returns error or the number of pages not migrated.
1043 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1044 int flags)
1046 nodemask_t nmask;
1047 LIST_HEAD(pagelist);
1048 int err = 0;
1050 nodes_clear(nmask);
1051 node_set(source, nmask);
1054 * This does not "check" the range but isolates all pages that
1055 * need migration. Between passing in the full user address
1056 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1058 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1059 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1060 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1062 if (!list_empty(&pagelist)) {
1063 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1064 MIGRATE_SYNC, MR_SYSCALL);
1065 if (err)
1066 putback_movable_pages(&pagelist);
1069 return err;
1073 * Move pages between the two nodesets so as to preserve the physical
1074 * layout as much as possible.
1076 * Returns the number of page that could not be moved.
1078 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1079 const nodemask_t *to, int flags)
1081 int busy = 0;
1082 int err;
1083 nodemask_t tmp;
1085 err = migrate_prep();
1086 if (err)
1087 return err;
1089 down_read(&mm->mmap_sem);
1091 err = migrate_vmas(mm, from, to, flags);
1092 if (err)
1093 goto out;
1096 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1097 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1098 * bit in 'tmp', and return that <source, dest> pair for migration.
1099 * The pair of nodemasks 'to' and 'from' define the map.
1101 * If no pair of bits is found that way, fallback to picking some
1102 * pair of 'source' and 'dest' bits that are not the same. If the
1103 * 'source' and 'dest' bits are the same, this represents a node
1104 * that will be migrating to itself, so no pages need move.
1106 * If no bits are left in 'tmp', or if all remaining bits left
1107 * in 'tmp' correspond to the same bit in 'to', return false
1108 * (nothing left to migrate).
1110 * This lets us pick a pair of nodes to migrate between, such that
1111 * if possible the dest node is not already occupied by some other
1112 * source node, minimizing the risk of overloading the memory on a
1113 * node that would happen if we migrated incoming memory to a node
1114 * before migrating outgoing memory source that same node.
1116 * A single scan of tmp is sufficient. As we go, we remember the
1117 * most recent <s, d> pair that moved (s != d). If we find a pair
1118 * that not only moved, but what's better, moved to an empty slot
1119 * (d is not set in tmp), then we break out then, with that pair.
1120 * Otherwise when we finish scanning from_tmp, we at least have the
1121 * most recent <s, d> pair that moved. If we get all the way through
1122 * the scan of tmp without finding any node that moved, much less
1123 * moved to an empty node, then there is nothing left worth migrating.
1126 tmp = *from;
1127 while (!nodes_empty(tmp)) {
1128 int s,d;
1129 int source = NUMA_NO_NODE;
1130 int dest = 0;
1132 for_each_node_mask(s, tmp) {
1135 * do_migrate_pages() tries to maintain the relative
1136 * node relationship of the pages established between
1137 * threads and memory areas.
1139 * However if the number of source nodes is not equal to
1140 * the number of destination nodes we can not preserve
1141 * this node relative relationship. In that case, skip
1142 * copying memory from a node that is in the destination
1143 * mask.
1145 * Example: [2,3,4] -> [3,4,5] moves everything.
1146 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1149 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1150 (node_isset(s, *to)))
1151 continue;
1153 d = node_remap(s, *from, *to);
1154 if (s == d)
1155 continue;
1157 source = s; /* Node moved. Memorize */
1158 dest = d;
1160 /* dest not in remaining from nodes? */
1161 if (!node_isset(dest, tmp))
1162 break;
1164 if (source == NUMA_NO_NODE)
1165 break;
1167 node_clear(source, tmp);
1168 err = migrate_to_node(mm, source, dest, flags);
1169 if (err > 0)
1170 busy += err;
1171 if (err < 0)
1172 break;
1174 out:
1175 up_read(&mm->mmap_sem);
1176 if (err < 0)
1177 return err;
1178 return busy;
1183 * Allocate a new page for page migration based on vma policy.
1184 * Start by assuming the page is mapped by the same vma as contains @start.
1185 * Search forward from there, if not. N.B., this assumes that the
1186 * list of pages handed to migrate_pages()--which is how we get here--
1187 * is in virtual address order.
1189 static struct page *new_page(struct page *page, unsigned long start, int **x)
1191 struct vm_area_struct *vma;
1192 unsigned long uninitialized_var(address);
1194 vma = find_vma(current->mm, start);
1195 while (vma) {
1196 address = page_address_in_vma(page, vma);
1197 if (address != -EFAULT)
1198 break;
1199 vma = vma->vm_next;
1202 if (PageHuge(page)) {
1203 BUG_ON(!vma);
1204 return alloc_huge_page_noerr(vma, address, 1);
1207 * if !vma, alloc_page_vma() will use task or system default policy
1209 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1211 #else
1213 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1214 unsigned long flags)
1218 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1219 const nodemask_t *to, int flags)
1221 return -ENOSYS;
1224 static struct page *new_page(struct page *page, unsigned long start, int **x)
1226 return NULL;
1228 #endif
1230 static long do_mbind(unsigned long start, unsigned long len,
1231 unsigned short mode, unsigned short mode_flags,
1232 nodemask_t *nmask, unsigned long flags)
1234 struct mm_struct *mm = current->mm;
1235 struct mempolicy *new;
1236 unsigned long end;
1237 int err;
1238 LIST_HEAD(pagelist);
1240 if (flags & ~(unsigned long)MPOL_MF_VALID)
1241 return -EINVAL;
1242 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1243 return -EPERM;
1245 if (start & ~PAGE_MASK)
1246 return -EINVAL;
1248 if (mode == MPOL_DEFAULT)
1249 flags &= ~MPOL_MF_STRICT;
1251 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1252 end = start + len;
1254 if (end < start)
1255 return -EINVAL;
1256 if (end == start)
1257 return 0;
1259 new = mpol_new(mode, mode_flags, nmask);
1260 if (IS_ERR(new))
1261 return PTR_ERR(new);
1263 if (flags & MPOL_MF_LAZY)
1264 new->flags |= MPOL_F_MOF;
1267 * If we are using the default policy then operation
1268 * on discontinuous address spaces is okay after all
1270 if (!new)
1271 flags |= MPOL_MF_DISCONTIG_OK;
1273 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1274 start, start + len, mode, mode_flags,
1275 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1277 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1279 err = migrate_prep();
1280 if (err)
1281 goto mpol_out;
1284 NODEMASK_SCRATCH(scratch);
1285 if (scratch) {
1286 down_write(&mm->mmap_sem);
1287 task_lock(current);
1288 err = mpol_set_nodemask(new, nmask, scratch);
1289 task_unlock(current);
1290 if (err)
1291 up_write(&mm->mmap_sem);
1292 } else
1293 err = -ENOMEM;
1294 NODEMASK_SCRATCH_FREE(scratch);
1296 if (err)
1297 goto mpol_out;
1299 err = queue_pages_range(mm, start, end, nmask,
1300 flags | MPOL_MF_INVERT, &pagelist);
1301 if (!err)
1302 err = mbind_range(mm, start, end, new);
1304 if (!err) {
1305 int nr_failed = 0;
1307 if (!list_empty(&pagelist)) {
1308 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1309 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1310 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1311 if (nr_failed)
1312 putback_movable_pages(&pagelist);
1315 if (nr_failed && (flags & MPOL_MF_STRICT))
1316 err = -EIO;
1317 } else
1318 putback_movable_pages(&pagelist);
1320 up_write(&mm->mmap_sem);
1321 mpol_out:
1322 mpol_put(new);
1323 return err;
1327 * User space interface with variable sized bitmaps for nodelists.
1330 /* Copy a node mask from user space. */
1331 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1332 unsigned long maxnode)
1334 unsigned long k;
1335 unsigned long nlongs;
1336 unsigned long endmask;
1338 --maxnode;
1339 nodes_clear(*nodes);
1340 if (maxnode == 0 || !nmask)
1341 return 0;
1342 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1343 return -EINVAL;
1345 nlongs = BITS_TO_LONGS(maxnode);
1346 if ((maxnode % BITS_PER_LONG) == 0)
1347 endmask = ~0UL;
1348 else
1349 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1351 /* When the user specified more nodes than supported just check
1352 if the non supported part is all zero. */
1353 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1354 if (nlongs > PAGE_SIZE/sizeof(long))
1355 return -EINVAL;
1356 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1357 unsigned long t;
1358 if (get_user(t, nmask + k))
1359 return -EFAULT;
1360 if (k == nlongs - 1) {
1361 if (t & endmask)
1362 return -EINVAL;
1363 } else if (t)
1364 return -EINVAL;
1366 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1367 endmask = ~0UL;
1370 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1371 return -EFAULT;
1372 nodes_addr(*nodes)[nlongs-1] &= endmask;
1373 return 0;
1376 /* Copy a kernel node mask to user space */
1377 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1378 nodemask_t *nodes)
1380 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1381 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1383 if (copy > nbytes) {
1384 if (copy > PAGE_SIZE)
1385 return -EINVAL;
1386 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1387 return -EFAULT;
1388 copy = nbytes;
1390 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1393 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1394 unsigned long, mode, unsigned long __user *, nmask,
1395 unsigned long, maxnode, unsigned, flags)
1397 nodemask_t nodes;
1398 int err;
1399 unsigned short mode_flags;
1401 mode_flags = mode & MPOL_MODE_FLAGS;
1402 mode &= ~MPOL_MODE_FLAGS;
1403 if (mode >= MPOL_MAX)
1404 return -EINVAL;
1405 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1406 (mode_flags & MPOL_F_RELATIVE_NODES))
1407 return -EINVAL;
1408 err = get_nodes(&nodes, nmask, maxnode);
1409 if (err)
1410 return err;
1411 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1414 /* Set the process memory policy */
1415 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1416 unsigned long, maxnode)
1418 int err;
1419 nodemask_t nodes;
1420 unsigned short flags;
1422 flags = mode & MPOL_MODE_FLAGS;
1423 mode &= ~MPOL_MODE_FLAGS;
1424 if ((unsigned int)mode >= MPOL_MAX)
1425 return -EINVAL;
1426 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1427 return -EINVAL;
1428 err = get_nodes(&nodes, nmask, maxnode);
1429 if (err)
1430 return err;
1431 return do_set_mempolicy(mode, flags, &nodes);
1434 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1435 const unsigned long __user *, old_nodes,
1436 const unsigned long __user *, new_nodes)
1438 const struct cred *cred = current_cred(), *tcred;
1439 struct mm_struct *mm = NULL;
1440 struct task_struct *task;
1441 nodemask_t task_nodes;
1442 int err;
1443 nodemask_t *old;
1444 nodemask_t *new;
1445 NODEMASK_SCRATCH(scratch);
1447 if (!scratch)
1448 return -ENOMEM;
1450 old = &scratch->mask1;
1451 new = &scratch->mask2;
1453 err = get_nodes(old, old_nodes, maxnode);
1454 if (err)
1455 goto out;
1457 err = get_nodes(new, new_nodes, maxnode);
1458 if (err)
1459 goto out;
1461 /* Find the mm_struct */
1462 rcu_read_lock();
1463 task = pid ? find_task_by_vpid(pid) : current;
1464 if (!task) {
1465 rcu_read_unlock();
1466 err = -ESRCH;
1467 goto out;
1469 get_task_struct(task);
1471 err = -EINVAL;
1474 * Check if this process has the right to modify the specified
1475 * process. The right exists if the process has administrative
1476 * capabilities, superuser privileges or the same
1477 * userid as the target process.
1479 tcred = __task_cred(task);
1480 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1481 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1482 !capable(CAP_SYS_NICE)) {
1483 rcu_read_unlock();
1484 err = -EPERM;
1485 goto out_put;
1487 rcu_read_unlock();
1489 task_nodes = cpuset_mems_allowed(task);
1490 /* Is the user allowed to access the target nodes? */
1491 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1492 err = -EPERM;
1493 goto out_put;
1496 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1497 err = -EINVAL;
1498 goto out_put;
1501 err = security_task_movememory(task);
1502 if (err)
1503 goto out_put;
1505 mm = get_task_mm(task);
1506 put_task_struct(task);
1508 if (!mm) {
1509 err = -EINVAL;
1510 goto out;
1513 err = do_migrate_pages(mm, old, new,
1514 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1516 mmput(mm);
1517 out:
1518 NODEMASK_SCRATCH_FREE(scratch);
1520 return err;
1522 out_put:
1523 put_task_struct(task);
1524 goto out;
1529 /* Retrieve NUMA policy */
1530 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1531 unsigned long __user *, nmask, unsigned long, maxnode,
1532 unsigned long, addr, unsigned long, flags)
1534 int err;
1535 int uninitialized_var(pval);
1536 nodemask_t nodes;
1538 if (nmask != NULL && maxnode < MAX_NUMNODES)
1539 return -EINVAL;
1541 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1543 if (err)
1544 return err;
1546 if (policy && put_user(pval, policy))
1547 return -EFAULT;
1549 if (nmask)
1550 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1552 return err;
1555 #ifdef CONFIG_COMPAT
1557 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1558 compat_ulong_t __user *nmask,
1559 compat_ulong_t maxnode,
1560 compat_ulong_t addr, compat_ulong_t flags)
1562 long err;
1563 unsigned long __user *nm = NULL;
1564 unsigned long nr_bits, alloc_size;
1565 DECLARE_BITMAP(bm, MAX_NUMNODES);
1567 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1568 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1570 if (nmask)
1571 nm = compat_alloc_user_space(alloc_size);
1573 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1575 if (!err && nmask) {
1576 unsigned long copy_size;
1577 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1578 err = copy_from_user(bm, nm, copy_size);
1579 /* ensure entire bitmap is zeroed */
1580 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1581 err |= compat_put_bitmap(nmask, bm, nr_bits);
1584 return err;
1587 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1588 compat_ulong_t maxnode)
1590 long err = 0;
1591 unsigned long __user *nm = NULL;
1592 unsigned long nr_bits, alloc_size;
1593 DECLARE_BITMAP(bm, MAX_NUMNODES);
1595 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1596 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1598 if (nmask) {
1599 err = compat_get_bitmap(bm, nmask, nr_bits);
1600 nm = compat_alloc_user_space(alloc_size);
1601 err |= copy_to_user(nm, bm, alloc_size);
1604 if (err)
1605 return -EFAULT;
1607 return sys_set_mempolicy(mode, nm, nr_bits+1);
1610 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1611 compat_ulong_t mode, compat_ulong_t __user *nmask,
1612 compat_ulong_t maxnode, compat_ulong_t flags)
1614 long err = 0;
1615 unsigned long __user *nm = NULL;
1616 unsigned long nr_bits, alloc_size;
1617 nodemask_t bm;
1619 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1620 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1622 if (nmask) {
1623 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1624 nm = compat_alloc_user_space(alloc_size);
1625 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1628 if (err)
1629 return -EFAULT;
1631 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1634 #endif
1637 * get_vma_policy(@task, @vma, @addr)
1638 * @task - task for fallback if vma policy == default
1639 * @vma - virtual memory area whose policy is sought
1640 * @addr - address in @vma for shared policy lookup
1642 * Returns effective policy for a VMA at specified address.
1643 * Falls back to @task or system default policy, as necessary.
1644 * Current or other task's task mempolicy and non-shared vma policies must be
1645 * protected by task_lock(task) by the caller.
1646 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1647 * count--added by the get_policy() vm_op, as appropriate--to protect against
1648 * freeing by another task. It is the caller's responsibility to free the
1649 * extra reference for shared policies.
1651 struct mempolicy *get_vma_policy(struct task_struct *task,
1652 struct vm_area_struct *vma, unsigned long addr)
1654 struct mempolicy *pol = get_task_policy(task);
1656 if (vma) {
1657 if (vma->vm_ops && vma->vm_ops->get_policy) {
1658 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1659 addr);
1660 if (vpol)
1661 pol = vpol;
1662 } else if (vma->vm_policy) {
1663 pol = vma->vm_policy;
1666 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1667 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1668 * count on these policies which will be dropped by
1669 * mpol_cond_put() later
1671 if (mpol_needs_cond_ref(pol))
1672 mpol_get(pol);
1675 if (!pol)
1676 pol = &default_policy;
1677 return pol;
1680 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1682 struct mempolicy *pol = get_task_policy(task);
1683 if (vma) {
1684 if (vma->vm_ops && vma->vm_ops->get_policy) {
1685 bool ret = false;
1687 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1688 if (pol && (pol->flags & MPOL_F_MOF))
1689 ret = true;
1690 mpol_cond_put(pol);
1692 return ret;
1693 } else if (vma->vm_policy) {
1694 pol = vma->vm_policy;
1698 if (!pol)
1699 return default_policy.flags & MPOL_F_MOF;
1701 return pol->flags & MPOL_F_MOF;
1704 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1706 enum zone_type dynamic_policy_zone = policy_zone;
1708 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1711 * if policy->v.nodes has movable memory only,
1712 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1714 * policy->v.nodes is intersect with node_states[N_MEMORY].
1715 * so if the following test faile, it implies
1716 * policy->v.nodes has movable memory only.
1718 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1719 dynamic_policy_zone = ZONE_MOVABLE;
1721 return zone >= dynamic_policy_zone;
1725 * Return a nodemask representing a mempolicy for filtering nodes for
1726 * page allocation
1728 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1730 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1731 if (unlikely(policy->mode == MPOL_BIND) &&
1732 apply_policy_zone(policy, gfp_zone(gfp)) &&
1733 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1734 return &policy->v.nodes;
1736 return NULL;
1739 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1740 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1741 int nd)
1743 switch (policy->mode) {
1744 case MPOL_PREFERRED:
1745 if (!(policy->flags & MPOL_F_LOCAL))
1746 nd = policy->v.preferred_node;
1747 break;
1748 case MPOL_BIND:
1750 * Normally, MPOL_BIND allocations are node-local within the
1751 * allowed nodemask. However, if __GFP_THISNODE is set and the
1752 * current node isn't part of the mask, we use the zonelist for
1753 * the first node in the mask instead.
1755 if (unlikely(gfp & __GFP_THISNODE) &&
1756 unlikely(!node_isset(nd, policy->v.nodes)))
1757 nd = first_node(policy->v.nodes);
1758 break;
1759 default:
1760 BUG();
1762 return node_zonelist(nd, gfp);
1765 /* Do dynamic interleaving for a process */
1766 static unsigned interleave_nodes(struct mempolicy *policy)
1768 unsigned nid, next;
1769 struct task_struct *me = current;
1771 nid = me->il_next;
1772 next = next_node(nid, policy->v.nodes);
1773 if (next >= MAX_NUMNODES)
1774 next = first_node(policy->v.nodes);
1775 if (next < MAX_NUMNODES)
1776 me->il_next = next;
1777 return nid;
1781 * Depending on the memory policy provide a node from which to allocate the
1782 * next slab entry.
1783 * @policy must be protected by freeing by the caller. If @policy is
1784 * the current task's mempolicy, this protection is implicit, as only the
1785 * task can change it's policy. The system default policy requires no
1786 * such protection.
1788 unsigned slab_node(void)
1790 struct mempolicy *policy;
1792 if (in_interrupt())
1793 return numa_node_id();
1795 policy = current->mempolicy;
1796 if (!policy || policy->flags & MPOL_F_LOCAL)
1797 return numa_node_id();
1799 switch (policy->mode) {
1800 case MPOL_PREFERRED:
1802 * handled MPOL_F_LOCAL above
1804 return policy->v.preferred_node;
1806 case MPOL_INTERLEAVE:
1807 return interleave_nodes(policy);
1809 case MPOL_BIND: {
1811 * Follow bind policy behavior and start allocation at the
1812 * first node.
1814 struct zonelist *zonelist;
1815 struct zone *zone;
1816 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1817 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1818 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1819 &policy->v.nodes,
1820 &zone);
1821 return zone ? zone->node : numa_node_id();
1824 default:
1825 BUG();
1829 /* Do static interleaving for a VMA with known offset. */
1830 static unsigned offset_il_node(struct mempolicy *pol,
1831 struct vm_area_struct *vma, unsigned long off)
1833 unsigned nnodes = nodes_weight(pol->v.nodes);
1834 unsigned target;
1835 int c;
1836 int nid = NUMA_NO_NODE;
1838 if (!nnodes)
1839 return numa_node_id();
1840 target = (unsigned int)off % nnodes;
1841 c = 0;
1842 do {
1843 nid = next_node(nid, pol->v.nodes);
1844 c++;
1845 } while (c <= target);
1846 return nid;
1849 /* Determine a node number for interleave */
1850 static inline unsigned interleave_nid(struct mempolicy *pol,
1851 struct vm_area_struct *vma, unsigned long addr, int shift)
1853 if (vma) {
1854 unsigned long off;
1857 * for small pages, there is no difference between
1858 * shift and PAGE_SHIFT, so the bit-shift is safe.
1859 * for huge pages, since vm_pgoff is in units of small
1860 * pages, we need to shift off the always 0 bits to get
1861 * a useful offset.
1863 BUG_ON(shift < PAGE_SHIFT);
1864 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1865 off += (addr - vma->vm_start) >> shift;
1866 return offset_il_node(pol, vma, off);
1867 } else
1868 return interleave_nodes(pol);
1872 * Return the bit number of a random bit set in the nodemask.
1873 * (returns NUMA_NO_NODE if nodemask is empty)
1875 int node_random(const nodemask_t *maskp)
1877 int w, bit = NUMA_NO_NODE;
1879 w = nodes_weight(*maskp);
1880 if (w)
1881 bit = bitmap_ord_to_pos(maskp->bits,
1882 get_random_int() % w, MAX_NUMNODES);
1883 return bit;
1886 #ifdef CONFIG_HUGETLBFS
1888 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1889 * @vma = virtual memory area whose policy is sought
1890 * @addr = address in @vma for shared policy lookup and interleave policy
1891 * @gfp_flags = for requested zone
1892 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1893 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1895 * Returns a zonelist suitable for a huge page allocation and a pointer
1896 * to the struct mempolicy for conditional unref after allocation.
1897 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1898 * @nodemask for filtering the zonelist.
1900 * Must be protected by read_mems_allowed_begin()
1902 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1903 gfp_t gfp_flags, struct mempolicy **mpol,
1904 nodemask_t **nodemask)
1906 struct zonelist *zl;
1908 *mpol = get_vma_policy(current, vma, addr);
1909 *nodemask = NULL; /* assume !MPOL_BIND */
1911 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1912 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1913 huge_page_shift(hstate_vma(vma))), gfp_flags);
1914 } else {
1915 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1916 if ((*mpol)->mode == MPOL_BIND)
1917 *nodemask = &(*mpol)->v.nodes;
1919 return zl;
1923 * init_nodemask_of_mempolicy
1925 * If the current task's mempolicy is "default" [NULL], return 'false'
1926 * to indicate default policy. Otherwise, extract the policy nodemask
1927 * for 'bind' or 'interleave' policy into the argument nodemask, or
1928 * initialize the argument nodemask to contain the single node for
1929 * 'preferred' or 'local' policy and return 'true' to indicate presence
1930 * of non-default mempolicy.
1932 * We don't bother with reference counting the mempolicy [mpol_get/put]
1933 * because the current task is examining it's own mempolicy and a task's
1934 * mempolicy is only ever changed by the task itself.
1936 * N.B., it is the caller's responsibility to free a returned nodemask.
1938 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1940 struct mempolicy *mempolicy;
1941 int nid;
1943 if (!(mask && current->mempolicy))
1944 return false;
1946 task_lock(current);
1947 mempolicy = current->mempolicy;
1948 switch (mempolicy->mode) {
1949 case MPOL_PREFERRED:
1950 if (mempolicy->flags & MPOL_F_LOCAL)
1951 nid = numa_node_id();
1952 else
1953 nid = mempolicy->v.preferred_node;
1954 init_nodemask_of_node(mask, nid);
1955 break;
1957 case MPOL_BIND:
1958 /* Fall through */
1959 case MPOL_INTERLEAVE:
1960 *mask = mempolicy->v.nodes;
1961 break;
1963 default:
1964 BUG();
1966 task_unlock(current);
1968 return true;
1970 #endif
1973 * mempolicy_nodemask_intersects
1975 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1976 * policy. Otherwise, check for intersection between mask and the policy
1977 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1978 * policy, always return true since it may allocate elsewhere on fallback.
1980 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1982 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1983 const nodemask_t *mask)
1985 struct mempolicy *mempolicy;
1986 bool ret = true;
1988 if (!mask)
1989 return ret;
1990 task_lock(tsk);
1991 mempolicy = tsk->mempolicy;
1992 if (!mempolicy)
1993 goto out;
1995 switch (mempolicy->mode) {
1996 case MPOL_PREFERRED:
1998 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1999 * allocate from, they may fallback to other nodes when oom.
2000 * Thus, it's possible for tsk to have allocated memory from
2001 * nodes in mask.
2003 break;
2004 case MPOL_BIND:
2005 case MPOL_INTERLEAVE:
2006 ret = nodes_intersects(mempolicy->v.nodes, *mask);
2007 break;
2008 default:
2009 BUG();
2011 out:
2012 task_unlock(tsk);
2013 return ret;
2016 /* Allocate a page in interleaved policy.
2017 Own path because it needs to do special accounting. */
2018 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2019 unsigned nid)
2021 struct zonelist *zl;
2022 struct page *page;
2024 zl = node_zonelist(nid, gfp);
2025 page = __alloc_pages(gfp, order, zl);
2026 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
2027 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
2028 return page;
2032 * alloc_pages_vma - Allocate a page for a VMA.
2034 * @gfp:
2035 * %GFP_USER user allocation.
2036 * %GFP_KERNEL kernel allocations,
2037 * %GFP_HIGHMEM highmem/user allocations,
2038 * %GFP_FS allocation should not call back into a file system.
2039 * %GFP_ATOMIC don't sleep.
2041 * @order:Order of the GFP allocation.
2042 * @vma: Pointer to VMA or NULL if not available.
2043 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2045 * This function allocates a page from the kernel page pool and applies
2046 * a NUMA policy associated with the VMA or the current process.
2047 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2048 * mm_struct of the VMA to prevent it from going away. Should be used for
2049 * all allocations for pages that will be mapped into
2050 * user space. Returns NULL when no page can be allocated.
2052 * Should be called with the mm_sem of the vma hold.
2054 struct page *
2055 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2056 unsigned long addr, int node)
2058 struct mempolicy *pol;
2059 struct page *page;
2060 unsigned int cpuset_mems_cookie;
2062 retry_cpuset:
2063 pol = get_vma_policy(current, vma, addr);
2064 cpuset_mems_cookie = read_mems_allowed_begin();
2066 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2067 unsigned nid;
2069 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2070 mpol_cond_put(pol);
2071 page = alloc_page_interleave(gfp, order, nid);
2072 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2073 goto retry_cpuset;
2075 return page;
2077 page = __alloc_pages_nodemask(gfp, order,
2078 policy_zonelist(gfp, pol, node),
2079 policy_nodemask(gfp, pol));
2080 if (unlikely(mpol_needs_cond_ref(pol)))
2081 __mpol_put(pol);
2082 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2083 goto retry_cpuset;
2084 return page;
2088 * alloc_pages_current - Allocate pages.
2090 * @gfp:
2091 * %GFP_USER user allocation,
2092 * %GFP_KERNEL kernel allocation,
2093 * %GFP_HIGHMEM highmem allocation,
2094 * %GFP_FS don't call back into a file system.
2095 * %GFP_ATOMIC don't sleep.
2096 * @order: Power of two of allocation size in pages. 0 is a single page.
2098 * Allocate a page from the kernel page pool. When not in
2099 * interrupt context and apply the current process NUMA policy.
2100 * Returns NULL when no page can be allocated.
2102 * Don't call cpuset_update_task_memory_state() unless
2103 * 1) it's ok to take cpuset_sem (can WAIT), and
2104 * 2) allocating for current task (not interrupt).
2106 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2108 struct mempolicy *pol = get_task_policy(current);
2109 struct page *page;
2110 unsigned int cpuset_mems_cookie;
2112 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2113 pol = &default_policy;
2115 retry_cpuset:
2116 cpuset_mems_cookie = read_mems_allowed_begin();
2119 * No reference counting needed for current->mempolicy
2120 * nor system default_policy
2122 if (pol->mode == MPOL_INTERLEAVE)
2123 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2124 else
2125 page = __alloc_pages_nodemask(gfp, order,
2126 policy_zonelist(gfp, pol, numa_node_id()),
2127 policy_nodemask(gfp, pol));
2129 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2130 goto retry_cpuset;
2132 return page;
2134 EXPORT_SYMBOL(alloc_pages_current);
2136 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2138 struct mempolicy *pol = mpol_dup(vma_policy(src));
2140 if (IS_ERR(pol))
2141 return PTR_ERR(pol);
2142 dst->vm_policy = pol;
2143 return 0;
2147 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2148 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2149 * with the mems_allowed returned by cpuset_mems_allowed(). This
2150 * keeps mempolicies cpuset relative after its cpuset moves. See
2151 * further kernel/cpuset.c update_nodemask().
2153 * current's mempolicy may be rebinded by the other task(the task that changes
2154 * cpuset's mems), so we needn't do rebind work for current task.
2157 /* Slow path of a mempolicy duplicate */
2158 struct mempolicy *__mpol_dup(struct mempolicy *old)
2160 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2162 if (!new)
2163 return ERR_PTR(-ENOMEM);
2165 /* task's mempolicy is protected by alloc_lock */
2166 if (old == current->mempolicy) {
2167 task_lock(current);
2168 *new = *old;
2169 task_unlock(current);
2170 } else
2171 *new = *old;
2173 if (current_cpuset_is_being_rebound()) {
2174 nodemask_t mems = cpuset_mems_allowed(current);
2175 if (new->flags & MPOL_F_REBINDING)
2176 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2177 else
2178 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2180 atomic_set(&new->refcnt, 1);
2181 return new;
2184 /* Slow path of a mempolicy comparison */
2185 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2187 if (!a || !b)
2188 return false;
2189 if (a->mode != b->mode)
2190 return false;
2191 if (a->flags != b->flags)
2192 return false;
2193 if (mpol_store_user_nodemask(a))
2194 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2195 return false;
2197 switch (a->mode) {
2198 case MPOL_BIND:
2199 /* Fall through */
2200 case MPOL_INTERLEAVE:
2201 return !!nodes_equal(a->v.nodes, b->v.nodes);
2202 case MPOL_PREFERRED:
2203 return a->v.preferred_node == b->v.preferred_node;
2204 default:
2205 BUG();
2206 return false;
2211 * Shared memory backing store policy support.
2213 * Remember policies even when nobody has shared memory mapped.
2214 * The policies are kept in Red-Black tree linked from the inode.
2215 * They are protected by the sp->lock spinlock, which should be held
2216 * for any accesses to the tree.
2219 /* lookup first element intersecting start-end */
2220 /* Caller holds sp->lock */
2221 static struct sp_node *
2222 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2224 struct rb_node *n = sp->root.rb_node;
2226 while (n) {
2227 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2229 if (start >= p->end)
2230 n = n->rb_right;
2231 else if (end <= p->start)
2232 n = n->rb_left;
2233 else
2234 break;
2236 if (!n)
2237 return NULL;
2238 for (;;) {
2239 struct sp_node *w = NULL;
2240 struct rb_node *prev = rb_prev(n);
2241 if (!prev)
2242 break;
2243 w = rb_entry(prev, struct sp_node, nd);
2244 if (w->end <= start)
2245 break;
2246 n = prev;
2248 return rb_entry(n, struct sp_node, nd);
2251 /* Insert a new shared policy into the list. */
2252 /* Caller holds sp->lock */
2253 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2255 struct rb_node **p = &sp->root.rb_node;
2256 struct rb_node *parent = NULL;
2257 struct sp_node *nd;
2259 while (*p) {
2260 parent = *p;
2261 nd = rb_entry(parent, struct sp_node, nd);
2262 if (new->start < nd->start)
2263 p = &(*p)->rb_left;
2264 else if (new->end > nd->end)
2265 p = &(*p)->rb_right;
2266 else
2267 BUG();
2269 rb_link_node(&new->nd, parent, p);
2270 rb_insert_color(&new->nd, &sp->root);
2271 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2272 new->policy ? new->policy->mode : 0);
2275 /* Find shared policy intersecting idx */
2276 struct mempolicy *
2277 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2279 struct mempolicy *pol = NULL;
2280 struct sp_node *sn;
2282 if (!sp->root.rb_node)
2283 return NULL;
2284 spin_lock(&sp->lock);
2285 sn = sp_lookup(sp, idx, idx+1);
2286 if (sn) {
2287 mpol_get(sn->policy);
2288 pol = sn->policy;
2290 spin_unlock(&sp->lock);
2291 return pol;
2294 static void sp_free(struct sp_node *n)
2296 mpol_put(n->policy);
2297 kmem_cache_free(sn_cache, n);
2300 #ifdef CONFIG_NUMA_BALANCING
2301 static bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
2303 /* Never defer a private fault */
2304 if (cpupid_match_pid(p, last_cpupid))
2305 return false;
2307 if (p->numa_migrate_deferred) {
2308 p->numa_migrate_deferred--;
2309 return true;
2311 return false;
2314 static inline void defer_numa_migrate(struct task_struct *p)
2316 p->numa_migrate_deferred = sysctl_numa_balancing_migrate_deferred;
2318 #else
2319 static inline bool numa_migrate_deferred(struct task_struct *p, int last_cpupid)
2321 return false;
2324 static inline void defer_numa_migrate(struct task_struct *p)
2327 #endif /* CONFIG_NUMA_BALANCING */
2330 * mpol_misplaced - check whether current page node is valid in policy
2332 * @page - page to be checked
2333 * @vma - vm area where page mapped
2334 * @addr - virtual address where page mapped
2336 * Lookup current policy node id for vma,addr and "compare to" page's
2337 * node id.
2339 * Returns:
2340 * -1 - not misplaced, page is in the right node
2341 * node - node id where the page should be
2343 * Policy determination "mimics" alloc_page_vma().
2344 * Called from fault path where we know the vma and faulting address.
2346 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2348 struct mempolicy *pol;
2349 struct zone *zone;
2350 int curnid = page_to_nid(page);
2351 unsigned long pgoff;
2352 int thiscpu = raw_smp_processor_id();
2353 int thisnid = cpu_to_node(thiscpu);
2354 int polnid = -1;
2355 int ret = -1;
2357 BUG_ON(!vma);
2359 pol = get_vma_policy(current, vma, addr);
2360 if (!(pol->flags & MPOL_F_MOF))
2361 goto out;
2363 switch (pol->mode) {
2364 case MPOL_INTERLEAVE:
2365 BUG_ON(addr >= vma->vm_end);
2366 BUG_ON(addr < vma->vm_start);
2368 pgoff = vma->vm_pgoff;
2369 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2370 polnid = offset_il_node(pol, vma, pgoff);
2371 break;
2373 case MPOL_PREFERRED:
2374 if (pol->flags & MPOL_F_LOCAL)
2375 polnid = numa_node_id();
2376 else
2377 polnid = pol->v.preferred_node;
2378 break;
2380 case MPOL_BIND:
2382 * allows binding to multiple nodes.
2383 * use current page if in policy nodemask,
2384 * else select nearest allowed node, if any.
2385 * If no allowed nodes, use current [!misplaced].
2387 if (node_isset(curnid, pol->v.nodes))
2388 goto out;
2389 (void)first_zones_zonelist(
2390 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2391 gfp_zone(GFP_HIGHUSER),
2392 &pol->v.nodes, &zone);
2393 polnid = zone->node;
2394 break;
2396 default:
2397 BUG();
2400 /* Migrate the page towards the node whose CPU is referencing it */
2401 if (pol->flags & MPOL_F_MORON) {
2402 int last_cpupid;
2403 int this_cpupid;
2405 polnid = thisnid;
2406 this_cpupid = cpu_pid_to_cpupid(thiscpu, current->pid);
2409 * Multi-stage node selection is used in conjunction
2410 * with a periodic migration fault to build a temporal
2411 * task<->page relation. By using a two-stage filter we
2412 * remove short/unlikely relations.
2414 * Using P(p) ~ n_p / n_t as per frequentist
2415 * probability, we can equate a task's usage of a
2416 * particular page (n_p) per total usage of this
2417 * page (n_t) (in a given time-span) to a probability.
2419 * Our periodic faults will sample this probability and
2420 * getting the same result twice in a row, given these
2421 * samples are fully independent, is then given by
2422 * P(n)^2, provided our sample period is sufficiently
2423 * short compared to the usage pattern.
2425 * This quadric squishes small probabilities, making
2426 * it less likely we act on an unlikely task<->page
2427 * relation.
2429 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
2430 if (!cpupid_pid_unset(last_cpupid) && cpupid_to_nid(last_cpupid) != thisnid) {
2432 /* See sysctl_numa_balancing_migrate_deferred comment */
2433 if (!cpupid_match_pid(current, last_cpupid))
2434 defer_numa_migrate(current);
2436 goto out;
2440 * The quadratic filter above reduces extraneous migration
2441 * of shared pages somewhat. This code reduces it even more,
2442 * reducing the overhead of page migrations of shared pages.
2443 * This makes workloads with shared pages rely more on
2444 * "move task near its memory", and less on "move memory
2445 * towards its task", which is exactly what we want.
2447 if (numa_migrate_deferred(current, last_cpupid))
2448 goto out;
2451 if (curnid != polnid)
2452 ret = polnid;
2453 out:
2454 mpol_cond_put(pol);
2456 return ret;
2459 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2461 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2462 rb_erase(&n->nd, &sp->root);
2463 sp_free(n);
2466 static void sp_node_init(struct sp_node *node, unsigned long start,
2467 unsigned long end, struct mempolicy *pol)
2469 node->start = start;
2470 node->end = end;
2471 node->policy = pol;
2474 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2475 struct mempolicy *pol)
2477 struct sp_node *n;
2478 struct mempolicy *newpol;
2480 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2481 if (!n)
2482 return NULL;
2484 newpol = mpol_dup(pol);
2485 if (IS_ERR(newpol)) {
2486 kmem_cache_free(sn_cache, n);
2487 return NULL;
2489 newpol->flags |= MPOL_F_SHARED;
2490 sp_node_init(n, start, end, newpol);
2492 return n;
2495 /* Replace a policy range. */
2496 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2497 unsigned long end, struct sp_node *new)
2499 struct sp_node *n;
2500 struct sp_node *n_new = NULL;
2501 struct mempolicy *mpol_new = NULL;
2502 int ret = 0;
2504 restart:
2505 spin_lock(&sp->lock);
2506 n = sp_lookup(sp, start, end);
2507 /* Take care of old policies in the same range. */
2508 while (n && n->start < end) {
2509 struct rb_node *next = rb_next(&n->nd);
2510 if (n->start >= start) {
2511 if (n->end <= end)
2512 sp_delete(sp, n);
2513 else
2514 n->start = end;
2515 } else {
2516 /* Old policy spanning whole new range. */
2517 if (n->end > end) {
2518 if (!n_new)
2519 goto alloc_new;
2521 *mpol_new = *n->policy;
2522 atomic_set(&mpol_new->refcnt, 1);
2523 sp_node_init(n_new, end, n->end, mpol_new);
2524 n->end = start;
2525 sp_insert(sp, n_new);
2526 n_new = NULL;
2527 mpol_new = NULL;
2528 break;
2529 } else
2530 n->end = start;
2532 if (!next)
2533 break;
2534 n = rb_entry(next, struct sp_node, nd);
2536 if (new)
2537 sp_insert(sp, new);
2538 spin_unlock(&sp->lock);
2539 ret = 0;
2541 err_out:
2542 if (mpol_new)
2543 mpol_put(mpol_new);
2544 if (n_new)
2545 kmem_cache_free(sn_cache, n_new);
2547 return ret;
2549 alloc_new:
2550 spin_unlock(&sp->lock);
2551 ret = -ENOMEM;
2552 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2553 if (!n_new)
2554 goto err_out;
2555 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2556 if (!mpol_new)
2557 goto err_out;
2558 goto restart;
2562 * mpol_shared_policy_init - initialize shared policy for inode
2563 * @sp: pointer to inode shared policy
2564 * @mpol: struct mempolicy to install
2566 * Install non-NULL @mpol in inode's shared policy rb-tree.
2567 * On entry, the current task has a reference on a non-NULL @mpol.
2568 * This must be released on exit.
2569 * This is called at get_inode() calls and we can use GFP_KERNEL.
2571 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2573 int ret;
2575 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2576 spin_lock_init(&sp->lock);
2578 if (mpol) {
2579 struct vm_area_struct pvma;
2580 struct mempolicy *new;
2581 NODEMASK_SCRATCH(scratch);
2583 if (!scratch)
2584 goto put_mpol;
2585 /* contextualize the tmpfs mount point mempolicy */
2586 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2587 if (IS_ERR(new))
2588 goto free_scratch; /* no valid nodemask intersection */
2590 task_lock(current);
2591 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2592 task_unlock(current);
2593 if (ret)
2594 goto put_new;
2596 /* Create pseudo-vma that contains just the policy */
2597 memset(&pvma, 0, sizeof(struct vm_area_struct));
2598 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2599 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2601 put_new:
2602 mpol_put(new); /* drop initial ref */
2603 free_scratch:
2604 NODEMASK_SCRATCH_FREE(scratch);
2605 put_mpol:
2606 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2610 int mpol_set_shared_policy(struct shared_policy *info,
2611 struct vm_area_struct *vma, struct mempolicy *npol)
2613 int err;
2614 struct sp_node *new = NULL;
2615 unsigned long sz = vma_pages(vma);
2617 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2618 vma->vm_pgoff,
2619 sz, npol ? npol->mode : -1,
2620 npol ? npol->flags : -1,
2621 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2623 if (npol) {
2624 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2625 if (!new)
2626 return -ENOMEM;
2628 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2629 if (err && new)
2630 sp_free(new);
2631 return err;
2634 /* Free a backing policy store on inode delete. */
2635 void mpol_free_shared_policy(struct shared_policy *p)
2637 struct sp_node *n;
2638 struct rb_node *next;
2640 if (!p->root.rb_node)
2641 return;
2642 spin_lock(&p->lock);
2643 next = rb_first(&p->root);
2644 while (next) {
2645 n = rb_entry(next, struct sp_node, nd);
2646 next = rb_next(&n->nd);
2647 sp_delete(p, n);
2649 spin_unlock(&p->lock);
2652 #ifdef CONFIG_NUMA_BALANCING
2653 static int __initdata numabalancing_override;
2655 static void __init check_numabalancing_enable(void)
2657 bool numabalancing_default = false;
2659 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2660 numabalancing_default = true;
2662 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2663 if (numabalancing_override)
2664 set_numabalancing_state(numabalancing_override == 1);
2666 if (num_online_nodes() > 1 && !numabalancing_override) {
2667 pr_info("%s automatic NUMA balancing. "
2668 "Configure with numa_balancing= or the "
2669 "kernel.numa_balancing sysctl",
2670 numabalancing_default ? "Enabling" : "Disabling");
2671 set_numabalancing_state(numabalancing_default);
2675 static int __init setup_numabalancing(char *str)
2677 int ret = 0;
2678 if (!str)
2679 goto out;
2681 if (!strcmp(str, "enable")) {
2682 numabalancing_override = 1;
2683 ret = 1;
2684 } else if (!strcmp(str, "disable")) {
2685 numabalancing_override = -1;
2686 ret = 1;
2688 out:
2689 if (!ret)
2690 pr_warn("Unable to parse numa_balancing=\n");
2692 return ret;
2694 __setup("numa_balancing=", setup_numabalancing);
2695 #else
2696 static inline void __init check_numabalancing_enable(void)
2699 #endif /* CONFIG_NUMA_BALANCING */
2701 /* assumes fs == KERNEL_DS */
2702 void __init numa_policy_init(void)
2704 nodemask_t interleave_nodes;
2705 unsigned long largest = 0;
2706 int nid, prefer = 0;
2708 policy_cache = kmem_cache_create("numa_policy",
2709 sizeof(struct mempolicy),
2710 0, SLAB_PANIC, NULL);
2712 sn_cache = kmem_cache_create("shared_policy_node",
2713 sizeof(struct sp_node),
2714 0, SLAB_PANIC, NULL);
2716 for_each_node(nid) {
2717 preferred_node_policy[nid] = (struct mempolicy) {
2718 .refcnt = ATOMIC_INIT(1),
2719 .mode = MPOL_PREFERRED,
2720 .flags = MPOL_F_MOF | MPOL_F_MORON,
2721 .v = { .preferred_node = nid, },
2726 * Set interleaving policy for system init. Interleaving is only
2727 * enabled across suitably sized nodes (default is >= 16MB), or
2728 * fall back to the largest node if they're all smaller.
2730 nodes_clear(interleave_nodes);
2731 for_each_node_state(nid, N_MEMORY) {
2732 unsigned long total_pages = node_present_pages(nid);
2734 /* Preserve the largest node */
2735 if (largest < total_pages) {
2736 largest = total_pages;
2737 prefer = nid;
2740 /* Interleave this node? */
2741 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2742 node_set(nid, interleave_nodes);
2745 /* All too small, use the largest */
2746 if (unlikely(nodes_empty(interleave_nodes)))
2747 node_set(prefer, interleave_nodes);
2749 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2750 printk("numa_policy_init: interleaving failed\n");
2752 check_numabalancing_enable();
2755 /* Reset policy of current process to default */
2756 void numa_default_policy(void)
2758 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2762 * Parse and format mempolicy from/to strings
2766 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2768 static const char * const policy_modes[] =
2770 [MPOL_DEFAULT] = "default",
2771 [MPOL_PREFERRED] = "prefer",
2772 [MPOL_BIND] = "bind",
2773 [MPOL_INTERLEAVE] = "interleave",
2774 [MPOL_LOCAL] = "local",
2778 #ifdef CONFIG_TMPFS
2780 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2781 * @str: string containing mempolicy to parse
2782 * @mpol: pointer to struct mempolicy pointer, returned on success.
2784 * Format of input:
2785 * <mode>[=<flags>][:<nodelist>]
2787 * On success, returns 0, else 1
2789 int mpol_parse_str(char *str, struct mempolicy **mpol)
2791 struct mempolicy *new = NULL;
2792 unsigned short mode;
2793 unsigned short mode_flags;
2794 nodemask_t nodes;
2795 char *nodelist = strchr(str, ':');
2796 char *flags = strchr(str, '=');
2797 int err = 1;
2799 if (nodelist) {
2800 /* NUL-terminate mode or flags string */
2801 *nodelist++ = '\0';
2802 if (nodelist_parse(nodelist, nodes))
2803 goto out;
2804 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2805 goto out;
2806 } else
2807 nodes_clear(nodes);
2809 if (flags)
2810 *flags++ = '\0'; /* terminate mode string */
2812 for (mode = 0; mode < MPOL_MAX; mode++) {
2813 if (!strcmp(str, policy_modes[mode])) {
2814 break;
2817 if (mode >= MPOL_MAX)
2818 goto out;
2820 switch (mode) {
2821 case MPOL_PREFERRED:
2823 * Insist on a nodelist of one node only
2825 if (nodelist) {
2826 char *rest = nodelist;
2827 while (isdigit(*rest))
2828 rest++;
2829 if (*rest)
2830 goto out;
2832 break;
2833 case MPOL_INTERLEAVE:
2835 * Default to online nodes with memory if no nodelist
2837 if (!nodelist)
2838 nodes = node_states[N_MEMORY];
2839 break;
2840 case MPOL_LOCAL:
2842 * Don't allow a nodelist; mpol_new() checks flags
2844 if (nodelist)
2845 goto out;
2846 mode = MPOL_PREFERRED;
2847 break;
2848 case MPOL_DEFAULT:
2850 * Insist on a empty nodelist
2852 if (!nodelist)
2853 err = 0;
2854 goto out;
2855 case MPOL_BIND:
2857 * Insist on a nodelist
2859 if (!nodelist)
2860 goto out;
2863 mode_flags = 0;
2864 if (flags) {
2866 * Currently, we only support two mutually exclusive
2867 * mode flags.
2869 if (!strcmp(flags, "static"))
2870 mode_flags |= MPOL_F_STATIC_NODES;
2871 else if (!strcmp(flags, "relative"))
2872 mode_flags |= MPOL_F_RELATIVE_NODES;
2873 else
2874 goto out;
2877 new = mpol_new(mode, mode_flags, &nodes);
2878 if (IS_ERR(new))
2879 goto out;
2882 * Save nodes for mpol_to_str() to show the tmpfs mount options
2883 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2885 if (mode != MPOL_PREFERRED)
2886 new->v.nodes = nodes;
2887 else if (nodelist)
2888 new->v.preferred_node = first_node(nodes);
2889 else
2890 new->flags |= MPOL_F_LOCAL;
2893 * Save nodes for contextualization: this will be used to "clone"
2894 * the mempolicy in a specific context [cpuset] at a later time.
2896 new->w.user_nodemask = nodes;
2898 err = 0;
2900 out:
2901 /* Restore string for error message */
2902 if (nodelist)
2903 *--nodelist = ':';
2904 if (flags)
2905 *--flags = '=';
2906 if (!err)
2907 *mpol = new;
2908 return err;
2910 #endif /* CONFIG_TMPFS */
2913 * mpol_to_str - format a mempolicy structure for printing
2914 * @buffer: to contain formatted mempolicy string
2915 * @maxlen: length of @buffer
2916 * @pol: pointer to mempolicy to be formatted
2918 * Convert @pol into a string. If @buffer is too short, truncate the string.
2919 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2920 * longest flag, "relative", and to display at least a few node ids.
2922 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2924 char *p = buffer;
2925 nodemask_t nodes = NODE_MASK_NONE;
2926 unsigned short mode = MPOL_DEFAULT;
2927 unsigned short flags = 0;
2929 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2930 mode = pol->mode;
2931 flags = pol->flags;
2934 switch (mode) {
2935 case MPOL_DEFAULT:
2936 break;
2937 case MPOL_PREFERRED:
2938 if (flags & MPOL_F_LOCAL)
2939 mode = MPOL_LOCAL;
2940 else
2941 node_set(pol->v.preferred_node, nodes);
2942 break;
2943 case MPOL_BIND:
2944 case MPOL_INTERLEAVE:
2945 nodes = pol->v.nodes;
2946 break;
2947 default:
2948 WARN_ON_ONCE(1);
2949 snprintf(p, maxlen, "unknown");
2950 return;
2953 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2955 if (flags & MPOL_MODE_FLAGS) {
2956 p += snprintf(p, buffer + maxlen - p, "=");
2959 * Currently, the only defined flags are mutually exclusive
2961 if (flags & MPOL_F_STATIC_NODES)
2962 p += snprintf(p, buffer + maxlen - p, "static");
2963 else if (flags & MPOL_F_RELATIVE_NODES)
2964 p += snprintf(p, buffer + maxlen - p, "relative");
2967 if (!nodes_empty(nodes)) {
2968 p += snprintf(p, buffer + maxlen - p, ":");
2969 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);